
Poky Handbook

Hitchhiker's Guide to Poky

Richard Purdie, OpenedHand Ltd <richard@openedhand.com>
Tomas Frydrych, OpenedHand Ltd <tf@openedhand.com>

Marcin Juszkiewicz, OpenedHand Ltd <hrw@openedhand.com>
Dodji Seketeli, OpenedHand Ltd <dodji@openedhand.com>

Poky Handbook: Hitchhiker's Guide to Poky
by Richard Purdie, Tomas Frydrych, Marcin Juszkiewicz, and Dodji Seketeli
Copyright © 2007, 2008 OpenedHand Limited

Permission is granted to copy, distribute and/or modify this document under the terms of the Creative Commons
Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales [http://creativecommons.org/licenses/by-nc-
sa/2.0/uk/] as published by Creative Commons.

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

iii

Table of Contents
1. Introduction ... 1

1. What is Poky? .. 1
2. Documentation Overview ... 2
3. System Requirements .. 2
4. Quick Start .. 2

4.1. Building and Running an Image ... 2
4.2. Downloading and Using Prebuilt Images .. 3

5. Obtaining Poky .. 3
5.1. Releases ... 3
5.2. Nightly Builds ... 3
5.3. Development Checkouts ... 4

2. Using Poky .. 5
1. Poky Overview ... 5

1.1. Bitbake ... 5
1.2. Metadata (Recipes) ... 5
1.3. Classes ... 5
1.4. Configuration .. 5

2. Running a Build ... 5
3. Installing and Using the Result ... 6

3.1. USB Networking .. 6
3.2. QEMU/USB networking with IP masquerading ... 6

4. Debugging Build Failures ... 7
4.1. Task Failures ... 7
4.2. Running specific tasks .. 7
4.3. Dependency Graphs .. 7
4.4. General Bitbake Problems ... 7
4.5. Building with no dependencies .. 8
4.6. Variables ... 8
4.7. Other Tips .. 8

3. Extending Poky .. 9
1. Adding a Package .. 9

1.1. Single .c File Package (Hello World!) .. 9
1.2. Autotooled Package .. 9
1.3. Makefile-Based Package .. 10
1.4. Controlling packages content .. 10
1.5. Post Install Scripts .. 10

2. Customising Images ... 11
2.1. Customising Images through a custom image .bb files 11
2.2. Customising Images through custom tasks .. 11
2.3. Customising Images through custom IMAGE_FEATURES 12
2.4. Customising Images through local.conf .. 12

3. Porting Poky to a new machine .. 13
3.1. Adding the machine configuration file ... 13
3.2. Adding a kernel for the machine ... 13
3.3. Adding a formfactor configuration file .. 13

4. Making and Maintaining Changes ... 13
4.1. Bitbake Collections .. 14
4.2. Supplementry Metadata Repositories ... 14
4.3. Committing Changes ... 14
4.4. Package Revision Incrementing ... 15
4.5. Using Poky in a Team Environment .. 15

5. Modifying Package Source Code ... 15
5.1. Modifying Package Source Code with quilt ... 16

4. Platform Development with Poky .. 17
1. Software development ... 17

1.1. Developing externally using the Poky SDK ... 17
1.2. Developing externally using the Anjuta plugin ... 17
1.3. Developing externally in QEMU ... 18
1.4. Developing externally in a chroot .. 18
1.5. Developing in Poky directly ... 19
1.6. Developing with 'devshell' ... 19

Poky Handbook

iv

1.7. Developing within Poky with an external SCM based package 20
2. Debugging with GDB Remotely .. 20

2.1. Launching GDBSERVER on the target .. 20
2.2. Launching GDB on the host computer ... 21

3. Profiling with OProfile ... 22
3.1. Profiling on the target ... 22
3.2. Using OProfileUI .. 23

A. Reference: Directory Structure ... 25
1. Top level core components .. 25

1.1. bitbake/ .. 25
1.2. build/ ... 25
1.3. meta/ ... 25
1.4. meta-extras/ ... 25
1.5. scripts/ .. 25
1.6. sources/ .. 25
1.7. poky-init-build-env .. 25

2. build/ - The Build Directory .. 26
2.1. build/conf/local.conf ... 26
2.2. build/tmp/ .. 26
2.3. build/tmp/cache/ .. 26
2.4. build/tmp/cross/ .. 26
2.5. build/tmp/deploy/ .. 26
2.6. build/tmp/deploy/deb/ ... 26
2.7. build/tmp/deploy/images/ ... 26
2.8. build/tmp/deploy/ipk/ ... 26
2.9. build/tmp/rootfs/ .. 26
2.10. build/tmp/staging/ .. 26
2.11. build/tmp/stamps/ .. 27
2.12. build/tmp/work/ .. 27

3. meta/ - The Metadata .. 27
3.1. meta/classes/ ... 27
3.2. meta/conf/ .. 27
3.3. meta/conf/machine/ .. 27
3.4. meta/conf/distro/ .. 27
3.5. meta/packages/ ... 27
3.6. meta/site/ .. 28

B. Reference: Bitbake .. 29
1. Parsing .. 29
2. Preferences and Providers .. 29
3. Dependencies .. 30
4. The Task List ... 30
5. Running a Task .. 30
6. Commandline .. 30
7. Fetchers .. 31

C. Reference: Classes .. 32
1. The base class - base.bbclass .. 32
2. Autotooled Packages - autotools.bbclass .. 32
3. Alternatives - update-alternatives.bbclass .. 32
4. Initscripts - update-rc.d.bbclass ... 33
5. Binary config scripts - binconfig.bbclass .. 33
6. Debian renaming - debian.bbclass ... 33
7. Pkg-config - pkgconfig.bbclass .. 33
8. Distribution of sources - src_distribute_local.bbclass .. 33
9. Perl modules - cpan.bbclass ... 33
10. Python extensions - distutils.bbclass .. 34
11. Developer Shell - devshell.bbclass ... 34
12. Packaging - package*.bbclass .. 34
13. Building kernels - kernel.bbclass ... 34
14. Creating images - image.bbclass and rootfs*.bbclass .. 34
15. Host System sanity checks - sanity.bbclass .. 34
16. Generated output quality assurance checks - insane.bbclass 34
17. Autotools configuration data cache - siteinfo.bbclass ... 35
18. Other Classes .. 35

D. Reference: Images ... 36

Poky Handbook

v

E. Reference: Features ... 37
1. Distro .. 37
2. Machine ... 37
3. Reference: Images ... 38

F. Reference: Variables Glossary ... 39
G. Reference: Variable Locality (Distro, Machine, Recipe etc.) .. 44

1. Distro Configuration ... 44
2. Machine Configuration ... 44
3. Local Configuration (local.conf) .. 44
4. Recipe Variables - Required .. 45
5. Recipe Variables - Dependencies .. 45
6. Recipe Variables - Paths ... 45
7. Recipe Variables - Extra Build Information .. 45

H. FAQ ... 46
I. Contributing to Poky ... 48

1. Introduction ... 48
2. Bugtracker ... 48
3. Mailing list ... 48
4. IRC .. 48
5. Links ... 48

J. OpenedHand Contact Information ... 49
Index ... 50

1

Chapter 1. Introduction
1. What is Poky?
Poky is an open source platform build tool. It is a complete software development environment for
the creation of Linux devices. It aids the design, development, building, debugging, simulation and
testing of complete modern software stacks using Linux, the X Window System and GNOME Mobile
based application frameworks. It is based on OpenEmbedded [http://openembedded.org/] but has
been customised with a particular focus.

Poky was setup to:

• Provide an open source Linux, X11, Matchbox, GTK+, Pimlico, Clutter, and other GNOME Mobile
[http://gnome.org/mobile] technologies based full platform build and development tool.

• Create a focused, stable, subset of OpenEmbedded that can be easily and reliably built and
developed upon.

• Fully support a wide range of x86 and ARM hardware and device virtulisation

Poky is primarily a platform builder which generates filesystem images based on open source software
such as the Kdrive X server, the Matchbox window manager, the GTK+ toolkit and the D-Bus message
bus system. Images for many kinds of devices can be generated, however the standard example
machines target QEMU full system emulation (both x86 and ARM) and the ARM based Sharp Zaurus
series of devices. Poky's ability to boot inside a QEMU emulator makes it particularly suitable as a
test platform for development of embedded software.

An important component integrated within Poky is Sato, a GNOME Mobile based user interface
environment. It is designed to work well with screens at very high DPI and restricted size, such as
those often found on smartphones and PDAs. It is coded with focus on efficiency and speed so that
it works smoothly on hand-held and other embedded hardware. It will sit neatly on top of any device
using the GNOME Mobile stack, providing a well defined user experience.

http://openembedded.org/
http://openembedded.org/
http://gnome.org/mobile
http://gnome.org/mobile

Introduction

2

The Sato Desktop - A screenshot from a machine running a Poky built image

Poky has a growing open source community backed up by commercial support provided by the
principal developer and maintainer of Poky, OpenedHand Ltd [http://o-hand.com/].

2. Documentation Overview
The handbook is split into sections covering different aspects of Poky. The 'Using Poky' section gives an
overview of the components that make up Poky followed by information about using and debugging
the Poky build system. The 'Extending Poky' section gives information about how to extend and
customise Poky along with advice on how to manage these changes. The 'Platform Development with
Poky' section gives information about interaction between Poky and target hardware for common
platform development tasks such as software development, debugging and profiling. The rest of
the manual consists of several reference sections each giving details on a specific section of Poky
functionality.

This manual applies to Poky Release 3.1 (Pinky).

3. System Requirements
We recommend Debian-based distributions, in particular a recent Ubuntu release (7.04 or newer), as
the host system for Poky. Nothing in Poky is distribution specific and other distributions will most likely
work as long as the appropriate prerequisites are installed - we know of Poky being used successfully
on Redhat, SUSE, Gentoo and Slackware host systems.

On a Debian-based system, you need the following packages installed:

• build-essential

• python

• diffstat

• texinfo

• texi2html

• cvs

• subversion

• wget

• gawk

• help2man

• bochsbios (only to run qemux86 images)

Debian users can add debian.o-hand.com to their APT sources (See http://debian.o-hand.com for
instructions on doing this) and then run "apt-get install qemu poky-depends poky-scripts" which will
automatically install all these dependencies. OpenedHand can also provide VMware images with Poky
and all dependencies pre-installed if required.

Poky can use a system provided QEMU or build its own depending on how it's configured. See the
options in local.conf for more details.

4. Quick Start

4.1. Building and Running an Image
If you want to try Poky, you can do so in a few commands. The example below checks out the Poky
source code, sets up a build environment, builds an image and then runs that image under the QEMU
emulator in x86 system emulation mode:

$ wget http://pokylinux.org/releases/purple-3.2.1.tar.gz

http://o-hand.com/
http://o-hand.com/
http://debian.o-hand.com

Introduction

3

$ tar zxvf purple-3.2.1.tar.gz
$ cd purple-3.2.1/
$ source poky-init-build-env
$ bitbake poky-image-sato
$ runqemu qemux86

Note

This process will need Internet access, about 3 GB of disk space available, and you should
expect the build to take about 4 - 5 hours since it is building an entire Linux system from
source including the toolchain!

To build for other machines see the MACHINE variable in build/conf/local.conf. This file contains other
useful configuration information and the default version has examples of common setup needs and is
worth reading. To take advantage of multiple processor cores to speed up builds for example, set the
BB_NUMBER_THREADS and PARALLEL_MAKE variables. The images/kernels built by Poky are placed
in the tmp/deploy/images directory.

You could also run "poky-qemu zImage-qemuarm.bin poky-image-sato-qemuarm.ext2" within the
images directory if you have the poky-scripts Debian package installed from debian.o-hand.com. This
allows the QEMU images to be used standalone outside the Poky build environment.

To setup networking within QEMU see the QEMU/USB networking with IP masquerading section.

4.2. Downloading and Using Prebuilt Images
Prebuilt images from Poky are also available if you just want to run the system under QEMU. To use
these you need to:

• Add debian.o-hand.com to your APT sources (See http://debian.o-hand.com for instructions on
doing this)

• Install patched QEMU and poky-scripts:

$ apt-get install qemu poky-scripts

• Download a Poky QEMU release kernel (*zImage*qemu*.bin) and compressed filesystem image
(poky-image-*-qemu*.ext2.bz2) which you'll need to decompress with 'bzip2 -d'. These are available
from the last release [http://pokylinux.org/releases/blinky-3.0/] or from the autobuilder [http://
pokylinux.org/autobuild/poky/].

• Start the image:

$ poky-qemu <kernel> <image>

Note

A patched version of QEMU is required at present. A suitable version is available from http://
debian.o-hand.com, it can be built by poky (bitbake qemu-native) or can be downloaded/built
as part of the toolchain/SDK tarballs.

5. Obtaining Poky

5.1. Releases
Periodically, we make releases of Poky and these are available at http://pokylinux.org/releases/. These
are more stable and tested than the nightly development images.

5.2. Nightly Builds
We make nightly builds of Poky for testing purposes and to make the latest developments available.
The output from these builds is available at http://pokylinux.org/autobuild/ where the numbers
increase for each subsequent build and can be used to reference it.

http://debian.o-hand.com
http://pokylinux.org/releases/blinky-3.0/
http://pokylinux.org/releases/blinky-3.0/
http://pokylinux.org/autobuild/poky/
http://pokylinux.org/autobuild/poky/
http://pokylinux.org/autobuild/poky/
http://debian.o-hand.com
http://debian.o-hand.com
http://pokylinux.org/releases/
http://pokylinux.org/autobuild/

Introduction

4

Automated builds are available for "standard" Poky and for Poky SDKs and toolchains as well as any
testing versions we might have such as poky-bleeding. The toolchains can be used either as external
standalone toolchains or can be combined with Poky as a prebuilt toolchain to reduce build time.
Using the external toolchains is simply a case of untarring the tarball into the root of your system (it
only creates files in /usr/local/poky) and then enabling the option in local.conf.

5.3. Development Checkouts
Poky is available from our GIT repository located at git://git.pokylinux.org/poky.git; a web interface to
the repository can be accessed at http://git.pokylinux.org/.

The 'master' is where the deveopment work takes place and you should use this if you're after to
work with the latest cutting edge developments. It is possible trunk can suffer temporary periods of
instability while new features are developed and if this is undesireable we recommend using one of
the release branches.

http://git.pokylinux.org/

5

Chapter 2. Using Poky
This section gives an overview of the components that make up Poky following by information about
running poky builds and dealing with any problems that may arise.

1. Poky Overview
At the core of Poky is the bitbake task executor together with various types of configuration files.
This section gives an overview of bitbake and the configuration files, in particular what they are used
for, and how they interact.

Bitbake handles the parsing and execution of the data files. The data itself is of various types;
recipes which give details about particular pieces of software, class data which is an abstraction of
common build information (e.g. how to build a Linux kernel) and configuration data for machines,
policy decisions, etc., which acts as a glue and binds everything together. Bitbake knows how to
combine multiple data sources together, each data source being referred to as a 'collection'.

The directory structure walkthrough section gives details on the meaning of specific directories but
some brief details on the core components follows:

1.1. Bitbake
Bitbake is the tool at the heart of Poky and is responsible for parsing the metadata, generating a list
of tasks from it and then executing them. To see a list of the options it supports look at bitbake --help.

The most common usage is bitbake packagename where packagename is the name of the package
you wish to build (from now on called the target). This often equates to the first part of a .bb filename,
so to run the matchbox-desktop_1.2.3.bb file, you might type bitbake matchbox-desktop. Several
different versions of matchbox-desktop might exist and bitbake will choose the one selected by the
distribution configuration (more details about how bitbake chooses between different versions and
providers is available in the 'Preferences and Providers' section). Bitbake will also try to execute any
dependent tasks first so before building matchbox-desktop it would build a cross compiler and glibc
if not already built.

1.2. Metadata (Recipes)
The .bb files are usually referred to as 'recipes'. In general, a recipe contains information about a single
piece of software such as where to download the source, any patches that are needed, any special
configuration options, how to compile the source files and how to package the compiled output.

'package' can also be used to describe recipes but since the same word is used for the packaged
output from Poky (i.e. .ipk or .deb files), this document will avoid it.

1.3. Classes
Class (.bbclass) files contain information which is useful to share between metadata files. An example
is the autotools class which contains the common settings that any application using autotools would
use. The classes reference section gives details on common classes and how to use them.

1.4. Configuration
The configuration (.conf) files define various configuration variables which govern what Poky does.
These are split into several areas, such as machine configuration options, distribution configuration
options, compiler tuning options, general common configuration and user configuration (local.conf).

2. Running a Build
First the Poky build environment needs to be set up using the following command:

$ source poky-init-build-env

Using Poky

6

Once the Poky build environment is set up, a target can now be built using:

$ bitbake <target>

The target is the name of the recipe you want to build. Common targets are the images (in meta/
packages/images/) or the name of a recipe for a specific piece of software like busybox. More details
about the standard images are available in the image reference section.

3. Installing and Using the Result
Once an image has been built it often needs to be installed. The images/kernels built by Poky are
placed in the tmp/deploy/images directory. Running qemux86 and qemuarm images is covered in
the Running an Image section. See your board/machine documentation for information about how
to install these images.

3.1. USB Networking
Devices commonly have USB connectivity. To connect to the usbnet interface, on the host machine
run:

modprobe usbnet
ifconfig usb0 192.168.0.200
route add 192.168.0.202 usb0

3.2. QEMU/USB networking with IP masquerading
On Ubuntu, Debian or similar distributions you can have the network automatically configured. You
can also enable masquerading between the QEMU system and the rest of your network. To do this
you need to edit /etc/network/interfaces to include:

allow-hotplug tap0
iface tap0 inet static
 address 192.168.7.200
 netmask 255.255.255.0
 network 192.168.7.0
 post-up iptables -A POSTROUTING -t nat -j MASQUERADE -s 192.168.7.0/24
 post-up echo 1 > /proc/sys/net/ipv4/ip_forward
 post-up iptables -P FORWARD ACCEPT

This ensures the tap0 interface will be up everytime you run QEMU and it will have network/internet
access.

Under emulation there are two steps to configure for internet access via tap0. The first step is to
configure routing:

route add default gw 192.168.7.200 tap0

The second is to configure name resolution which is configured in the /etc/resolv.conf file. The
simplest solution is to copy its content from the host machine.

USB connections to devices can be set up and automated in a similar way. First add the following to
/etc/network/interfaces:

allow-hotplug usb0
iface usb0 inet static
 address 192.168.0.200
 netmask 255.255.255.0
 network 192.168.0.0
 post-up iptables -A POSTROUTING -t nat -j MASQUERADE -s 192.168.0.0/24
 post-up echo 1 > /proc/sys/net/ipv4/ip_forward

Using Poky

7

 post-up iptables -P FORWARD ACCEPT

and then to configure routing on the device you would use:

route add default gw 192.168.0.202 usb0

4. Debugging Build Failures
The exact method for debugging Poky depends on the nature of the bug(s) and which part of the
system they might be from. Standard debugging practises such as comparing to the last known
working version and examining the changes, reapplying the changes in steps to identify the one
causing the problem etc. are valid for Poky just like any other system. It's impossible to detail every
possible potential failure here but there are some general tips to aid debugging:

4.1. Task Failures
The log file for shell tasks is available in ${WORKDIR}/temp/log.do_taskname.pid. For the compile
task of busybox 1.01 on the ARM spitz machine, this might be tmp/work/armv5te-poky-linux-
gnueabi/busybox-1.01/temp/log.do_compile.1234 for example. To see what bitbake ran to
generate that log, look at the run.do_taskname.pid file in the same directory.

The output from python tasks is sent directly to the console at present.

4.2. Running specific tasks
Any given package consists of a set of tasks, in most cases the series is fetch, unpack, patch,
configure, compile, install, package, package_write and build. The default task is "build" and any
tasks this depends on are built first hence the standard bitbake behaviour. There are some tasks such
as devshell which are not part of the default build chain. If you wish to run such a task you can use
the "-c" option to bitbake e.g. bitbake matchbox-desktop -c devshell.

If you wish to rerun a task you can use the force option "-f". A typical usage session might look like:

% bitbake matchbox-desktop
[change some source in the WORKDIR for example]
% bitbake matchbox-desktop -c compile -f
% bitbake matchbox-desktop

which would build matchbox-desktop, then recompile it. The final command reruns all tasks after the
compile (basically the packaging tasks) since bitbake will notice that the compile has been rerun and
hence the other tasks also need to run again.

You can view a list of tasks in a given package by running the listtasks task e.g. bitbake matchbox-
desktop -c listtasks.

4.3. Dependency Graphs
Sometimes it can be hard to see why bitbake wants to build some other packages before a given
package you've specified. bitbake -g targetname will create depends.dot and task-depends.dot
files in the current directory. They show which packages and tasks depend on which other packages
and tasks and are useful for debugging purposes.

4.4. General Bitbake Problems
Debug output from bitbake can be seen with the "-D" option. The debug output gives more information
about what bitbake is doing and/or why. Each -D option increases the logging level, the most common
usage being "-DDD".

The output from bitbake -DDD -v targetname can reveal why a certain version of a package might
be chosen, why bitbake picked a certain provider or help in other situations where bitbake does
something you're not expecting.

Using Poky

8

4.5. Building with no dependencies
If you really want to build a specific .bb file, you can use the form bitbake -b somepath/somefile.bb.
Note that this will not check the dependencies so this option should only be used when you know
its dependencies already exist. You can specify fragments of the filename and bitbake will see if it
can find a unique match.

4.6. Variables
The "-e" option will dump the resulting environment for either the configuration (no package specified)
or for a specific package when specified with the "-b" option.

4.7. Other Tips

Tip

When adding new packages it is worth keeping an eye open for bad things creeping
into compiler commandlines such as references to local system files (/usr/lib/ or /usr/
include/ etc.).

Tip

If you want to remove the psplash boot splashscreen, add "psplash=false" to the kernel
commandline and psplash won't load allowing you to see the console. It's also possible to
switch out of the splashscreen by switching virtual console (Fn+Left or Fn+Right on a Zaurus).

9

Chapter 3. Extending Poky
This section gives information about how to extend the functionality already present in Poky,
documenting standard tasks such as adding new software packages, extending or customising
images or porting poky to new hardware (adding a new machine). It also contains advice about how
to manage the process of making changes to Poky to achieve best results.

1. Adding a Package
To add package into Poky you need to write a recipe for it. Writing a recipe means creating a .bb file
which sets various variables. The variables useful for recipes are detailed in the recipe reference
section along with more detailed information about issues such as recipe naming.

Before writing a recipe from scratch it is often useful to check someone else hasn't written one already.
OpenEmbedded is a good place to look as it has a wider scope and hence a wider range of packages.
Poky aims to be compatible with OpenEmbedded so most recipes should just work in Poky.

For new packages, the simplest way to add a recipe is to base it on a similar pre-existing recipe. There
are some examples below of how to add standard types of packages:

1.1. Single .c File Package (Hello World!)
To build an application from a single file stored locally requires a recipe which has the file listed in the
SRC_URI variable. In addition the do_compile and do_install tasks need to be manually written.
The S variable defines the directory containing the source code which in this case is set equal to
WORKDIR, the directory BitBake uses for the build.

DESCRIPTION = "Simple helloworld application"
SECTION = "examples"
LICENSE = "MIT"

SRC_URI = "file://helloworld.c"

S = "${WORKDIR}"

do_compile() {
 ${CC} helloworld.c -o helloworld
}

do_install() {
 install -d ${D}${bindir}
 install -m 0755 helloworld ${D}${bindir}
}

As a result of the build process "helloworld" and "helloworld-dbg" packages will be built.

1.2. Autotooled Package
Applications which use autotools (autoconf, automake) require a recipe which has a source archive
listed in SRC_URI and inherit autotools to instruct BitBake to use the autotools.bbclass which has
definitions of all the steps needed to build an autotooled application. The result of the build will
be automatically packaged and if the application uses NLS to localise then packages with locale
information will be generated (one package per language).

DESCRIPTION = "GNU Helloworld application"
SECTION = "examples"
LICENSE = "GPLv2"

SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.bz2"

Extending Poky

10

inherit autotools

1.3. Makefile-Based Package
Applications which use GNU make require a recipe which has the source archive listed in SRC_URI.
Adding a do_compile step is not needed as by default BitBake will start the "make" command to
compile the application. If there is a need for additional options to make then they should be stored
in the EXTRA_OEMAKE variable - BitBake will pass them into the GNU make invocation. A do_install
task is required - otherwise BitBake will run an empty do_install task by default.

Some applications may require extra parameters to be passed to the compiler, for example an
additional header path. This can be done buy adding to the CFLAGS variable, as in the example below.

DESCRIPTION = "Tools for managing memory technology devices."
SECTION = "base"
DEPENDS = "zlib"
HOMEPAGE = "http://www.linux-mtd.infradead.org/"
LICENSE = "GPLv2"

SRC_URI = "ftp://ftp.infradead.org/pub/mtd-utils/mtd-utils-${PV}.tar.gz"

CFLAGS_prepend = "-I ${S}/include "

do_install() {
 oe_runmake install DESTDIR=${D}
}

1.4. Controlling packages content
The variables PACKAGES and FILES are used to split an application into multiple packages.

Below the "libXpm" recipe is used as an example. By default the "libXpm" recipe generates one
package which contains the library and also a few binaries. The recipe can be adapted to split the
binaries into separate packages.

require xorg-lib-common.inc

DESCRIPTION = "X11 Pixmap library"
LICENSE = "X-BSD"
DEPENDS += "libxext"

XORG_PN = "libXpm"

PACKAGES =+ "sxpm cxpm"
FILES_cxpm = "${bindir}/cxpm"
FILES_sxpm = "${bindir}/sxpm"

In this example we want to ship the "sxpm" and "cxpm" binaries in separate packages. Since "bindir"
would be packaged into the main PN package as standard we prepend the PACKAGES variable so
additional package names are added to the start of list. The extra FILES_* variables then contain
information to specify which files and directories goes into which package.

1.5. Post Install Scripts
To add a post-installation script to a package, add a pkg_postinst_PACKAGENAME() function to
the .bb file where PACKAGENAME is the name of the package to attach the postinst script to. A post-
installation function has the following structure:

Extending Poky

11

pkg_postinst_PACKAGENAME () {
#!/bin/sh -e
Commands to carry out
}

The script defined in the post installation function gets called when the rootfs is made. If the script
succeeds, the package is marked as installed. If the script fails, the package is marked as unpacked
and the script will be executed again on the first boot of the image.

Sometimes it is necessary that the execution of a post-installation script is delayed until the first boot,
because the script needs to be executed on the device itself. To delay script execution until boot time,
the post-installation function should have the following structure:

pkg_postinst_PACKAGENAME () {
#!/bin/sh -e
if [x"$D" = "x"]; then
Actions to carry out on the device go here
else
exit 1
fi
}

The structure above delays execution until first boot because the D variable points to the 'image'
directory when the rootfs is being made at build time but is unset when executed on the first boot.

2. Customising Images
Poky images can be customised to satisfy particular requirements. Several methods are detailed
below along with guidelines of when to use them.

2.1. Customising Images through a custom image .bb
files
One way to get additional software into an image is by creating a custom image. The recipe will
contain two lines:

IMAGE_INSTALL = "task-poky-x11-base package1 package2"

inherit poky-image

By creating a custom image, a developer has total control over the contents of the image. It is
important to use the correct names of packages in the IMAGE_INSTALL variable. The names must be
in the OpenEmbedded notation instead of Debian notation, for example "glibc-dev" instead of "libc6-
dev" etc.

The other method of creating a new image is by modifying an existing image. For example if a
developer wants to add "strace" into "poky-image-sato" the following recipe can be used:

require poky-image-sato.bb

IMAGE_INSTALL += "strace"

2.2. Customising Images through custom tasks
For complex custom images, the best approach is to create a custom task package which is then used
to build the image (or images). A good example of a tasks package is meta/packages/tasks/task-

Extending Poky

12

poky.bb . The PACKAGES variable lists the task packages to build (along with the complementary -
dbg and -dev packages). For each package added, RDEPENDS and RRECOMMENDS entries can then
be added each containing a list of packages the parent task package should contain. An example
would be:

DESCRIPTION = "My Custom Tasks"

PACKAGES = "\
 task-custom-apps \
 task-custom-apps-dbg \
 task-custom-apps-dev \
 task-custom-tools \
 task-custom-tools-dbg \
 task-custom-tools-dev \
 "

RDEPENDS_task-custom-apps = "\
 dropbear \
 portmap \
 psplash"

RDEPENDS_task-custom-tools = "\
 oprofile \
 oprofileui-server \
 lttng-control \
 lttng-viewer"

RRECOMMENDS_task-custom-tools = "\
 kernel-module-oprofile"

In this example, two tasks packages are created, task-custom-apps and task-custom-tools with the
dependencies and recommended package dependencies listed. To build an image using these task
packages, you would then add "task-custom-apps" and/or "task-custom-tools" to IMAGE_INSTALL or
other forms of image dependencies as described in other areas of this section.

2.3. Customising Images through custom
IMAGE_FEATURES
Ultimately users may want to add extra image "features" as used by Poky with the IMAGE_FEATURES
variable. To create these, the best reference is meta/classes/poky-image.bbclass which illustrates
how poky achieves this. In summary, the file looks at the contents of the IMAGE_FEATURES variable
and based on this generates the IMAGE_INSTALL variable automatically. Extra features can be added
by extending the class or creating a custom class for use with specialised image .bb files.

2.4. Customising Images through local.conf
It is possible to customise image contents by abusing variables used by distribution maintainers in
local.conf. This method only allows the addition of packages and is not recommended.

To add an "strace" package into the image the following is added to local.conf:

DISTRO_EXTRA_RDEPENDS += "strace"

However, since the DISTRO_EXTRA_RDEPENDS variable is for distribution maintainers this method
does not make adding packages as simple as a custom .bb file. Using this method, a few packages
will need to be recreated and the the image built.

bitbake -cclean task-boot task-base task-poky
bitbake poky-image-sato

Extending Poky

13

Cleaning task-* packages is required because they use the DISTRO_EXTRA_RDEPENDS variable.
There is no need to build them by hand as Poky images depend on the packages they contain so
dependencies will be built automatically. For this reason we don't use the "rebuild" task in this case
since "rebuild" does not care about dependencies - it only rebuilds the specified package.

3. Porting Poky to a new machine
Adding a new machine to Poky is a straightforward process and this section gives an idea of the
changes that are needed. This guide is meant to cover adding machines similar to those Poky already
supports. Adding a totally new architecture might require gcc/glibc changes as well as updates to the
site information and, whilst well within Poky's capabilities, is outside the scope of this section.

3.1. Adding the machine configuration file
A .conf file needs to be added to conf/machine/ with details of the device being added. The name of
the file determines the name Poky will use to reference this machine.

The most important variables to set in this file are TARGET_ARCH (e.g. "arm"),
PREFERRED_PROVIDER_virtual/kernel (see below) and MACHINE_FEATURES (e.g. "kernel26 apm
screen wifi"). Other variables like SERIAL_CONSOLE (e.g. "115200 ttyS0"), KERNEL_IMAGETYPE (e.g.
"zImage") and IMAGE_FSTYPES (e.g. "tar.gz jffs2") might also be needed. Full details on what these
variables do and the meaning of their contents is available through the links.

3.2. Adding a kernel for the machine
Poky needs to be able to build a kernel for the machine. You need to either create a new kernel recipe
for this machine or extend an existing recipe. There are plenty of kernel examples in the packages/
linux directory which can be used as references.

If creating a new recipe the "normal" recipe writing rules apply for setting up a SRC_URI including
any patches and setting S to point at the source code. You will need to create a configure task which
configures the unpacked kernel with a defconfig be that through a "make defconfig" command or
more usually though copying in a suitable defconfig and running "make oldconfig". By making use of
"inherit kernel" and also maybe some of the linux-*.inc files, most other functionality is centralised
and the the defaults of the class normally work well.

If extending an existing kernel it is usually a case of adding a suitable defconfig file in a location similar
to that used by other machine's defconfig files in a given kernel, possibly listing it in the SRC_URI and
adding the machine to the expression in COMPATIBLE_MACHINE .

3.3. Adding a formfactor configuration file
A formfactor configuration file provides information about the target hardware on which Poky is
running, and that Poky cannot obtain from other sources such as the kernel. Some examples of
information contained in a formfactor configuration file include framebuffer orientation, whether or
not the system has a keyboard, the positioning of the keyboard in relation to the screen, and screen
resolution.

Sane defaults should be used in most cases, but if customisation is necessary you need to create a
machconfig file under meta/packages/formfactor/files/MACHINENAME/ where MACHINENAME is the
name for which this infomation applies. For information about the settings available and the defaults,
please see meta/packages/formfactor/files/config.

4. Making and Maintaining Changes
We recognise that people will want to extend/configure/optimise Poky for their specific uses,
especially due to the extreme configurability and flexibility Poky offers. To ensure ease of keeping
pace with future changes in Poky we recommend making changes to Poky in a controlled way.

Poky supports the idea of "collections" which when used properly can massively ease future upgrades
and allow segregation between the Poky core and a given developer's changes. Some other advice
on managing changes to Poky is also given in the following section.

Extending Poky

14

4.1. Bitbake Collections

Often, people want to extend Poky either through adding packages or overriding files contained
within Poky to add their own functionality. Bitbake has a powerful mechanism called collections which
provide a way to handle this which is fully supported and actively encouraged within Poky.

In the standard tree, meta-extras is an example of how you can do this. As standard the data in meta-
extras is not used on a Poky build but local.conf.sample shows how to enable it:

BBFILES := "${OEROOT}/meta/packages/*/*.bb ${OEROOT}/meta-extras/packages/*/*.bb"
BBFILE_COLLECTIONS = "normal extras"
BBFILE_PATTERN_normal = "^${OEROOT}/meta/"
BBFILE_PATTERN_extras = "^${OEROOT}/meta-extras/"
BBFILE_PRIORITY_normal = "5"
BBFILE_PRIORITY_extras = "5"

As can be seen, the extra recipes are added to BBFILES. The BBFILE_COLLECTIONS variable is then
set to contain a list of collection names. The BBFILE_PATTERN variables are regular expressions used
to match files from BBFILES into a particular collection in this case by using the base pathname. The
BBFILE_PRIORITY variable then assigns the different priorities to the files in different collections. This
is useful in situations where the same package might appear in both repositories and allows you to
choose which collection should 'win'.

This works well for recipes. For bbclasses and configuration files, you can use the BBPATH environment
variable. In this case, the first file with the matching name found in BBPATH is the one that is used,
just like the PATH variable for binaries.

4.2. Supplementry Metadata Repositories

Often when developing a project based on Poky there will be components that are not ready for
public consumption for whatever reason. By making use of the collections mechanism and other
functionality within Poky, it is possible to have a public repository which is supplemented by a private
one just containing the pieces that need to be kept private.

The usual approach with these is to create a separate git repository called "meta-prvt-XXX" which is
checked out alongside the other meta-* directories included in Poky. Under this directory there can
be several different directories such as classes, conf and packages which all function as per the usual
Poky directory structure.

If extra meta-* directories are found, Poky will automatically add them into the BBPATH variable so the
conf and class files contained there are found. If a file called poky-extra-environment is found within
the meta-* directory, this will be sourced as the environment is setup, allowing certain configuration
to be overridden such as the location of the local.conf.sample file that is used.

Note that at present, BBFILES is not automatically changed and this needs to be adjusted to find files
in the packages/ directory. Usually a custom local.conf.sample file will be used to handle this instead.

4.3. Committing Changes

Modifications to Poky are often managed under some kind of source revision control system. The
policy for committing to such systems is important as some simple policy can significantly improve
usability. The tips below are based on the policy followed for the Poky core.

It helps to use a consistent style for commit messages when committing changes. We've found a
style where the first line of a commit message summarises the change and starts with the name of
any package affected work well. Not all changes are to specific packages so the prefix could also
be a machine name or class name instead. If a change needs a longer description this should follow
the summary.

Any commit should be self contained in that it should leave the metadata in a consistent state,
buildable before and after the commit. This helps ensure the autobuilder test results are valid but
is good practice regardless.

Extending Poky

15

4.4. Package Revision Incrementing
If a committed change will result in changing the package output then the value of the PR variable
needs to be increased (commonly referred to as 'bumped') as part of that commit. Only integer values
are used and PR = "r0" should not be added into new recipes as this is default value. When upgrading
the version of a package (PV), the PR variable should be removed.

The aim is that the package version will only ever increase. If for some reason PV will change and
but not increase, the PE (Package Epoch) can be increased (it defaults to '0'). The version numbers
aim to follow the Debian Version Field Policy Guidelines [http://www.debian.org/doc/debian-policy/
ch-controlfields.html] which define how versions are compared and hence what "increasing" means.

There are two reasons for doing this, the first is to ensure that when a developer updates and rebuilds,
they get all the changes to the repository and don't have to remember to rebuild any sections. The
second is to ensure that target users are able to upgrade their devices via their package manager such
as with the opkg update;opkg upgrade commands (or similar for dpkg/apt or rpm based systems).
The aim is to ensure Poky has upgradable packages in all cases.

4.5. Using Poky in a Team Environment
It may not be immediately clear how Poky can work in a team environment, or scale to a large team
of developers. The specifics of any situation will determine the best solution and poky offers immense
flexibility in that aspect but there are some practises that experience has shown to work well.

The core component of any development effort with Poky is often an automated build testing
framework and image generation process. This can be used to check that the metadata is buildable,
highlight when commits break the builds and provide up to date images allowing people to test
the end result and use them as a base platform for further development. Experience shows that
buildbot is a good fit for this role and that it works well to configure it to make two types of build
- incremental builds and 'from scratch'/full builds. The incremental builds can be tied to a commit
hook which triggers them each time a commit is made to the metadata and are a useful acid test
of whether a given commit breaks the build in some serious way. They catch lots of simple errors
and whilst they won't catch 100% of failures, the tests are fast so developers can get feedback on
their changes quickly. The full builds are builds that build everything from the ground up and test
everything. They usually happen at preset times such as at night when the machine load isn't high
from the incremental builds.

Most teams have pieces of software undergoing active development. It is of significant benefit to
put these under control of a source control system compatible with Poky such as git or svn. The
autobuilder can then be set to pull the latest revisions of these packages so the latest commits get
tested by the builds allowing any issues to be highlighted quickly. Poky easily supports configurations
where there is both a stable known good revision and a floating revision to test. Poky can also only
take changes from specific source control branches giving another way it can be used to track/test
only specified changes.

Perhaps the hardest part of setting this up is the policy that surrounds the different source control
systems, be them software projects or the Poky metadata itself. The circumstances will be different in
each case but this is one of Poky's advantages - the system itself doesn't force any particular policy
unlike a lot of build systems, allowing the best policy to be chosen for the circumstances.

5. Modifying Package Source Code
Poky is usually used to build software rather than modifying it. However, there are ways Poky can
be used to modify software.

During building, the sources are available in WORKDIR directory. Where exactly this is depends on the
type of package and the architecture of target device. For a standard recipe not related to MACHINE
it will be tmp/work/PACKAGE_ARCH-poky-TARGET_OS/PN-PV-PR/. Target device dependent packages
use MACHINE instead of PACKAGE_ARCH in the directory name.

Tip

Check the package recipe sets the S variable to something other than standard WORKDIR/
PN-PV/ value.

http://www.debian.org/doc/debian-policy/ch-controlfields.html
http://www.debian.org/doc/debian-policy/ch-controlfields.html
http://www.debian.org/doc/debian-policy/ch-controlfields.html

Extending Poky

16

After building a package, a user can modify the package source code without problem. The easiest
way to test changes is by calling the "compile" task:

bitbake --cmd compile --force NAME_OF_PACKAGE

Other tasks may also be called this way.

5.1. Modifying Package Source Code with quilt
By default Poky uses quilt [http://savannah.nongnu.org/projects/quilt] to manage patches in do_patch
task. It is a powerful tool which can be used to track all modifications done to package sources.

Before modifying source code it is important to notify quilt so it will track changes into new patch file:

quilt new NAME-OF-PATCH.patch

Then add all files which will be modified into that patch:

quilt add file1 file2 file3

Now start editing. At the end quilt needs to be used to generate final patch which will contain all
modifications:

quilt refresh

The resulting patch file can be found in the patches/ subdirectory of the source (S) directory. For
future builds it should be copied into Poky metadata and added into SRC_URI of a recipe:

SRC_URI += "file://NAME-OF-PATCH.patch;patch=1"

This also requires a bump of PR value in the same recipe as we changed resulting packages.

http://savannah.nongnu.org/projects/quilt
http://savannah.nongnu.org/projects/quilt

17

Chapter 4. Platform Development
with Poky
1. Software development
Poky supports several methods of software development. These different forms of development are
explained below and can be switched between as needed.

1.1. Developing externally using the Poky SDK
The meta-toolchain and meta-toolchain-sdk targets (see the images section) build tarballs which
contain toolchains and libraries suitable for application development outside Poky. These unpack into
the /usr/local/poky directory and contain a setup script, e.g. /usr/local/poky/eabi-glibc/arm/
environment-setup which can be sourced to initialise a suitable environment. After sourcing this,
the compiler, QEMU scripts, QEMU binary, a special version of pkgconfig and other useful utilities
are added to the PATH. Variables to assist pkgconfig and autotools are also set so that, for example,
configure can find pre-generated test results for tests which need target hardware to run.

Using the toolchain with autotool enabled packages is straightforward, just pass the appropriate host
option to configure e.g. "./configure --host=arm-poky-linux-gnueabi". For other projects it is usually
a case of ensuring the cross tools are used e.g. CC=arm-poky-linux-gnueabi-gcc and LD=arm-poky-
linux-gnueabi-ld.

1.2. Developing externally using the Anjuta plugin
An Anjuta IDE plugin exists to make developing software within the Poky framework easier for the
application developer. It presents a graphical IDE from which the developer can cross compile an
application then deploy and execute the output in a QEMU emulation session. It also supports cross
debugging and profiling.

To use the plugin, a toolchain and SDK built by Poky is required along with Anjuta and the Anjuta
plugin. The Poky Anjuta plugin is available from the OpenedHand SVN repository located at http://
svn.o-hand.com/repos/anjuta-poky/trunk/anjuta-plugin-sdk/; a web interface to the repository can be
accessed at http://svn.o-hand.com/view/anjuta-poky/. See the README file contained in the project
for more information about the dependencies and how to get them along with details of the prebuilt
packages.

1.2.1. Setting up the Anjuta plugin

Extract the tarball for the toolchain into / as root. The toolchain will be installed into /usr/local/poky.

To use the plugin, first open or create an existing project. If creating a new project the "C GTK+"
project type will allow itself to be cross-compiled. However you should be aware that this uses glade
for the UI.

To activate the plugin go to Edit → Preferences, then choose General from the left hand side. Choose
the Installed plugins tab, scroll down to Poky SDK and check the box. The plugin is now activated
but first it must be configured.

1.2.2. Configuring the Anjuta plugin

The configuration options for the SDK can be found by choosing the Poky SDK icon from the left hand
side. The following options need to be set:

• SDK root: this is the root directory of the SDK for an ARM EABI SDK this will be /usr/local/poky/
eabi-glibc/arm. This directory will contain directories named like "bin", "include", "var", etc. With
the file chooser it is important to enter into the "arm" subdirectory for this example.

• Toolchain triplet: this is the cross compile triplet, e.g. "arm-poky-linux-gnueabi".

• Kernel: use the file chooser to select the kernel to use with QEMU

http://svn.o-hand.com/view/anjuta-poky/

Platform Development with Poky

18

• Root filesystem: use the file chooser to select the root filesystem image, this should be an image
(not a tarball)

1.2.3. Using the Anjuta plugin

As an example, cross-compiling a project, deploying it into QEMU and running a debugger against it
and then doing a system wide profile.

Choose Build → Run Configure or Build → Run Autogenerate to run "configure" (or to run "autogen")
for the project. This passes command line arguments to instruct it to cross-compile.

Next do Build → Build Project to build and compile the project. If you have previously built the project
in the same tree without using the cross-compiler you may find that your project fails to link. Simply
do Build → Clean Project to remove the old binaries. You may then try building again.

Next start QEMU by using Tools → Start QEMU, this will start QEMU and will show any error messages
in the message view. Once Poky has fully booted within QEMU you may now deploy into it.

Once built and QEMU is running, choose Tools → Deploy, this will install the package into a temporary
directory and then copy using rsync over SSH into the target. Progress and messages will be shown
in the message view.

To debug a program installed into onto the target choose Tools → Debug remote. This prompts for
the local binary to debug and also the command line to run on the target. The command line to run
should include the full path to the to binary installed in the target. This will start a gdbserver over
SSH on the target and also an instance of a cross-gdb in a local terminal. This will be preloaded to
connect to the server and use the SDK root to find symbols. This gdb will connect to the target and
load in various libraries and the target program. You should setup any breakpoints or watchpoints
now since you might not be able to interrupt the execution later. You may stop the debugger on the
target using Tools → Stop debugger.

It is also possible to execute a command in the target over SSH, the appropriate environment will
be be set for the execution. Choose Tools → Run remote to do this. This will open a terminal with the
SSH command inside.

To do a system wide profile against the system running in QEMU choose Tools → Profile remote. This
will start up OProfileUI with the appropriate parameters to connect to the server running inside QEMU
and will also supply the path to the debug information necessary to get a useful profile.

1.3. Developing externally in QEMU
Running Poky QEMU images is covered in the Running an Image section.

Poky's QEMU images contain a complete native toolchain. This means that applications can be
developed within QEMU in the same was as a normal system. Using qemux86 on an x86 machine is
fast since the guest and host architectures match, qemuarm is slower but gives faithful emulation
of ARM specific issues. To speed things up these images support using distcc to call a cross-compiler
outside the emulated system too. If runqemu was used to start QEMU, and distccd is present on the
host system, any bitbake cross compiling toolchain available from the build system will automatically
be used from within qemu simply by calling distcc (export CC="distcc" can be set in the enviroment).
Alterntatively, if a suitable SDK/toolchain is present in /usr/local/poky it will also automatically be
used.

There are several options for connecting into the emulated system. QEMU provides a framebuffer
interface which has standard consoles available. There is also a serial connection available which has
a console to the system running on it and IP networking as standard. The images have a dropbear ssh
server running with the root password disabled allowing standard ssh and scp commands to work.
The images also contain an NFS server exporting the guest's root filesystem allowing that to be made
available to the host.

1.4. Developing externally in a chroot
If you have a system that matches the architecture of the Poky machine you're using, such as
qemux86, you can run binaries directly from the image on the host system using a chroot combined
with tools like Xephyr [http://projects.o-hand.com/xephyr].

http://projects.o-hand.com/xephyr
http://projects.o-hand.com/xephyr

Platform Development with Poky

19

Poky has some scripts to make using its qemux86 images within a chroot easier. To use these you need
to install the poky-scripts package or otherwise obtain the poky-chroot-setup and poky-chroot-
run scripts. You also need Xephyr and chrootuid binaries available. To initialize a system use the
setup script:

poky-chroot-setup <qemux86-rootfs.tgz> <target-directory>

which will unpack the specified qemux86 rootfs tarball into the target-directory. You can then start
the system with:

poky-chroot-run <target-directory> <command>

where the target-directory is the place the rootfs was unpacked to and command is an optional
command to run. If no command is specified, the system will drop you within a bash shell. A Xephyr
window will be displayed containing the emulated system and you may be asked for a password since
some of the commands used for bind mounting directories need to be run using sudo.

There are limits as to how far the the realism of the chroot environment extends. It is useful for
simple development work or quick tests but full system emulation with QEMU offers a much more
realistic environment for more complex development tasks. Note that chroot support within Poky is
still experimental.

1.5. Developing in Poky directly
Working directly in Poky is a fast and effective development technique. The idea is that you can
directly edit files in WORKDIR or the source directory S and then force specific tasks to rerun in order to
test the changes. An example session working on the matchbox-desktop package might look like this:

$ bitbake matchbox-desktop
$ sh
$ cd tmp/work/armv5te-poky-linux-gnueabi/matchbox-desktop-2.0+svnr1708-r0/
$ cd matchbox-desktop-2
$ vi src/main.c
$ exit
$ bitbake matchbox-desktop -c compile -f
$ bitbake matchbox-desktop

Here, we build the package, change into the work directory for the package, change a file, then
recompile the package. Instead of using sh like this, you can also use two different terminals. The
risk with working like this is that a command like unpack could wipe out the changes you've made
to the work directory so you need to work carefully.

It is useful when making changes directly to the work directory files to do so using quilt as detailed
in the modifying packages with quilt section. The resulting patches can be copied into the recipe
directory and used directly in the SRC_URI.

For a review of the skills used in this section see Sections 2.1.1 and 2.4.2.

1.6. Developing with 'devshell'
When debugging certain commands or even to just edit packages, the 'devshell' can be a useful tool.
To start it you run a command like:

$ bitbake matchbox-desktop -c devshell

which will open a terminal with a shell prompt within the Poky environment. This means PATH is setup
to include the cross toolchain, the pkgconfig variables are setup to find the right .pc files, configure
will be able to find the Poky site files etc. Within this environment, you can run configure or compile
command as if they were being run by Poky itself. You are also changed into the source (S) directory
automatically. When finished with the shell just exit it or close the terminal window.

The default shell used by devshell is the gnome-terminal. Other forms of terminal can also be used by
setting the TERMCMD and TERMCMDRUN variables in local.conf. For examples of the other options

Platform Development with Poky

20

available, see meta/conf/bitbake.conf. An external shell is launched rather than opening directly
into the original terminal window to make interaction with bitbakes multiple threads easier and also
allow a client/server split of bitbake in the future (devshell will still work over X11 forwarding or
similar).

It is worth remembering that inside devshell you need to use the full compiler name such as arm-poky-
linux-gnueabi-gcc instead of just gcc and the same applies to other applications from gcc, bintuils,
libtool etc. Poky will have setup environmental variables such as CC to assist applications, such as
make, find the correct tools.

1.7. Developing within Poky with an external SCM based
package
If you're working on a recipe which pulls from an external SCM it is possible to have Poky notice
new changes added to the SCM and then build the latest version. This only works for SCMs where
its possible to get a sensible revision number for changes. Currently it works for svn, git and bzr
repositories.

To enable this behaviour it is simply a case of adding SRCREV_pn- PN = "${AUTOREV}" to local.conf
where PN is the name of the package for which you want to enable automatic source revision updating.

2. Debugging with GDB Remotely
GDB [http://sourceware.org/gdb/] (The GNU Project Debugger) allows you to examine running
programs to understand and fix problems and also to perform postmortem style analsys of program
crashes. It is available as a package within poky and installed by default in sdk images. It works best
when -dbg packages for the application being debugged are installed as the extra symbols give more
meaningful output from GDB.

Sometimes, due to memory or disk space constraints, it is not possible to use GDB directly on the
remote target to debug applications. This is due to the fact that GDB needs to load the debugging
information and the binaries of the process being debugged. GDB then needs to perform many
computations to locate information such as function names, variable names and values, stack traces,
etc. even before starting the debugging process. This places load on the target system and can alter
the characteristics of the program being debugged.

This is where GDBSERVER comes into play as it runs on the remote target and does not load any
debugging information from the debugged process. Instead, the debugging information processing
is done by a GDB instance running on a distant computer - the host GDB. The host GDB then sends
control commands to GDBSERVER to make it stop or start the debugged program, as well as read or
write some memory regions of that debugged program. All the debugging information loading and
processing as well as the heavy debugging duty is done by the host GDB, giving the GDBSERVER
running on the target a chance to remain small and fast.

As the host GDB is responsible for loading the debugging information and doing the necessary
processing to make actual debugging happen, the user has to make sure it can access the unstripped
binaries complete with their debugging information and compiled with no optimisations. The host
GDB must also have local access to all the libraries used by the debugged program. On the remote
target the binaries can remain stripped as GDBSERVER does not need any debugging information
there. However they must also be compiled without optimisation matching the host's binaries.

The binary being debugged on the remote target machine is hence referred to as the 'inferior' in
keeping with GDB documentation and terminology. Further documentation on GDB, is available on
on their site [http://sourceware.org/gdb/documentation/].

2.1. Launching GDBSERVER on the target
First, make sure gdbserver is installed on the target. If not, install the gdbserver package (which
needs the libthread-db1 package).

To launch GDBSERVER on the target and make it ready to "debug" a program located at /path/to/
inferior, connect to the target and launch:

$ gdbserver localhost:2345 /path/to/inferior

http://sourceware.org/gdb/
http://sourceware.org/gdb/
http://sourceware.org/gdb/documentation/
http://sourceware.org/gdb/documentation/

Platform Development with Poky

21

After that, gdbserver should be listening on port 2345 for debugging commands coming from a remote
GDB process running on the host computer. Communication between the GDBSERVER and the host
GDB will be done using TCP. To use other communication protocols please refer to the GDBSERVER
documentation.

2.2. Launching GDB on the host computer
Running GDB on the host computer takes a number of stages, described in the following sections.

2.2.1. Build the cross GDB package

A suitable gdb cross binary is required which runs on your host computer but knows about the the ABI
of the remote target. This can be obtained from the the Poky toolchain, e.g. /usr/local/poky/eabi-
glibc/arm/bin/arm-poky-linux-gnueabi-gdb which "arm" is the target architecture and "linux-
gnueabi" the target ABI.

Alternatively this can be built directly by Poky. To do this you would build the gdb-cross package so
for example you would run:

bitbake gdb-cross

Once built, the cross gdb binary can be found at

tmp/cross/bin/<target-abi>-gdb

2.2.2. Making the inferior binaries available

The inferior binary needs to be available to GDB complete with all debugging symbols in order to
get the best possible results along with any libraries the inferior depends on and their debugging
symbols. There are a number of ways this can be done.

Perhaps the easiest is to have an 'sdk' image corresponding to the plain image installed on the device.
In the case of 'pky-image-sato', 'poky-image-sdk' would contain suitable symbols. The sdk images
already have the debugging symbols installed so its just a question expanding the archive to some
location and telling GDB where this is.

Alternatively, poky can build a custom directory of files for a specific debugging purpose by reusing
its tmp/rootfs directory, on the host computer in a slightly different way to normal. This directory
contains the contents of the last built image. This process assumes the image running on the target
was the last image to be built by Poky, the package foo contains the inferior binary to be debugged
has been built without without optimisation and has debugging information available.

Firstly you want to install the foo package to tmp/rootfs by doing:

tmp/staging/i686-linux/usr/bin/opkg-cl -f \
tmp/work/<target-abi>/poky-image-sato-1.0-r0/temp/opkg.conf -o \
tmp/rootfs/ update

then,

tmp/staging/i686-linux/usr/bin/opkg-cl -f \
tmp/work/<target-abi>/poky-image-sato-1.0-r0/temp/opkg.conf \
-o tmp/rootfs install foo

tmp/staging/i686-linux/usr/bin/opkg-cl -f \
tmp/work/<target-abi>/poky-image-sato-1.0-r0/temp/opkg.conf \
-o tmp/rootfs install foo-dbg

which installs the debugging information too.

2.2.3. Launch the host GDB

To launch the host GDB, run the cross gdb binary identified above with the inferior binary specified
on the commandline:

<target-abi>-gdb rootfs/usr/bin/foo

Platform Development with Poky

22

This loads the binary of program foo as well as its debugging information. Once the gdb prompt
appears, you must instruct GDB to load all the libraries of the inferior from tmp/rootfs:

set solib-absolute-prefix /path/to/tmp/rootfs

where /path/to/tmp/rootfs must be the absolute path to tmp/rootfs or wherever the binaries with
debugging information are located.

Now, tell GDB to connect to the GDBSERVER running on the remote target:

target remote remote-target-ip-address:2345

Where remote-target-ip-address is the IP address of the remote target where the GDBSERVER is
running. 2345 is the port on which the GDBSERVER is running.

2.2.4. Using the Debugger

Debugging can now proceed as normal, as if the debugging were being done on the local machine,
for example to tell GDB to break in the main function, for instance:

break main

and then to tell GDB to "continue" the inferior execution,

continue

For more information about using GDB please see the project's online documentation at http://
sourceware.org/gdb/download/onlinedocs/.

3. Profiling with OProfile
OProfile [http://oprofile.sourceforge.net/] is a statistical profiler well suited to finding performance
bottlenecks in both userspace software and the kernel. It provides answers to questions like "Which
functions does my application spend the most time in when doing X?". Poky is well integrated with
OProfile to make profiling applications on target hardware straightforward.

To use OProfile you need an image with OProfile installed. The easiest way to do this is with "tools-
profile" in IMAGE_FEATURES. You also need debugging symbols to be available on the system where
the analysis will take place. This can be achieved with "dbg-pkgs" in IMAGE_FEATURES or by installing
the appropriate -dbg packages. For successful call graph analysis the binaries must preserve the
frame pointer register and hence should be compiled with the "-fno-omit-framepointer" flag. In
Poky this can be achieved with SELECTED_OPTIMIZATION = "-fexpensive-optimizations -fno-omit-
framepointer -frename-registers -O2" or by setting DEBUG_BUILD = "1" in local.conf (the latter will
also add extra debug information making the debug packages large).

3.1. Profiling on the target
All the profiling work can be performed on the target device. A simple OProfile session might look like:

opcontrol --reset
opcontrol --start --separate=lib --no-vmlinux -c 5
[do whatever is being profiled]
opcontrol --stop
$ opreport -cl

Here, the reset command clears any previously profiled data, OProfile is then started. The options
used to start OProfile mean dynamic library data is kept separately per application, kernel profiling is
disabled and callgraphing is enabled up to 5 levels deep. To profile the kernel, you would specify the
--vmlinux=/path/to/vmlinux option (the vmlinux file is usually in /boot/ in Poky and must match
the running kernel). The profile is then stopped and the results viewed with opreport with options to
see the separate library symbols and callgraph information.

Callgraphing means OProfile not only logs infomation about which functions time is being spent in but
also which functions called those functions (their parents) and which functions that function calls (its
children). The higher the callgraphing depth, the more accurate the results but this also increased the

http://sourceware.org/gdb/download/onlinedocs/
http://sourceware.org/gdb/download/onlinedocs/
http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/

Platform Development with Poky

23

loging overhead so it should be used with caution. On ARM, binaries need to have the frame pointer
enabled for callgraphing to work (compile with the gcc option -fno-omit-framepointer).

For more information on using OProfile please see the OProfile online documentation at http://
oprofile.sourceforge.net/docs/.

3.2. Using OProfileUI
A graphical user interface for OProfile is also available. You can either use prebuilt Debian packages
from the OpenedHand repository [http://debian.o-hand.com/] or download and build from svn at
http://svn.o-hand.com/repos/oprofileui/trunk/. If the "tools-profile" image feature is selected, all
necessary binaries are installed onto the target device for OProfileUI interaction.

In order to convert the data in the sample format from the target to the host the opimport program
is needed. This is not included in standard Debian OProfile packages but an OProfile package with
this addition is also available from the OpenedHand repository [http://debian.o-hand.com/]. We
recommend using OProfile 0.9.3 or greater. Other patches to OProfile may be needed for recent
OProfileUI features, but Poky usually includes all needed patches on the target device. Please
see the OProfileUI README [http://svn.o-hand.com/repos/oprofileui/trunk/README] for up to date
information, and the OProfileUI website [http://labs.o-hand.com/oprofileui] for more information on
the OProfileUI project.

3.2.1. Online mode

This assumes a working network connection with the target hardware. In this case you just need to
run "oprofile-server" on the device. By default it listens on port 4224. This can be changed with the
--port command line option.

The client program is called oprofile-viewer. The UI is relatively straightforward, the key functionality is
accessed through the buttons on the toolbar (which are duplicated in the menus.) These buttons are:

• Connect - connect to the remote host, the IP address or hostname for the target can be supplied
here.

• Disconnect - disconnect from the target.

• Start - start the profiling on the device.

• Stop - stop the profiling on the device and download the data to the local host. This will generate
the profile and show it in the viewer.

• Download - download the data from the target, generate the profile and show it in the viewer.

• Reset - reset the sample data on the device. This will remove the sample information that was
collected on a previous sampling run. Ensure you do this if you do not want to include old sample
information.

• Save - save the data downloaded from the target to another directory for later examination.

• Open - load data that was previously saved.

The behaviour of the client is to download the complete 'profile archive' from the target to the
host for processing. This archive is a directory containing the sample data, the object files and the
debug information for said object files. This archive is then converted using a script included in this
distribution ('oparchconv') that uses 'opimport' to convert the archive from the target to something
that can be processed on the host.

Downloaded archives are kept in /tmp and cleared up when they are no longer in use.

If you wish to profile into the kernel, this is possible, you just need to ensure a vmlinux file matching
the running kernel is available. In Poky this is usually located in /boot/vmlinux-KERNELVERSION, where
KERNEL-version is the version of the kernel e.g. 2.6.23. Poky generates separate vmlinux packages
for each kernel it builds so it should be a question of just ensuring a matching package is installed (
opkg install kernel-vmlinux. These are automatically installed into development and profiling images
alongside OProfile. There is a configuration option within the OProfileUI settings page where the
location of the vmlinux file can be entered.

http://oprofile.sourceforge.net/docs/
http://oprofile.sourceforge.net/docs/
http://debian.o-hand.com/
http://debian.o-hand.com/
http://debian.o-hand.com/
http://debian.o-hand.com/
http://svn.o-hand.com/repos/oprofileui/trunk/README
http://svn.o-hand.com/repos/oprofileui/trunk/README
http://labs.o-hand.com/oprofileui
http://labs.o-hand.com/oprofileui

Platform Development with Poky

24

Waiting for debug symbols to transfer from the device can be slow and it's not always necessary to
actually have them on device for OProfile use. All that is needed is a copy of the filesystem with the
debug symbols present on the viewer system. The GDB remote debug section covers how to create
such a directory with Poky and the location of this directory can again be specified in the OProfileUI
settings dialog. If specified, it will be used where the file checksums match those on the system being
profiled.

3.2.2. Offline mode

If no network access to the target is available an archive for processing in 'oprofile-viewer' can be
generated with the following set of command.

opcontrol --reset
opcontrol --start --separate=lib --no-vmlinux -c 5
[do whatever is being profiled]
opcontrol --stop
oparchive -o my_archive

Where my_archive is the name of the archive directory where you would like the profile archive to be
kept. The directory will be created for you. This can then be copied to another host and loaded using
'oprofile-viewer''s open functionality. The archive will be converted if necessary.

25

Appendix A. Reference: Directory
Structure
Poky consists of several components and understanding what these are and where they're located is
one of the keys to using it. This section walks through the Poky directory structure giving information
about the various files and directories.

1. Top level core components

1.1. bitbake/
A copy of BitBake is included within Poky for ease of use, and should usually match the current BitBake
stable release from the BitBake project. Bitbake, a metadata interpreter, reads the Poky metadata
and runs the tasks defined in the Poky metadata. Failures are usually from the metadata, not BitBake
itself, so most users don't need to worry about BitBake. The bitbake/bin/ directory is placed into
the PATH environment variable by the poky-init-build-env script.

For more information on BitBake please see the BitBake project site at http://bitbake.berlios.de/ and
the BitBake on-line manual at http://bitbake.berlios.de/manual/.

1.2. build/
This directory contains user configuration files and the output from Poky.

1.3. meta/
This directory contains the core metadata, a key part of Poky. Within this directory there are definitions
of the machines, the Poky distribution and the packages that make up a given system.

1.4. meta-extras/
This directory is similar to meta/, and contains some extra metadata not included in standard Poky.
These are disabled by default, and are not supported as part of Poky.

1.5. scripts/
This directory contains various integration scripts which implement extra functionality in the Poky
environment, such as the QEMU scripts. This directory is appended to the PATH environment variable
by the poky-init-build-env script.

1.6. sources/
While not part of a checkout, Poky will create this directory as part of any build. Any downloads are
placed in this directory (as specified by the DL_DIR variable). This directory can be shared between
Poky builds to save downloading files multiple times. SCM checkouts are also stored here as e.g.
sources/svn/ , sources/cvs/ or sources/git/ and the sources directory may contain archives of
checkouts for various revisions or dates.

It's worth noting that BitBake creates .md5 stamp files for downloads. It uses these to mark downloads
as complete as well as for checksum and access accounting purposes. If you add a file manually to
the directory, you need to touch the corresponding .md5 file too.

This location can be overridden by setting DL_DIR in local.conf . This directory can be shared
between builds and even between machines via NFS, so downloads are only made once, speeding
up builds.

1.7. poky-init-build-env
This script is used to setup the Poky build environment. Sourcing this file in a shell makes changes
to PATH and sets other core BitBake variables based on the current working directory. You need to

http://bitbake.berlios.de/
http://bitbake.berlios.de/manual/

Reference: Directory Structure

26

use this before running Poky commands. Internally it uses scripts within the scripts/ directory to
do the bulk of the work.

2. build/ - The Build Directory

2.1. build/conf/local.conf
This file contains all the local user configuration of Poky. If there is no local.conf present, it is created
from local.conf.sample. The local.conf file contains documentation on the various configuration
options. Any variable set here overrides any variable set elsewhere within Poky unless that variable
is hardcoded within Poky (e.g. by using '=' instead of '?='). Some variables are hardcoded for various
reasons but these variables are relatively rare.

Edit this file to set the MACHINE for which you want to build, which package types you wish to use
(PACKAGE_CLASSES) or where downloaded files should go (DL_DIR).

2.2. build/tmp/
This is created by BitBake if it doesn't exist and is where all the Poky output is placed. To clean Poky
and start a build from scratch (other than downloads), you can wipe this directory. The tmp/ directory
has some important sub-components detailed below.

2.3. build/tmp/cache/
When BitBake parses the metadata it creates a cache file of the result which can be used when
subsequently running commands. These are stored here on a per machine basis.

2.4. build/tmp/cross/
The cross compiler when generated is placed into this directory and those beneath it.

2.5. build/tmp/deploy/
Any 'end result' output from Poky is placed under here.

2.6. build/tmp/deploy/deb/
Any .deb packages emitted by Poky are placed here, sorted into feeds for different architecture types.

2.7. build/tmp/deploy/images/
Complete filesystem images are placed here. If you want to flash the resulting image from a build
onto a device, look here for them.

2.8. build/tmp/deploy/ipk/
Any resulting .ipk packages emitted by Poky are placed here.

2.9. build/tmp/rootfs/
This is a temporary scratch area used when creating filesystem images. It is run under fakeroot and
is not useful once that fakeroot session has ended as information is lost. It is left around since it is
still useful in debugging image creation problems.

2.10. build/tmp/staging/
Any package needing to share output with other packages does so within staging. This means it
contains any shared header files and any shared libraries amongst other data. It is subdivided by
architecture so multiple builds can run within the one build directory.

Reference: Directory Structure

27

2.11. build/tmp/stamps/
This is used by BitBake for accounting purposes to keep track of which tasks have been run and
when. It is also subdivided by architecture. The files are empty and the important information is the
filenames and timestamps.

2.12. build/tmp/work/
This directory contains various subdirectories for each architecture, and each package built by BitBake
has its own work directory under the appropriate architecture subdirectory. All tasks are executed
from this work directory. As an example, the source for a particular package will be unpacked, patched,
configured and compiled all within its own work directory.

It is worth considering the structure of a typical work directory. An example is the linux-rp kernel,
version 2.6.20 r7 on the machine spitz built within Poky. For this package a work directory of tmp/
work/spitz-poky-linux-gnueabi/linux-rp-2.6.20-r7/ , referred to as WORKDIR , is created.
Within this directory, the source is unpacked to linux-2.6.20 and then patched by quilt (see Section
3.5.1). Within the linux-2.6.20 directory, standard Quilt directories linux-2.6.20/patches and
linux-2.6.20/.pc are created, and standard quilt commands can be used.

There are other directories generated within WORKDIR. The most important is WORKDIR/temp/ which
has log files for each task (log.do_*.pid) and the scripts BitBake runs for each task (run.do_*.pid).
The WORKDIR/image/ directory is where make install places its output which is then split into
subpackages within WORKDIR/install/.

3. meta/ - The Metadata
As mentioned previously, this is the core of Poky. It has several important subdivisions:

3.1. meta/classes/
Contains the *.bbclass files. Class files are used to abstract common code allowing it to be reused by
multiple packages. The base.bbclass file is inherited by every package. Examples of other important
classes are autotools.bbclass that in theory allows any Autotool-enabled package to work with
Poky with minimal effort, or kernel.bbclass that contains common code and functions for working
with the linux kernel. Functions like image generation or packaging also have their specific class files
(image.bbclass , rootfs_*.bbclass and package*.bbclass).

3.2. meta/conf/
This is the core set of configuration files which start from bitbake.conf and from which all other
configuration files are included (see the includes at the end of the file, even local.conf is loaded
from there!). While bitbake.conf sets up the defaults, these can often be overridden by user
(local.conf), machine or distribution configuration files.

3.3. meta/conf/machine/
Contains all the machine configuration files. If you set MACHINE="spitz", the end result is Poky looking
for a spitz.conf file in this directory. The includes directory contains various data common to multiple
machines. If you want to add support for a new machine to Poky, this is the directory to look in.

3.4. meta/conf/distro/
Any distribution specific configuration is controlled from here. OpenEmbedded supports multiple
distributions of which Poky is one. Poky only contains the Poky distribution so poky.conf is the main file
here. This includes the versions and SRCDATES for applications which are configured here. An example
of an alternative configuration is poky-bleeding.conf although this mainly inherits its configuration
from Poky itself.

3.5. meta/packages/
Each application (package) Poky can build has an associated .bb file which are all stored under this
directory. Poky finds them through the BBFILES variable which defaults to packages/*/*.bb. Adding

Reference: Directory Structure

28

a new piece of software to Poky consists of adding the appropriate .bb file. The .bb files from
OpenEmbedded upstream are usually compatible although they are not supported.

3.6. meta/site/
Certain autoconf test results cannot be determined when cross compiling since it can't run tests on a
live system. This directory therefore contains a list of cached results for various architectures which
is passed to autoconf.

29

Appendix B. Reference: Bitbake
Bitbake a program written in Python which interprets the metadata that makes up Poky. At some
point, people wonder what actually happens when you type bitbake poky-image-sato. This section
aims to give an overview of what happens behind the scenes from a BitBake perspective.

It is worth noting that bitbake aims to be a generic "task" executor capable of handling complex
dependency relationships. As such it has no real knowledge of what the tasks its executing actually
do. It just considers a list of tasks with dependencies and handles metadata consisting of variables
in a certain format which get passed to the tasks.

1. Parsing
The first thing BitBake does is work out its configuration by looking for a file called bitbake.conf.
Bitbake searches through the BBPATH environment variable looking for a conf/ directory containing
a bitbake.conf file and adds the first bitbake.conf file found in BBPATH (similar to the PATH
environment variable). For Poky, bitbake.conf is found in meta/conf/.

In Poky, bitbake.conf lists other configuration files to include from a conf/ directory below the
directories listed in BBPATH. In general the most important configuration file from a user's perspective
is local.conf, which contains a users customized settings for Poky. Other notable configuration files
are the distribution configuration file (set by the DISTRO variable) and the machine configuration
file (set by the MACHINE variable). The DISTRO and MACHINE environment variables are both
usually set in the local.conf file. Valid distribution configuration files are available in the meta/
conf/distro/ directory and valid machine configuration files in the meta/conf/machine/ directory.
Within the meta/conf/machine/include/ directory are various tune-*.inc configuration files
which provide common "tuning" settings specific to and shared between particular architectures and
machines.

After the parsing of the configuration files some standard classes are included. In particular,
base.bbclass is always included, as will any other classes specified in the configuration using the
INHERIT variable. Class files are searched for in a classes subdirectory under the paths in BBPATH in
the same way as configuration files.

After the parsing of the configuration files is complete, the variable BBFILES is set, usually in
local.conf, and defines the list of places to search for .bb files. By default this specifies the meta/
packages/ directory within Poky, but other directories such as meta-extras/ can be included too.
If multiple directories are specified a system referred to as "collections" is used to determine which
files have priority.

Bitbake parses each .bb file in BBFILES and stores the values of various variables. In summary, for
each .bb file the configuration + base class of variables are set, followed by the data in the .bb file
itself, followed by any inherit commands that .bb file might contain.

Parsing .bb files is a time consuming process, so a cache is kept to speed up subsequent parsing.
This cache is invalid if the timestamp of the .bb file itself has changed, or if the timestamps of any
of the include, configuration or class files the .bb file depends on have changed.

2. Preferences and Providers
Once all the .bb files have been parsed, BitBake will proceed to build "poky-image-sato" (or whatever
was specified on the commandline) and looks for providers of that target. Once a provider is selected,
BitBake resolves all the dependencies for the target. In the case of "poky-image-sato", it would lead to
task-oh.bb and task-base.bb which in turn would lead to packages like Contacts, Dates, BusyBox
and these in turn depend on glibc and the toolchain.

Sometimes a target might have multiple providers and a common example is "virtual/kernel" that is
provided by each kernel package. Each machine will often elect the best provider of its kernel with
a line like the following in the machine configuration file:

PREFERRED_PROVIDER_virtual/kernel = "linux-rp"

The default PREFERRED_PROVIDER is the provider with the same name as the target.

Reference: Bitbake

30

Understanding how providers are chosen is complicated by the fact multiple versions might be
present. Bitbake defaults to the highest version of a provider by default. Version comparisons
are made using the same method as Debian. The PREFERRED_VERSION variable can be used
to specify a particular version (usually in the distro configuration) but the order can also be
influenced by the DEFAULT_PREFERENCE variable. By default files have a preference of "0". Setting
the DEFAULT_PREFERENCE to "-1" will make a package unlikely to be used unless it was explicitly
referenced and "1" makes it likely the package will be used. PREFERRED_VERSION overrides any
default preference. DEFAULT_PREFERENCE is often used to mark more experimental new versions of
packages until they've undergone sufficient testing to be considered stable.

The end result is that internally, BitBake has now built a list of providers for each target it needs in
order of priority.

3. Dependencies
Each target BitBake builds consists of multiple tasks (e.g. fetch, unpack, patch, configure, compile
etc.). For best performance on multi-core systems, BitBake considers each task as an independent
entity with a set of dependencies. There are many variables that are used to signify these
dependencies and more information can be found found about these in the BitBake manual [http://
bitbake.berlios.de/manual/]. At a basic level it is sufficient to know that BitBake uses the DEPENDS and
RDEPENDS variables when calculating dependencies and descriptions of these variables are available
through the links.

4. The Task List
Based on the generated list of providers and the dependency information, BitBake can now calculate
exactly which tasks it needs to run and in what order. The build now starts with BitBake forking off
threads up to the limit set in the BB_NUMBER_THREADS variable as long there are tasks ready to run,
i.e. tasks with all their dependencies met.

As each task completes, a timestamp is written to the directory specified by the STAMPS variable
(usually build/tmp/stamps/*/). On subsequent runs, BitBake looks at the STAMPS directory and will
not rerun tasks its already completed unless a timestamp is found to be invalid. Currently, invalid
timestamps are only considered on a per .bb file basis so if for example the configure stamp has
a timestamp greater than the compile timestamp for a given target the compile task would rerun
but this has no effect on other providers depending on that target. This could change or become
configurable in future versions of BitBake. Some tasks are marked as "nostamp" tasks which means
no timestamp file will be written and the task will always rerun.

Once all the tasks have been completed BitBake exits.

5. Running a Task
It's worth noting what BitBake does to run a task. A task can either be a shell task or a python
task. For shell tasks, BitBake writes a shell script to ${WORKDIR}/temp/run.do_taskname.pid and
then executes the script. The generated shell script contains all the exported variables, and the shell
functions with all variables expanded. Output from the shell script is sent to the file ${WORKDIR}/
temp/log.do_taskname.pid. Looking at the expanded shell functions in the run file and the output
in the log files is a useful debugging technique.

Python functions are executed internally to BitBake itself and logging goes to the controlling terminal.
Future versions of BitBake will write the functions to files in a similar way to shell functions and logging
will also go to the log files in a similar way.

6. Commandline
To quote from "bitbake --help":

Usage: bitbake [options] [package ...]

Executes the specified task (default is 'build') for a given set of BitBake files.
It expects that BBFILES is defined, which is a space separated list of files to

http://bitbake.berlios.de/manual/
http://bitbake.berlios.de/manual/
http://bitbake.berlios.de/manual/

Reference: Bitbake

31

be executed. BBFILES does support wildcards.
Default BBFILES are the .bb files in the current directory.

Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -b BUILDFILE, --buildfile=BUILDFILE
 execute the task against this .bb file, rather than a
 package from BBFILES.
 -k, --continue continue as much as possible after an error. While the
 target that failed, and those that depend on it,
 cannot be remade, the other dependencies of these
 targets can be processed all the same.
 -f, --force force run of specified cmd, regardless of stamp status
 -i, --interactive drop into the interactive mode also called the BitBake
 shell.
 -c CMD, --cmd=CMD Specify task to execute. Note that this only executes
 the specified task for the providee and the packages
 it depends on, i.e. 'compile' does not implicitly call
 stage for the dependencies (IOW: use only if you know
 what you are doing). Depending on the base.bbclass a
 listtasks tasks is defined and will show available
 tasks
 -r FILE, --read=FILE read the specified file before bitbake.conf
 -v, --verbose output more chit-chat to the terminal
 -D, --debug Increase the debug level. You can specify this more
 than once.
 -n, --dry-run don't execute, just go through the motions
 -p, --parse-only quit after parsing the BB files (developers only)
 -d, --disable-psyco disable using the psyco just-in-time compiler (not
 recommended)
 -s, --show-versions show current and preferred versions of all packages
 -e, --environment show the global or per-package environment (this is
 what used to be bbread)
 -g, --graphviz emit the dependency trees of the specified packages in
 the dot syntax
 -I IGNORED_DOT_DEPS, --ignore-deps=IGNORED_DOT_DEPS
 Stop processing at the given list of dependencies when
 generating dependency graphs. This can help to make
 the graph more appealing
 -l DEBUG_DOMAINS, --log-domains=DEBUG_DOMAINS
 Show debug logging for the specified logging domains
 -P, --profile profile the command and print a report

7. Fetchers
As well as the containing the parsing and task/dependency handling code, bitbake also contains a
set of "fetcher" modules which allow fetching of source code from various types of sources. Example
sources might be from disk with the metadata, from websites, from remote shell accounts or from
SCM systems like cvs/subversion/git.

The fetchers are usually triggered by entries in SRC_URI. Information about the options and formats
of entries for specific fetchers can be found in the BitBake manual [http://bitbake.berlios.de/manual/].

One useful feature for certain SCM fetchers is the ability to "auto-update" when the upstream SCM
changes version. Since this requires certain functionality from the SCM only certain systems support
it, currently Subversion, Bazaar and to a limited extent, Git. It works using the SRCREV variable. See
the developing with an external SCM based project section for more information.

http://bitbake.berlios.de/manual/
http://bitbake.berlios.de/manual/

32

Appendix C. Reference: Classes
Class files are used to abstract common functionality and share it amongst multiple .bb files. Any
metadata usually found in a .bb file can also be placed in a class file. Class files are identified by the
extension .bbclass and are usually placed in a classes/ directory beneath the meta/ directory or
the build/ directory in the same way as .conf files in the conf directory. Class files are searched
for in BBPATH in the same was as .conf files too.

In most cases inheriting the class is enough to enable its features, although for some classes you
may need to set variables and/or override some of the default behaviour.

1. The base class - base.bbclass
The base class is special in that every .bb file inherits it automatically. It contains definitions of
standard basic tasks such as fetching, unpacking, configuring (empty by default), compiling (runs any
Makefile present), installing (empty by default) and packaging (empty by default). These are often
overridden or extended by other classes such as autotools.bbclass or package.bbclass. The class
contains some commonly some commonly used functions such as oe_libinstall and oe_runmake.
The end of the class file has a list of standard mirrors for software projects for use by the fetcher code.

2. Autotooled Packages - autotools.bbclass
Autotools (autoconf, automake, libtool) brings standardisation and this class aims to define a set of
tasks (configure, compile etc.) that will work for all autotooled packages. It should usualy be enough
to define a few standard variables as documented in the simple autotools example section and then
simply "inherit autotools". This class can also work with software that emulates autotools.

Its useful to have some idea of the tasks this class defines work and what they do behind the scenes.

• 'do_configure' regenearates the configure script and then launches it with a standard set of
arguments used during cross-compilation. Additional parameters can be passed to configure
through the EXTRA_OECONF variable.

• 'do_compile' runs make with arguments specifying the compiler and linker. Additional arguments
can be passed through the EXTRA_OEMAKE variable.

• 'do_install' runs make install passing a DESTDIR option taking its value from the standard DESTDIR
variable.

By default the class does not stage headers and libraries so the recipe author needs to add their own
do_stage() task. For typical recipes the following example code will usually be enough:

do_stage() {
autotools_stage_all
}

3. Alternatives - update-
alternatives.bbclass
Several programs can fulfill the same or similar function and they can be installed with the same
name. For example the ar command is available from the "busybox", "binutils" and "elfutils" packages.
This class handles the renaming of the binaries so multiple packages can be installed which
would otherwise conflict and yet the ar command still works regardless of which are installed or
subsequently removed. It renames the conflicting binary in each package and symlinks the highest
priority binary during installation or removal of packages. Four variables control this class:

ALTERNATIVE_NAME Name of binary which will be replaced (ar in this example)

ALTERNATIVE_LINK Path to resulting binary ("/bin/ar" in this example)

Reference: Classes

33

ALTERNATIVE_PATH Path to real binary ("/usr/bin/ar.binutils" in this example)

ALTERNATIVE_PRIORITY Priority of binary, the version with the most features should have the
highest priority

4. Initscripts - update-rc.d.bbclass
This class uses update-rc.d to safely install an initscript on behalf of the package. Details such
as making sure the initscript is stopped before a package is removed and started when the
package is installed are taken care of. Three variables control this class, INITSCRIPT_PACKAGES,
INITSCRIPT_NAME and INITSCRIPT_PARAMS. See the links for details.

5. Binary config scripts - binconfig.bbclass
Before pkg-config became widespread, libraries shipped shell scripts to give information about the
libraries and include paths needed to build software (usually named 'LIBNAME-config'). This class
assists any recipe using such scripts.

During staging Bitbake installs such scripts into the staging/ directory. It also changes all paths to
point into the staging/ directory so all builds which use the script will use the correct directories for
the cross compiling layout.

6. Debian renaming - debian.bbclass
This class renames packages so that they follow the Debian naming policy, i.e. 'glibc' becomes 'libc6'
and 'glibc-devel' becomes 'libc6-dev'.

7. Pkg-config - pkgconfig.bbclass
Pkg-config brought standardisation and this class aims to make its integration smooth for all libraries
which make use of it.

During staging Bitbake installs pkg-config data into the staging/ directory. By making use of sysroot
functionality within pkgconfig this class no longer has to manipulate the files.

8. Distribution of sources -
src_distribute_local.bbclass
Many software licenses require providing the sources for compiled binaries. To simplify this process
two classes were created: src_distribute.bbclass and src_distribute_local.bbclass.

Result of their work are tmp/deploy/source/ subdirs with sources sorted by LICENSE field. If recipe
lists few licenses (or has entries like "Bitstream Vera") source archive is put in each license dir.

Src_distribute_local class has three modes of operating:

• copy - copies the files to the distribute dir

• symlink - symlinks the files to the distribute dir

• move+symlink - moves the files into distribute dir, and symlinks them back

9. Perl modules - cpan.bbclass
Recipes for Perl modules are simple - usually needs only pointing to source archive and inheriting of
proper bbclass. Building is split into two methods dependly on method used by module authors.

Modules which use old Makefile.PL based build system require using of cpan.bbclass in their recipes.

Modules which use Build.PL based build system require using of cpan_build.bbclass in their recipes.

Reference: Classes

34

10. Python extensions - distutils.bbclass
Recipes for Python extensions are simple - usually needs only pointing to source archive and inheriting
of proper bbclass. Building is split into two methods dependly on method used by module authors.

Extensions which use autotools based build system require using of autotools and distutils-base
bbclasses in their recipes.

Extensions which use distutils build system require using of distutils.bbclass in their recipes.

11. Developer Shell - devshell.bbclass
This class adds the devshell task. Its usually up to distribution policy to include this class (Poky does).
See the developing with 'devshell' section for more information about using devshell.

12. Packaging - package*.bbclass
The packaging classes add support for generating packages from the output from builds. The core
generic functionality is in package.bbclass, code specific to particular package types is contained in
various sub classes such as package_deb.bbclass and package_ipk.bbclass. Most users will want
one or more of these classes and this is controlled by the PACKAGE_CLASSES variable. The first class
listed in this variable will be used for image generation. Since images are generated from packages
a packaging class is needed to enable image generation.

13. Building kernels - kernel.bbclass
This class handle building of Linux kernels and the class contains code to know how to build both
2.4 and 2.6 kernel trees. All needed headers are staged into STAGING_KERNEL_DIR directory to allow
building of out-of-tree modules using module.bbclass.

The means that each kerel module built is packaged separately and inter-modules dependencies are
created by parsing the modinfo output. If all modules are required then installing "kernel-modules"
package will install all packages with modules and various other kernel packages such as "kernel-
vmlinux" are also generated.

Various other classes are used by the kernel and module classes internally including kernel-
arch.bbclass, module_strip.bbclass, module-base.bbclass and linux-kernel-base.bbclass.

14. Creating images - image.bbclass and
rootfs*.bbclass
Those classes add support for creating images in many formats. First the rootfs is created from
packages by one of the rootfs_*.bbclass files (depending on package format used) and then
image is created. The IMAGE_FSTYPES variable controls which types of image to generate. The list of
packages to install into the image is controlled by the IMAGE_INSTALL variable.

15. Host System sanity checks -
sanity.bbclass
This class checks prerequisite software is present to try and identify and notify the user of problems
which will affect their build. It also performs basic checks of the users configuration from local.conf to
prevent common mistakes and resulting build failures. Its usually up to distribution policy to include
this class (Poky does).

16. Generated output quality assurance checks
- insane.bbclass
This class adds a step to package generation which sanity checks the packages generated by Poky.
There are an ever increasing range of checks this makes, checking for common problems which break

Reference: Classes

35

builds/packages/images, see the bbclass file for more information. Its usually up to distribution policy
to include this class (Poky doesn't at the time of writing but plans to soon).

17. Autotools configuration data cache -
siteinfo.bbclass
Autotools can require tests which have to execute on the target hardware. Since this isn't possible
in general when cross compiling, siteinfo is used to provide cached test results so these tests can
be skipped over but the correct values used. The meta/site directory contains test results sorted
into different categories like architecture, endianess and the libc used. Siteinfo provides a list of
files containing data relevant to the current build in the CONFIG_SITE variable which autotools will
automatically pick up.

The class also provides variables like SITEINFO_ENDIANESS and SITEINFO_BITS which can be used
elsewhere in the metadata.

This class is included from base.bbclass and is hence always active.

18. Other Classes
Only the most useful/important classes are covered here but there are others, see the meta/classes
directory for the rest.

36

Appendix D. Reference: Images
Poky has several standard images covering most people's standard needs. A full list of image targets
can be found by looking in the meta/packages/images/ directory. The standard images are listed
below along with details of what they contain:

• poky-image-minimal - A small image, just enough to allow a device to boot

• poky-image-base - console only image with full support of target device hardware

• poky-image-core - X11 image with simple apps like terminal, editor and file manager

• poky-image-sato - X11 image with Sato theme and Pimlico applications. Also contains terminal,
editor and file manager.

• poky-image-sdk - X11 image like poky-image-sato but also include native toolchain and libraries
needed to build applications on the device itself. Also includes testing and profiling tools and debug
symbols.

• meta-toolchain - This generates a tarball containing a standalone toolchain which can be used
externally to Poky. It is self contained and unpacks to the /usr/local/poky directory. It also contains
a copy of QEMU and the scripts neccessary to run poky QEMU images.

• meta-toolchain-sdk - This includes everything in meta-toolchain but also includes development
headers and libraries forming a complete standalone SDK. See the Developing using the Poky SDK
and Developing using the Anjuta Plugin sections for more information.

37

Appendix E. Reference: Features
'Features' provide a mechanism for working out which packages should be included in the generated
images. Distributions can select which features they want to support through the DISTRO_FEATURES
variable which is set in the distribution configuration file (poky.conf for Poky). Machine features are
set in the MACHINE_FEATURES variable which is set in the machine configuration file and specifies
which hardware features a given machine has.

These two variables are combined to work out which kernel modules, utilities and other packages
to include. A given distribution can support a selected subset of features so some machine features
might not be included if the distribution itself doesn't support them.

1. Distro
The items below are valid options for DISTRO_FEATURES.

• alsa - ALSA support will be included (OSS compatibility kernel modules will be installed if available)

• bluetooth - Include bluetooth support (integrated BT only)

• ext2 - Include tools for supporting for devices with internal HDD/Microdrive for storing files (instead
of Flash only devices)

• irda - Include Irda support

• keyboard - Include keyboard support (e.g. keymaps will be loaded during boot).

• pci - Include PCI bus support

• pcmcia - Include PCMCIA/CompactFlash support

• usbgadget - USB Gadget Device support (for USB networking/serial/storage)

• usbhost - USB Host support (allows to connect external keyboard, mouse, storage, network etc)

• wifi - WiFi support (integrated only)

• cramfs - CramFS support

• ipsec - IPSec support

• ipv6 - IPv6 support

• nfs - NFS client support (for mounting NFS exports on device)

• ppp - PPP dialup support

• smbfs - SMB networks client support (for mounting Samba/Microsoft Windows shares on device)

2. Machine
The items below are valid options for MACHINE_FEATURES.

• acpi - Hardware has ACPI (x86/x86_64 only)

• alsa - Hardware has ALSA audio drivers

• apm - Hardware uses APM (or APM emulation)

• bluetooth - Hardware has integrated BT

• ext2 - Hardware HDD or Microdrive

• irda - Hardware has Irda support

• keyboard - Hardware has a keyboard

Reference: Features

38

• pci - Hardware has a PCI bus

• pcmcia - Hardware has PCMCIA or CompactFlash sockets

• screen - Hardware has a screen

• serial - Hardware has serial support (usually RS232)

• touchscreen - Hardware has a touchscreen

• usbgadget - Hardware is USB gadget device capable

• usbhost - Hardware is USB Host capable

• wifi - Hardware has integrated WiFi

3. Reference: Images
The contents of images generated by Poky can be controlled by the IMAGE_FEATURES variable in
local.conf. Through this you can add several different predefined packages such as development
utilities or packages with debug information needed to investigate application problems or profile
applications.

Current list of IMAGE_FEATURES contains:

• apps-console-core - Core console applications such as ssh daemon, avahi daemon, portmap (for
mounting NFS shares)

• x11-base - X11 server + minimal desktop

• x11-sato - OpenedHand Sato environment

• apps-x11-core - Core X11 applications such as an X Terminal, file manager, file editor

• apps-x11-games - A set of X11 games

• apps-x11-pimlico - OpenedHand Pimlico application suite

• tools-sdk - A full SDK which runs on device

• tools-debug - Debugging tools such as strace and gdb

• tools-profile - Profiling tools such as oprofile, exmap and LTTng

• tools-testapps - Device testing tools (e.g. touchscreen debugging)

• nfs-server - NFS server (exports / over NFS to everybody)

• dev-pkgs - Development packages (headers and extra library links) for all packages installed in a
given image

• dbg-pkgs - Debug packages for all packages installed in a given image

39

Appendix F. Reference: Variables
Glossary
This section lists common variables used in Poky and gives an overview of their function and contents.

Glossary
A B C D E F H I K L M P R S T W

A
AUTHOR E-mail address to contact original author(s) - to send patches, forward

bugs...

AUTOREV Use current (newest) source revision - used with SRCREV variable.

B
BB_NUMBER_THREADS The maximum number of tasks BitBake should run in parallel at any

one time

BBFILES List of recipes used by BitBake to build software

BBINCLUDELOGS Variable which controls how BitBake displays logs on build failure.

C
CFLAGS Flags passed to C compiler for the target system. Evaluates to the

same as TARGET_CFLAGS.

COMPATIBLE_MACHINE A regular expression which evalutates to match the machines the
recipe works with. It stops recipes being run on machines they're
incompatible with which is partciuarly useful with kernels. It also
helps to to increase parsing speed as if its found the current machine
is not compatible, further parsing of the recipe is skipped.

CONFIG_SITE Contains a list of files which containing autoconf test results relevant
to the current build. This variable is used by the autotools utilities
when running configure.

CVS_TARBALL_STASH Location to search for pre-generated tarballs when fetching from
remote SCM repositories (CVS/SVN/GIT)

D
D Destination directory

DEBUG_BUILD Build packages with debugging information. This influences the value
SELECTED_OPTIMIZATION takes.

DEBUG_OPTIMIZATION The options to pass in TARGET_CFLAGS and CFLAGS when compiling
a system for debugging. This defaults to "-O -fno-omit-frame-pointer
-g".

DEFAULT_PREFERENCE Priority of recipe

DEPENDS A list of build time dependencies for a given recipe. These indicate
recipes that must have staged before this recipe can configure.

Reference: Variables Glossary

40

DESCRIPTION Package description used by package managers

DESTDIR Destination directory

DISTRO Short name of distribution

DISTRO_EXTRA_RDEPENDS List of packages required by distribution.

DISTRO_EXTRA_RRECOMMENDSList of packages which extend usability of image. Those packages will
be automatically installed but can be removed by user.

DISTRO_FEATURES Features of the distribution.

DISTRO_NAME Long name of distribution

DISTRO_VERSION Version of distribution

DL_DIR Directory where all fetched sources will be stored

E
ENABLE_BINARY_LOCALE_GENERATIONVariable which control which locales for glibc are to be generated

during build (useful if target device has 64M RAM or less)

EXTRA_OECONF Additional 'configure' script options

EXTRA_OEMAKE Additional GNU make options

F
FILES list of directories/files which will be placed in packages

FULL_OPTIMIZATION The options to pass in TARGET_CFLAGS and CFLAGS when compiling
an optimised system. This defaults to "-fexpensive-optimizations -
fomit-frame-pointer -frename-registers -O2".

H
HOMEPAGE Website where more info about package can be found

I
IMAGE_FEATURES List of features present in resulting images

IMAGE_FSTYPES Formats of rootfs images which we want to have created

IMAGE_INSTALL List of packages used to build image

INHIBIT_PACKAGE_STRIP This variable causes the build to not strip binaries in resulting
packages.

INHERIT This variable causes the named class to be inherited at this point
during parsing. Its only valid in configuration files.

INITSCRIPT_PACKAGES Scope: Used in recipes when using update-rc.d.bbclass. Optional,
defaults to PN.

A list of the packages which contain initscripts. If multiple packages
are specified you need to append the package name to the other
INITSCRIPT_* as an override.

INITSCRIPT_NAME Scope: Used in recipes when using update-rc.d.bbclass. Mandatory.

The filename of the initscript (as installed to ${etcdir}/init.d).

Reference: Variables Glossary

41

INITSCRIPT_PARAMS Scope: Used in recipes when using update-rc.d.bbclass. Mandatory.

Specifies the options to pass to update-rc.d. An example is "start 99
5 2 . stop 20 0 1 6 ." which gives the script a runlevel of 99, starts
the script in initlevels 2 and 5 and stops it in levels 0, 1 and 6.

K
KERNEL_IMAGETYPE The type of kernel to build for a device, usually set by the machine

configuration files and defaults to "zImage". This is used when
building the kernel and is passed to "make" as the target to build.

L
LICENSE List of package source licenses.

M
MACHINE Target device

MACHINE_ESSENTIAL_RDEPENDSList of packages required to boot device

MACHINE_ESSENTIAL_RRECOOMENDSList of packages required to boot device (usually additional kernel
modules)

MACHINE_EXTRA_RDEPENDS List of packages required to use device

MACHINE_EXTRA_RRECOMMNEDSList of packages useful to use device (for example additional kernel
modules)

MACHINE_FEATURES List of device features - defined in machine features section

MAINTAINER E-mail of distribution maintainer

P
PACKAGE_ARCH Architecture of resulting package

PACKAGE_CLASSES List of resulting packages formats

PACKAGE_EXTRA_ARCHS List of architectures compatible with device CPU. Usable when build
is done for few different devices with misc processors (like XScale
and ARM926-EJS)

PACKAGES List of packages to be created from recipe. The default value is
"${PN}-dbg ${PN} ${PN}-doc ${PN}-dev"

PARALLEL_MAKE Extra options that are passed to the make command during the
compile tasks. This is usually of the form '-j 4' where the number
represents the maximum number of parallel threads make can run.

PN Name of package.

PR Revision of package.

PV Version of package. The default value is "1.0"

PE Epoch of the package. The default value is "0". The field is used
to make upgrades possible when the versioning scheme changes in
some backwards incompatible way.

PREFERRED_PROVIDER If multiple recipes provide an item, this variable determines which
one should be given preference. It should be set to the "$PN" of the
recipe to be preferred.

Reference: Variables Glossary

42

PREFERRED_VERSION If there are multiple versions of recipe available, this variable
determines which one should be given preference. It should be set
to the "$PV" of the recipe to be preferred.

POKY_EXTRA_INSTALL List of packages to be added to the image. This should only be set
in local.conf.

POKYLIBC Libc implementation selector - glibc or uclibc can be selected.

POKYMODE Toolchain selector. It can be external toolchain built from Poky or
few supported combinations of upstream GCC or CodeSourcery Labs
toolchain.

R
RCONFLICTS List of packages which which conflict with this one. Package will not

be installed if they will not be removed first.

RDEPENDS A list of run-time dependencies for a package. These packages need
to be installed alongside the package it applies to so the package
will run correctly, an example is a perl script which would rdepend
on perl. Since this variable applies to output packages there would
usually be an override attached to this variable like RDEPENDS_
${PN}-dev. Names in this field should be as they are in PACKAGES
namespave before any renaming of the output package by classes
like debian.bbclass.

ROOT_FLASH_SIZE Size of rootfs in megabytes

RRECOMMENDS List of packages which extend usability of package. Those packages
will be automatically installed but can be removed by user.

RREPLACES List of packages which are replaced with this one.

S
S Path to unpacked sources (by default: "${WORKDIR}/${PN}-${PV}")

SECTION Section where package should be put - used by package managers

SELECTED_OPTIMIZATION The variable takes the value of FULL_OPTIMIZATION unless
DEBUG_BUILD = "1" in which case DEBUG_OPTIMIZATION is used.

SERIAL_CONSOLE Speed and device for serial port used to attach serial console. This is
given to kernel as "console" param and after boot getty is started on
that port so remote login is possible.

SHELLCMDS A list of commands to run within the a shell, used by TERMCMDRUN.
It defaults to SHELLRCCMD.

SHELLRCCMD How to launch a shell, defaults to bash.

SITEINFO_ENDIANESS Contains "le" for little-endian or "be" for big-endian depending on the
endian byte order of the target system.

SITEINFO_BITS Contains "32" or "64" depending on the number of bits for the CPU
of the target system.

SRC_URI List of source files (local or remote ones)

SRC_URI_OVERRIDES_PACKAGE_ARCHBy default there is code which automatically detects whether
SRC_URI contains files which are machine specific and if this is the
case it automatically changes PACKAGE_ARCH. Setting this variable
to "0" disables that behaviour.

Reference: Variables Glossary

43

SRCDATE Date of source code used to build package (if it was fetched from
SCM).

SRCREV Revision of source code used to build package (Subversion, GIT,
Bazaar only).

STAGING_KERNEL_DIR Directory with kernel headers required to build out-of-tree modules.

STAMPS Directory (usually TMPDIR/stamps) with timestamps of executed
tasks.

T
TARGET_ARCH The architecture of the device we're building for. A number of values

are possible but Poky primarily supports "arm" and "i586".

TARGET_CFLAGS Flags passed to C compiler for the target system. Evaluates to the
same as CFLAGS.

TARGET_FPU Method of handling FPU code. For FPU-less targets (most of ARM cpus)
it has to be set to "soft" otherwise kernel emulation will get used
which will result in performance penalty.

TARGET_OS Type of target operating system. Can be "linux" for glibc based
system, "linux-uclibc" for uClibc. For ARM/EABI targets there are also
"linux-gnueabi" and "linux-uclibc-gnueabi" values possible.

TERMCMD This command is used by bitbake to lauch a terminal window with
a shell. The shell is unspecified so the user's default shell is used.
By default it is set to gnome-terminal but it can be any X11 terminal
application or terminal multiplexers like screen.

TERMCMDRUN This command is similar to TERMCMD however instead of the users
shell it runs the command specified by the SHELLCMDS variable.

W
WORKDIR Path to directory in tmp/work/ where package will be built.

44

Appendix G. Reference: Variable
Locality (Distro, Machine, Recipe
etc.)
Whilst most variables can be used in almost any context (.conf, .bbclass, .inc or .bb file), variables are
often associated with a particular locality/context. This section describes some common associations.

1. Distro Configuration
• DISTRO

• DISTRO_NAME

• DISTRO_VERSION

• MAINTAINER

• PACKAGE_CLASSES

• TARGET_OS

• TARGET_FPU

• POKYMODE

• POKYLIBC

2. Machine Configuration
• TARGET_ARCH

• SERIAL_CONSOLE

• PACKAGE_EXTRA_ARCHS

• IMAGE_FSTYPES

• ROOT_FLASH_SIZE

• MACHINE_FEATURES

• MACHINE_EXTRA_RDEPENDS

• MACHINE_EXTRA_RRECOMMENDS

• MACHINE_ESSENTIAL_RDEPENDS

• MACHINE_ESSENTIAL_RRECOMMENDS

3. Local Configuration (local.conf)
• DISTRO

• MACHINE

• DL_DIR

• BBFILES

• IMAGE_FEATURES

Reference: Variable Locality (Distro, Machine, Recipe etc.)

45

• PACKAGE_CLASSES

• BB_NUMBER_THREADS

• BBINCLUDELOGS

• CVS_TARBALL_STASH

• ENABLE_BINARY_LOCALE_GENERATION

4. Recipe Variables - Required
• DESCRIPTION

• LICENSE

• SECTION

• HOMEPAGE

• AUTHOR

• SRC_URI

5. Recipe Variables - Dependencies
• DEPENDS

• RDEPENDS

• RRECOMMENDS

• RCONFLICTS

• RREPLACES

6. Recipe Variables - Paths
• WORKDIR

• S

• FILES

7. Recipe Variables - Extra Build Information
• EXTRA_OECONF

• EXTRA_OEMAKE

• PACKAGES

• DEFAULT_PREFERENCE

46

Appendix H. FAQ
H.1. How does Poky differ from OpenEmbedded [http://www.openembedded.org/]?

Poky is a derivative of OpenEmbedded [http://www.openembedded.org/], a stable, smaller
subset focused on the GNOME Mobile environment. Development in Poky is closely tied to
OpenEmbedded with features being merged regularly between the two for mutual benefit.

H.2. How can you claim Poky is stable?

There are three areas that help with stability;

• We keep Poky small and focused - around 650 packages compared to over 5000 for full OE

• We only support hardware that we have access to for testing

• We have a Buildbot which provides continuous build and integration tests

H.3. How do I get support for my board added to Poky?

There are two main ways to get a board supported in Poky;

• Send us the board if we don't have it yet

• Send us bitbake recipes if you have them (see the Poky handbook to find out how to create
recipes)

Usually if it's not a completely exotic board then adding support in Poky should be fairly
straightforward.

H.4. Are there any products running poky ?

The Vernier Labquest [http://vernier.com/labquest/] is using Poky (for more about the Labquest
see the case study at OpenedHand). There are a number of pre-production devices using Poky
and we will announce those as soon as they are released.

H.5. What is the Poky output ?

The output of a Poky build will depend on how it was started, as the same set of recipes can
be used to output various formats. Usually the output is a flashable image ready for the target
device.

H.6. How do I add my package to Poky?

To add a package you need to create a bitbake recipe - see the Poky handbook to find out how
to create a recipe.

H.7. Do I have to reflash my entire board with a new poky image when recompiling a package?

Poky can build packages in various formats, ipk (for ipkg/opkg), Debian package (.deb), or RPM.
The packages can then be upgraded using the package tools on the device, much like on a
desktop distribution like Ubuntu or Fedora.

H.8. What is GNOME Mobile? What's the difference between GNOME Mobile and GNOME?

GNOME Mobile [http://www.gnome.org/mobile/] is a subset of the GNOME platform targeted at
mobile and embedded devices. The the main difference between GNOME Mobile and standard
GNOME is that desktop-orientated libraries have been removed, along with deprecated
libraries, creating a much smaller footprint.

H.9. How do I make Poky work in RHEL/CentOS?

To get Poky working under RHEL/CentOS 5.1 you need to first install some required packages.
The standard CentOS packages needed are:

• "Development tools" (selected during installation)

• texi2html

http://www.openembedded.org/
http://www.openembedded.org/
http://www.openembedded.org/
http://www.openembedded.org/
http://vernier.com/labquest/
http://vernier.com/labquest/
http://www.gnome.org/mobile/
http://www.gnome.org/mobile/

FAQ

47

• compat-gcc-34

On top of those the following external packages are needed:

• python-sqlite2 from DAG repository [http://dag.wieers.com/rpm/packages/python-sqlite2/]

• help2man from Karan repository [http://centos.karan.org/el5/extras/testing/i386/RPMS/
help2man-1.33.1-2.noarch.rpm]

Once these packages are installed Poky will be able to build standard images however there may
be a problem with QEMU segfaulting. You can either disable the generation of binary locales by
setting ENABLE_BINARY_LOCALE_GENERATION to "0" or remove the linux-2.6-execshield.patch
from the kernel and rebuild it since its that patch which causes the problems with QEMU.

H.10. I see lots of 404 responses for files on http://folks.o-hand.com/~richard/poky/sources/*. Is
something wrong?

Nothing is wrong, Poky will check any configured source mirrors before downloading from the
upstream sources. It does this searching for both source archives and pre-checked out versions
of SCM managed software. This is so in large installations, it can reduce load on the SCM servers
themselves. The address above is one of the default mirrors configured into standard Poky so
if an upstream source disappears, we can place sources there so builds continue to work.

H.11. I have a machine specific data in a package for one machine only but the package is being
marked as machine specific in all cases, how do I stop it?

Set SRC_URI_OVERRIDES_PACKAGE_ARCH = "0" in the .bb file but make sure the package
is manually marked as machine specific in the case that needs it. The code which handles
SRC_URI_OVERRIDES_PACKAGE_ARCH is in base.bbclass.

H.12. I'm behind a firewall and need to use a proxy server. How do I do that?

Most source fetching by Poky is done by wget and you therefore need to specify
the proxy settings in a .wgetrc file in your home directory. Example settings in that
file would be 'http_proxy = http://proxy.yoyodyne.com:18023/' and 'ftp_proxy = http://
proxy.yoyodyne.com:18023/'. Poky also includes a site.conf.sample file which shows how to
configure cvs and git proxy servers if needed.

H.13. I'm using Ubuntu Intrepid and am seeing build failures. Whats wrong?

In Intrepid, Ubuntu turned on by default normally optional compile-time security features
and warnings. There are more details at https://wiki.ubuntu.com/CompilerFlags. You can
work around this problem by disabling those options by adding " -Wno-format-security -
U_FORTIFY_SOURCE" to the BUILD_CPPFLAGS variable in conf/bitbake.conf.

http://dag.wieers.com/rpm/packages/python-sqlite2/
http://dag.wieers.com/rpm/packages/python-sqlite2/
http://centos.karan.org/el5/extras/testing/i386/RPMS/help2man-1.33.1-2.noarch.rpm
http://centos.karan.org/el5/extras/testing/i386/RPMS/help2man-1.33.1-2.noarch.rpm
http://centos.karan.org/el5/extras/testing/i386/RPMS/help2man-1.33.1-2.noarch.rpm
https://wiki.ubuntu.com/CompilerFlags

48

Appendix I. Contributing to Poky
1. Introduction
We're happy for people to experiment with Poky and there are a number of places to find help if you
run into difficulties or find bugs. To find out how to download source code see the Obtaining Poky
section of the Introduction.

2. Bugtracker
Problems with Poky should be reported in the bug tracker [http://bugzilla.o-hand.com/].

3. Mailing list
To subscribe to the mailing list send mail to:

poky+subscribe <at> openedhand <dot> com

Then follow the simple instructions in subsequent reply. Archives are available here [http://lists.o-
hand.com/poky/].

4. IRC
Join #poky on freenode.

5. Links
• The Poky website [http://pokylinux.org]

• OpenedHand [http://www.openedhand.com/] - The company behind Poky.

• OpenEmbedded [http://www.openembedded.org/] - The upstream generic embedded distribution
Poky derives from (and contributes to).

• Bitbake [http://developer.berlios.de/projects/bitbake/] - The tool used to process Poky metadata.

• Bitbake User Manual [http://bitbake.berlios.de/manual/]

• Pimlico [http://pimlico-project.org/] - A suite of lightweight Personal Information Management (PIM)
applications designed primarily for handheld and mobile devices.

• QEMU [http://fabrice.bellard.free.fr/qemu/] - An open source machine emulator and virtualizer.

http://bugzilla.o-hand.com/
http://bugzilla.o-hand.com/
http://lists.o-hand.com/poky/
http://lists.o-hand.com/poky/
http://lists.o-hand.com/poky/
http://pokylinux.org
http://pokylinux.org
http://www.openedhand.com/
http://www.openedhand.com/
http://www.openembedded.org/
http://www.openembedded.org/
http://developer.berlios.de/projects/bitbake/
http://developer.berlios.de/projects/bitbake/
http://bitbake.berlios.de/manual/
http://bitbake.berlios.de/manual/
http://pimlico-project.org/
http://pimlico-project.org/
http://fabrice.bellard.free.fr/qemu/
http://fabrice.bellard.free.fr/qemu/

49

Appendix J. OpenedHand Contact
Information
OpenedHand Ltd
Unit R, Homesdale Business Center
216-218 Homesdale Rd
Bromley, BR1 2QZ
England
+44 (0) 208 819 6559
info@openedhand.com

50

Index

	Poky Handbook
	Table of Contents
	Chapter 1. Introduction
	1. What is Poky?
	2. Documentation Overview
	3. System Requirements
	4. Quick Start
	4.1. Building and Running an Image
	4.2. Downloading and Using Prebuilt Images

	5. Obtaining Poky
	5.1. Releases
	5.2. Nightly Builds
	5.3. Development Checkouts

	Chapter 2. Using Poky
	1. Poky Overview
	1.1. Bitbake
	1.2. Metadata (Recipes)
	1.3. Classes
	1.4. Configuration

	2. Running a Build
	3. Installing and Using the Result
	3.1. USB Networking
	3.2. QEMU/USB networking with IP masquerading

	4. Debugging Build Failures
	4.1. Task Failures
	4.2. Running specific tasks
	4.3. Dependency Graphs
	4.4. General Bitbake Problems
	4.5. Building with no dependencies
	4.6. Variables
	4.7. Other Tips

	Chapter 3. Extending Poky
	1. Adding a Package
	1.1. Single .c File Package (Hello World!)
	1.2. Autotooled Package
	1.3. Makefile-Based Package
	1.4. Controlling packages content
	1.5. Post Install Scripts

	2. Customising Images
	2.1. Customising Images through a custom image .bb files
	2.2. Customising Images through custom tasks
	2.3. Customising Images through custom IMAGE_FEATURES
	2.4. Customising Images through local.conf

	3. Porting Poky to a new machine
	3.1. Adding the machine configuration file
	3.2. Adding a kernel for the machine
	3.3. Adding a formfactor configuration file

	4. Making and Maintaining Changes
	4.1. Bitbake Collections
	4.2. Supplementry Metadata Repositories
	4.3. Committing Changes
	4.4. Package Revision Incrementing
	4.5. Using Poky in a Team Environment

	5. Modifying Package Source Code
	5.1. Modifying Package Source Code with quilt

	Chapter 4. Platform Development with Poky
	1. Software development
	1.1. Developing externally using the Poky SDK
	1.2. Developing externally using the Anjuta plugin
	1.2.1. Setting up the Anjuta plugin
	1.2.2. Configuring the Anjuta plugin
	1.2.3. Using the Anjuta plugin

	1.3. Developing externally in QEMU
	1.4. Developing externally in a chroot
	1.5. Developing in Poky directly
	1.6. Developing with 'devshell'
	1.7. Developing within Poky with an external SCM based package

	2. Debugging with GDB Remotely
	2.1. Launching GDBSERVER on the target
	2.2. Launching GDB on the host computer
	2.2.1. Build the cross GDB package
	2.2.2. Making the inferior binaries available
	2.2.3. Launch the host GDB
	2.2.4. Using the Debugger

	3. Profiling with OProfile
	3.1. Profiling on the target
	3.2. Using OProfileUI
	3.2.1. Online mode
	3.2.2. Offline mode

	Appendix A. Reference: Directory Structure
	1. Top level core components
	1.1. bitbake/
	1.2. build/
	1.3. meta/
	1.4. meta-extras/
	1.5. scripts/
	1.6. sources/
	1.7. poky-init-build-env

	2. build/ - The Build Directory
	2.1. build/conf/local.conf
	2.2. build/tmp/
	2.3. build/tmp/cache/
	2.4. build/tmp/cross/
	2.5. build/tmp/deploy/
	2.6. build/tmp/deploy/deb/
	2.7. build/tmp/deploy/images/
	2.8. build/tmp/deploy/ipk/
	2.9. build/tmp/rootfs/
	2.10. build/tmp/staging/
	2.11. build/tmp/stamps/
	2.12. build/tmp/work/

	3. meta/ - The Metadata
	3.1. meta/classes/
	3.2. meta/conf/
	3.3. meta/conf/machine/
	3.4. meta/conf/distro/
	3.5. meta/packages/
	3.6. meta/site/

	Appendix B. Reference: Bitbake
	1. Parsing
	2. Preferences and Providers
	3. Dependencies
	4. The Task List
	5. Running a Task
	6. Commandline
	7. Fetchers

	Appendix C. Reference: Classes
	1. The base class - base.bbclass
	2. Autotooled Packages - autotools.bbclass
	3. Alternatives - update-alternatives.bbclass
	4. Initscripts - update-rc.d.bbclass
	5. Binary config scripts - binconfig.bbclass
	6. Debian renaming - debian.bbclass
	7. Pkg-config - pkgconfig.bbclass
	8. Distribution of sources - src_distribute_local.bbclass
	9. Perl modules - cpan.bbclass
	10. Python extensions - distutils.bbclass
	11. Developer Shell - devshell.bbclass
	12. Packaging - package*.bbclass
	13. Building kernels - kernel.bbclass
	14. Creating images - image.bbclass and rootfs*.bbclass
	15. Host System sanity checks - sanity.bbclass
	16. Generated output quality assurance checks - insane.bbclass
	17. Autotools configuration data cache - siteinfo.bbclass
	18. Other Classes

	Appendix D. Reference: Images
	Appendix E. Reference: Features
	1. Distro
	2. Machine
	3. Reference: Images

	Appendix F. Reference: Variables Glossary
	Glossary

	Appendix G. Reference: Variable Locality (Distro, Machine, Recipe etc.)
	1. Distro Configuration
	2. Machine Configuration
	3. Local Configuration (local.conf)
	4. Recipe Variables - Required
	5. Recipe Variables - Dependencies
	6. Recipe Variables - Paths
	7. Recipe Variables - Extra Build Information

	Appendix H. FAQ
	Appendix I. Contributing to Poky
	1. Introduction
	2. Bugtracker
	3. Mailing list
	4. IRC
	5. Links

	Appendix J. OpenedHand Contact Information
	Index

