O
T
—l
O
C
b,
O

COMPATIBILITY PROFILE

w Wn
............ -
Y u w
TES
a -
’.:. @ﬁﬁs OJ 0% m Anv .-m.-Am m m M
S N4 P S & o w R
E Q Q) Q & & EoS oI
& 5 F¥ O 558 n
o K & 3 PR 858 &)
¢ L L g & E &
C I N
W N

..................................

P8
i Q A

i (&

PR ooo O B

i D& S

H Q B »fo ;

¢F ¢ :

O 0% .~

R
&(
................ g
R
@(

& =

lllllllllllllllllll E

O

18

§ =)

= g @

& g c 5 w

[w) b~ o S & M

” .M .m > i v A
B 7 S 58 XN §

S S 3 E 3 s E (=4

§ sy & $8 & ¥® w
3 L = Qwn Ra &

.......................................

..

The OpenGL® Graphics System:

A Specification
(Version 4.6 (Compatibility Profile) - July 30,
2017)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2-4.6): Jon Leech
Editor (version 2.0): Pat Brown

Copyright (©) 2006-2017 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary
to Khronos. Except as described by these terms, it or any components may not be
reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise
exploited in any manner without the express prior written permission of Khronos.

This specification has been created under the Khronos Intellectual Property Rights
Policy, which is Attachment A of the Khronos Group Membership Agreement
available at www.khronos.org/files/member_agreement.pdf. Khronos grants a con-
ditional copyright license to use and reproduce the unmodified specification for
any purpose, without fee or royalty, EXCEPT no licenses to any patent, trade-
mark or other intellectual property rights are granted under these terms. Parties
desiring to implement the specification and make use of Khronos trademarks in
relation to that implementation, and receive reciprocal patent license protection
under the Khronos IP Policy must become Adopters and confirm the implementa-
tion as conformant under the process defined by Khronos for this specification; see
https://www.khronos.org/adopters.

Khronos makes no, and expressly disclaims any, representations or warranties, ex-
press or implied, regarding this specification, including, without limitation: mer-
chantability, fitness for a particular purpose, non-infringement of any intellectual
property, correctness, accuracy, completeness, timeliness, and reliability. Under no
circumstances will Khronos, or any of its Promoters, Contributors or Members, or
their respective partners, officers, directors, employees, agents or representatives be
liable for any damages, whether direct, indirect, special or consequential damages
for lost revenues, lost profits, or otherwise, arising from or in connection with these
materials.

Vulkan is a registered trademark and Khronos, WebGL, and EGL are trademarks of
The Khronos Group Inc. ASTC is a trademark of ARM Holdings PLC, OpenCL is
a trademark of Apple Inc. and OpenGL is a registered trademark and the OpenGL
ES and OpenGL SC logos are trademarks of Silicon Graphics International used
under license by Khronos. All other product names, trademarks, and/or company
names are used solely for identification and belong to their respective owners.

Contents

1 Introduction 1
1.1 Formatting of the OpenGL Specification 1
1.1.1 Formatting of the Compatibility Profile 1

1.1.2 Formatting of Optional Features 1

1.2 What is the OpenGL Graphics System? 2
1.2.1 Programmer’s View of OpenGL 2

1.2.2 Implementor’s View of OpenGL 2

123 OurView 3

1.2.4 Fixed-function Hardware and the Compatibility Profile . . 3

1.2.5 The Deprecation Model 3

1.3 Related APIs 4
1.3.1 OpenGL Shading Language 4

132 OpenGLES 4

1.3.3 OpenGL ES Shading Language 5

1.34 SPIR-V 5

135 WebGL 6

1.3.6 Window System Bindings 6

1.37 OpenCL 7

1.4 FilingBugReports 7
2 OpenGL Fundamentals 8
2.1 ExecutionModel, 8
2.2 Command Syntax 10
2.2.1 Data Conversion For State-Setting Commands 12

2.2.2 Data Conversions For State Query Commands 14

2.3 Command Execution 15
231 Errors 16

2.3.2 Graphics ResetRecovery 19

233 FlushandFinish 21

CONTENTS ii

2.3.4 Numeric Representation and Computation 21

2.3.5 Fixed-Point Data Conversions 25

24 RenderingCommands 27
2.5 ContextState 27
2.5.1 Generic Context State Queries 28

2.6 Objects and the Object Model 28
2.6.1 Object Management 29

2.6.2 BufferObjects 30

2.6.3 ShaderObjects, 30

2.6.4 ProgramObjects 30

2.6.5 Program Pipeline Objects 31

2.6.6 Texture Objects 31

2.6.7 SamplerObjects 31

2.6.8 Renderbuffer Objects 31

2.6.9 Framebuffer Objects 32
2.6.10 Vertex Array Objects 32
2.6.11 Transform Feedback Objects 32
2.6.12 Query Objects 32
2.6.13 SyncObjects 33
2.6.14 Display Lists 33

3 Dataflow Model 34
4 Event Model 37
4.1 SyncObjectsandFences 37
4.1.1 Waiting for Sync Objects 39
412 Signaling 41

4.1.3 Sync Object Queries 42

4.2 Query Objects and Asynchronous Queries 43
4.2.1 Query Object Types and Targets 43

4.2.2 Query Object Creation and Activation 44

423 Query Object Queries 48

43 TimeQueries e 51
5 Shared Objects and Multiple Contexts 53
5.1 Object Deletion Behavior 54
5.1.1 Side Effects of Shared Context Destruction 54

5.1.2 Automatic Unbinding of Deleted Objects 54

5.1.3 Deleted Object and Object Name Lifetimes 54

5.2 Sync Objects and Multiple Contexts 55

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

CONTENTS iii

5.3 Propagating Changesto Objects 55
5.3.1 Determining Completion of Changes to an object 56

5.32 Definitions 57

533 Rules 57

6 Buffer Objects 59
6.1 Creating and Binding Buffer Objects 60
6.1.1 Binding Buffer Objects to Indexed Targets 62

6.2 Creating and Modifying Buffer Object Data Stores 65
6.2.1 Clearing Buffer Object Data Stores 71

6.3 Mapping and Unmapping BufferData 73
6.3.1 UnmappingBuffers. 78

6.3.2 Effects of Mapping Buffers on Other GL Commands . . . 79

6.4 Effects of Accessing Outside Buffer Bounds 79
6.5 Invalidating BufferData 79
6.6 Copying Between Buffers. 80
6.7 Buffer Object Queries 81
6.7.1 Indexed Buffer Object Limits and Binding Queries 83

6.8 Buffer ObjectState 85
7 Programs and Shaders 86
7.1 ShaderObjects 87
7.2 ShaderBinaries oL 90
7.2.1 Shader Specialization 92

7.3 Program Objects 93
7.3.1 Program Interfaces 100

7.4 Program Pipeline Objects 120
7.4.1 Shader Interface Matching 123

7.4.2 SPIR-V Shader Interface Matching 127

7.4.3 Program Pipeline Object State 128

7.5 Program Binaries 128
7.6 Uniform Variables 131
7.6.1 Loading Uniform Variables In The Default Uniform Block 139

7.6.2 UniformBlocks. 142

7.6.3 Uniform Buffer Object Bindings 146

7.7 Atomic Counter Buffers. 147
7.7.1 Atomic Counter Buffer Object Storage 147

7.7.2 Atomic Counter Buffer Bindings 148

7.8 Shader Buffer Variables and Shader Storage Blocks 148
7.9 Subroutine Uniform Variables 150

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

CONTENTS v

7.10 Samplers 154
TA1 Images o o o 155
7.12 Shader Memory Access it 156
7.12.1 Shader Memory Access Ordering 156
7.12.2 Shader Memory Access Synchronization 158

7.13 Shader, Program, and Program Pipeline Queries 163
7.14 Required State 173
8 Textures and Samplers 175
8.1 Texture Objects 178
8.2 SamplerObjects 183
8.3 Sampler Object Queries 187
84 PixelRectangles. L 188
8.4.1 Pixel Storage Modes and Pixel Buffer Objects 188

8.4.2 The Imaging Subset 190

8.4.3 Pixel TransferModes 191

8.4.4 Transfer of Pixel Rectangles 211

8.4.5 Pixel Transfer Operations 224

8.5 Texture Image Specification 234
8.5.1 Required Texture Formats 237

8.5.2 Encoding of Special Internal Formats 238

8.5.3 Texture Image Structure 243

8.6 Alternate Texture Image Specification Commands 251
8.6.1 Texture Copying Feedback Loops 258

8.7 Compressed Texture Images 259
8.8 Multisample Textures 266
89 BufferTextures 268
8.10 Texture Parameters 271
8.11 Texture Queries v i i e 276
8.11.1 Active Texture 276
8.11.2 Texture Parameter Queries 276
8.11.3 Texture Level Parameter Queries 277
8.11.4 Texture Image Queries 280

8.12 Depth Component Textures 287
8.13 Cube Map Texture Selection 287
8.13.1 Seamless Cube Map Filtering 288

8.14 Texture Minification 288
8.14.1 Scale Factor and Level-of-Detail 290
8.14.2 Coordinate Wrapping and Texel Selection 293
8.14.3 Mipmapping 299

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

CONTENTS v

8.14.4 Manual Mipmap Generation 301
8.14.5 Automatic Mipmap Generation 302

8.15 Texture Magnification 303
8.16 Combined Depth/Stencil Textures 303
8.17 Texture Completeness v v ... 303
8.17.1 Effects of Sampler Objects on Texture Completeness . . . 305
8.17.2 Effects of Completeness on Texture Application. 305
8.17.3 Effects of Completeness on Texture Image Specification . 305

818 Texture Views oo oo 306
8.19 Immutable-Format Texture Images 310
8.19.1 Behavior of Immutable-Format Texture Images 316

8.20 Invalidating Texture Image Data 316
8.21 Clearing Texture ImageData 317
8.22 Texture State and Proxy State 319
8.23 Texture Comparison Modes 322
8.23.1 Depth Texture Comparison Mode 322

8.24 sRGB Texture Color Conversion 324
8.25 Shared Exponent Texture Color Conversion 324
8.26 Texture Image Loads and Stores 326
8.26.1 Image UnitQueries 335

9 Framebuffers and Framebuffer Objects 336
9.1 Framebuffer Overview 336
9.2 Binding and Managing Framebuffer Objects 338
9.2.1 Framebuffer Object Parameters 342

9.2.2 Attaching Images to Framebuffer Objects 343

9.2.3 Framebuffer Object Queries 344

9.2.4 Renderbuffer Objects 349

9.2.5 Required Renderbuffer Formats 353

9.2.6 Renderbuffer Object Queries 354

9.2.7 Attaching Renderbuffer Images to a Framebuffer 355

9.2.8 Attaching Texture Images to a Framebuffer 357

9.3 Feedback Loops Between Textures and the Framebuffer 362
9.3.1 Rendering FeedbackLoops. 362

9.3.2 Texture Copying Feedback Loops 363

9.4 Framebuffer Completeness 364
9.4.1 Framebuffer Attachment Completeness 365

9.4.2 Whole Framebuffer Completeness 366

9.4.3 Required Framebuffer Formats 369

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

CONTENTS vi

9.4.4 Effects of Framebuffer Completeness on Framebuffer Op-

Crations e e 369

9.4.5 Effects of Framebuffer State on Framebuffer Dependent
Values 370
9.5 Mapping between Pixel and Element in Attached Image 371
9.6 Conversion to Framebuffer-Attachable Image Components 371
9.7 Conversionto RGBA Values 372
9.8 Layered Framebuffers 372
10 Vertex Specification and Drawing Commands 374
10.1 Primitive Types 378
10.1.1 Points 378
10.1.2 Line Strips 379
10.1.3 LineLoops 379
10.1.4 Separate Lines 379
10.1.5 Polygons 379
10.1.6 Triangle Strips Lo 380
10.1.7 Triangle Fans 380
10.1.8 Separate Triangles 381
10.1.9 Quadrilateral (quad) strips 381
10.1.10 Separate Quadrilaterals 381
10.1.11 Lines with Adjacency 382
10.1.12 Line Strips with Adjacency 383
10.1.13 Triangles with Adjacency 383
10.1.14 Triangle Strips with Adjacency 384
10.1.15 Separate Patches 385
10.1.16 General Considerations For Polygon Primitives 386
10.1.17Polygon Edges 386
10.2 Current Vertex Attribute Values 387
10.2.1 Current Generic Attributes 387
10.2.2 Current Conventional Attributes 389
10.2.3 Vertex Attribute Queries 392
10.2.4 Required State 393
10.3 Vertex Arrays e 393
10.3.1 Vertex Array Objects 393
10.3.2 Specifying Arrays for Generic Vertex Attributes 395
10.3.3 Specifying Arrays for Fixed-Function Attributes 402
10.3.4 Vertex Attribute Divisors 405
10.3.5 Transferring Array Elements 406
10.3.6 Primitive Restart, 406

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

CONTENTS vii

10.3.7 Robust Buffer Access. 408
10.3.8 Packed Vertex Data Formats 408
10.3.9 Vertex Arrays in Buffer Objects 409
10.3.10 Array Indices in Buffer Objects 410
10.3.11 Indirect Commands in Buffer Objects 410

10.4 Drawing Commands Using Vertex Arrays 411
10.4.1 Interleaved Arrays 423

10.5 Vertex Array and Vertex Array Object Queries 425
10.6 Required State 428
10.7 Drawing Commands Using Beginand End 429
10.7.1 Transferring Vertices With Vertex Commands 430
10.7.2 Transferring Vertices With Vertex Attribute Zero 431
10.7.3 Bundling Attributes With Vertex Commands 431
10.7.4 Transferring Vertices With ArrayElement 431
10.7.5 Commands Allowed Between Beginand End 433

10.8 Rectangles 434
10.9 Conditional Rendering 434
10.10Submission Queries 436
11 Programmable Vertex Processing 438
11.1 Vertex Shaders 438
11.1.1 Vertex Attributes 438
11.1.2 Vertex Shader Variables 444
11.1.3 Shader Execution 450
11.1.4 Vertex Shader Queries 464

11.2 Tessellation 464
11.2.1 Tessellation Control Shaders 465
11.2.2 Tessellation Primitive Generation 470
11.2.3 Tessellation Evaluation Shaders 479
11.2.4 Tessellation Shader Queries 484

11.3 Geometry Shaders 485
11.3.1 Geometry Shader Input Primitives 486
11.3.2 Geometry Shader Output Primitives 487
11.3.3 Geometry Shader Variables 488
11.3.4 Geometry Shader Execution Environment 488
11.3.5 Geometry Shader Queries 495

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

CONTENTS

12 Fixed-Function Vertex Processing

12.1 Fixed-Function Vertex Transformations
12.1.1 Matrices
12.1.2 Normal Transformation
12.1.3 Generating Texture Coordinates

12.2 Fixed-Function Vertex Lighting and Coloring
12.2.1 Lighting,
12.2.2 Lighting Parameter Specification.
12.2.3 ColorMaterial
12.2.4 Lighting Parameter Queries
12.2.5 Lighting State
12.2.6 Color Index Lighting

13 Fixed-Function Vertex Post-Processing

13.1 Clamping or Masking
13.2 Transform Feedback
13.2.1 Transform Feedback Objects
13.2.2 Transform Feedback Primitive Capture
13.2.3 Transform Feedback Draw Operations
13.3 Primitive Queries
13.4 Transform Feedback Overflow Queries
13.5 Flatshading
13.6 Primitive Clipping

14 Fixed-Function Primitive Assembly and Rasterization

14.1 Discarding Primitives Before Rasterization
14.2 Invariance
14.3 Antialiasing

14.3.1 Multisampling
14.4 Points

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

13.6.1 Color and Associated Data Clipping
13.6.2 Clip Plane Queries
13.6.3 Primitive Clipping Queries
13.7 Coordinate Transformations
13.7.1 Controlling the Viewport
13.8 Final Color Processing

14.4.1 Basic Point Rasterization
14.4.2 Point Rasterization State
14.4.3 Point Multisample Rasterization
14.5 Line Segments

viii

496
496
497
503
504
507
507
513
516
516
518
518

520
521
521
522
524
529
531
531
532
534
537
538
538
539
540
543

CONTENTS

14.5.1 Basic Line Segment Rasterization
14.5.2 Other Line Segment Features
14.5.3 Line Rasterization State
14.5.4 Line Multisample Rasterization
14.6 Polygons
14.6.1 Basic Polygon Rasterization
14.6.2 Stippling
14.6.3 Antialiasingo
14.6.4 Options Controlling Polygon Rasterization
14.6.5 Depth Offset
14.6.6 Polygon Multisample Rasterization
14.6.7 Polygon Rasterization State
14.7 Current Raster Position
14.8 Bitmaps e e
14.9 Early Per-Fragment Tests
14.9.1 Pixel OwnershipTest
149.2 Scissor Test
14.9.3 Multisample Fragment Operations
14.9.4 The Early Fragment Test Qualifier

15 Programmable Fragment Processing
15.1 Fragment Shader Variables
15.2 Shader Execution,
15.2.1 Texture ACCESS . . . « v v v v v v i e
1522 ShaderInputs
15.2.3 Shader Qutputs
15.2.4 Early FragmentTests
15.3 Fragment Shader Queries

16 Fixed-Function Fragment Processing
16.1 Texture Environments and Texture Functions
16.1.1 Texture Environment Queries
16.2 Texture Application L.
163 ColorSum
16.4 Fog e

17 Writing Fragments and Samples to the Framebuffer
17.1 Antialiasing Application
17.2 Multisample PointFade
17.3 Per-Fragment Operations

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

X

559
562
565
565
565
566
568
569
570
570
572
573
573
576
578
579
579
581
582

584
584
586
586
586
589
594
594

595
595
601
602
603
605

CONTENTS X

17.3.1 AlphaToCoverage 609
1732 AlphaTest 611
1733 Stencil Test 612
17.3.4 DepthBufferTest. 613
17.3.5 Occlusion Queries 614
17.3.6 Blending 615
17.3.7 sRGB Conversion 622
17.3.8 Dithering 623
17.3.9 Logical Operation 623
17.3.10 Additional Multisample Fragment Operations 625

17.4 Whole Framebuffer Operations 626
17.4.1 Selecting Buffers for Writing 626
17.4.2 Fine Control of Buffer Updates 631
17.4.3 Clearing the Buffers 633
17.4.4 Invalidating Framebuffer Contents 637
17.4.5 The Accumulation Buffer 638

18 Drawing, Reading, and Copying Pixels 641
18.1 Drawing Pixels 641
18.1.1 Final Conversion 642
18.1.2 Conversion to Fragments 643
18.1.3 Pixel Rectangle Multisample Rasterization 644
18.1.4 Writing to the Stencil or Depth/Stencil Buffers 644

18.2 Reading Pixels 645
18.2.1 Selecting Buffers for Reading 645
18.2.2 ReadPixels 647
18.2.3 Obtaining Pixels from the Framebuffer 649
18.2.4 Conversion of RGBA values 650
18.2.5 Conversion of Depth values 651
18.2.6 Pixel Transfer Operations 651
1827 ConversiontoL L. 651
18.2.8 Final Conversion 651
18.2.9 Placement in Pixel Pack Buffer or Client Memory 652

18.3 CopyingPixels, 654
18.3.1 Copying Pixel Rectangles 654
18.3.2 Blitting Pixel Rectangles 657
18.3.3 Copying Between Images 660

18.4 Pixel Draw and Read State 663

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

CONTENTS

19 Compute Shaders
19.1 Compute Shader Variables
19.2 Compute Shader Queries

20 Debug Output

20.1 Debug Messages
20.2 Debug Message Callback
20.3 Debug Message Log
20.4 Controlling Debug Messages
20.5 Externally Generated Messages
20.6 Debug Groups
20.7 Debug Labels
20.8 Asynchronous and Synchronous Debug Output

20.9 Debug Output Queries

21 Special Functions
21.1 Evaluators
21.1.1 Evaluator Queries
Selection
Feedback
Display Lists
21.4.1 Commands Not Usable In Display Lists
Hints

Saving and Restoring State

21.2
21.3
21.4

21.5
21.6

22 Context State Queries
22.1 Simple Queries
22.2 Pointer, String, and Related Context Queries
22.3 Internal Format Queries
22.3.1 Supported Operation Queries

22.3.2 Other Internal Format Queries
Transform Feedback State Queries

Indexed Binding State Queries

22.4
22.5

23 State Tables

Invariance

A.l1 Repeatability
A.2 Multi-pass Algorithms
A.3 Invariance Rules

OpenGL 4.6 (Compatibility Profile) - July 30,

X1

664
666
606

667
668
670
671
671
673
673
675
676
677

680
680
687
688
691
693
697
699
700

704
704
706
709
711
714
720
721

723

2017

CONTENTS xii

A.4 Tessellation Invariance 816
A.5 Atomic Counter Invariance 818
A.6 WhatAllThisMeans 818

B Corollaries 820
C The OpenGL SPIR-V Execution Environment 823
C.1 Required Versions and Formats 823
C.2 Valid SPIR-V Built-In Variable Decorations 823
C.3 Valid SPIR-V Capabilities 823
C4 ValidationRules L 824
C.5 Precision and Operation of SPIR-V Instructions 825
C.6 Precision of GLSL.std.450 Instructions 826

D Compressed Texture Image Formats 830
D.1 RGTC Compressed Texture Image Formats 830
D.2 BPTC Compressed Texture Image Formats 831
D.3 ETC Compressed Texture Image Formats 831

E Profiles and the Deprecation Model 833
E.1 Core and Compatibility Profiles 834
E.2 Deprecated and Removed Features 834
E.2.1 Deprecated But Still Supported Features 834

E.2.2 Removed Features 835

F Version 4.2 840
F1 NewPFeatures 840

FE2 Deprecation Model 841

F3 ChangedTokens. 841

F4 Change Log for Released Specifications 842

E5 Credits and Acknowledgements 844

G Version 4.3 847
G.1 Restructuring 847
G2 NewPFeatures 848
G.3 DeprecationModel 849
G4 Changed Tokens 849
G.5 Change Log for Released Specifications 850
G6 Credits. 857
G.7 Acknowledgements 859

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

CONTENTS

H Version 4.4

H.1
H.2
H.3
HA4
H.5

New Features
DeprecationModel
Change Log for Released Specifications
Credits
Acknowledgementso

I Version 4.5

I.1
1.2
1.3
1.4
L5

New Features
DeprecationModel
Change Log for Released Specifications
Credits o e
Acknowledgements Lo

J Version 4.6

J.1
J2
J.3
J4
J.5

New Features,
DeprecationModel oo
Change Log for Released Specifications
Credits
Acknowledgements L

K OpenGL Registry, Header Files, and ARB Extensions

K.1
K.2
K.3

Index

OpenGL Registry
HeaderFiles
ARB and Khronos Extensions
K.3.1 Naming Conventions
K.3.2 Promoting Extensions to Core Features
K.3.3 Extension Summaries

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

xiii

860
860
861
861
872
873

875
875
876
876
888
890

891
891
892
892
894
895

896
896
896
897
898
898
898

930

List of Figures

3.1

8.1
8.2
8.3
8.4

10.1
10.2

10.3
10.4
10.5
10.6
10.7
10.8

11.1
11.2
11.3
11.4

12.1
12.2
12.3
12.4

14.1
14.2
14.3

Block diagram of the GL pipeline. 35
Transfer of pixel rectangles. 211
Selecting a subimage fromanimage 216
A texture image and the coordinates used to accessit. 249
Example of the components returned for textureGather. 296
Vertex processing and primitive assembly. 374
Creation of a processed vertex from a transformed vertex and cur-

rentvalues. 376
Primitive assembly and processing. 376
Triangle strips, fans, and independent triangles. 380
Quadrilateral strips and independent quadrilaterals. 381
Lines with adjacency. 382
Triangles with adjacency. 383
Triangle strips with adjacency. 384
Domain parameterization for tessellation. 471
Inner triangle tessellation. 475
Inner quad tessellation. 477
Isoline tessellation. 479
Vertex transformation sequence. 496
Processing of RGBA colors. 507
Processing of colorindices. 507
ColorMaterial operation. 516
Rasterization. 545
Rasterization of non-antialiased wide points. 555
Rasterization of antialiased wide points. 555

X1V

LIST OF FIGURES XV

14.4
14.5
14.6
14.7
14.8

16.1

17.1

18.1
18.2

21.1
21.2

Visualization of Bresenham’s algorithm. 560
Rasterization of non-antialiased wide lines. 563
The region used in rasterizing an antialiased line segment. 564
Current raster position. 574
A bitmap and its associated parameters. 577
Multitexture pipeline., 603
Per-fragment operations. 609
Operation of ReadPixels. 645
Operation of CopyPixels. 655
Map Evaluation. 682
Feedback syntax., 694

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

List of Tables

1.1

2.1
2.2
23

4.1

6.1
6.2
6.3
6.4

6.5

7.1
7.2
7.3
7.4
7.5
7.6
7.7

7.8

7.9
7.10

8.1
8.2

OpenGL ES to OpenGL version relationship.

GL command suffixes
GL datatypes
Summary of GL errors

Initial properties of a sync object created with FenceSync.

Buffer object binding targets.
Buffer object parameters and their values.
Buffer objectstate.
Buffer object state set by MapBufferRange and MapNamedBuf-
ferRange.
Indexed buffer object limits and binding queries

CreateShader type values and the corresponding shader stages.
GetProgramResourceiv properties and supported interfaces . . .
OpenGL Shading Language type tokens
Query targets for default uniform block storage, in components.
Query targets for combined uniform block storage, in components.
GetProgramResourceiv properties used by GetActiveUniformsiv.
GetProgramResourceiv properties used by GetActiveUniform-
Blockiv.
GetProgramResourceiv properties used by GetActiveAtomic-
CounterBufferiv. 0 0oL,
Interfaces for active subroutines
Interfaces for active subroutine uniforms

PixelStore* parameters.
PixelTransfer parameters.

XVvi

88
111
118
132
132
135

LIST OF TABLES

8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

8.12
8.13
8.14
8.15
8.16
8.17
8.18

8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28
8.29
8.30
8.31
8.32
8.33

8.34

8.35

9.1

PixelMap parameters.
Color table names.
Pixel data formats accepted for the imaging queries.
Pixel data types accepted for the imaging queries.
Pixeldatatypes.
Pixel data formats. Lo
Swap Bytes bitordering.
Packed pixel formats. Lo Lo
UNSIGNED_BYTE formats. Bit numbers are indicated for each
COMPONENL. . . . v v v e v e e e e e e e e e e e e
UNSIGNED_SHORT formats
UNSIGNED_INT formats
FLOAT UNSIGNED_INTformats
Packed pixel field assignments.
Color table lookup.
Computation of filtered color components.
Conversion from RGBA, depth, and stencil pixel components to
internal components.
Sized internal color formats. L.
Sized internal luminance and intensity formats.
Sized internal depth and stencil formats.
Generic and specific compressed internal formats.
Valid texture farget parameters
Internal formats for buffer textures
Texture parameters and their values.
Texture return values.
Selection of cube map images.
Texel location wrap mode application.
Legal texture targets for TextureView.
Compatible internal formats for TextureView
Depth texture comparison functions.
sRGB texture internal formats. L.
Mapping of image load, store, and atomic texel coordinate compo-
nents totexel numbers.
Supported image unit formats, with equivalent format layout
qualifiers.
Texel sizes, compatibility classes, and pixel format/type combina-
tions for each image format.

Buffer selection for default framebuffer attachment queries

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

LIST OF TABLES

9.2
9.3

10.1
10.2

10.3
10.4
10.5
10.6

10.7
10.8

11.1
11.2

11.3

12.1
12.2

13.1
13.2

16.1

16.2
16.3
16.4
16.5
16.6

17.1
17.2
17.3
17.4
17.5
17.6

18.1

Framebuffer attachment points.
Layer numbers for cube map texture faces.

Triangles generated by triangle strips with adjacency.
Vertex array sizes (values per vertex) and data types for generic
vertex attributeso Lo
Fixed-function vertex array sizes and data types
Packed component layout for non-BGRA formats.
Packed component layout for BGRA format.
Packed component layout for UNSIGNED_INT_ 10F_11F_11F -
REVformat.
Indirect commands and corresponding indirect buffer targets. . . .
Variables that direct the execution of InterleavedArrays.

Generic attribute components accessed by attribute variables. . . .
Generic attributes and vector types used by column vectors of ma-
trix variables bound to generic attribute index
Scalar and vector vertex attribute types

Summary of lighting parameters.
Correspondence of lighting parameter symbols to names.

Transform feedbackmodes
Provoking vertex selection.

Correspondence of filtered texture components to texture base
COMPONENES. .+ . v v v v o e e e e e e e e e e e e e e e e
Texture functions REPLACE, MODULATE, and DECAL
Texture functions BLEND and ADD.
COMBINE texture functions.
Arguments for COMBINE_RGB functions.
Arguments for COMBINE_ALPHA functions.

RGB and alpha blend equations.
Blending functions.
Logical operations
Buffer selection for the default framebuffer
Buffer selection for a framebuffer object
DrawBuffers buffer selection for the default framebuffer

PixelStore parameters.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

385

648

LIST OF TABLES Xix

18.2 ReadPixels GL data types and reversed component conversion for-

mulas. 653
18.3 ReadPixelsindexmasks. 654
18.4 Effective ReadPixels format for DEPTH_STENCIL CopyPixels

OPeration. v v i e e e e e 657
18.5 Compatible internal formats for copying 663
20.1 Sources of debug output messages 668
20.2 Types of debug output messages 669
20.3 Severity levels of messages L. 669
20.4 Object namespace identifiers 675
21.1 Values specified by the targetrtoMapl. 681
21.2 Correspondence of feedback type to number of values per vertex. . 692
21.3 Hint targets and descriptions 700
21.4 Attribute groupso e e e e e e e 702
22.1 Contextprofilebits 708
22.2 Internal formattargets 710
23.1 State Variable Types 725
23.2 GL Internal State (inaccessible) 726
23.3 Current Values and Associated Data 727
23.4 Vertex Array Object State 728
23.5 Vertex Array Object State (cont.) 729
23.6 Vertex Array Object State (cont.) 730
23.7 Vertex Array Object State (cont.) 731
23.8 Vertex Array Data (not in Vertex Array objects) 732
23.9 Buffer ObjectState 733
23.10Transformation state 734
23.11Coloring 735
23.12Lighting 736
23.13Lighting (cont.) 737
23.14Rasterizationo e e e 738
23.15Rasterization (cont.) 739
23.16Multisampling 740
23.17Textures (state per texture unit) 741
23.18Textures (state per texture unit (cont.) 742
23.19Textures (state per texture object) 743
23.20Textures (state per texture object) (cont.) 744
23.21Textures (state per texture image) 745

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

LIST OF TABLES XX

23.22Textures (state per texture image) (cont.) 746
23.23Textures (state per sampler object) 747
23.24Texture Environment and Generation 748
23.25Texture Environment and Generation (cont.) 749
23.26Pixel Operations 750
23.27Pixel Operations (cont.) oo 751
23.28Framebuffer Control L. 752
23.29Framebuffer (state per target binding point) 753
23.30Framebuffer (state per framebuffer object) 754
23.31Framebuffer (state per attachment point) 755
23.32Renderbuffer (state per target and binding point) 756
23.33Renderbuffer (state per renderbuffer object) 757
23.34Pixels 758
23.35Pixels (cont.) 759
2336Pixels (cont.) 760
2337Pixels (cont.) 761
2338Pixels (cont.) 762
23.39Pixels (cont.) 763
2340Evaluators 764
23.41Shader Object State, 765
23.42Program Pipeline Object State 766
23.43Program Object State 767
23.44Program Object State (cont.) 768
23.45Program Object State (cont.) 769
23.46Program Object State (cont.) 770
23.47Program Object State (cont.) 771
23.48Program Object State (cont.) 772
23.49Program Object State (cont.) 773
23.50Program Object State (cont.) 774
23.51Program Interface State 775
23.52Program Object Resource State 776
23.53Program Object Resource State (cont.) 777
23.54Vertex and Geometry Shader State 778
23.55Query Object State 779
23.56Image State (state per image unit) 780
23.57 Atomic Counter Buffer Binding State 781
23.58Shader Storage Buffer Binding State 782
23.59Transform Feedback State 783
23.60Uniform Buffer Binding State 784
23.61Sync Object State 785

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

LIST OF TABLES XXi

23.62Hints 786
23.63Compute Dispatch State 787
23.64Implementation Dependent Values 788
23.65Implementation Dependent Values (cont.) 789
23.66Implementation Dependent Values (cont.) 790
23.67Implementation Dependent Values (cont.) 791
23.68Implementation Dependent Version and Extension Support 792
23.69Implementation Dependent Vertex Shader Limits 793
23.70Implementation Dependent Tessellation Shader Limits 794
23.71Implementation Dependent Tessellation Shader Limits (cont.) . . 795
23.72Implementation Dependent Geometry Shader Limits 796
23.73Implementation Dependent Fragment Shader Limits 797
23.74Implementation Dependent Compute Shader Limits 798
23.75Implementation Dependent Aggregate Shader Limits 799
23.76Implementation Dependent Aggregate Shader Limits (cont.) . . . 800
23.77Implementation Dependent Aggregate Shader Limits (cont.) . . . 801
23.78Implementation Dependent Aggregate Shader Limits (cont.) . . . 802
23.79Debug Output State 803
23.80Implementation Dependent Debug Output State 804
23.81Implementation Dependent Values (cont.)
1 These queries return the maximum no. of samples for all internal

formats required to support multisampled rendering. 805
23.82Implementation Dependent Values (cont.) 806
23.83Internal Format Dependent Values 807
23.84Implementation Dependent Transform Feedback Limits 808
23.85Framebuffer Dependent Values 809
23.86Framebuffer Dependent Values (cont.) 810
23.87Miscellaneous oL 811
C.1 Built-in Variable Decorations 827
C.2 Valid SPIR-V Capabilities 828
C3 32-BitPrecision 829
C4 GLSL.std450Precision L. 829
D.1 Mapping of OpenGL RGTC formats to descriptions. 831
D.2 Mapping of OpenGL BPTC formats to descriptions. 831
D.3 Mapping of OpenGL ETC formats to descriptions. 832
F1 Newtokennames 842
G.1 Newtokennames 850

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

Chapter 1

Introduction

This document, referred to as the “OpenGL Specification” or just “Specification”
hereafter, describes the OpenGL graphics system: what it is, how it acts, and what
is required to implement it. We assume that the reader has at least a rudimentary
understanding of computer graphics. This means familiarity with the essentials
of computer graphics algorithms and terminology as well as with modern GPUs
(Graphic Processing Units).

The canonical version of the Specification is available in the official OpenGL
Registry, located at URL

http://www.opengl.org/registry/

1.1 Formatting of the OpenGL Specification

Starting with version 4.3, the OpenGL Specification has undergone major restruc-
turing to focus on programmable shading, and to describe important concepts and
objects in the context of the entire API before describing details of their use in the
graphics pipeline.

1.1.1 Formatting of the Compatibility Profile

E

1.1.2 Formatting of Optional Features

8.4.2

http://www.opengl.org/registry/

1.2. WHAT IS THE OPENGL GRAPHICS SYSTEM? 2

8.4.2

1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is an API (Application Programming Inter-
face) to graphics hardware. The API consists of a set of several hundred procedures
and functions that allow a programmer to specify the shader programs, objects, and
operations involved in producing high-quality graphical images, specifically color
images of three-dimensional objects.

Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls control drawing geometric objects such as points, lines, and
polygons, but the way that some of this drawing occurs (such as when antialiasing
or multisampling is in use) relies on the existence of a framebuffer and its proper-
ties. Some commands explicitly manage the framebuffer.

1.2.1 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
shader programs or shaders, data used by shaders, and state controlling aspects of
OpenGL outside the scope of shaders. Typically the data represent geometry in two
or three dimensions and texture images, while the shaders control the geometric
processing, rasterization of geometry and the lighting and shading of fragments
generated by rasterization, resulting in rendering geometry into the framebuffer.

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
an OpenGL context and associate it with the window. Once a context is allocated,
OpenGL commands to define shaders, geometry, and textures are made, followed
by commands which draw geometry by transferring specified portions of the geom-
etry to the shaders. Drawing commands specify simple geometric objects such as
points, line segments, and polygons, which can be further manipulated by shaders.
There are also commands which directly control the framebuffer by reading and
writing pixels.

1.2.2 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that control the operation of
the GPU. Modern GPUs accelerate almost all OpenGL operations, storing data
and framebuffer images in GPU memory and executing shaders in dedicated GPU

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

1.2. WHAT IS THE OPENGL GRAPHICS SYSTEM? 3

processors. However, OpenGL may be implemented on less capable GPUs, or even
without a GPU, by moving some or all operations into the host CPU.

The implementor’s task is to provide a software library on the CPU which
implements the OpenGL API, while dividing the work for each OpenGL command
between the CPU and the graphics hardware as appropriate for the capabilities of
the GPU.

OpenGL contains a considerable amount of information including many types
of objects representing programmable shaders and the data they consume and
generate, as well as other context state controlling non-programmable aspects of
OpenGL. Most of these objects and state are available to the programmer, who can
set, manipulate, and query their values through OpenGL commands. Some of it,
however, is derived state visible only by the effect it has on how OpenGL oper-
ates. One of the main goals of this Specification is to describe OpenGL objects
and context state explicitly, to elucidate how they change in response to OpenGL
commands, and to indicate what their effects are.

1.2.3 Our View

We view OpenGL as a pipeline having some programmable stages and some state-
driven fixed-function stages that are invoked by a set of specific drawing opera-
tions. This model should engender a specification that satisfies the needs of both
programmers and implementors. It does not, however, necessarily provide a model
for implementation. An implementation must produce results conforming to those
produced by the specified methods, but there may be ways to carry out a particular
computation that are more efficient than the one specified.

1.2.4 Fixed-function Hardware and the Compatibility Profile

Older generations of graphics hardware were not programmable using shaders,
although they were configurable by setting state controlling specific details of their
operation. The compatibility profile of OpenGL continues to support the legacy
OpenGL commands developed for such fixed-function hardware, although they
are typically implemented by writing shaders which reproduce the operation of
such hardware. Fixed-function OpenGL commands and operations are described
as alternative interfaces following descriptions of the corresponding shader stages.

1.2.5 The Deprecation Model

Features marked as deprecated in one version of the Specification are expected to
be removed in a future version, allowing applications time to transition away from

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

1.3. RELATED APIS 4

use of deprecated features. The deprecation model is described in more detail,
together with a summary of the commands and state deprecated from this version
of the API, in appendix E.

1.3 Related APIs

Other APIs and related specifications related to OpenGL are described below.
Most of the specifications for these APIs are available on the Khronos Group web-
sites, although some vendor-specific APIs are documented on that vendor’s devel-
oper website.

1.3.1 OpenGL Shading Language

The OpenGL Specification should be read together with a companion document
titled The OpenGL Shading Language. The latter document (referred to as the
OpenGL Shading Language Specification hereafter) defines the syntax and seman-
tics of the programming language used to write shaders (see chapter 7). Descrip-
tions of shaders later in this document may include references to concepts and
terms (such as shading language variable types) defined in the OpenGL Shading
Language Specification.

OpenGL 4.6 implementations are guaranteed to support version 4.60 of the
OpenGL Shading Language. All references to sections of that specification refer to
that version. The latest supported version of the shading language may be queried
as described in section 22.2.

profile of OpenGL 4.6 is also guaranteed to support all pre-
vious versions of the OpenGL Shading Language back to version The
#version strings for all supported versions of the OpenGL Shading Language
may be queried as described in section 22.2.

The OpenGL Shading Language Specification is available in the OpenGL Reg-
istry.

1.3.2 OpenGL ES

OpenGL ES is a royalty-free, cross-platform API for full-function 2D and 3D
graphics on embedded systems such as mobile phones, game consoles, and ve-
hicles. It consists of well-defined subsets of OpenGL. Each version of OpenGL ES
implements a subset of a corresponding OpenGL version as shown in table 1.1.

OpenGL ES versions also include some additional functionality taken from
later OpenGL versions or specific to OpenGL ES. It is straightforward to port code
written for OpenGL ES to corresponding versions of OpenGL.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

1.3. RELATED APIS 5

OpenGL ES Version | OpenGL Version it subsets

OpenGL ES 1.1 OpenGL 1.5
OpenGL ES 2.0 OpenGL 2.0
OpenGL ES 3.0 OpenGL 3.3
OpenGL ES 3.1 OpenGL 4.3

Table 1.1: OpenGL ES to OpenGL version relationship.

OpenGL and OpenGL ES are developed in parallel within the Khronos Group,
which controls both standards.

OpenGL 4.3 and 4.5 include additional functionality initially defined in
OpenGL ES 3.0 and OpenGL ES 3.1, respectively, for increased compatibility be-
tween OpenGL and OpenGL ES implementations.

The OpenGL ES Specifications are available in the Khronos API Registry at
URL

http://www.khronos.org/registry/

1.3.3 OpenGL ES Shading Language

The Specification should also be read together with companion documents titled
The OpenGL ES Shading Language. Versions 1.00, 3.00, and 3.10 should be read.
These documents define versions of the OpenGL Shading Language designed for
implementations of OpenGL ES 2.0, 3.0, and 3.1 respectively, but also supported
by OpenGL implementations. References to the OpenGL Shading Language Spec-
ification hereafter include both OpenGL and OpenGL ES versions of the Shading
Language; references to specific sections are to those sections in version 4.60 of
the OpenGL Shading Language Specification.

OpenGL 4.6 implementations are guaranteed to support versions 1.00, 3.00,
and 3.10 of the OpenGL ES Shading Language.

The #version strings for all supported versions of the OpenGL Shading Lan-
guage may be queried as described in section 22.2.

The OpenGL ES Shading Language Specifications are available in the Khronos
API Registry.

1.3.4 SPIR-V

SPIR-V is a binary intermediate language for representing graphical-shader stages
and compute kernels for multiple Khronos APIs, such as OpenCL, OpenGL, and
Vulkan.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

http://www.khronos.org/registry/

1.3. RELATED APIS 6

The SPIR-V Specification, and the related SPIR-V Extended Instructions for
the OpenGL Shading Language Specification, are available in the Khronos API
Registry.

1.3.5 WebGL

WebGL is a cross-platform, royalty-free web standard for a low-level 3D graphics
API based on OpenGL ES. Developers familiar with OpenGL ES will recognize
WebGL as a shader-based API using the OpenGL Shading Language, with con-
structs that are semantically similar to those of the underlying OpenGL ES API. It
stays very close to the OpenGL ES specification, with some concessions made for
what developers expect out of memory-managed languages such as JavaScript.

The WebGL Specification and related documentation are available in the
Khronos API Registry.

1.3.6 Window System Bindings

OpenGL requires a companion API to create and manage graphics contexts, win-
dows to render into, and other resources beyond the scope of this Specification.
There are several such APIs supporting different operating and window systems.

1.3.6.1 GLX - X Window System Bindings

OpenGL Graphics with the X Window System, referred to as the GLX Specification
hereafter, describes the GLX API for use of OpenGL in the X Window System. It is
primarily directed at Linux and Unix systems, but GLX implementations also exist
for Microsoft Windows, MacOS X, and some other platforms where X is available.
The GLX Specification is available in the OpenGL Registry.

1.3.6.2 WGL - Microsoft Windows Bindings
The WGL API supports use of OpenGL with Microsoft Windows. WGL is docu-
mented in Microsoft’s MSDN system, although no full specification exists.

1.3.6.3 MacOS X Window System Bindings

Several APIs exist supporting use of OpenGL with Quartz, the MacOS X window
system, including CGL, AGL, and NSOpenGLView. These APIs are documented
on Apple’s developer website.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

1.4. FILING BUG REPORTS 7

1.3.6.4 EGL - Mobile and Embedded Device Bindings

The Khronos Native Platform Graphics Interface or “EGL Specification” describes
the EGL API for use of OpenGL ES on mobile and embedded devices. EGL im-
plementations supporting OpenGL may be available on some desktop platforms as
well. The EGL Specification is available in the Khronos API Registry.

1.3.7 OpenCL

OpenCL is an open, royalty-free standard for cross-platform, general-purpose par-
allel programming of processors found in personal computers, servers, and mobile
devices, including GPUs. OpenCL defines interop methods to share OpenCL mem-
ory and image objects with corresponding OpenGL buffer and texture objects, and
to coordinate control of and transfer of data between OpenCL and OpenGL. This
allows applications to split processing of data between OpenCL and OpenGL; for
example, by using OpenCL to implement a physics model and then rendering and
interacting with the resulting dynamic geometry using OpenGL.
The OpenCL Specification is available in the Khronos API Registry.

1.4 Filing Bug Reports

Bug reports on the OpenGL API Specification should be filed in the Khronos
OpenGL-API Github repository, located at URL
https://github.com/KhronosGroup/OpenGL-API

Bug reports on the OpenGL Shading Language Specification should be filed in
the Khronos OpenGL-GLSL Github repository, located at URL
https://github.com/KhronosGroup/OpenGL-GLSL

It is best to file bugs against the most recently released versions, since older
versions are usually not updated for bugfixes.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

https://github.com/KhronosGroup/OpenGL-API
https://github.com/KhronosGroup/OpenGL-GLSL

Chapter 2

OpenGL Fundamentals

This chapter introduces fundamental concepts including the OpenGL execution
model, API syntax, contexts and threads, numeric representation, context state and
state queries, and the different types of objects and shaders. It provides a frame-
work for interpreting more specific descriptions of commands and behavior in the
remainder of the Specification.

2.1 Execution Model

OpenGL (henceforth, “the GL”) is concerned only with processing data in GPU
memory, including rendering into a framebuffer and reading values stored in that
framebuffer. There is no support for other input or output devices. Programmers
must rely on other mechanisms to obtain user input.

The GL draws primitives processed by a variety of shader programs and fixed-
function processing units controlled by context state. Each primitive is a point,
line segment, patch, or polygon. Context state may be changed
independently; the setting of one piece of state does not affect the settings of others
(although state and shader all interact to determine what eventually ends up in the
framebuffer). State is set, primitives drawn, and other GL operations described by
sending commands in the form of function or procedure calls.

Primitives are defined by a group of one or more vertices. A vertex defines
a point, an endpoint of a line segment, or a corner of a polygon where two edges
meet. Data such as positional coordinates, colors, normals, texture coordinates, etc.
are associated with a vertex and each vertex is processed independently, in order,
and in the same way. The only exception to this rule is if the group of vertices
must be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping

2.1. EXECUTION MODEL 9

depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all
previously invoked GL commands, except where explicitly specified otherwise. In
general, the effects of a GL command on either GL state or the framebuffer must
be complete before any subsequent command can have any such effects.

Data binding occurs on call. This means that data passed to a GL command
are interpreted when that command is received. Even if the command requires a
pointer to data, those data are interpreted when the call is made, and any subsequent
changes to the data have no effect on the GL (unless the same pointer is used in a
subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of parameters of application-defined shader
programs performing transformation, lighting, texturing, and shading operations,
as well as built-in functionality such as antialiasing and texture filtering. It does not
provide a means for describing or modeling complex geometric objects, although
shaders can be written to generate such objects. In other words, OpenGL provides
mechanisms to describe how complex geometric objects are to be rendered, rather
than mechanisms to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer or in the same address space as the client. In this sense, the GL is net-
work transparent. A server may maintain a number of GL contexts, each of which
is an encapsulation of current GL state and objects. A client may choose to be
made current to any one of these contexts.

Issuing GL commands when a program is not current to a context results in
undefined behavior.

There are two classes of framebuffers: a window system-provided framebuffer
associated with a context when the context is made current, and application-created
framebuffers. The window system-provided framebuffer is referred to as the de-
fault framebuffer. Application-created framebuffers, referred to as framebuffer ob-
Jjects, may be created as desired, A context may be associated with two frame-
buffers, one for each of reading and drawing operations. The default framebuffer
and framebuffer objects are distinguished primarily by the interfaces for configur-
ing and managing their state.

The effects of GL commands on the default framebuffer are ultimately con-

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.2. COMMAND SYNTAX 10

trolled by the window system, which allocates framebuffer resources, determines
which portions of the default framebuffer the GL may access at any given time, and
communicates to the GL how those portions are structured. Therefore, there are
no GL commands to initialize a GL context or configure the default framebuffer.
Similarly, display of framebuffer contents on a physical display device (including
the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by the GL.

Allocation and configuration of the default framebuffer occurs outside of the
GL in conjunction with the window system, using companion APIs described in
section 1.3.6.

Allocation and initialization of GL contexts is also done using these companion
APIs. GL contexts can be associated with different default framebuffers, and some
context state is determined at the time this association is performed.

It is possible to use a GL context without a default framebuffer, in which case
a framebuffer object must be used to perform all rendering. This is useful for
applications needing to perform offscreen rendering.

OpenGL is designed to be run on a range of platforms with varying capabilities,
memory, and performance. To accommodate this variety, we specify ideal behavior
instead of actual behavior for certain GL operations. In cases where deviation from
the ideal is allowed, we also specify the rules that an implementation must obey
if it is to approximate the ideal behavior usefully. This allowed variation in GL
behavior implies that two distinct GL implementations may not agree pixel for
pixel when presented with the same input, even when run on identical framebuffer
configurations.

Finally, command names, constants, and types are prefixed in the C language
binding to OpenGL (by gl, GL_, and GL, respectively), to reduce name clashes with
other packages. The prefixes are omitted in this document for clarity.

2.2 Command Syntax

The Specification describes OpenGL commands as functions or procedures using
ANSI C syntax. Languages such as C++ and Javascript which allow passing
of argument type information permit language bindings with simpler declarations
and fewer entry points.

Various groups of GL commands perform the same operation but differ in how
arguments are supplied to them. To conveniently accommodate this variation, we
adopt a notation for describing commands and their arguments.

GL commands are formed from a name which may be followed, depending on
the particular command, by a sequence of characters describing a parameter to the

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.2. COMMAND SYNTAX 11

command. If present, a digit indicates the required length (number of values) of the
indicated type. Next, a string of characters making up one of the type descriptors
from table 2.1 indicates the specific size and data type of parameter values. A
final v character, if present, indicates that the command takes a pointer to an array
(a vector) of values rather than a series of individual arguments. Two specific
examples are:

void Uniformdf(int location, float v0, float vl,
float v2, float v3);

and
void GetFloatv(enum pname, float *data);
In general, a command declaration has the form

rtype Name{e1234}{c b s ii64 f d ub us ui ui64}{ev}
([args,] Targl, ..., TargN [, args]) ;

rtype is the return type of the function. The braces ({}) enclose a series of type
descriptors (see table 2.1), of which one is selected. e indicates no type descriptor.
The arguments enclosed in brackets ([args ,] and [, args]) may or may not be
present. The N arguments argl through argN have type T, which corresponds to
one of the type descriptors indicated in table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then V is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only arg/ is present and it is an array of N values of
the indicated type.
For example,

void Uniform{1234}{if}(int location, T value);
indicates the eight declarations

void Uniformli(int location, int value);

void Uniformlf(int location, f£loat value);

void Uniform2i(int location, int v0, int vl);

void Uniform2f(int location, float v0, float vl);

void Uniform3i(int location, int v0, int vI, int v2);

void Uniform3f(int location, £loat v0, float vl,
float v3);

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.2. COMMAND SYNTAX 12

Type Descriptor | Corresponding GL Type

b byte

S short
i int

i64 int64
f float
d double
ub ubyte
us ushort
ui uint
ui64 uint64

Table 2.1: Correspondence of command suffix type descriptors to GL argument
types. Refer to table 2.2 for definitions of the GL types.

void Uniformdi(int location, int v0, int vI, int v2,
int v3);

void Uniformdf(int location, float v0, float vl,
float v2, float v3);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of the GL data types summarized in table 2.2, or pointers to one of these
types. Since many GL operations represent bitfields within these types, transfer
blocks of data in these types to graphics hardware which uses the same data types,
or otherwise requires these sizes, it is not possible to implement the GL API on an
architecture which cannot satisfy the exact bit width requirements in table 2.2.

The types clampf and clampd are no longer used, replaced by float
and double respectively together with specification language requiring param-
eter clamping'.

2.2.1 Data Conversion For State-Setting Commands

Many GL commands specify a value or values to which GL state of a specific type
(boolean, enum, integer, or floating-point) is to be set. When multiple versions of
such a command exist, using the type descriptor syntax described above, any such
version may be used to set the state value. When state values are specified using

! These changes are backwards-compatible at the compilation and linking levels, and are being
propagated to man pages and header files as well.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.2. COMMAND SYNTAX 13

GL Type Description
Bit Width

boolean 8 Boolean

byte 8 Signed two’s complement binary inte-
ger

ubyte 8 Unsigned binary integer

char 8 Characters making up strings

short 16 Signed two’s complement binary inte-
ger

ushort 16 Unsigned binary integer

int 32 Signed two’s complement binary inte-
ger

uint 32 Unsigned binary integer

fixed 32 Signed two’s complement 16.16
scaled integer

int64 64 Signed two’s complement binary inte-
ger

uint64 64 Unsigned binary integer

sizei 32 Non-negative binary integer size

enum 32 Enumerated binary integer value

intptr ptrbits Signed twos complement binary inte-
ger

sizeiptr | ptrbits Non-negative binary integer size

sync ptrbits Sync object handle (see section 4.1)

bitfield 32 Bit field

half 16 Half-precision floating-point value
encoded in an unsigned scalar

float 32 Floating-point value

clampf 32 Floating-point value clamped to [0, 1]

double 64 Floating-point value

clampd 64 Floating-point value clamped to [0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation must use exactly the number of
bits indicated in the table to represent a GL type.

ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr, sizeiptr, and sync must be large enough to store any CPU ad-
dress. sync is defined as an anonymous struct pointer in the C language bindings
while intptr and sizeiptr are defined as integer types large enough to hold

a pointer.
OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.2. COMMAND SYNTAX 14

a different parameter type than the actual type of that state, data conversions are
performed as follows:

e When the type of internal state is boolean, zero integer or floating-point val-
ues are converted to FALSE and non-zero values are converted to TRUE.

e When the type of internal state is integer or enum, boolean values of FALSE
and TRUE are converted to 0 and 1, respectively. Floating-point values are
rounded to the nearest integer. If the resulting value is so large in magnitude
that it cannot be represented by the internal state variable, the internal state
value is undefined.

e When the type of internal state is floating-point, boolean values of FALSE
and TRUE are converted to 0.0 and 1.0, respectively. Integer values are con-
verted to floating-point, with or without normalization as described for spe-
cific commands.

For commands taking arrays of the specified type, these conversions are per-
formed for each element of the passed array.

Each command following these conversion rules refers back to this section.
Some commands have additional conversion rules specific to certain state values
and data types, which are described following the reference.

Validation of values performed by state-setting commands is performed after
conversion, unless specified otherwise for a specific command.

2.2.2 Data Conversions For State Query Commands

Query commands (commands whose name begins with Get) return a value or val-
ues to which GL state has been set. Some of these commands exist in multiple
versions returning different data types. When a query command is issued that re-
turns data types different from the actual type of that state, data conversions are
performed as follows. If more than one step is applicable, all relevant steps are
applied in the following order:

e If a command returning boolean data is called, such as GetBooleanv, a
floating-point or integer value converts to FALSE if and only if it is zero.
Otherwise it converts to TRUE.

e If a command returning unsigned integer data is called, such as GetSam-
plerParameterluiv, negative values are clamped to zero.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.3. COMMAND EXECUTION 15

e If a command returning signed or unsigned integer data is called, such as
GetIntegerv or GetInteger64v, a boolean value of TRUE or FALSE is inter-
preted as one or zero, respectively. A floating-point value is rounded to the
nearest integer, unless the value is an RGBA color component,

a DepthRange value, or a depth buffer clear value. In these cases,
the query command converts the floating-point value to an integer according
to the INT entry of table 18.2; a value not in [—1, 1] converts to an undefined
value.

e If a command returning floating-point data is called, such as GetFloatv or
GetDoublev, a boolean value of TRUE or FALSE is interpreted as 1.0 or
0.0, respectively. An integer value is coerced to floating-point. Single- and
double-precision floating-point values are converted as necessary.

Following these steps, if a value is so large in magnitude that it cannot be
represented by the returned data type, then the nearest value representable using
that type is returned.

When querying bitmasks (such as SAMPLE_MASK_VALUE or STENCIL_-
WRITEMASK) with GetIntegerv, the mask value is treated as a signed integer, so
that mask values with the high bit set will not be clamped when returned as signed
integers.

Unless otherwise indicated, multi-valued state variables return their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the two DepthRange parameters are returned in the order n
followed by f.

682

2.3 Command Execution

Most of the Specification discusses the behavior of a single context bound to a
single CPU thread. It is also possible for multiple contexts to share GL objects
and for each such context to be bound to a different thread. This section introduces
concepts related to GL command execution including error reporting, command
queue flushing, and synchronization between command streams. Using these tools
can increase performance and utilization of the GPU by separating loosely related
tasks into different contexts.

Methods to create, manage, and destroy CPU threads are defined by the host
CPU operating system and are not described in the Specification. Binding of GL

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.3. COMMAND EXECUTION 16

contexts to CPU threads is controlled through a window system binding layer such
as those described in section 1.3.6.

2.3.1 Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO_ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO_ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO_ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set, results
of GL operation are undefined only if an OUT_OF_MEMORY error has occurred. In
other cases, there are no side effects unless otherwise noted; the command which
generates the error is ignored so that it has no effect on GL state or framebuffer
contents. Except as otherwise noted, if the generating command returns a value, it
returns zero. If the generating command modifies values through a pointer argu-
ment, no change is made to these values.

These error semantics apply only to GL errors, not to system errors such as
memory access errors. This behavior is the current behavior; the action of the
GL in the presence of errors is subject to change, and extensions to OpenGL may
define behavior currently considered as an error.

Several error generation conditions are implicit in the description of every GL
command?.

2 For historical reasons, some older errors do not follow the patterns described below, and cannot
easily be changed. The explicit error language with each command always controls behavior when
in conflict with this section.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.3. COMMAND EXECUTION 17

o If the GL context has been reset as a result of previous GL command, or if
the context is reset as a side effect of execution of a command, a CONTEXT -
LOST error is generated.

e If a command that requires an enumerated value is passed a symbolic con-
stant that is never allowable for that command, an INVALID_ENUM error is
generated. This is the case even if the argument is a pointer to a symbolic
constant, if the value or values pointed to are not allowable for the given
command. In some cases, a symbolic constant is allowable for a command,
but is forbidden in combination with current GL state and/or a value passed
for another parameter of that command. These cases are documented explic-
itly, and an INVALID_OPERATION error is generated instead.

e If a negative number is provided where an argument of type sizei or
sizeiptr is specified, an INVALID_VALUE error is generated.

e If memory is exhausted as a side effect of the execution of a command, an
OUT_OF_MEMORY error may be generated.

The Specification attempts to explicitly describe these implicit error conditions
(with the exception of CONTEXT_LOST> and OUT_OF_MEMORY* wherever they ap-
ply. However, they apply even if not explicitly described, unless a specific com-
mand describes different behavior. For example, certain commands use a sizei
parameter to indicate the length of a string, and also use negative values of the pa-
rameter to indicate a null-terminated string. These commands do not generate an
INVALID_VALUE error, because they explicitly describe different behavior.

Otherwise, errors are generated only for conditions that are explicitly described
in the Specification.

When a command could potentially generate several different errors (for ex-
ample, when it is passed separate enum and numeric parameters which are both
out of range), the GL implementation may choose to generate any of the applicable
erTors.

Errors based solely on one or more argument values to a command must be
detected before any processing based on current state”.

3 CONTEXT_LOST is not described because it can potentially be generated by almost all GL
commands, and occurs for reasons not directly related to the affected commands.

* OUT_OF_MEMORY is not described because it can potentially be generated by any GL com-
mand, even those which do not explicitly allocate GPU memory.

> This ensures consistent behavior for commands including language which ignores certain pa-
rameters under some conditions, such as glBlitFramebuffer treatment of mask and filter.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.3. COMMAND EXECUTION

18

Error

Description

Offending com-
mand ignored?

CONTEXT_LOST

Context has been lost and reset

Except as noted

underflow

by the driver for specific
commands
INVALID_ENUM enum argument out of range Yes
INVALID_VALUE Numeric argument out of range | Yes
INVALID_OPERATION Operation illegal in current state | Yes
INVALID_FRAMEBUFFER_OPERATION | Framebuffer object is not com- | Yes
plete
OUT_OF_MEMORY Not enough memory left to exe- | Unknown
cute command
STACK_OVERFLOW Command would cause a stack | Yes
overflow
STACK_UNDERFLOW Command would cause a stack | Yes

Table 2.3: Summary of GL errors

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.3. COMMAND EXECUTION 19

When an error is generated, the GL may also generate a debug output message
describing its cause (see chapter 20). The message has source DEBUG_SOURCE_ -
API, type DEBUG_TYPE_ERROR, and an implementation-dependent ID.

Most commands include a complete summary of errors at the end of their de-
scription, including even the implicit errors described above.

Such error summaries are set in a distinct style, like this sentence.

In some cases, however, errors may be generated for a single command for
reasons not directly related to that command. One such example is that deferred
processing for shader programs may result in link errors detected only when at-
tempting to draw primitives using vertex specification commands. In such cases,
errors generated by a command may be described elsewhere in the specification
than the command itself.

2.3.1.1 No Error Mode

If the GL context was created with the no error mode enabled, then any place where
the driver would have generated an error instead has undefined behavior. This could
include application termination. All calls to GetError will return NO_ERROR or
OUT_OF_MEMORY. OUT_OF_MEMORY errors are a special case because they already
allow for undefined behavior and are more difficult for application developers to
predict than other errors. OUT_OF_MEMORY errors may be delayed, which can be
useful for optimizing multithreaded drivers, but eventually the OUT_OF_MEMORY
error will be reported if an implementation would have reported this error. Since
behavior of OUT_OF_MEMORY errors are undefined there is some implementation
flexibility here. However, this behavior may provide useful information on some
implementations that do report OUT_OF_MEMORY without crashing. ©

2.3.2 Graphics Reset Recovery

Certain events can result in a reset of the GL context. After such an event, it is
referred to as a lost context and is unusable for almost all purposes. Recovery re-
quires creating a new context and recreating all relevant state from the lost context.
The current status of the graphics reset state is returned by

enum GetGraphicsResetStatus(void);

%Jon - “should” be reported?

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.3. COMMAND EXECUTION 20

The value returned indicates if the GL context has been in a reset state at any
point since the last call to GetGraphicsResetStatus:

e NO_ERROR indicates that the GL context has not been in a reset state since
the last call.

e GUILTY CONTEXT RESET indicates that a reset has been detected that is
attributable to the current GL context.

e INNOCENT_CONTEXT_ RESET indicates a reset has been detected that is not
attributable to the current GL context.

e UNKNOWN_CONTEXT_RESET indicates a detected graphics reset whose cause
is unknown.

If a reset status other than NO_ERROR is returned and subsequent calls return
NO_ERROR, the context reset was encountered and completed. If a reset status is
repeatedly returned, the context may be in the process of resetting.

Reset notification behavior is determined at context creation time, and may be
queried by calling GetIntegerv with pname RESET_NOTIFICATION_STRATEGY.

If the reset notification behavior is NO_RESET_NOTIFICATION, then the im-
plementation will never deliver notification of reset events, and GetGraphicsRe-
setStatus will always return NO_ERROR’.

If the behavior is LOSE_CONTEXT_ON_RESET, a graphics reset will result in
the loss of all context state, requiring the recreation of all associated objects. In
this case GetGraphicsResetStatus may return any of the values described above.

If a graphics reset notification occurs in a context, a notification must also occur
in all other contexts which share objects with that context®.

After a graphics reset has occurred on a context, subsequent GL. commands
on that context (or any context which shares with that context) will generate a
CONTEXT_LOST error. Such commands will not have side effects (in particular,
they will not modify memory passed by pointer for query results), and may not
block indefinitely or cause termination of the application. Exceptions to this be-
havior include:

e GetError and GetGraphicsResetStatus behave normally following a
graphics reset, so that the application can determine a reset has occurred,
and when it is safe to destroy and re-create the context.

"In this case, it is recommended that implementations should not allow loss of context state no
matter what events occur. However, this is only a recommendation, and cannot be relied upon by
applications.

8The values returned by GetGraphicsResetStatus in the different contexts may differ.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.3. COMMAND EXECUTION 21

e Any commands which might cause a polling application to block indefinitely
will generate a CONTEXT_LOST error, but will also return a value indicating
completion to the application. Such commands include:

— GetSynciv with pname SYNC_STATUS ignores the other parameters
and returns SIGNALED in values.

— GetQueryObjectuiv with pname QUERY_RESULT_AVAILABLE ig-
nores the other parameters and returns TRUE in params.

2.3.3 Flush and Finish

Implementations may buffer multiple commands in a command queue before send-
ing them to the GL server for execution. This may happen in places such as the
network stack (for network transparent implementations), CPU code executing as
part of the GL client or the GL server, or internally to the GPU hardware. Coarse
control over command queues is available using the command

void Flush(void);

which causes all previously issued GL commands to complete in finite time (al-
though such commands may still be executing when Flush returns).
The command

void Finish(void);

forces all previously issued GL commands to complete. Finish does not return
until all effects from such commands on GL client and server state and the frame-
buffer are fully realized.

Finer control over command execution can be expressed using fence commands
and sync objects, as discussed in section 4.1.

2.3.4 Numeric Representation and Computation

The GL must perform a number of floating-point operations during the course of
its operation.

Implementations normally perform computations in floating-point, and must
meet the range and precision requirements defined under ’Floating-Point Com-
putation” below.

These requirements only apply to computations performed in GL operations
outside of shader execution, such as texture image specification and sampling, and

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.3. COMMAND EXECUTION 22

per-fragment operations. Range and precision requirements during shader execu-
tion differ and are specified by the OpenGL Shading Language Specification.

In some cases, the representation and/or precision of operations is implicitly
limited by the specified format of vertex, texture, or renderbuffer data consumed
by the GL. Specific floating-point formats are described later in this section.

2.3.4.1 Floating-Point Computation

We do not specify how floating-point numbers are to be represented, or the details
of how operations on them are performed.

We require simply that numbers’ floating-point parts contain enough bits and
that their exponent fields are large enough so that individual results of floating-
point operations are accurate to about 1 part in 10°. The maximum representable
magnitude for all floating-point values must be at least 232, -0 = 0 -z = 0 for
any non-infinite and non-NaNz. 1-2 =z-1=2. 24+0=0+2 = 2. 0° =
1. (Occasionally further requirements will be specified.) Most single-precision
floating-point formats meet these requirements.

The special values Inf and —Inf encode values with magnitudes too large to
be represented; the special value NaN encodes “Not A Number” values resulting
from undefined arithmetic operations such as 8. Implementations are permitted,
but not required, to support Infs and NaN's in their floating-point computations.

Any representable floating-point value is legal as input to a GL. command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL. command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

2.3.4.2 16-Bit Floating-Point Numbers

A 16-bit floating-point number has a 1-bit sign (5), a 5-bit exponent (£), and a
10-bit mantissa (M). The value V' of a 16-bit floating-point number is determined
by the following:

(—1)% x 0.0, E=0,M=0
(—1)% x 271 x A% E=0,M+#0
V=9(-DSx2F 5 (1+45), 0<E<31
(—1)% x Inf, E=31,M=0
NaN, E=31,M#0

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.3. COMMAND EXECUTION 23

If the floating-point number is interpreted as an unsigned 16-bit integer IV, then

g {N mod 65536J
32768

E_ \‘N mod 32768J
1024

M = N mod 1024.

Any representable 16-bit floating-point value is legal as input to a GL command
that accepts 16-bit floating-point data. The result of providing a value that is not a
floating-point number (such as Inf or NaN) to such a command is unspecified, but
must not lead to GL interruption or termination. Providing a denormalized number
or negative zero to GL must yield predictable results.

2.3.4.3 Unsigned 11-Bit Floating-Point Numbers

An unsigned 11-bit floating-point number has no sign bit, a 5-bit exponent (£, and
a 6-bit mantissa (M). The value V' of an unsigned 11-bit floating-point number is
determined by the following:

0.0, E=0M=0
- M
2714 x &, E=0,M+#0
V=q2FBx (1+3), 0<E<31
Inf, E=31,M=0
NaN, E=31,M#0
If the floating-point number is interpreted as an unsigned 11-bit integer NV, then
N
EF=|—
i
M = N mod 64.

When a floating-point value is converted to an unsigned 11-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 65024 (the maximum finite representable unsigned 11-bit
floating-point value) are converted to 65024. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NalV.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.3. COMMAND EXECUTION 24

Any representable unsigned 11-bit floating-point value is legal as input to a
GL command that accepts 11-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

2.3.4.4 Unsigned 10-Bit Floating-Point Numbers

An unsigned 10-bit floating-point number has no sign bit, a 5-bit exponent (£, and
a 5-bit mantissa (M). The value V' of an unsigned 10-bit floating-point number is
determined by the following:

0.0, E=0,M=0
—14 M _
271 % 22, E=0,M#0
V=321 (1+28), 0<E<31
Inf, E=31,M=0
| NaN, E=31,M+#0

If the floating-point number is interpreted as an unsigned 10-bit integer NV, then

p=|N
32
M = N mod 32.

When a floating-point value is converted to an unsigned 10-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 64512 (the maximum finite representable unsigned 10-bit
floating-point value) are converted to 64512. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NalV.

Any representable unsigned 10-bit floating-point value is legal as input to a
GL command that accepts 10-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or Na/N) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.3. COMMAND EXECUTION 25

2.3.4.5 Fixed-Point Computation

Vertex attributes may be specified using a 32-bit two’s-complement signed repre-
sentation with 16 bits to the right of the binary point (fraction bits).

2.3.4.6 General Requirements

Some calculations require division. In such cases (including implied divisions re-
quired by vector normalizations), a division by zero produces an unspecified result
but must not lead to GL interruption or termination.

2.3.5 Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are repre-
sented as integers, they are often (but not always) considered to be normalized.
Normalized integer values are treated specially when being converted to and from
floating-point values, and are usually referred to as normalized fixed-point. Such
values are always either signed or unsigned.

In the remainder of this section, b denotes the bit width of the fixed-point inte-
ger representation. When the integer is one of the types defined in table 2.2, b is
the required bit width of that type. When the integer is a texture or renderbuffer
color or depth component (see section 8.5), b is the number of bits allocated to that
component in the internal format of the texture or renderbuffer. When the integer is
a framebuffer color or depth component (see section 9), b is the number of bits allo-
cated to that component in the framebuffer. For framebuffer and renderbuffer alpha
components, b must be at least 2 if the buffer does not contain an alpha component,
or if there is only one bit of alpha in the buffer.

The signed and unsigned fixed-point representations are assumed to be b-bit
binary twos-complement integers and binary unsigned integers, respectively.

2.3.5.1 Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0, 1].
The conversion from an unsigned normalized fixed-point value c to the correspond-
ing floating-point value f is defined as

C
f:—Qb_l. 2.1

Signed normalized fixed-point integers represent numbers in the range [—1, 1].
The conversion from a signed normalized fixed-point value c to the corresponding

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.3. COMMAND EXECUTION 26

floating-point value f is performed using

c
f = max {2b—1 7 —1.0} . (2.2)

Only the range [—2°~1 4 1,2°~1 — 1] is used to represent signed fixed-point
values in the range [—1, 1]. For example, if b = 8, then the integer value —127 cor-
responds to —1.0 and the value 127 corresponds to 1.0. Note that while zero can be
exactly expressed in this representation, one value (—128 in the example) is outside
the representable range, and must be clamped before use. This equation is used ev-
erywhere that signed normalized fixed-point values are converted to floating-point,
including for all signed normalized fixed-point parameters in GL commands, such
as vertex attribute values’, as well as for specifying texture or framebuffer values
using signed normalized fixed-point.

2.3.5.2 Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned nor-
malized fixed-point value c is defined by first clamping f to the range [0, 1], then
computing

f' = convert_float_uint(f x (2° —1),b) (2.3)

where convert_float_uint(r,b) returns one of the two unsigned binary integer
values with exactly b bits which are closest to the floating-point value r (where
rounding to nearest is preferred).

The conversion from a floating-point value f to the corresponding signed nor-
malized fixed-point value ¢ is performed by clamping f to the range [—1, 1], then
computing

f' = convert_float_int(f x (2>~ —1),b) (2.4)

where convert_float_int(r,b) returns one of the two signed two’s-complement
binary integer values with exactly b bits which are closest to the floating-point
value r (where rounding to nearest is preferred).

This equation is used everywhere that floating-point values are converted to
signed normalized fixed-point, including when querying floating-point state (see

? This is a behavior change in OpenGL 4.2. In previous versions, a different conversion for signed
normalized values was used in which —128 mapped to —1.0, 127 mapped to 1.0, and 0.0 was not
exactly representable.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.4. RENDERING COMMANDS 27

section 2.2.2) and returning integers'’, as well as for specifying signed normalized
texture or framebuffer values using floating-point.

2.4 Rendering Commands

GL commands performing rendering into a framebuffer are sometimes treated spe-
cially by other GL operations such as conditional rendering (see section 10.9).
Such commands are called rendering commands, and include the drawing com-
mands *Draw* (see section 10.4) and Begin / End (see section 10.7), as well as
these additional commands:

e Accum (see section 17.4.5)

e Bitmap (see section 14.8)

e BlitFramebuffer (see section 18.3.2)
e Clear (see section 17.4.3)

e ClearBuffer* (see section 17.4.3.1)
o CopyPixels (see section 18.3)

e DispatchCompute* (see section 19)
e DrawPixels (see section 18.1)

e EvalMeshl and EvalMesh2 (see section 21.1)

2.5 Context State

Context state is state that belongs to the GL context as a whole, rather than to
instances of the different object types described in section 2.6. Context state con-
trols fixed-function stages of the GPU, such as clipping, primitive rasterization, and
framebuffer clears, and also specifies bindings of objects to the context specifying
which objects are used during command execution.

Context state also controls the fixed-function stages described as legacy alter-
natives to shaders for performing transformation, lighting, and texturing.

10 This is a behavior change in OpenGL 4.2. In previous versions, a different conversion for signed
normalized values was used in which —1.0 mapped to —128, 1.0 mapped to 127, and 0.0 was not
exactly representable.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.6. OBJECTS AND THE OBJECT MODEL 28

The Specification describes all visible context state variables and describes how
each one can be changed. State variables are grouped somewhat arbitrarily by their
function. Although we describe operations that the GL performs on the frame-
buffer, the framebuffer is not a part of GL state.

There are two types of context state. Server state resides in the GL server;
the majority of GL state falls into this category. Client state resides in the GL
client. Unless otherwise specified, all state is server state; client state is specifically
identified. Each instance of a context includes a complete set of server state; each
connection from a client to a server also includes a complete set of client state.

While an implementation of OpenGL may be hardware dependent, the Specifi-
cation is independent of any specific hardware on which it is implemented. We are
concerned with the state of graphics hardware only when it corresponds precisely
to GL state.

2.5.1 Generic Context State Queries

Context state queries are described in detail in chapter 22.

2.6 Objects and the Object Model

Many types of objects are defined in the remainder of the Specification. Applica-
tions may create, modify, query, and destroy many instances of each of these object
types, limited in most cases only by available graphics memory. Specific instances
of different object types are bound to a context. The set of bound objects define
the shaders which are invoked by GL drawing operations; specify the buffer data,
texture image, and framebuffer memory that is accessed by shaders and directly
by GL commands; and contain the state used by other operations such as fence
synchronization and timer queries.

Each object type corresponds to a distinct set of commands which manage ob-
jects of that type. However, there is an object model describing how most types
of objects are managed, described below. Exceptions to the object model for spe-
cific object types are described later in the Specification together with those object
types.

Following the description of the object model, each type of object is briefly
described below, together with forward references to full descriptions of that ob-
ject type in later chapters of the Specification. Objects are described in an order
corresponding to the structure of the remainder of the Specification.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.6. OBJECTS AND THE OBJECT MODEL 29

2.6.1 Object Management
2.6.1.1 Name Spaces, Name Generation, and Object Creation

Each object type has a corresponding name space. Names of objects are repre-
sented by unsigned integers of type uint. The name zero is reserved by the GL;
for some object types, zero names a default object of that type, and in others zero
will never correspond to an actual instance of that object type.

Names of most types of objects are created by generating unused names us-
ing commands starting with Gen followed by the object type. For example, the
command GenBuffers returns one or more previously unused buffer object names.

Generated names are marked by the GL as used, for the purpose of name gener-
ation only. Object names marked in this fashion will not be returned by additional
calls to generate names of the same type until the names are marked unused again
by deleting them (see below).

Generated names do not initially correspond to an instance of an object. Ob-
jects with generated names are created by binding a generated name to the context.
For example, a buffer object is created by calling the command BindBuffer with
a name returned by GenBuffers, which allocates resources for the buffer object
and its state, and associate the name with that object. Sampler objects may also be
created by commands in addition to BindSampler, as described in section 8.2.

Objects may also be created directly by functions that return a new name or
names representing a freshly initialized object. Some functions return a single ob-
ject name directly whereas others are able to create a large number of new objects,
returning their names in an array. Examples of the former are CreateProgram
for program objects and FenceSync for fence sync objects. Examples of the latter
are CreateBuffers, CreateTextures and CreateVertexArrays for buffers, textures
and vertex arrays, respectively.

2.6.1.2 Name Deletion and Object Deletion

Objects are deleted by calling deletion commands specific to that object type. For
example, the command DeleteBuffers is passed an array of buffer object names
to delete. After an object is deleted it has no contents, and its name is once again
marked unused for the purpose of name generation. If names are deleted that do not
correspond to an object, but have been marked for the purpose of name generation,
such names are marked as unused again. If unused and unmarked names are deleted
they are silently ignored, as is the name zero.

If an object is deleted while it is currently in use by a GL context, its name
is immediately marked as unused, and some types of objects are automatically
unbound from binding points in the current context, as described in section 5.1.2.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.6. OBJECTS AND THE OBJECT MODEL 30

However, the actual underlying object is not deleted until it is no longer in use.
This situation is discussed in more detail in section 5.1.3.

2.6.1.3 Shared Object State

It is possible for groups of contexts to share some server state. Enabling such shar-
ing between contexts is done through window system binding APIs such as those
described in section 1.3.6. These APIs are responsible for creation and manage-
ment of contexts, and are not discussed further here. More detailed discussion of
the behavior of shared objects is included in chapter 5. Except as defined below
for specific object types, all state in a context is specific to that context only.

2.6.2 Buffer Objects

The GL uses many types of data supplied by the client. Some of this data must be
stored in server memory, and it is desirable to store other types of frequently used
client data, such as vertex array and pixel data, in server memory for performance
reasons, even if the option to store it in client memory exists.

Buffer objects contain a data store holding a fixed-sized allocation of server
memory, and provide a mechanism to allocate, initialize, read from, and write to
such memory. Under certain circumstances, the data store of a buffer object may
be shared between the client and server and accessed simultaneously by both.

Buffer objects may be shared. They are described in detail in chapter 6.

2.6.3 Shader Objects

The source and/or binary code representing part or all of a shader program that is
executed by one of the programmable stages defined by the GL (such as a vertex
or fragment shader) is encapsulated in one or more shader objects.

Shader objects may be shared. They are described in detail in chapter 7.

2.6.4 Program Objects

Shader objects that are to be used by one or more of the programmable stages of
the GL are linked together to form a program object. The shader programs that
are executed by these programmable stages are called executables. All information
necessary for defining each executable is encapsulated in a program object.
Program objects may be shared. They are described in detail in chapter 7.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.6. OBJECTS AND THE OBJECT MODEL 31

2.6.5 Program Pipeline Objects

Program pipeline objects contain a separate program object binding point for each
programmable stage. They allow a primitive to be processed by independent pro-
grams in each programmable stage, instead of requiring a single program object
for each combination of shader operations. They allow greater flexibility when
combining different shaders in various ways, without requiring a program object
for each such combination.

Program pipeline objects are container objects including references to program
objects, and are not shared. They are described in detail in chapter 7.

2.6.6 Texture Objects

Texture objects or textures include a collection of fexture images built from arrays
of image elements. The image elements are referred to as fexels. There are many
types of texture objects varying by dimensionality and structure; the different tex-
ture types are described in detail in the introduction to chapter 8.

Texture objects also include state describing the image parameters of the tex-
ture images, and state describing how sampling is performed when a shader ac-
cesses a texture.

Shaders may sample a texture at a location indicated by specified texture co-
ordinates, with details of sampling determined by the sampler state of the texture.
The resulting texture samples are typically used to modify a fragment’s color, in
order to map an image onto a geometric primitive being drawn, but may be used
for any purpose in a shader.

Texture objects may be shared. They are described in detail in chapter 8.

2.6.7 Sampler Objects

Sampler objects contain the subset of texture object state controlling how sampling
is performed when a shader accesses a texture. Sampler and texture objects may be
bound together so that the sampler object state is used by shaders when sampling
the texture, overriding equivalent state in the texture object. Separating texture
image data from the method of sampling that data allows reuse of the same sampler
state with many different textures without needing to set the sampler state in each
texture.
Sampler objects may be shared. They are described in detail in chapter 8.

2.6.8 Renderbuffer Objects

Renderbuffer objects contain a single image in a format which can be rendered

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.6. OBJECTS AND THE OBJECT MODEL 32

to. Renderbuffer objects are attached to framebuffer objects (see below) when
performing off-screen rendering.
Renderbuffer objects may be shared. They are described in detail in chapter 9.

2.6.9 Framebuffer Objects

Framebuffer objects encapsulate the state of a framebuffer, including a collection of
color, depth, and stencil buffers. Each such buffer is represented by a renderbuffer
object or texture object attached to the framebuffer object.

Framebuffer objects are container objects including references to renderbuffer
and/or texture objects, and are not shared''. They are described in detail in chap-
ter 9.

2.6.10 Vertex Array Objects

Vertex array objects represent a collection of sets of vertex attributes. Each set
is stored as an array in a buffer object data store, with each element of the array
having a specified format and component count. The attributes of the currently
bound vertex array object are used as inputs to the vertex shader when executing
drawing commands.

Vertex array objects are container objects including references to buffer objects,
and are not shared. They are described in detail in chapter 10.

2.6.11 Transform Feedback Objects

Transform feedback objects are used to capture attributes of the vertices of trans-
formed primitives passed to the transform feedback stage when transform feedback
mode is active. They include state required for transform feedback together with
references to buffer objects in which attributes are captured.

Transform feedback objects are container objects including references to buffer
objects, and are not shared. They are described in detail in section 13.2.1.

2.6.12 Query Objects

Query objects return information about the processing of a sequence of GL com-
mands, such as the number of primitives processed by drawing commands; the

" Framebuffer objects created with the commands defined by the GL_EXT_-—

framebuffer_object extension are defined to be shared, while FBOs created with
commands defined by the OpenGL core or GL,_ARB_ framebuffer_object extension are
defined to not be shared. Undefined behavior results when using FBOs created by EXT commands
through non-EXT interfaces, or vice-versa.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

2.6. OBJECTS AND THE OBJECT MODEL 33

number of primitives written to transform feedback buffers; the number of sam-
ples that pass the depth test during fragment processing; and the amount of time
required to process commands.

Query objects are not shared. They are described in detail in section 4.2.

2.6.13 Sync Objects

A sync object acts as a synchronization primitive — a representation of events whose
completion status can be tested or waited upon. Sync objects may be used for syn-
chronization with operations occurring in the GL state machine or in the graphics
pipeline, and for synchronizing between multiple graphics contexts, among other
purposes.

Sync objects may be shared. They are described in detail in section 4.1.

2.6.14 Display Lists

A display list is an object representing a group of GL commands and their parame-
ters which have been stored in server memory for subsequent execution. This may
be desirable for performance reasons when the GL client and server are separated
by a network, or when the CPU to GPU interface is too slow to keep the GPU fully
fed. Most of the benefits of display lists can be more easily achieved in modern
graphics architectures by storing as much data as possible in GL objects in server
memory, and display lists have been deprecated.
Display lists may be shared. They are described in detail in chapter 21.4.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

Chapter 3

Dataflow Model

Figure 3.1 shows a block diagram of the GL. Some commands specify geometric
objects to be drawn while others specify state controlling how objects are han-
dled by the various stages, or specify data contained in textures and buffer objects.
Most commands may be accumulated in a display list for processing by the GL
at a later time. Otherwise, commands are effectively sent through a processing
pipeline. Different stages of the pipeline use data contained in different types of
buffer objects. Some pipeline stages may use data in client memory instead of, or
in addition to data in buffer objects. Data in client memory are not shown in the
block diagram, but are described later in the specification as part of the description
of those pipeline stages.

The first stage assembles vertices to form geometric primitives such as points,
line segments, and polygons. In the next stage vertices may be transformed and lit,
followed by assembly into geometric primitives. Tessellation and geometry shaders
may then generate multiple primitives from a single input primitive. Optionally, the
results of these pipeline stages may be fed back into buffer objects using transform
feedback.

The final resulting primitives are clipped to a clip volume in preparation for the
next stage, rasterization. The rasterizer produces a series of framebuffer addresses
and values using a two-dimensional description of a point, line segment, or poly-
gon. Each fragment so produced is fed to the next stage that performs operations
on individual fragments before they finally alter the framebuffer. These operations
include conditional updates into the framebuffer based on incoming and previously
stored depth values (to effect depth buffering), blending of incoming fragment col-
ors with stored colors, as well as masking, stenciling, and other logical operations
on fragment values.

There is a way to bypass the vertex processing portion of the pipeline to send a

34

35

block of fragments directly to the individual fragment operations, eventually caus-
ing a block of pixels to be written to the framebuffer, and pixels may also be
read back from the framebuffer or copied from one portion of the framebuffer to
another. These transfers may include some type of decoding or encoding.

Some additional stages are not shown in figure 3.1. One such stage computes
vertices by evaluating polynomial functions of input values, providing an efficient
means for approximating curve and surface geometry rather than specifying each
vertex explicitly. Another operates on pixel data in the process of reading from or
writing to the framebuffer or texture images.

Finally, compute shaders which may read from and write to buffer objects may
be executed independently of the pipeline shown in figure 3.1.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL. Objects such as curved surfaces, for instance, may
be transformed before they are converted to polygons.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

36

e —

noed |Pxid

A

| esewrame

suonesadQ |oxid

A

._lll

| suoessdouewberyred || Bupu@semna=q |

Japeys andwo)

Aiquiassy [9xid
A

uonedijddy woag

A

yojedsiq

A

uonediddy woag

-

>

A _ abejs a|qewwelbo.d _
Jopeys juswbely _
A _ abe3s uoiouNg paxiy _
_ uonezusisey _ puabay
A
Japeys A1pwoan _
A

-

Japeys *|ea3 uone||assaL _

| 4

*U9D AW UORR|DSSD L _

| 4

>

| 4

.

>
I

Figure 3.1. Block diagram of the GL pipeline.

J9]INd XOMIA

> feeesesseseeetcctttetttctttassasseneenecttttttnel

uonedijddy woag

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

Chapter 4

Event Model

4.1 Sync Objects and Fences

A sync object acts as a synchronization primitive — a representation of events whose
completion status can be tested or waited upon. Sync objects may be used for syn-
chronization with operations occurring in the GL state machine or in the graphics
pipeline, and for synchronizing between multiple graphics contexts, among other
purposes.

Sync objects have a status value with two possible states: signaled and
unsignaled. Events are associated with a sync object. When a sync object is cre-
ated, its status is set to unsignaled. When the associated event occurs, the sync
object is signaled (its status is set to signaled). The GL may be asked to wait for a
sync object to become signaled.

Initially, only one specific type of sync object is defined: the fence sync object,
whose associated event is triggered by a fence command placed in the GL com-
mand stream. Fence sync objects are used to wait for partial completion of the GL
command stream, as a more flexible form of Finish.

The command

sync FenceSync(enum condition, bitfield flags);

creates a new fence sync object, inserts a fence command in the GL command
stream and associates it with that sync object, and returns a non-zero name corre-
sponding to the sync object.

When the specified condition of the sync object is satisfied by the fence com-
mand, the sync object is signaled by the GL, causing any ClientWaitSync or Wait-
Sync commands (see below) blocking on sync to unblock. No other state is affected
by FenceSync or by execution of the associated fence command.

37

4.1. SYNC OBJECTS AND FENCES 38

Property Name Property Value
OBJECT_TYPE SYNC_FENCE
SYNC_CONDITION | condition
SYNC_STATUS UNSIGNALED
SYNC_FLAGS flags

Table 4.1: Initial properties of a sync object created with FenceSync.

condition must be SYNC_GPU_COMMANDS_COMPLETE. This condition is satis-
fied by completion of the fence command corresponding to the sync object and all
preceding commands in the same command stream. The sync object will not be
signaled until all effects from these commands on GL client and server state and the
framebuffer are fully realized. Note that completion of the fence command occurs
once the state of the corresponding sync object has been changed, but commands
waiting on that sync object may not be unblocked until some time after the fence
command completes.

flags must be zero.

Each sync object contains a number of properties which determine the state of
the object and the behavior of any commands associated with it. Each property has
a property name and property value. The initial property values for a sync object
created by FenceSync are shown in table 4.1.

Properties of a sync object may be queried with GetSynciv (see section 4.1.3).
The syNC_STATUS property will be changed to STGNALED when condition is sat-
isfied.

Errors

If FenceSync fails to create a sync object, zero will be returned and a GL
error is generated.

An INVALID_ENUM error is generated if condition is not SYNC_GPU_-
COMMANDS_COMPLETE.

An INVALID_VALUE error is generated if flags is not zero.

A sync object can be deleted by passing its name to the command
void DeleteSync(sync sync);

If the fence command corresponding to the specified sync object has com-
pleted, or if no ClientWaitSync or WaitSync commands are blocking on sync, the
object is deleted immediately. Otherwise, sync is flagged for deletion and will be

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

4.1. SYNC OBJECTS AND FENCES 39

deleted when it is no longer associated with any fence command and is no longer
blocking any ClientWaitSync or WaitSync command. In either case, after return-
ing from DeleteSync the sync name is invalid and can no longer be used to refer to
the sync object.

DeleteSync will silently ignore a sync value of zero.

Errors

An INVALID_VALUE error is generated if sync is neither zero nor the name
of a sync object.

4.1.1 Waiting for Sync Objects

The command

enum ClientWaitSync(sync sync, bitfield flags,
uint 64 timeout);

causes the GL to block, and will not return until the sync object sync is signaled,
or until the specified timeout period expires. timeout is in units of nanoseconds.
timeout is adjusted to the closest value allowed by the implementation-dependent
timeout accuracy, which may be substantially longer than one nanosecond, and
may be longer than the requested period.

If sync is signaled at the time ClientWaitSync is called, then ClientWait-
Sync returns immediately. If sync is unsignaled at the time ClientWaitSync is
called, then ClientWaitSync will block and will wait up to timeout nanoseconds
for sync to become signaled. flags controls command flushing behavior, and may
be SYNC_FLUSH_COMMANDS_BIT, as discussed in section 4.1.2.

ClientWaitSync returns one of four status values. A return value of
ALREADY_SIGNALED indicates that sync was signaled at the time ClientWait-
Sync was called. ALREADY_SIGNALED will always be returned if sync was sig-
naled, even if the value of timeout is zero. A return value of TIMEOUT_EXPIRED
indicates that the specified timeout period expired before sync was signaled. A re-
turn value of CONDITION_SATISFIED indicates that sync was signaled before the
timeout expired. Finally, if an error occurs, in addition to generating a GL error
as specified below, ClientWaitSync immediately returns WAIT_FAILED without
blocking.

If the value of timeout is zero, then ClientWaitSync does not block, but simply
tests the current state of sync. TIMEOUT_EXPIRED will be returned in this case if
sync is not signaled, even though no actual wait was performed.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

4.1. SYNC OBJECTS AND FENCES 40

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_VALUE error is generated if flags contains any bits other than
SYNC_FLUSH_COMMANDS_BIT.

The command

void WaitSyne(sync sync, bitfield flags,
uint 64 timeout);

is similar to ClientWaitSync, but instead of blocking and not returning to the ap-
plication until sync is signaled, WaitSync returns immediately, instead causing the
GL server to block' until sync is signaled”.

sync has the same meaning as for ClientWaitSync.

timeout must currently be the special value TIMEOUT_IGNORED, and is not
used. Instead, WaitSync will always wait no longer than an implementation-
dependent timeout. The duration of this timeout in nanoseconds may be queried
by calling GetInteger64v with pname MAX_SERVER_WAIT_TIMEOUT. There is
currently no way to determine whether WaitSync unblocked because the timeout
expired or because the sync object being waited on was signaled.

flags must be zero.

If an error occurs, WaitSync generates a GL error as specified below, and does
not cause the GL server to block.

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_VALUE error is generated if timeout is not TIMEOUT_-—
IGNORED or flags is not zero”.

¢ flags and timeout are placeholders for anticipated future extensions of sync object capa-
bilities. They must have these reserved values in order that existing code calling WaitSync
operate properly in the presence of such extensions.

! The GL server may choose to wait either in the CPU executing server-side code, or in the GPU
hardware if it supports this operation.

2 WaitSync allows applications to continue to queue commands from the client in anticipation of
the sync being signaled, increasing client-server parallelism.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

4.1. SYNC OBJECTS AND FENCES

4.1.1.1 Multiple Waiters

It is possible for both the GL client to be blocked on a sync object in a ClientWait-
Sync command, the GL server to be blocked as the result of a previous WaitSync
command, and for additional WaitSync commands to be queued in the GL server,
all for a single sync object. When such a sync object is signaled in this situation,
the client will be unblocked, the server will be unblocked, and all such queued
WaitSync commands will continue immediately when they are reached.

See section 5.2 for more information about blocking on a sync object in multi-
ple GL contexts.

4.1.2 Signaling

A fence sync object enters the signaled state only once the corresponding fence
command has completed and signaled the sync object.

If the sync object being blocked upon will not be signaled in finite time (for
example, by an associated fence command issued previously, but not yet flushed
to the graphics pipeline), then ClientWaitSync may hang forever. To help prevent
this behavior?, if ClientWaitSyne is called and all of the following are true:

e the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
e sync is unsignaled when ClientWaitSync is called,

e and the calls to ClientWaitSync and FenceSync were issued from the same
context,

then the GL will behave as if the equivalent of Flush were inserted immediately
after the creation of sync.

Additional constraints on the use of sync objects are discussed in chapter 5.

State must be maintained to indicate which sync object names are currently
in use. The state required for each sync object in use is an integer for the specific
type, an integer for the condition, and a bit indicating whether the object is signaled
or unsignaled. The initial values of sync object state are defined as specified by
FenceSync.

3 The simple flushing behavior defined by SYNC_FLUSH_COMMANDS_BIT will not help
when waiting for a fence command issued in another context’s command stream to complete. Ap-
plications which block on a fence sync object must take additional steps to assure that the context
from which the corresponding fence command was issued has flushed that command to the graphics
pipeline.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

41

4.1. SYNC OBJECTS AND FENCES 42

4.1.3 Sync Object Queries

Properties of sync objects may be queried using the command

void GetSynciv(sync sync, enum pname, sizei bufSize,
sizei *length, int *values);

The value or values being queried are returned in the parameters length and
values.

On success, GetSynciv replaces up to bufSize integers in values with the cor-
responding property values of the object being queried. The actual number of
integers replaced is returned in *length. If length is NULL, no length is returned.

If pname is OBJECT_TYPE, a single value representing the specific type of the
sync object is placed in values. The only type supported is SYNC_FENCE.

If pname is SYNC_STATUS, a single value representing the status of the sync
object (SIGNALED or UNSIGNALED) is placed in values.

If pname is SYNC_CONDITION, a single value representing the condition of
the sync object is placed in values. The only condition supported is SYNC_GPU_—
COMMANDS_COMPLETE.

If pname is SYNC_FLAGS, a single value representing the flags with which the
sync object was created is placed in values. No flags are currently supported.

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_ENUM error is generated if pname is not one of the values
described above.

An INVALID_VALUE error is generated if bufSize is negative.

The command
boolean IsSyne(sync sync);

returns TRUE if sync is the name of a sync object. If sync is not the name of a sync
object, or if an error condition occurs, IsSync returns FALSE (note that zero is not
the name of a sync object).

Sync object names immediately become invalid after calling DeleteSync, as
discussed in sections 4.1 and 5.2, but the underlying sync object will not be deleted
until it is no longer associated with any fence command and no longer blocking
any *WaitSync command.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 43

4.2

Query Objects and Asynchronous Queries

Asynchronous queries provide a mechanism to return information about the pro-
cessing of a sequence of GL commands.

4.2.1 Query Object Types and Targets

Query types supported by the GL include:

Primitive queries with a target of PRIMITIVES_GENERATED (see sec-
tion 13.3) return information on the number of primitives processed by
the GL. There may be at most the value of MAX_VERTEX_STREAMS active
queries of this type.

Primitive queries with a target of TRANSFORM_FEEDBACK_PRIMITIVES_ -
WRITTEN (see section 13.3) return information on the number of primitives
written to one or more buffer objects. There may be at most the value of
MAX_VERTEX_STREAMS active queries of this type.

Transform feedback overflow queries with a farget of TRANSFORM_-
FEEDBACK_OVERFLOW or TRANSFORM_FEEDBACK_STREAM_OVERFLOW
return information on whether or not transform feedback overflow happened
for one or more streams (see section 13.4).

Occlusion queries with a target of SAMPLES_PASSED, ANY_SAMPLES_—
PASSED or ANY_SAMPLES_PASSED_CONSERVATIVE (see section 17.3.5)
count the number of fragments or samples that pass the depth test, or set a
boolean to true when any fragments or samples pass the depth test. There
may be at most one active query of this type.

Time elapsed queries with a target of TIME_ELAPSED (see section 4.3)
record the amount of time needed to fully process a sequence of commands.
There may be at most one active query of this type.

Timer queries with a target of TIMESTAMP (see section 4.3) record the cur-
rent time of the GL. There may be at most one active query of this type.

Submission queries with a tfarget of VERTICES_SUBMITTED and
PRIMITIVES_SUBMITTED return information on the number of vertices and
primitives transferred to the GL, respectively (see section 10.10).

Vertex shader queries with a target of VERTEX_SHADER_INVOCATIONS re-
turn information on the number of times the vertex shader has been invoked
(see section 11.1.4).

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 44

e Tessellation shader queries with a farget of TESS_CONTROL_SHADER_ -
PATCHES and TESS_EVALUATION_SHADER INVOCATIONS return infor-
mation on the number of patches processed by the tessellation control shader
stage and the number of times the tessellation evaluation shader has been in-
voked, respectively (see section 11.2.4).

e Geometry shader queries with a target of GEOMETRY_SHADER_—
INVOCATIONS and GEOMETRY_SHADER_PRIMITIVES_EMITTED return in-
formation on the number of times the geometry shader has been invoked and
the number of primitives it emitted (see section 11.3.5).

e Primitive clipping queries with a farget of CLIPPING_INPUT_PRIMITIVES
and CLIPPING_OUTPUT_PRIMITIVES return information on the number of
primitives that were processed in the primitive clipping stage and the number
of primitives that were output by the primitive clipping stage and are further
processed by the rasterization stage, respectively (see section 13.6.3).

e Fragment shader queries with a farget of FRAGMENT_ SHADER_ -
INVOCATIONS return information on the number of times the fragment
shader has been invoked (see section 15.3).

e Compute shader queries with a target of COMPUTE_SHADER_INVOCATIONS
return information on the number of times the compute shader has been in-
voked (see section 19.2).

4.2.2 Query Object Creation and Activation

The results of asynchronous queries are not returned by the GL immediately after
the completion of the last command in the set; subsequent commands can be pro-
cessed while the query results are not complete. When available, the query results
are stored in an associated query object. The commands described in section 4.2.3
provide mechanisms to determine when query results are available and return the
actual results of the query. The name space for query objects is the unsigned inte-
gers, with zero reserved by the GL.
The command

void GenQueries(sizei n, uint *ids);

returns n previously unused query object names in ids. These names are marked
as used, for the purposes of GenQueries only, but no object is associated with
them until the first time they are used by BeginQuery, BeginQueryIndexed, or
QueryCounter (see section 4.3).

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 45

Errors
An INVALID_VALUE error is generated if » is negative.
Query objects may also be created with the command
void CreateQueries(enum target, sizei n, uint *ids);

CreateQueries returns n previously unused query object names in ids, each
representing a new query object with the specified target. target must be one of
the query object targets described in section 4.2.1.

The initial state of the resulting query object is that the result is marked avail-
able (the value of QUERY_RESULT_AVAILABLE for the query object is TRUE) and
the result value (the value of QUERY_RESULT) is zero.

Errors

An INVALID_ENUM error is generated if target is not one of the query
object targets described in section 4.2.1.
An INVALID_VALUE error is generated if n is negative.

Query objects are deleted by calling
void DeleteQueries(sizei n, const uint *ids);

ids contains n names of query objects to be deleted. After a query object is deleted,
its name is again unused. If an active query object is deleted its name immediately
becomes unused, but the underlying object is not deleted until it is no longer active
(see section 5.1). Unused names in ids that have been marked as used for the
purposes of GenQueries are marked as unused again. Unused names in ids are
silently ignored, as is the value zero.

Errors
An INVALID_VALUE error is generated if # is negative.

Each type of query, other than timer queries of type TIMESTAMP, supported by
the GL has an active query object name for each of the possible active queries. If
an active query object name is non-zero, the GL is currently tracking the corre-
sponding information, and the query results will be written into that query object.
If an active query object name is zero, no such information is being tracked.

A query object may be created and made active with the command

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 46

void BeginQueryIndexed(enum farget, uint index,
uint id);

target indicates the type of query to be performed. The valid values of rarget are
discussed in more detail in subsequent sections.

If id is an unused query object name, the name is marked as used and associated
with a new query object of the type specified by target. Otherwise id must be the
name of an existing query object of that type. Note that occlusion query objects
specified by either of the two targets ANY_SAMPLES_PASSED or ANY_SAMPLES_ -
PASSED_CONSERVATIVE may be reused for either target in future queries. Objects
specified with farget SAMPLES_PASSED may only be reused for that rarget.

index is the index of the query, and must be between zero and a farget-specific
maximum. The state of the query object named id, whether newly created or not,
is that the result is marked unavailable (the value of QUERY_RESULT_AVAILABLE
for the query object is FALSE), and the result value (the value of QUERY_RESULT)
is zero.

The active query object name for farget and index is set to id.

Errors

An INVALID_ENUM error is generated if target is TIMESTAMP, or is not
one of the query object targets described in section 4.2.1.

An INVALID_VALUE error is generated if tar-
get is PRIMITIVES_GENERATED, TRANSFORM_FEEDBACK_PRIMITIVES_—
WRITTEN, or TRANSFORM_FEEDBACK_STREAM_OVERFLOW, and index is not
in the range zero to the value of MAX VERTEX_ STREAMS minus one.

An INVALID_VALUE error is generated if target is a valid target other
than PRIMITIVES_GENERATED, TRANSFORM_FEEDBACK_PRIMITIVES_—
WRITTEN, or TRANSFORM_FEEDBACK_STREAM OVERFLOW, and index is not
ZEero.

An INVALID_OPERATION error is generated if id is any of:

® 7€10

the name of an existing query object whose type does not match target

an active query object name for any farget and index

the active query object for conditional rendering (see section 10.9).

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 47

An INVALID_OPERATION error is generated if the active query object
name for farget and index is non-zero.

The command
void BeginQuery(enum target, uint id);
is equivalent to
BeginQueryIndexed (target, 0, id);
The command
void EndQueryIndexed(enum farget, uint index);

marks the end of the sequence of commands to be tracked for the active query
specified by target and index. target and index have the same meaning as for Be-
ginQueryIndexed.

The corresponding active query object is updated to indicate that query results
are not available, and the active query object name for farget and index is reset to
zero. When the commands issued prior to EndQueryIndexed have completed and
a final query result is available, the query object active when EndQueryIndexed
was called is updated to contain the query result and to indicate that the query result
is available.

Errors

An INVALID_ENUM error is generated if target is TIMESTAMP, or is not
one of the query object targets described in section 4.2.1.

An INVALID_VALUE error is generated if tar-
get is PRIMITIVES_GENERATED TRANSFORM_FEEDBACK_PRIMITIVES_-—
WRITTEN, or TRANSFORM_FEEDBACK_STREAM_OVERFLOW, and index is not
in the range zero to the value of MAX_VERTEX_STREAMS minus one.

An INVALID_VALUE error is generated if targer is a valid target other
than PRIMITIVES_GENERATED, TRANSFORM_FEEDBACK_PRIMITIVES_-—
WRITTEN, or TRANSFORM_FEEDBACK_STREAM OVERFLOW, and index is not
ZEero.

An INVALID_OPERATION error is generated if the active query object
name for farget and index is zero.

The command

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 48

void EndQuery(enum target);
is equivalent to
EndQuerylIndexed (target, O0);

Query objects contain two pieces of state: a single bit indicating whether a
query result is available, and an integer containing the query result value. The
number of bits, n, used to represent the query result is implementation-dependent
and may be determined as described in section 4.2.3. The initial state of a query
object depends on whether it was created with CreateQueries or BeginQuerylIn-
dexed, as described above.

If the query result overflows (exceeds the value 2™ — 1), its value becomes
undefined. It is recommended, but not required, that implementations handle this
overflow case by saturating at 2’ — 1 and incrementing no further.

The necessary state for each possible active query farget and index is an un-
signed integer holding the active query object name (zero if no query object is ac-
tive), and any state necessary to keep the current results of an asynchronous query
in progress. Only a single type of occlusion query can be active at one time, so the
required state for occlusion queries is shared.

4.2.3 Query Object Queries

The command
boolean IsQuery(uint id);

returns TRUE if id is the name of a query object. If id is zero, or if id is a non-zero
value that is not the name of a query object, IsQuery returns FALSE.
Information about an active query object may be queried with the command

void GetQueryIndexediv(enum farget, uint index,
enum pname, int *params);

target and index specify the active query, and have the same meaning as for Begin-
QueryIndexed.

If pname is CURRENT_QUERY, the name of the currently active query object for
target and index, or zero if no query is active, will be placed in params. If target is
TIMESTAMP, zero is always returned.

If pname is QUERY_COUNTER_BITS, index is ignored and the implementation-
dependent number of bits used to hold the query result for farget will be placed in

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 49

params. The number of query counter bits may be zero, in which case the counter
contains no useful information.

For primitive queries (PRIMITIVES_GENERATED and TRANSFORM_-
FEEDBACK_PRIMITIVES_WRITTEN) if the number of bits is non-zero, the
minimum number of bits allowed is 32.

For transform feedback overflow queries (TRANSFORM_—
FEEDBACK_OVERFLOW and TRANSFORM_FEEDBACK_STREAM_OVERFLOW) if the
number of bits is non-zero, the minimum number of bits is 1.

For occlusion queries with target ANY_SAMPLES_PASSED oOr ANY_ -
SAMPLES_PASSED_CONSERVATIVE, if the number of bits is non-zero, the min-
imum number of bits is 1. For occlusion queries with farget SAMPLES_PASSED, if
the number of bits is non-zero, the minimum number of bits allowed is 32.

For timer queries (target TIME_ELAPSED and TIMESTAMP), if the number of
bits is non-zero, the minimum number of bits allowed is 30. This will allow at least
one second of timing.

For pipeline statistics queries (target VERTICES_SUBMITTED,

PRIMITIVES_SUBMITTED, VERTEX_SHADER_INVOCATIONS, TESS_ -
CONTROL_SHADER_PATCHES, TESS_EVALUATION_SHADER_INVOCATIONS,
GEOMETRY_SHADER_INVOCATIONS, FRAGMENT_SHADER_INVOCATIONS,
COMPUTE_SHADER_INVOCATIONS, GEOMETRY_SHADER_PRIMITIVES_-—

EMITTED, CLIPPING_INPUT_PRIMITIVES, and CLIPPING_OUTPUT_-
PRIMITIVES), if the number of bits is non-zero, the minimum number of bits
allowed is 32.

Errors

An INVALID_ENUM error is generated if target is not one of the query
object targets described in section 4.2.1.

An INVALID_VALUE error is generated if tar-
get is PRIMITIVES_GENERATED, TRANSFORM_FEEDBACK_PRIMITIVES_-
WRITTEN, or TRANSFORM FEEDBACK_ STREAM OVERFLOW, and index is not
in the range zero to the value of MAX_VERTEX_STREAMS minus one.

An INVALID_VALUE error is generated if target is a valid target other
than PRIMITIVES_GENERATED, TRANSFORM FEEDBACK_ PRIMITIVES -
WRITTEN, or TRANSFORM_FEEDBACK_STREAM OVERFLOW, and index is not
Zero.

An INVALID_ENUM error is generated if pname is not CURRENT_QUERY
or QUERY COUNTER_BITS.

The command

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 50

void GetQueryiv(enum farget, enum pname, int *params);
is equivalent to
GetQuerylIndexediv (target, 0, pname, params);
The state of a query object may be queried with the commands

void GetQueryObjectiv(uint id, enum pname,
int *params);

void GetQueryObjectuiv(uint id, enum pname,
uint *params);

void GetQueryObjecti64v(uint id, enum pname,
int 64 *params);

void GetQueryObjectui64v(uint id, enum pname,
uint 64 *params);

void GetQueryBufferObjectiv(uint id, uint buffer,
enum pname, intptr offset);

void GetQueryBufferObjectuiv(uint id, uint buffer,
enum pname, intptr offset);

void GetQueryBufferObjecti6dv(uint id, uint buffer,
enum pname, intptr offset);

void GetQueryBufferObjectui6dv(uint id, uint buffer,
enum pname, intptr offset);

id is the name of a query object.

For GetQueryBufferObject*, buffer is the name of a buffer object and offset
is an offset into buffer at which the queried value is written.

For GetQueryObject*, the queried value may be returned either in client
memory or in a buffer object. If zero is bound to the current query result buffer
binding point (see QUERY_RESULT in section 6.1), then params is treated as a
pointer into client memory at which the queried value is written. Otherwise,
params is treated as an offset into the query result buffer object at which the queried
value is written.

There may be an indeterminate delay before a query object’s result value is
available. If pname is QUERY_RESULT_AVAILABLE, FALSE is returned if such a
delay would be required; otherwise TRUE is returned. It must always be true that
if any query object returns a result available of TRUE, all queries of the same type
issued prior to that query must also return TRUE. Repeatedly querying QUERY_ -
RESULT_AVAILABLE for any given query object is guaranteed to return TRUE
eventually.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

4.3. TIME QUERIES 51

If pname is QUERY_TARGET, then the target of the query object is returned as
a single integer.

If pname is QUERY_RESULT, then the query object’s result value is returned as
a single integer. If the value is so large in magnitude that it cannot be represented
with the requested type, then the nearest value representable using the requested
type is returned. If the number of query counter bits for farget is zero, then the
result is returned as a single integer with the value zero. Querying QUERY_RESULT
for any given query object forces that query to complete within a finite amount of
time.

If pname is QUERY_RESULT_NO_WATIT, then the query object’s result value is
returned as a single integer if the result is available at the time of the state query. If
the result is not available then the query return value is not written.

If multiple queries are issued using the same object name prior to calling these
query commands, the result and availability information returned will always be
from the last query issued. The results from any queries before the last one will be
lost if they are not retrieved before starting a new query on the same target and id.

Errors

An INVALID_OPERATION error is generated if id is not the name of a
query object, or if the query object named by id is currently active.

An INVALID OPERATION error is generated by GetQueryBufferOb-
ject* if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated if pname is not QUERY RESULT,
QUERY_RESULT_AVAILABLE, QUERY_RESULT_NO_WAIT, or
QUERY_TARGET.

An INVALID_OPERATION error is generated if the query writes to a buffer
object, and the specified buffer offset would cause data to be written beyond
the bounds of that buffer object.

An INVALID_VALUE error is generated by GetQueryBufferObject* if
offset is negative.

4.3 Time Queries

Query objects may also be used to track the amount of time needed to fully com-
plete a set of GL commands (a time elapsed query), or to determine the current
time of the GL (a timer query).

When BeginQuery and EndQuery are called with a target of TIME_ELAPSED,
the GL prepares to start and stop the timer used for time elapsed queries. The timer

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

4.3. TIME QUERIES 52

is started or stopped when the effects from all previous commands on the GL client
and server state and the framebuffer have been fully realized. The BeginQuery and
EndQuery commands may return before the timer is actually started or stopped.
When the time elapsed query timer is finally stopped, the elapsed time (in nanosec-
onds) is written to the corresponding query object as the query result value, and the
query result for that object is marked as available.

A timer query object is created with the command

void QueryCounter(uint id, enum target);

target must be TIMESTAMP. If id is an unused query object name, the name is
marked as used and associated with a new query object of type TIMESTAMP. Oth-
erwise id must be the name of an existing query object of that type.

Alternatively, TIMESTAMP query objects can be created by calling Create-
Queries with target set to TIMESTAMP.

When QueryCounter is called, the GL records the current time into the cor-
responding query object. The time is recorded after all previous commands on
the GL client and server state and the framebuffer have been fully realized. When
the time is recorded, the query result for that object is marked available. Timer
queries can be used within a BeginQuery / EndQuery block where the farget is
TIME_ELAPSED, and it does not affect the result of that query object.

The current time of the GL may be queried by calling GetIntegerv or Get-
Integer64v with the symbolic constant TIMESTAMP. This will return the GL time
after all previous commands have reached the GL server but have not yet neces-
sarily executed. By using a combination of this synchronous get command and the
asynchronous timestamp query object target, applications can measure the latency
between when commands reach the GL server and when they are realized in the
framebuffer.

Errors

An INVALID_ENUM error is generated if target is not TIMESTAMP.
An INVALID_OPERATION error is generated if id is the name of an exist-
ing query object whose type is not TIMESTAMP.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

Chapter 5

Shared Objects and Multiple
Contexts

This chapter describes special considerations for objects shared between multiple
OpenGL contexts, including deletion behavior and how changes to shared objects
are propagated between contexts.

Objects that may be shared between contexts include buffer objects,

program and shader objects, renderbuffer objects, sampler objects, sync ob-
jects, and texture objects (except for the texture objects named zero).

Some of these objects may contain views (alternate interpretations) of part or
all of the data store of another object. Examples are texture buffer objects, which
contain a view of a buffer object’s data store, and texture views, which contain a
view of another texture object’s data store. Views act as references on the object
whose data store is viewed.

Objects which contain references to other objects include framebuffer, program
pipeline, query, transform feedback, and vertex array objects. Such objects are
called container objects and are not shared.

Implementations may allow sharing between contexts implementing differ-
ent OpenGL versions or different profiles of the same OpenGL version (see ap-
pendix E). However, implementation-dependent behavior may result when aspects
and/or behaviors of such shared objects do not apply to, and/or are not described
by more than one version or profile.

53

5.1. OBJECT DELETION BEHAVIOR 54

5.1 Object Deletion Behavior

5.1.1 Side Effects of Shared Context Destruction

The share list is the group of all contexts which share objects. If a shared object
is not explicitly deleted, then destruction of any individual context has no effect
on that object unless it is the only remaining context in the share list. Once the
last context on the share list is destroyed, all shared objects, and all other resources
allocated for that context or share list, will be deleted and reclaimed by the imple-
mentation as soon as possible.

5.1.2 Automatic Unbinding of Deleted Objects

When a buffer, texture, or renderbuffer object is deleted, it is unbound from any
bind points it is bound to in the current context, and detached from any attachments
of container objects that are bound to the current context, as described for Delete-
Buffers, DeleteTextures, and DeleteRenderbuffers. If the object binding was
established with other related state (such as a buffer range in BindBufferRange or
selected level and layer information in FramebufferTexture or BindImageTex-
ture), all such related state are restored to default values by the automatic unbind.
Bind points in other contexts are not affected. Attachments to unbound container
objects, such as deletion of a buffer attached to a vertex array object which is not
bound to the context, are not affected and continue to act as references on the
deleted object, as described in the following section.

5.1.3 Deleted Object and Object Name Lifetimes

When a buffer, texture, sampler, renderbuffer, query, or sync object is deleted, its
name immediately becomes invalid (e.g. is marked unused), but the underlying
object will not be deleted until it is no longer in use.

A buffer, texture, sampler, or renderbuffer object is in use if any of the follow-
ing conditions are satisfied:

o the object is attached to any container object
e the object is bound to a context bind point in any context

e any other object contains a view of the data store of the object.

A sync object is in use while there is a corresponding fence command which
has not yet completed and signaled the sync object, or while there are any GL

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

5.2. SYNC OBJECTS AND MULTIPLE CONTEXTS 55

clients and/or servers blocked on the sync object as a result of ClientWaitSync or
WaitSync commands.

Query objects are in use so long as they are active, as described in section 4.2.

When a shader object or program object is deleted, it is flagged for deletion, but
its name remains valid until the underlying object can be deleted because it is no
longer in use. A shader object is in use while it is attached to any program object.
A program object is in use while it is attached to any program pipeline object or is
a current program in any context.

Caution should be taken when deleting an object while it is in use (as defined
above). Following its deletion, the object’s name may be

returned by Gen* or Create* commands. The underlying

object state and data for such a deleted, but still in use object may still be read
and written by the GL, but cannot be accessed by name. The underlying storage
backing a deleted object will not be reclaimed by the GL until all references to
the object from container object attachment points, context binding points, views,
fence commands, active queries, etc. are removed. Since the name is marked un-
used, binding the name will create a new object with the same name, and attaching
the name will generate an error.

5.2 Sync Objects and Multiple Contexts

When multiple GL clients and/or servers are blocked on a single sync object and
that sync object is signaled, all such blocks are released. The order in which blocks
are released is implementation-dependent.

5.3 Propagating Changes to Objects

GL objects contain two types of information, data and state. Collectively these
are referred to below as the contents of an object. For the purposes of propagating
changes to object contents as described below, data and state are treated consis-
tently.

Data is information the GL implementation does not have to inspect, and does
not have an operational effect. Currently, data consists of:

e Pixels in the framebuffer.

e The contents of the data stores of buffer objects, renderbuffers, and textures.

State determines the configuration of the rendering pipeline, and the GL imple-
mentation does have to inspect it.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

5.3. PROPAGATING CHANGES TO OBJECTS 56

In hardware-accelerated GL implementations, state typically lives in GPU reg-
isters, while data typically lives in GPU memory.

When the contents of an object T are changed, such changes are not always
immediately visible, and do not always immediately affect GL operations involving
that object. Changes may occur via any of the following means:

e State-setting commands, such as TexParameter.
e Data-setting commands, such as TexSubImage* or BufferSubData.

e Data-setting through rendering to renderbuffers or textures attached to a
framebuffer object.

e Data-setting through transform feedback operations followed by an End-
TransformFeedback command.

e Commands that affect both state and data, such as TexImage* and Buffer-
Data.

e Changes to mapped buffer data followed by a command such as Unmap-
Buffer or FlushMappedBufferRange.

e Rendering commands that trigger shader invocations, where the shader per-
forms image or buffer variable stores or atomic operations, or built-in atomic
counter functions.

When T is a texture, the contents of 7 are construed to include the contents of
the data store of T, even if T’s data store was modified via a different view of the
data store.

5.3.1 Determining Completion of Changes to an object

The contents of an object T are considered to have been changed once a command
such as described in section 5.3 has completed. Completion of a command ' may
be determined either by calling Finish, or by calling FenceSync and executing a
WaitSync command on the associated sync object. The second method does not
require a round trip to the GL server and may be more efficient, particularly when
changes to T in one context must be known to have completed before executing
commands dependent on those changes in another context. In cases where a feed-
back loop has been established (see sections 8.6.1, 8.14.2.1, and 9.3, as well as the

!The GL already specifies that a single context processes commands in the order they are received.
This means that a change to an object in a context at time ¢ must be completed by the time a command
issued in the same context at time ¢ + 1 uses the result of that change.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

5.3. PROPAGATING CHANGES TO OBJECTS 57

discussion of rule 1 below in section 5.3.3) the resulting contents of an object may
be undefined.

5.3.2 Definitions

In the remainder of this section, the following terminology is used:

e An object T'is directly attached to the current context if it has been bound to
one of the context binding points. Examples include but are not limited to
bound textures, bound framebuffers, bound vertex arrays, and current pro-
grams.

e T is indirectly attached to the current context if it is attached to another ob-
ject C, referred to as a container object, and C is itself directly or indirectly
attached. Examples include but are not limited to renderbuffers or textures
attached to framebuffers; buffers attached to vertex arrays; and shaders at-
tached to programs.

e An object T which is directly attached to the current context may be re-
attached by re-binding T at the same bind point. An object T which is indi-
rectly attached to the current context may be re-attached by re-attaching the
container object C to which T is attached.

Corollary: re-binding C to the current context re-attaches C and its hierarchy
of contained objects.

5.3.3 Rules

The following rules must be obeyed by all GL implementations:

Rule 1 [f the contents of an object T are changed in the current context while T is
directly or indirectly attached, then all operations on T will use the new contents
in the current context.

Note: The intent of this rule is to address changes in a single context only. The
multi-context case is handled by the other rules.

Note: “Updates” via rendering or transform feedback are treated consistently
with updates via GL commands. Once EndTransformFeedback has been issued,
any subsequent command in the same context that uses the results of the trans-
form feedback operation will see the results. If a feedback loop is setup between
rendering and transform feedback (see section 13.2.3), results will be undefined.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

5.3. PROPAGATING CHANGES TO OBJECTS 58

Rule 2 While a container object C is bound, any changes made to the contents of
C’s attachments in the current context are guaranteed to be seen. To guarantee see-
ing changes made in another context to objects attached to C, such changes must be
completed in that other context (see section 5.3.1) prior to C being bound. Changes
made in another context but not determined to have completed as described in sec-
tion 5.3.1, or after C is bound in the current context, are not guaranteed to be
seen.

Rule 3 Changes to the contents of shared objects are not automatically propa-
gated between contexts. If the contents of a shared object T are changed in a
context other than the current context, and T is already directly or indirectly at-
tached to the current context, any operations on the current context involving T via
those attachments are not guaranteed to use its new contents.

Rule 4 [f the contents of an object T are changed in a context other than the cur-
rent context, T must be attached or re-attached to at least one binding point in the
current context, or at least one attachment point of a currently bound container
object C, in order to guarantee that the new contents of T are visible in the current
context.

Note: “Attached or re-attached” means either attaching an object to a binding
point it wasn’t already attached to, or attaching an object again to a binding point
it was already attached.

Example: If a texture image is bound to multiple texture bind points and the
texture is changed in another context, re-binding the texture at any one of the tex-
ture bind points is sufficient to cause the changes to be visible at all texture bind
points.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

Chapter 6

Buffer Objects

Buffer objects contain a data store holding a fixed-sized allocation of server mem-
ory. This chapter specifies commands to create, manage, and destroy buffer objects.
Specific types of buffer objects and their uses are briefly described together with
references to their full specification.

The command
void GenBuffers(sizei n, uint *buffers);

returns n previously unused buffer object names in buffers. These names are
marked as used, for the purposes of GenBuffers only, but they acquire buffer state
only when they are first bound with BindBuffer (see below), just as if they were
unused.

Errors
An INVALID_VALUE error is generated if # is negative.

In addition to generating an unused name and then binding it to a target with
BindBuffer, a buffer object may also be created with the command

void CreateBuffers(sizei n, uint *buffers);

CreateBuffers returns n previously unused buffer names in buffers, each rep-
resenting a new buffer object initialized as if it had been bound to an unspecified
target.

59

6.1. CREATING AND BINDING BUFFER OBJECTS 60

Errors

An INVALID_VALUE error is generated if # is negative.
Buffer objects are deleted by calling
void DeleteBuffers(sizei n, const uint *buffers);

buffers contains n names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. If any portion of a buffer
object being deleted is mapped in the current context or any context current to
another thread, it is as though UnmapBuffer (see section 6.3.1) is executed in
each such context prior to deleting the data store of the buffer.

Unused names in buffers that have been marked as used for the purposes of
GenBuffers are marked as unused again. Unused names in buffers are silently
ignored, as is the value zero.

Errors
An INVALID_VALUE error is generated if » is negative.
The command
boolean IsBuffer(uint buffer);
returns TRUE if buffer is the name of an buffer object. If buffer is zero, or if buffer is

a non-zero value that is not the name of an buffer object, IsBuffer returns FALSE.

6.1 Creating and Binding Buffer Objects

A buffer object is created by binding to a buffer target. The binding
is effected by calling

void BindBuffer(enum farget, uint buffer);

target must be one of the targets listed in table 6.1. If the buffer object named
buffer has not been previously bound,
the GL creates a new state vector, initialized with a zero-sized memory buffer and
comprising all the state and with the same initial values listed in table 6.2.

Buffer objects created by binding to any of the valid fargets are
formally equivalent, but the GL may make different choices about storage location
and layout based on the initial binding.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.1. CREATING AND BINDING BUFFER OBJECTS 61
Target name Purpose Described in
section(s)
ARRAY_BUFFER Vertex attributes 10.3.9
ATOMIC_COUNTER_BUFFER Atomic counter storage 7.7
COPY_READ_BUFFER Buffer copy source 6.6
COPY_WRITE_BUFFER Buffer copy destination 6.6
DISPATCH_INDIRECT_BUFFER | Indirect compute dispatch commands | 19
DRAW_INDIRECT BUFFER Indirect command arguments 10.3.11
ELEMENT_ARRAY_BUFFER Vertex array indices 10.3.10
PARAMETER_BUFFER Draw parameters 10.4
PIXEL_PACK_BUFFER Pixel read target 18.2,22
PIXEL_UNPACK_BUFFER Texture data source 8.4
QUERY_BUFFER Query result buffer 4223
SHADER_STORAGE_BUFFER Read-write storage for shaders 7.8
TEXTURE_BUFFER Texture data buffer 8.9
TRANSFORM_FEEDBACK_BUFFER | Transform feedback buffer 13.2
UNIFORM_BUFFER Uniform block storage 7.6.2
Table 6.1: Buffer object binding targets.
Name Type Initial Value | Legal Values
BUFFER_SIZE int64 0 any non-negative integer
BUFFER_USAGE enum STATIC_DRAW | STREAM_DRAW, STREAM_READ,
STREAM_COPY, STATIC_DRAW,
STATIC_READ, STATIC_COPY,
DYNAMIC_DRAW, DYNAMIC_READ,
DYNAMIC_COPY
BUFFER_ACCESS enum READ_WRITE | READ_ONLY, WRITE_ONLY,
READ_WRITE
BUFFER_ACCESS_FLAGS int 0 See section 6.3
BUFFER_IMMUTABLE_STORAGE | boolean FALSE TRUE, FALSE
BUFFER_MAPPED boolean FALSE TRUE, FALSE
BUFFER_MAP_POINTER void* NULL address
BUFFER_MAP_OFFSET int64 0 any non-negative integer
BUFFER_MAP_LENGTH inte64 0 any non-negative integer
BUFFER_STORAGE_FLAGS int 0 See section 6.2

Table 6.2: Buffer object parameters and their values.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.1. CREATING AND BINDING BUFFER OBJECTS 62

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding to target is broken.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object. Operations on the target also affect any
other bindings of that object.

If a buffer object is deleted while it is bound, all bindings to that object in
the current context (i.e. in the thread that called DeleteBuffers) are reset to zero.
Bindings to that buffer in other contexts are not affected, and the deleted buffer
may continue to be used at any places it remains bound or attached, as described
in section 5.1.

Initially, each buffer object target is bound to zero.

Errors

An INVALID_ENUM error is generated if zarget is not one of the targets
listed in table 6.1.

An INVALID_OPERATION error is generated by client attempts to modify
or query buffer object state for a target bound to zero, since there is no buffer
object corresponding to the name zero,

6.1.1 Binding Buffer Objects to Indexed Targets

Buffer objects may be created and bound to indexed targets by calling one of the
commands

void BindBufferRange(enum target, uint index,
uint buffer, intptr offset, sizeiptr size);
void BindBufferBase(enum farget, uint index, uint buffer);

target must be one of ATOMIC_COUNTER_BUFFER, SHADER_STORAGE_BUFFER,
TRANSFORM_FEEDBACK_BUFFER or UNIFORM _BUFFER. Additional language
specific to each target is included in sections referred to for each target in table 6.1.

Each rarget represents an indexed array of buffer object binding points, as well
as a single general binding point that can be used by other buffer object manip-
ulation functions, such as BindBuffer or MapBuffer. Both commands bind the
buffer object named by buffer to both the general binding point, and to the binding
point in the array given by index. If the binds are successful no change is made

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.1. CREATING AND BINDING BUFFER OBJECTS 63

to the state of the bound buffer object, and any previous bindings to the general
binding point or to the binding point in the array are broken.

If the buffer object named buffer has not been previously bound,

the GL creates a new state vector, initialized with
a zero-sized memory buffer and comprising all the state and with the same initial
values listed in table 6.2.

For BindBufferRange, offset specifies a starting offset into the buffer object
buffer, and size specifies the amount of data that can be read from or written to
the buffer object while used as an indexed target. Both offset and size are in basic
machine units.

BindBufferBase binds the entire buffer, even when the size of the buffer is
changed after the binding is established. The starting offset is zero, and the amount
of data that can be read from or written to the buffer is determined by the size of
the bound buffer at the time the binding is used.

Regardless of the size specified with BindBufferRange, the GL will never read
or write beyond the end of a bound buffer. In some cases this constraint may result
in visibly different behavior when a buffer overflow would otherwise result, such
as described for transform feedback operations in section 13.2.2.

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed above.

An INVALID_VALUE error is generated if index is greater than or equal
to the number of farget-specific indexed binding points, as described in sec-
tion 6.7.1.

An INVALID_VALUE error is generated by BindBufferRange if offset is
negative.

An INVALID_VALUE error is generated by BindBufferRange if buffer is
non-zero and size is less than or equal to zero.

An INVALID_ VALUE error is generated by BindBufferRange if buffer is
non-zero and offset or size do not respectively satisfy the constraints described
for those parameters for the specified target, as described in section 6.7.1.

The commands

void BindBuffersBase(enum rarget, uint first, sizei count,
const uint *buffers);

void BindBuffersRange(enum rarget, uint first,
sizei count, const uint *buffers, const
intptr *offsets, const sizeiptr *sizes);

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.1. CREATING AND BINDING BUFFER OBJECTS 64

bind count existing buffer objects to bindings numbered first through first +
count — 1 in the array of buffer binding points corresponding to farget. If buffers
is not NULL, it specifies an array of count values, each of which must be zero or
the name of an existing buffer object. For BindBuffersRange, offsets and sizes
specify arrays of count values indicating the range of each buffer to bind. If buffers
is NULL, all bindings from first to first + count — 1 are reset to their unbound
(zero) state. In this case, the offsets and sizes associated with the binding points
are set to default values, ignoring offsets and sizes.
BindBuffersBase is equivalent (assuming no errors are generated) to:

for (i = 0; 1 < count; i++) {
if (buffers == NULL) {
BindBufferBase (target, first + i, 0);
} else {
BindBufferBase (target, first + i, buffers(i]);
}

}

except that the single general buffer binding corresponding to target is unmodified,
and that buffers will not be created if they do not exist.
BindBuffersRange is equivalent (assuming no errors are generated) to:

for (i = 0; i < count; i++) {
if (buffers == NULL) {
BindBufferRange (target, first + i, 0, 0, 0);
} else {

BindBufferRange (target, first + i, buffers[il,
of fsets[i], sizes[i]);

}

except that the single general buffer binding corresponding to target is unmodified,
and that buffers will not be created if they do not exist.

The values specified in buffers, offsets, and sizes will be checked separately for
each binding point. When values for a specific binding point are invalid, the state
for that binding point will be unchanged and an error will be generated. When
such an error occurs, state for other binding points will still be changed if their
corresponding values are valid.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 65

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed above.

An INVALID_OPERATION error is generated if first + count is greater
than the number of target-specific indexed binding points, as described in sec-
tion 6.7.1.

An INVALID_OPERATION error is generated if any value in buffers is not
zero or the name of an existing buffer object.

An INVALID_VALUE error is generated by BindBuffersRange if any
value in offsets is less than zero (per binding).

An INVALID_VALUE error is generated by BindBuffersRange if any
value in sizes is less than or equal to zero (per binding).

An INVALID_VALUE error is generated by BindBuffersRange if any pair
of values in offsets and sizes does not respectively satisfy the constraints
described for those parameters for the specified target, as described in sec-
tion 6.7.1 (per binding).

6.2 Creating and Modifying Buffer Object Data Stores
The data store of a buffer object is created by calling one of

void BufferStorage(enum farget, sizeiptr size, const
void *data, bitfield flags);

void NamedBufferStorage(uint buffer, sizeiptr size,
const void *data, bitfield flags);

For BufferStorage, the buffer object is that bound to farget, which must be one
of the values listed in table 6.1. For NamedBufferStorage, buffer is the name of
the buffer object. size is the size of the data store in basic machine units, and flags
containing a bitfield describing the intended usage of the data store.

The data store of the buffer object is allocated as a result of these commands,
and cannot be de-allocated until the buffer is deleted with a call to DeleteBuffers.
Such a store may not be re-allocated through further calls to *BufferStorage or
BufferData.

data specifies the address in client memory of the data that should be used to
initialize the buffer object’s data store. If data is NULL, the data store of the buffer
object is created, but contains undefined data. Otherwise, data should point to an
array of at least size basic machine units.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 66

flags is the bitwise OR of flags describing the intended usage of the buffer
object’s data store by the application. Valid flags and their meanings are as follows:

DYNAMIC_STORAGE_BIT The contents of the data store may be updated after cre-
ation through calls to BufferSubData. If this bit is not set, the buffer content
may not be directly updated by the client. The data argument may be used
to specify the initial content of the buffer’s data store regardless of the pres-
ence of the DYNAMIC_STORAGE_BIT. Regardless of the presence of this bit,
buffers may always be updated with server-side calls such as CopyBuffer-
SubData and ClearBufferSubData.

MAP_READ_BIT The data store may be mapped by the client for read access and a
pointer in the client’s address space obtained that may be read from.

MAP_WRITE_BIT The data store may be mapped by the client for write access and
a pointer in the client’s address space obtained that may be written to.

MAP_PERSISTENT_BIT The client may request that the server read from or write
to the buffer while it is mapped. The client’s pointer to the data store remains
valid so long as the data store is mapped, even during execution of drawing
or dispatch commands.

MAP_COHERENT_BIT Shared access to buffers that are simultaneously mapped
for client access and are used by the server will be coherent, so long as
that mapping is performed using MapBufferRange or MapNamedBuffer-
Range. That is, data written to the store by either the client or server will
be visible to any subsequently issued GL commands with no further action
taken by the application. In particular,

e If MAP_COHERENT_BIT is not set and the client performs a write fol-
lowed by a call to one of the FlushMapped*BufferRange commands
with a range including the written range, then in subsequent commands
the server will see the writes.

e If MAP_COHERENT_BIT is set and the client performs a write, then in
subsequent commands the server will see the writes.

e If MAP_COHERENT_BIT is not set and the server performs a write, the
application must call MemoryBarrier with the CLIENT_MAPPED_-
BUFFER_BARRIER_BIT set and then call FenceSync with SYNC_—
GPU_COMMANDS_COMPLETE (or Finish). Then the CPU will see the
writes after the sync is complete.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 67

Name Value for Value for
BufferData *BufferStorage
BUFFER_SIZE size size
BUFFER_USAGE usage DYNAMIC_DRAW
BUFFER_ACCESS READ_WRITE READ_WRITE
BUFFER_ACCESS_FLAGS 0 0
BUFFER_IMMUTABLE_STORAGE | FALSE TRUE
BUFFER_MAPPED FALSE FALSE
BUFFER_MAP_POINTER NULL NULL
BUFFER_MAP_OFFSET 0 0
BUFFER_MAP_LENGTH 0 0
BUFFER_STORAGE_FLAGS MAP_READ_BIT | flags
MAP_WRITE_BIT |
DYNAMIC_STORAGE_BIT

Table 6.3: Buffer object state after calling BufferData, BufferStorage, or Named-
BufferStorage.

e If MAP_COHERENT_BIT is set and the server does a write, the applica-
tion must call FenceSync with SYNC_GPU_COMMANDS_COMPLETE (or
Finish). Then the CPU will see the writes after the sync is complete.

CLIENT_STORAGE_BIT When all other criteria for the buffer storage allocation
are met, this bit may be used by an implementation to determine whether to
use storage that is local to the server or to the client to serve as the backing
store for the buffer.

If flags contains MAP_PERSISTENT_BIT, it must also contain at least one of
MAP_READ_BIT or MAP_WRITE_BIT.

It is an error to specify MAP_COHERENT_BIT without also specifying MAP_-
PERSISTENT_BIT.

BufferStorage and NamedBufferStorage delete any existing data store, and
set the values of the buffer object’s state variables as shown in table 6.3.

If any portion of the buffer object is mapped in the current context or any
context current to another thread, it is as though UnmapBuffer (see section 6.3.1)
is executed in each such context prior to deleting the existing data store.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 68

Errors

An INVALID_OPERATION error is generated by BufferStorage if zero is
bound to target.

An INVALID OPERATION error is generated by NamedBufferStorage if
buffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if size is less than or equal to zero.

An INVALID_VALUE error is generated if flags has any bits set other than
those defined above.

An INVALID_VALUE error is generated if flags contains MAP_-
PERSISTENT_BIT but does not contain at least one of MAP_READ_BIT oOr
MAP_WRITE_BIT.

An INVALID_VALUE error is generated if flags contains MAP_-
COHERENT_BIT, but does not also contain MAP_ PERSISTENT_BIT.

An INVALID_OPERATION error is generated if the BUFFER -
IMMUTABLE_STORAGE flag of the buffer bound to farget is TRUE.

A mutable data store may be allocated for a buffer object with the commands

void BufferData(enum target, sizeiptr size, const
void *data, enum usage);

void NamedBufferData(uint buffer, sizeiptr size, const
void *data, enum usage);

For BufferData, the buffer object is that bound to target, which must be one
of the targets listed in table 6.1. For NamedBufferData, buffer is the name of the
buffer object.

size is the size of the data store in basic machine units, data points to the source
data in client memory, and usage indicates the expected application usage pattern
of the data store.

If data is non-NULL, then the source data is copied to the buffer object’s data
store. If data is NULL, then the contents of the buffer object’s data store are unde-
fined.

usage is specified as one of nine enumerated values. In the following descrip-
tions, a buffer’s data store is sourced when if is read from as a result of GL com-
mands which specify images, or invoke shaders accessing buffer data as a result of
drawing commands or compute shader dispatch.

The values are:

STREAM_DRAW The data store contents will be specified once by the application,
and sourced at most a few times.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 69

STREAM_READ The data store contents will be specified once by reading data from
the GL, and queried at most a few times by the application.

STREAM_COPY The data store contents will be specified once by reading data from
the GL, and sourced at most a few times

sTATIC_DRAW The data store contents will be specified once by the application,
and sourced many times.

STATIC_READ The data store contents will be specified once by reading data from
the GL, and queried many times by the application.

STATIC_COPY The data store contents will be specified once by reading data from
the GL, and sourced many times.

DYNAMIC_DRAW The data store contents will be respecified repeatedly by the ap-
plication, and sourced many times.

DYNAMIC_READ The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMIC_coprY The data store contents will be respecified repeatedly by reading
data from the GL, and sourced many times.

usage is provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

BufferData and NamedBufferData delete any existing data store, and set the
values of the buffer object’s state variables as shown in table 6.3.

If any portion of the buffer object is mapped in the current context or any
context current to another thread, it is as though UnmapBuffer (see section 6.3.1)
is executed in each such context prior to deleting the existing data store.

Clients must align data elements consistent with the requirements of the client
platform, with an additional base-level requirement that an offset within a buffer to
a datum comprising [V basic machine units be a multiple of N.

Calling *BufferData is equivalent to calling BufferStorage with rarget, size
and data as specified, and flags set to the logical OR of DYNAMIC_STORAGE_BIT,
MAP_READ_BIT and MAP_WRITE_BIT. The GL will use the value of the usage pa-
rameter to *BufferData as a hint to further determine the intended use of the buffer.
However, BufferStorage allocates immutable storage whereas *BufferData allo-
cates mutable storage. Thus, when a buffer’s data store is allocated through a call
to *BufferData, the buffer’s BUFFER_IMMUTABLE_STORAGE flag is set to FALSE.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 70

Errors

An INVALID_OPERATION error is generated by BufferData if zero is
bound to target.

An INVALID_ OPERATION error is generated by NamedBufferData if
buffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if size is negative.

An INVALID_ENUM error is generated by BufferData if rarget is not one
of the targets listed in table 6.1.

An INVALID_OPERATION error is generated if the BUFFER_-
IMMUTABLE_STORAGE flag of the buffer object is TRUE.

An INVALID_ENUM error is generated if usage is not one of the nine us-
ages described above.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the commands

void BufferSubData(enum farget, intptr offset,
sizeiptr size, const void *data);

void NamedBufferSubData(uint buffer, intptr offset,
sizeiptr size, const void *data);

For BufferSubData, target specifies the target to which the buffer object is
bound, and must be one of the values listed in table 6.1. For NamedBufferSub-
Data, buffer is the name of the buffer object.

offset and size indicate the range of data in the buffer object that is to be re-
placed, in terms of basic machine units. data specifies a region of client memory
size basic machine units in length, containing the data that replace the specified
buffer range.

Errors

An INVALID_OPERATION error is generated by BufferSubData if zero is
bound to target.

An INVALID_OPERATION error is generated by NamedBufferSubData
if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated by BufferSubData if target is not
one of the targets listed in table 6.1.

An INVALID_VALUE error is generated if offset or size is negative, or if
offset + size is greater than the value of BUFFER_SIZE for the buffer object.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 71

An INVALID_OPERATION error is generated if any part of the speci-
fied buffer range is mapped with MapBufferRange or MapBuffer (see sec-
tion 6.3), unless it was mapped with MAP_PERSISTENT_BIT set in the Map-
BufferRange access flags.

An INVALID OPERATION error is generated if the BUFFER -
IMMUTABLE_STORAGE flag of the buffer object is TRUE and the value of
BUFFER_STORAGE_FLAGS for the buffer does not have the DYNAMIC -
STORAGE_BIT set.

6.2.1 Clearing Buffer Object Data Stores

To fill all or part of a buffer object’s data store with constant values, use the com-
mands

void ClearBufferSubData(enum farget, enum internalformat,
intptr offset, sizeiptr size, enum format, enum type,
const void *data);

void ClearNamedBufferSubData(uint buffer,
enum internalformat, intptr offset, sizeiptr size,
enum format, enum type, const void *data);

For ClearBufferSubData, the buffer object is that bound to target, which must
be one of the values listed in table 6.1. For ClearNamedBufferSubData, buffer is
the name of the buffer object.

internalformat must be set to one of the format tokens listed in table 8.24.
format and type specify the format and type of the source data and are interpreted
as described in section 8.4.4.

offset is the offset, measured in basic machine units, into the buffer object’s
data store from which to begin filling, and size is the size, also in basic machine
units, of the range to fill.

data is a pointer to an array of between one and four components containing
the data to be used as the source of the constant fill value. The elements of data
are converted by the GL into the format specified by internalformat in the manner
described in section 2.2.1, and then used to fill the specified range of the destination
buffer. If data is NULL, then the pointer is ignored and the sub-range of the buffer
is filled with zeros.

Errors

An INVALID_ENUM error is generated by ClearBufferSubData if rarget

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 72

is not one of the targets listed in table 6.1.

An INVALID_VALUE error is generated by ClearBufferSubData if zero
is bound to target.

An INVALID_OPERATION error is generated by ClearNamedBufferData
if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated if internalformat is not one of the
format tokens listed in table 8.24.

An INVALID_VALUE error is generated if offset or size are not multiples
of the number of basic machine units for the internal format specified by infer-
nalformat. This value may be computed by multiplying the number of com-
ponents for internalformat from table 8.24 by the size of the base type from
that table.

An INVALID_VALUE error is generated if offset or size is negative, or if
offset + size is greater than the value of BUFFER_SIZE for the buffer object.

An INVALID_OPERATION error is generated if any part of the speci-
fied buffer range is mapped with MapBufferRange or MapBuffer (see sec-
tion 6.3), unless it was mapped with MAP_PERSISTENT_BIT set in the Map-
BufferRange access flags.

An INVALID_VALUE error is generated if fype is not one of the types in
table 8.7.

An INVALID_VALUE error is generated if format is not one of the formats
in table 8.8.

The commands
void ClearBufferData(enum farget, enum internalformat,
enum format, enum type, const void *data);
void ClearNamedBufferData(uint buffer,
enum internalformat, enum format, enum type, const
void *data);
are respectively equivalent to
ClearBufferSubData (target, internalformat, 0, size, format, type, data) ;
and

ClearNamedBufferSubData (bu f fer, internalformat, 0, size, format, type, data);

where size is the value of BUFFER_SIZE for the destination buffer object.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.3. MAPPING AND UNMAPPING BUFFER DATA 73

6.3 Mapping and Unmapping Buffer Data

All or part of the data store of a buffer object may be mapped into the client’s
address space with the commands

void *MapBufferRange(enum target, intptr offset,
sizeiptr length, bitfield acesss);

void *MapNamedBufferRange(uint buffer, intptr offset,
sizeiptr length, bitfield access);

For MapBufferRange, the buffer object is that bound to farget, which must be
one of the values listed in table 6.1. For MapNamedBufferRange, buffer is the
name of the buffer object.

offset and length indicate the range of data in the buffer object that is to be
mapped, in terms of basic machine units. access is a bitfield containing flags which
describe the requested mapping. These flags are described below.

If no error occurs, a pointer to the beginning of the mapped range is returned
once all pending operations on that buffer have completed, and may be used to
modify and/or query the corresponding range of the buffer, according to the fol-
lowing flag bits set in access:

e MAP_READ_BIT indicates that the returned pointer may be used to read
buffer object data. No GL error is generated if the pointer is used to query
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

e MAP_WRITE_BIT indicates that the returned pointer may be used to modify
buffer object data. No GL error is generated if the pointer is used to modify
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

e MAP PERSISTENT_BIT indicates that it is not an error for the GL to read
data from or write data to the buffer while it is mapped (see section 6.3.2).
If this bit is set, the value of BUFFER_STORAGE_FLAGS for the buffer being
mapped must include MAP_PERSISTENT_BIT.

e MAP_COHERENT_BIT indicates that the mapping should be performed co-
herently. That is, such a mapping follows the rules set forth in section 6.2.
If this bit is set, the value of BUFFER_STORAGE_FLAGS for the buffer being
mapped must include MAP_COHERENT_BTT.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.3. MAPPING AND UNMAPPING BUFFER DATA 74

If no error occurs, the pointer values returned by Map*BufferRange must
reflect an allocation aligned to the value of MIN_MAP_BUFFER_ALIGNMENT basic
machine units. Subtracting offset basic machine units from the returned pointer
will always produce a multiple of the value of MIN_MAP_BUFFER_ALIGNMENT.

The returned pointer values may not be passed as parameter values to GL com-
mands. For example, they may not be used to specify array pointers, or to specify or
query pixel or texture image data; such actions produce undefined results, although
implementations may not check for such behavior for performance reasons.

Mappings to the data stores of buffer objects may have nonstandard perfor-
mance characteristics. For example, such mappings may be marked as uncacheable
regions of memory, and in such cases reading from them may be very slow. To en-
sure optimal performance, the client should use the mapping in a fashion consistent
with the values of BUFFER_USAGE and access. Using a mapping in a fashion in-
consistent with these values is liable to be multiple orders of magnitude slower
than using normal memory.

The following optional flag bits in access may be used to modify the mapping:

e MAP_INVALIDATE_RANGE_BIT indicates that the previous contents of the
specified range may be discarded. Data within this range are undefined with
the exception of subsequently written data. No GL error is generated if sub-
sequent GL operations access unwritten data, but the result is undefined and
system errors (possibly including program termination) may occur. This flag
may not be used in combination with MAP_READ_BIT.

e MAP_INVALIDATE_BUFFER_BIT indicates that the previous contents of the
entire buffer may be discarded. Data within the entire buffer are undefined
with the exception of subsequently written data. No GL error is generated if
subsequent GL operations access unwritten data, but the result is undefined
and system errors (possibly including program termination) may occur. This
flag may not be used in combination with MAP_READ_BIT.

e MAP_FLUSH_EXPLICIT_BIT indicates that one or more discrete subranges
of the mapping may be modified. When this flag is set, modifications to
each subrange must be explicitly flushed by calling FlushMappedBuffer-
Range. No GL error is set if a subrange of the mapping is modified and
not flushed, but data within the corresponding subrange of the buffer are un-
defined. This flag may only be used in conjunction with MAP_WRITE_BIT.
When this option is selected, flushing is strictly limited to regions that are
explicitly indicated with calls to FlushMappedBufferRange prior to un-
map; if this option is not selected UnmapBuffer will automatically flush the
entire mapped range when called.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.3. MAPPING AND UNMAPPING BUFFER DATA 75

Name Value
BUFFER_ACCESS Depends on access'
BUFFER_ACCESS_FLAGS | access
BUFFER_MAPPED TRUE
BUFFER_MAP_POINTER | pointer to the data store
BUFFER_MAP_OFFSET offset
BUFFER_MAP_LENGTH length

Table 6.4: Buffer object state set by MapBufferRange and MapNamedBuffer-
Range.

! BUFFER_ACCESS is set to READ_ONLY, WRITE_ONLY, or READ_WRITE if access
& (MAP_READ_BIT|MAP_WRITE_BIT) is respectively MAP_READ BIT, MAP_-
WRITE_BIT, or MAP_READ_BIT|MAP_WRITE_ BIT.

e MAP_UNSYNCHRONIZED_BIT indicates that the GL should not attempt
to synchronize pending operations on the buffer prior to returning from
Map*BufferRange. No GL error is generated if pending operations which
source or modify the buffer overlap the mapped region, but the result of such
previous and any subsequent operations is undefined.

A successful Map*BufferRange sets buffer object state values as shown in
table 6.4.

Errors

If an error occurs, a NULL pointer is returned.

An INVALID_ENUM error is generated by MapBufferRange if target is
not one of the valid targets listed above.

An INVALID_OPERATION error is generated by MapBufferRange if zero
is bound to rarget.

An INVALID_OPERATION error is generated by MapNamedBuffer-
Range if buffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if offset or length is negative, if
offset + length is greater than the value of BUFFER_STZE, or if access has
any bits set other than those defined above.

An INVALID_OPERATION error is generated for any of the following con-
ditions:

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.3. MAPPING AND UNMAPPING BUFFER DATA 76

length is zero.
e The buffer is already in a mapped state.
e Neither MAP_ READ_BIT nor MAP_WRITE_BIT is set.

e MAP READ BIT is set and any of MAP_INVALIDATE RANGE_BIT,
MAP_ INVALIDATE_BUFFER_BIT, or MAP_UNSYNCHRONIZED_ BIT is
set.

e MAP FLUSH_EXPLICIT_BIT is set and MAP_ WRITE_BIT is not set.

e Any of MAP_READ_BIT, MAP_WRITE_BIT, MAP_PERSISTENT_BIT,
or MAP_ COHERENT_BIT are set, but the same bit is not set in the buffer’s
storage flags.

No error is generated if memory outside the mapped range is modified
or queried, but the result is undefined and system errors (possibly including
program termination) may occur.

The entire data store of a buffer object can be mapped into the client’s address
space with the commands

void *MapBuffer(enum farget, enum access);
void *MapNamedBuffer(uint buffer, enum access);

These commands are respectively equivalent to
MapBufferRange (target, 0, length, flags);
and
MapNamedBufferRange (bu f fer, 0, length, flags);

where length is equal to the value of BUFFER_SIZE for the target buffer and
flagsisequal to

e MAP_READ_BIT, if access is READ_ONLY
e MAP_WRITE_BIT, if access is WRITE_ONLY

e MAP_READ_BIT | MAP_WRITE_BIT, if access is READ_WRITE.

The pointer value returned by MapBuffer and MapNamedBuffer must be
aligned to the value of MIN_MAP_BUFFER_ALIGNMENT basic machine units.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.3. MAPPING AND UNMAPPING BUFFER DATA 77

Errors

An INVALID_ENUM error is generated if access is not READ_ONLY,
WRITE_ONLY, Oor READ_WRITE.

Other errors are generated as described above for MapBufferRange and
MapNamedBufferRange.

If a buffer object is mapped with the MAP_FLUSH_EXPLICIT_BIT flag, mod-
ifications to the mapped range may be indicated with the commands

void FlushMappedBufferRange(enum rarget, intptr offset,
sizeiptr length);

void FlushMappedNamedBufferRange(uint buffer,
intptr offset, sizeiptr length);

For FlushMappedBufferRange, the buffer object is that bound to farget,
which must be one of the targets listed in table 6.1. For FlushMappedNamed-
BufferRange, buffer is the name of the buffer object.

offset and length indicate a modified subrange of the mapping, in basic machine
units. The specified subrange to flush is relative to the start of the currently mapped
range of the buffer object. FlushMapped*BufferRange may be called multiple
times to indicate distinct subranges of the mapping which require flushing.

If a buffer range is mapped with both MAP_PERSISTENT_BIT and MAP_-
FLUSH_EXPLICIT_BIT set, then FlushMapped*BufferRange may be called to
ensure that data written by the client into the flushed region becomes visible to the
server. Data written to a coherent store will always become visible to the server
after an unspecified period of time.

Errors

An INVALID_ENUM error is generated by FlushMappedBufferRange if
target is not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by FlushMappedBuffer-
Range if zero is bound to farget.

An INVALID_OPERATION error is generated by FlushMappedNamed-
BufferRange if buffer is not the name of an existing buffer object.

An INVALID_OPERATION error is generated if the buffer object is not
mapped, or is mapped without the MAP_FLUSH_EXPLICIT_BIT flag.

An INVALID_VALUE error is generated if offset or length is negative, or if
offset + length exceeds the size of the mapping.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.3. MAPPING AND UNMAPPING BUFFER DATA 78

6.3.1 Unmapping Buffers

After the client has specified the contents of a mapped range of a buffer object, and
before the data in that range are dereferenced by any GL commands, the mapping
must be relinquished with one of the commands

boolean UnmapBuffer(enum rarget);
boolean UnmapNamedBuffer(uint buffer);

For UnmapBuffer, the buffer object is that bound to farget, which must be one
of the targets listed in table 6.1. For UnmapNamedBuffer, buffer is the name of
the buffer object.

Unmapping a mapped buffer object invalidates the pointer to its data store and
sets the object’s BUFFER_MAPPED, BUFFER_MAP_POINTER, BUFFER_ACCESS_—
FLAGS, BUFFER_MAP_OFFSET, and BUFFER_MAP_LENGTH state variables to the
initial values shown in table 6.3.

Unmap*Buffer returns TRUE unless data values in the buffer object’s data store
have become corrupted during the period that the buffer object was mapped. Such
corruption can be the result of a screen resolution change or other window system-
dependent event that causes system heaps such as those for high-performance
graphics memory to be discarded. GL implementations must guarantee that such
corruption can occur only during the periods that a buffer object’s data store is
mapped. If such corruption has occurred, Unmap*Buffer return FALSE, and the
contents of the data store become undefined.

Unmapping that occurs as a side effect of buffer deletion (see section 5.1.2) or
reinitialization by BufferData is not an error.

Buffer mappings are buffer object state, and are not affected by whether or not
a context owing a buffer object is current.

If an error is generated, FALSE is returned.

Errors

An INVALID_ ENUM error is generated by UnmapBuffer if rarger is not
one of the targets listed in table 6.1.

An INVALID_ OPERATION error is generated by UnmapBuffer if zero is
bound to target.

An INVALID_ OPERATION error is generated by UnmapNamedBuffer if
buffer is not the name of an existing buffer object.

An INVALID_OPERATION error is generated if the buffer object’s data
store is already in the unmapped state.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.4. EFFECTS OF ACCESSING OUTSIDE BUFFER BOUNDS 79

6.3.2 Effects of Mapping Buffers on Other GL Commands

Any GL command which attempts to read from, write to, or change the state of
a buffer object may generate an INVALID_OPERATION error if all or part of the
buffer object is mapped, unless it was allocated by a call to *BufferStorage with
the MAP_PERSISTENT_BIT included in flags. However, only commands which
explicitly describe this error are required to do so. If an error is not generated,
such commands will have undefined results and may result in GL interruption or
termination.

6.4 Effects of Accessing Outside Buffer Bounds

Most, but not all GL commands operating on buffer objects will detect attempts to
read from or write to a location in a bound buffer object at an offset less than zero,
or greater than or equal to the buffer’s size. When such an attempt is detected, a
GL error is generated. Any command which does not detect these attempts, and
performs such an invalid read or write, has undefined results, and may result in GL
interruption or termination.

Robust buffer access can be enabled by creating a context with robust access
enabled through the window system binding APIs. When enabled, any command
unable to generate a GL error as described above, such as buffer object accesses
from the active program, will not read or modify memory outside of the data store
of the buffer object and will not result in GL interruption or termination. Out-
of-bounds reads may return values from within the buffer object or zero values.
Out-of-bounds writes may modify values within the buffer object or be discarded.
Accesses made through resources attached to binding points are only protected
within the buffer object from which the binding point is declared. For example,
for an out-of-bounds access to a member variable of a uniform block, the access
protection is provided within the uniform buffer object, and not for the bound buffer
range for this uniform block.

6.5 Invalidating Buffer Data

All or part of the data store of a buffer object may be invalidated by calling

void InvalidateBufferSubData(uint buffer, intptr offset,
sizeiptr length);

with buffer set to the name of the buffer whose data store is being invalidated. offset
and length specify the range of the data in the buffer object that is to be invalidated.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.6. COPYING BETWEEN BUFFERS 80

Data in the specified range have undefined values after calling InvalidateBuffer-
SubData.

Errors

An INVALID_VALUE error is generated if buffer is zero or is not the name
of an existing buffer object.

An INVALID_VALUE error is generated if offset or length is negative, or if
offset + length is greater than the value of BUFFER_STIZE for buffer.

An INVALID_OPERATION error is generated if buffer is currently mapped
by MapBuffer or if the invalidate range intersects the range currently mapped
by MapBufferRange, unless it was mapped with MAP_ PERSTISTENT_BIT set
in the MapBufferRange access flags.

The command
void InvalidateBufferData(uint buffer);

is equivalent to calling InvalidateBufferSubData with offset equal to zero and
length equal to the value of BUFFER_SIZE for buffer.

6.6 Copying Between Buffers

All or part of the data store of a buffer object may be copied to the data store of
another buffer object with the commands

void CopyBufferSubData(enum readTarget, enum writelarget,
intptr readOffset, intptr writeOffset, sizeiptr size);
void CopyNamedBufferSubData(uint readBuffer,
uint writeBuffer, intptr readOffset, intptr writeOffset,
sizeiptr size);

For CopyBufferSubData, readTarget and writeTarget are the targets to which
the source and destination buffers are bound, and each must be one of the targets
listed in table 6.1. For CopyNamedBufferSubData, readBuffer and writeBuffer
are the names of the source and destination buffers, respectively.

While any of these targets may be used, the COPY_READ_BUFFER and COPY_ -
WRITE_BUFFER targets are provided specifically for copies, so that they can be
done without affecting other buffer binding targets that may be in use.

writeOffset and size specify the range of data in the destination buffer object
that is to be replaced, in terms of basic machine units. readOffset and size specify

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.7. BUFFER OBJECT QUERIES 81

the range of data in the source buffer object that is to be copied to the corresponding
region of writeTarget.

Errors

An INVALID_OPERATION error is generated by CopyBufferSubData if
zero is bound to readTarget or writeTarget.

An INVALID_ENUM error is generated by CopyBufferSubData if read-
Target or writeTarget is not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by CopyNamedBufferSub-
Data if readBuffer or writeBuffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if any of readOffset, writeOffset,
or size are negative, if readOffset + size exceeds the size of the source buffer
object, or if write Offset+size exceeds the size of the destination buffer object.

An INVALID VALUE error is generated if the source and destination are
the same buffer object, and the ranges [readOffset, readOffset + size) and
[writeOffset, writeOffset + size) overlap.

An INVALID_OPERATION error is generated if either the source or des-
tination buffer objects is mapped, unless they were mapped with MAP_—
PERSISTENT_BIT set in the Map*BufferRange access flags.

6.7 Buffer Object Queries

To query information about a buffer object, use the commands

void GetBufferParameteriv(enum target, enum pname,
int *data);

void GetBufferParameteri64v(enum target, enum pname,
int 64 *data);

void GetNamedBufferParameteriv(uint buffer,
enum pname, int *data);

void GetNamedBufferParameteri6dv(uint buffer,
enum pname, int64 *data);

For GetBufferParameter*, the buffer object is that bound to farget, which must
be one of the targets listed in table 6.1. For GetNamedBufferParameter®, buffer
is the name of the buffer object.

pname must be one of the buffer object parameters in table 6.2, other than
BUFFER_MAP_POINTER. The value of the specified parameter of the buffer object
bound to target is returned in data.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.7. BUFFER OBJECT QUERIES

Errors

An INVALID_ENUM error is generated by GetBufferParameter* if target
is not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by GetBufferParameter™ if
zero is bound to target.

An INVALID OPERATION error is generated by GetNamedBufferPa-
rameter™ if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated if pname is not one of the buffer
object parameters other than BUFFER_MAP_POINTER.

To query the data store of a buffer object, use the commands

void GetBufferSubData(enum farget, intptr offset,
sizeiptr size, void *data);

void GetNamedBufferSubData(uint buffer, intptr offset,
sizeiptr size, void *data);

For GetBufferSubData, rarget specifies the target to which the source buffer ob-
ject is bound, and must be one of the values listed in table 6.1. For GetNamed-
BufferSubData, buffer specifies the name of the source buffer object.

offset and size indicate the range of data in the source buffer object that is to be
queried, in terms of basic machine units. data specifies a region of client memory,
size basic machine units in length, into which the data is to be retrieved.

Errors

An INVALID_ENUM error is generated by GetBufferSubData if target is
not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by GetBufferSubData if
zero is bound to farget.

An INVALID OPERATION error is generated by GetNamedBufferSub-
Data if buffer is not the name of an existing buffer object.

An INVALID_VALUE error is generated if offset or size is negative, or if
offset + size is greater than the value of BUFFER_SIZE for the source buffer
object.

An INVALID_OPERATION error is generated if the source buffer object is
currently mapped, unless it was mapped with MAP_ PERSISTENT_BIT set in
the Map*BufferRange access flags.

While part or all of the data store of a buffer object is mapped, the pointer to
the mapped range of the data store may be queried with the commands

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

82

6.7. BUFFER OBJECT QUERIES 83

void GetBufferPointerv(enum target, enum pname, const
void **params);

void GetNamedBufferPointerv(uint buffer, enum pname,
const void **params);

For GetBufferPointerv, the buffer object is that bound to target, which must
be one of the targets listed in table 6.1. For GetNamedBufferPointerv, buffer is
the name of the buffer object.

pname must be BUFFER_MAP_POINTER. The single buffer map pointer is re-
turned in params. A NULL pointer value is returned if the buffer object’s data store
is not currently mapped; or if the requesting context did not map the buffer ob-
ject’s data store, and the implementation is unable to support mappings on multiple
clients.

Errors

An INVALID_ENUM error is generated by GetBufferPointerv if rarget is
not one of the targets listed in table 6.1.

An INVALID_OPERATION error is generated by GetBufferPointerv if
zero is bound to farget.

An INVALID_OPERATION error is generated by GetNamedBufferPoint-
erv if buffer is not the name of an existing buffer object.

An INVALID_ENUM error is generated if prname is not BUFFER_MAP_-
POINTER.

6.7.1 Indexed Buffer Object Limits and Binding Queries

Several types of buffer bindings support an indexed array of binding points for
specific use by the GL, in addition to a single generic binding point for general
management of buffers of that type. Each type of binding is described in table 6.5
together with the token names used to refer to each buffer in the array of binding
points, the starting offset of the binding for each buffer in the array, any constraints
on the corresponding offset value passed to BindBufferRange (see section 6.1.1),
the size of the binding for each buffer in the array, any constraints on the corre-
sponding size value passed to BindBufferRange, and the size of the array (the
number of bind points supported).

To query which buffer objects are bound to an indexed array, call GetIntegeri_-
v with target set to the name of the array of binding points. index must be in the
range zero to the number of bind points supported minus one. The name of the
buffer object bound to index is returned in values. If no buffer object is bound for
index, zero is returned in values.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.7. BUFFER OBJECT QUERIES

84

Atomic counter array bindings (see sec. 7.7.2)

binding points
starting offset
offset restriction
binding size

size restriction
no. of bind points

ATOMIC_COUNTER_BUFFER_BINDING
ATOMIC_COUNTER_BUFFER_START

multiple of 4

ATOMIC_COUNTER_BUFFER_SIZE

none

value of MAX ATOMIC_COUNTER_BUFFER_-
BINDINGS

Shader storage array bindings (see sec. 7.8)

binding points
starting offset
offset restriction

binding size
size restriction
no. of bind points

SHADER_STORAGE_BUFFER_BINDING
SHADER_STORAGE_BUFFER_START

multiple of value of SHADER_STORAGE -
BUFFER_OFFSET_ALIGNMENT
SHADER_STORAGE_BUFFER_SIZE

none

value of MAX_ SHADER STORAGE_BUFFER_ -
BINDINGS

Transform feedback array

bindings (see sec. 13.2.2)

binding points
starting offset
offset restriction
binding size

size restriction
no. of bind points

TRANSFORM_FEEDBACK_BUFFER_BINDING
TRANSFORM_FEEDBACK_BUFFER_START
multiple of 4
TRANSFORM_FEEDBACK_BUFFER_SIZE
multiple of 4

value of MAX_ TRANSFORM_FEEDBACK_BUFFERS

Uniform buffer array bindings (see sec. 7.6.3)

binding points
starting offset
offset restriction

binding size
size restriction
no. of bind points

UNIFORM_BUFFER_BINDING
UNIFORM_BUFFER_START

multiple of value of UNIFORM_BUFFER_ -
OFFSET_ALIGNMENT

UNIFORM_BUFFER_SIZE

none

value of MAX_UNIFORM_BUFFER_BINDINGS

Table 6.5: Indexed buffer object limits and binding queries

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

6.8. BUFFER OBJECT STATE 85

To query the starting offset or size of the range of a buffer object binding in
an indexed array, call GetInteger64i_v with rarget set to respectively the starting
offset or binding size name from table 6.5 for that array. index must be in the range
zero to the number of bind points supported minus one. If the starting offset or
size was not specified when the buffer object was bound (e.g. if it was bound with
BindBufferBase), or if no buffer object is bound to the target array at index, zero
is returned .

Errors

An INVALID VALUE error is generated by GetIntegeri_v and GetInte-
ger64i_v if rarget is one of the array binding point names, starting offset
names, or binding size names from table 6.5 and index is greater than or equal
to the number of binding points for target as described in the same table.

6.8 Buffer Object State

The state required to support buffer objects consists of binding names for each of
the buffer targets in table 6.1, and for each of the indexed buffer targets in sec-
tion 6.1.1. The state required for index buffer targets for atomic counters, shader
storage, transform feedback, and uniform buffer array bindings is summarized in
tables 23.57, 23.58, 23.59, and 23.60 respectively.

Additionally, each vertex array has an associated binding so there is a buffer
object binding for each of the

vertex attribute arrays. The initial values for all buffer object
bindings is zero.

The state of each buffer object consists of a buffer size in basic machine units, a
usage parameter, an access parameter, an boolean indicating whether or not buffer
storage is immutable, an unsigned integer storing the flags with which it was allo-
cated, a mapped boolean, two integers for the offset and size of the mapped region,
a pointer to the mapped buffer (NULL if unmapped), and the sized array of basic
machine units for the buffer data.

'A zero size is a sentinel value indicating that the actual binding range size is determined by the
size of the bound buffer at the time the binding is used.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

Chapter 7

Programs and Shaders

This chapter specifies commands to create, manage, and destroy program and
shader objects. Commands and functionality applicable only to specific shader
stages (for example, vertex attributes used as inputs by vertex shaders) are de-
scribed together with those stages in chapters 10 and 15.

A shader specifies operations that are meant to occur on data as it moves
through different programmable stages of the OpenGL processing pipeline, start-
ing with vertices specified by the application and ending with fragments prior to
being written to the framebuffer. The programming language used for shaders is
described in the OpenGL Shading Language Specification.

To use a shader, shader source code is first loaded into a shader object and then
compiled. A shader object corresponds to a stage in the rendering pipeline referred
to as its shader stage or shader type.

Alternatively, pre-compiled shader binary code can be loaded into a shader
object. A SPIR-V module can also be associated with a shader and then spe-
cialized. An implementation must support shader compilation (the boolean
value SHADER_COMPILER must be TRUE). If the integer value of NUM_SHADER_—
BINARY_FORMATS is greater than zero, then shader binary loading is supported.

One or more shader objects are attached to a program object. The program
object is then linked, which generates executable code from all the compiled shader
objects attached to the program. Alternatively, pre-compiled program binary code
may be directly loaded into a program object (see section 7.5).

When program objects are bound to a shader stage, they become the current
program object for that stage. When the current program object for a shader stage
includes a shader of that type, it is considered the active program object for that
stage.

The current program object for all stages may be set at once using a single

86

7.1. SHADER OBJECTS 87

unified program object, or the current program object may be set for each stage
individually using a separable program object where different separable program
objects may be current for other stages. The set of separable program objects
current for all stages are collected in a program pipeline object that must be bound
for use. When a linked program object is made active for one of the stages, the
corresponding executable code is used to perform processing for that stage.

Shader stages including vertex shaders, tessellation control shaders, tessella-
tion evaluation shaders, geometry shaders, fragment shaders, and compute shaders
can be created, compiled, and linked into program objects.

Vertex shaders describe the operations that occur on vertex attributes. Tessel-
lation control and evaluation shaders are used to control the operation of the tes-
sellator, and are described in section 11.2. Geometry shaders affect the processing
of primitives assembled from vertices (see section 11.3). Fragment shaders affect
the processing of fragments during rasterization (see section 15). A single program
object can contain all of these shaders, or any subset thereof.

Compute shaders perform general-purpose computation for dispatched arrays
of shader invocations (see section 19), but do not operate on primitives processed
by the other shader types.

Shaders can reference several types of variables as they execute. Uniforms
are per-program variables that are constant during program execution (see sec-
tion 7.6). Buffer variables (see section 7.8) are similar to uniforms, but are stored
in buffer object memory which may be written to, and is persistent across multiple
shader invocations. Subroutine uniform variables (see section 7.9) are similar to
uniforms but are context state, rather than program object state. Samplers (see sec-
tion 7.10) are a special form of uniform used for texturing (see chapter 8). Images
(see section 7.11) are a special form of uniform identifying a level of a texture to
be accessed using built-in shader functions as described in section 8.26. Output
variables hold the results of shader execution that are used later in the pipeline.
Each of these variable types is described in more detail below.

7.1 Shader Objects

The name space for shader objects is the unsigned integers, with zero reserved for
the GL. This name space is shared with program objects. The following sections
define commands that operate on shader and program objects.

To create a shader object, use the command

uint CreateShader(enum type);

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.1. SHADER OBJECTS 88

type Shader Stage

VERTEX_SHADER Vertex shader
TESS_CONTROL_SHADER Tessellation control shader
TESS_EVALUATION_SHADER | Tessellation evaluation shader

GEOMETRY_SHADER Geometry shader
FRAGMENT_SHADER Fragment shader
COMPUTE_SHADER Compute shader

Table 7.1: CreateShader rype values and the corresponding shader stages.

The shader object is empty when it is created. The fype argument specifies the type
of shader object to be created and must be one of the values in table 7.1 indicating
the corresponding shader stage. A non-zero name that can be used to reference the
shader object is returned.

Errors

An INVALID_ENUM error is generated and zero is returned if fype is not
one of the values in table 7.1.

The command

void ShaderSource(uint shader, sizei count, const
char * const *string, const int *length);

loads source code into the shader object named shader. string is an array of count
pointers to optionally null-terminated character strings that make up the source
code. The length argument is an array with the number of chars in each string (the
string length). If an element in length is negative, its accompanying string is null-
terminated. If length is NULL, all strings in the string argument are considered null-
terminated. The ShaderSource command sets the source code for the shader to
the text strings in the string array. If shader previously had source code loaded into
it, the existing source code is completely replaced. Any length passed in excludes
the null terminator in its count.

The strings that are loaded into a shader object are expected to form the source
code for a valid shader as defined in the OpenGL Shading Language Specification.

If shader was previously associated with a SPIR-V module (via the
ShaderBinary command), that association is broken. Upon successful comple-
tion of this command the SPTIR_V_BINARY state of shader is set to FALSE.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.1. SHADER OBJECTS &9

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_VALUE error is generated if count is negative.

Once the source code for a shader has been loaded, a shader object can be
compiled with the command

void CompileShader(uint shader);

Each shader object has a boolean status, COMPILE_STATUS, that is modified as
a result of compilation. This status may be queried with GetShaderiv (see sec-
tion 7.13). This status will be set to TRUE if shader was compiled without errors
and is ready for use, and FALSE otherwise. Compilation can fail for a variety of
reasons as listed in the OpenGL Shading Language Specification. If Compile-
Shader failed, any information about a previous compile is lost. Thus a failed
compile does not restore the old state of shader.

Changing the source code of a shader object with ShaderSource does not
change its compile status or the compiled shader code.

Each shader object has an information log, which is a text string that is over-
written as a result of compilation. This information log may be queried with Get-
ShaderInfolLog to obtain more information about the compilation attempt (see
section 7.13).

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_OPERATION error is generated if the SPTR_V_BINARY state
of shader is TRUE.

Resources allocated by the shader compiler may be released with the command
void ReleaseShaderCompiler(void);

This is a hint from the application, and does not prevent later use of the shader
compiler. If shader source is loaded and compiled after ReleaseShaderCompiler

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.2. SHADER BINARIES 90

has been called, CompileShader must succeed provided there are no errors in the
shader source.

The range and precision for different numeric formats supported by the shader
compiler may be determined with the command GetShaderPrecisionFormat (see
section 7.13).

Shader objects can be deleted with the command

void DeleteShader(uint shader);

If shader is not attached to any program object, it is deleted immediately. Oth-
erwise, shader is flagged for deletion and will be deleted when it is no longer
attached to any program object. If an object is flagged for deletion, its boolean
status bit DELETE_STATUS is set to true. The value of DELETE_STATUS may be
queried with GetShaderiv (see section 7.13). DeleteShader will silently ignore
the value zero.

Errors

An INVALID_VALUE error is generated if shader is neither zero nor the
name of either a program or shader object.

An INVALID_OPERATION error is generated if shader is not zero and is
the name of a program object.

The command
boolean IsShader(uint shader);

returns TRUE if shader is the name of a shader object. If shader is zero, or a non-
zero value that is not the name of a shader object, IsShader returns FALSE. No
error is generated if shader is not a valid shader object name.

7.2 Shader Binaries
Precompiled shader binaries may be loaded with the command

void ShaderBinary(sizei count, const uint *shaders,
enum binaryformat, const void *binary, sizei length);

shaders contains a list of count shader object handles. Each handle refers to a
unique shader type, and may correspond to any of the shader stages in table 7.1.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.2. SHADER BINARIES 91

binary points to length bytes of pre-compiled binary shader code in client memory,
and binaryformat denotes the format of the pre-compiled code.

The binary image will be decoded according to the extension specification
defining the specified binaryformat.

GL defines an execution environment for shaders created from SPIR-V mod-
ules. To load a SPIR-V binary into GL, set binaryformat to SHADER_BINARY -
FORMAT_SPIR_V. binary should point to the start of a valid SPIR-V module binary
and length should contain the length of that binary, in bytes. Upon successful con-
sumption of the SPIR-V module:

e cach entry of shaders will be associated with that SPIR-V module,

e the SPTR_V_BINARY state of each shader is set to TRUE,

e the coMPILE_STATUS of each of these shaders is set to FALSE,

e any existing source string (specified by ShaderSource) is removed, and
e any information about a previous compile is lost.

Shaders associated with SPIR-V modules must be finalized by calling Special-
izeShader, as described in section 7.2.1.

GL also provides a mechanism to obtain token values for such formats pro-
vided by extensions. The number of binary formats supported can be obtained by
querying the value of NUM_SHADER_BINARY_FORMATS. The list of specific binary
formats supported can be obtained by querying the value of SHADER_BINARY -
FORMATS.

Depending on the types of the shader objects in shaders, ShaderBinary will
individually load binary shaders, or load an executable binary that contains an op-
timized set of shaders stored in the same binary.

Errors

An INVALID_VALUE error is generated if count or length is negative.

An INVALID_ENUM error is generated if binaryformat is not a supported
format returned in SHADER _BINARY FORMATS.

An INVALID_VALUE error is generated if the data pointed to by binary
does not match the specified binaryformat.

An INVALID_VALUE error is generated if any of the handles in shaders is
not the name of either a program or shader object.

An INVALID_OPERATION error is generated if any of the handles in
shaders is the name of a program object.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.2. SHADER BINARIES 92

An INVALID_OPERATION error is generated if binaryformat is not
SHADER_BINARY FORMAT_SPIR V and more than one of the handles in
shaders refers to the same type of shader object.

Additional errors corresponding to specific binary formats may be gener-
ated as specified by the extensions defining those formats.

If ShaderBinary fails, the old state of shader objects for which the binary was
being loaded will not be restored.

Note that if shader binary interfaces are supported, then a GL implementation
may require that an optimized set of shader binaries that were compiled together be
specified to LinkProgram. Not specifying an optimized set may cause LinkPro-
gram to fail.

7.2.1 Shader Specialization

Shaders associated with SPIR-V modules must be specialized before they can be
linked into a program object. It is not necessary to specialize the shader before it
is attached to a program object. Once specialized, a shader may not be special-
ized again without first re-associating the original SPIR-V module with it, through
ShaderBinary.

Specialization does two things:

e Selects the name of the entry point, for that shader’s stage, from the SPIR-V
module.

o Sets the values of all, or a subset of, the specialization constants in the SPIR-
V module.

To specialize a shader created from a SPIR-V module, call:

void SpecializeShader(uint shader, const
char *pEntryPoint, uint numSpecializationConstants,
const uint *pConstantlndex, const
uint *pConstantValue);

shader is the name of a shader object containing unspecialized SPIR-V as
created from a successful call to ShaderBinary to which a SPIR-V module was
passed. pEntryPoint is a pointer to a null-terminated UTF-8 string specifying the
name of the entry point in the SPIR-V module to use for this shader. numSpecial-
izationConstants is the number of specialization constants whose values to set in
this call. pConstantindex is a pointer to an array of numSpecializationConstants

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 93

unsigned integers, each holding the index of a specialization constant in the SPIR-
V module whose value to set. The corresponding entry in pConstantValue is used to
set the value of the specialization constant indexed by the entry in pConstantindex.
Although this array is of unsigned integer, each entry is bitcast to the appropriate
type for the module, and therefore, floating-point constants may be set by includ-
ing their IEEE-754 bit representation in the pConstantValue array. Specialization
constants not referenced by pConstantIndex retain their default values as specified
in the SPIR-V module.

On successful shader specialization, the compile status for shader is set to
TRUE. On failure, the compile status for shader is set to FALSE and additional in-
formation about the cause of the failure may be available in the shader compilation
log. Specialization can fail if the SPIR-V module fails to meet the requirements
listed in appendix C.

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_OPERATION error is generated if the value of SPIR Vv _-
BINARY for shader is not TRUE, or if the shader has already been specialized.

An INVALID_VALUE error is generated if pEntryPoint does not name a
valid entry point for shader.

An INVALID_VALUE error is generated if any element of pConstantIndex
refers to a specialization constant that does not exist in the shader module
contained in shader.

7.3 Program Objects
A program object is created with the command
uint CreateProgram(void);

Program objects are empty when they are created. A non-zero name that can be
used to reference the program object is returned. If an error occurs, zero will be
returned.

To attach a shader object to a program object, use the command

void AttachShader(uint program, uint shader);

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 94

Shader objects may be attached to program objects before source code has
been loaded into the shader object, or before the shader object has been compiled
or specialized. Multiple shader objects of the same type may be attached to a
single program object, and a single shader object may be attached to more than
one program object.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_OPERATION error is generated if shader is already attached
to program.

To detach a shader object from a program object, use the command
void DetachShader(uint program, uint shader);

If shader has been flagged for deletion and is not attached to any other program
object, it is deleted.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID OPERATION error is generated if shader is not attached to
program.

In order to use the shader objects contained in a program object, the program
object must be linked. The command

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 95

void LinkProgram(uint program);

will link the program object named program. Each program object has a boolean
status, LINK_STATUS, that is modified as a result of linking. This status may be
queried with GetProgramiv (see section 7.13). This status will be set to TRUE if a
valid executable is created, and FALSE otherwise.

Linking can fail for a variety of reasons as specified in the OpenGL Shading
Language Specification for source shaders, or if the requirements in appendix C
are not met for SPIR-V shaders, as well as any of the following reasons:

e One or more of the shader objects attached to program are not compiled or
specialized successfully.

e More active uniform or active sampler variables are used in program than
allowed (see sections 7.6, 7.10, and 11.3.3).

e program contains objects to form a tessellation control shader (see sec-
tion 11.2.1), and

— the program is not separable and contains no objects to form a vertex
shader;

— the output patch vertex count is not specified in any compiled tessella-
tion control shader object; or

— the output patch vertex count is specified differently in multiple tessel-
lation control shader objects.

e program contains objects to form a tessellation evaluation shader (see sec-
tion 11.2.3), and

— the program is not separable and contains no objects to form a vertex
shader;

— the tessellation primitive mode is not specified in any compiled tessel-
lation evaluation shader object; or

— the tessellation primitive mode, spacing, vertex order, or point mode is
specified differently in multiple tessellation evaluation shader objects.

e program contains objects to form a geometry shader (see section 11.3), and

— the program is not separable and contains no objects to form a vertex
shader;

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 96

— the input primitive type, output primitive type, or maximum output ver-
tex count is not specified in any compiled geometry shader object; or

— the input primitive type, output primitive type, or maximum output ver-
tex count is specified differently in multiple geometry shader objects.

e program contains objects to form a compute shader (see section 19) and,
— program also contains objects to form any other type of shader.

o All the shader objects attached to program do not have the same value for
the SPTR_V_BINARY state.

If LinkProgram failed, any information about a previous link of that program
object is lost. Thus, a failed link does not restore the old state of program.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

When program objects which have been linked successfully are used for ren-
dering operations, they may access GL state and interface with other stages of the
GL pipeline through active variables and active interface blocks. The GL provides
various commands allowing applications to enumerate and query properties of ac-
tive variables and interface blocks for a specified program. If one of these com-
mands is called with a program for which LinkProgram succeeded, the informa-
tion recorded when the program was linked is returned. If one of these commands is
called with a program for which LinkProgram failed, no error is generated unless
otherwise noted. Implementations may return information on variables and inter-
face blocks that would have been active had the program been linked successfully.
In cases where the link failed because the program required too many resources,
these commands may help applications determine why limits were exceeded. How-
ever, the information returned in this case is implementation-dependent and may be
incomplete. If one of these commands is called with a program for which LinkPro-
gram had never been called, no error is generated unless otherwise noted, and the
program object is considered to have no active variables or interface blocks.

Each program object has an information log that is overwritten as a result of a
link operation. This information log may be queried with GetProgramInfoL og to

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 97

obtain more information about the link operation or the validation information (see
section 7.13).

If a program has been linked successfully by LinkProgram or loaded by Pro-
gramBinary (see section 7.5), it can be made part of the current rendering state
for all shader stages with the command

void UseProgram(uint program);

If program is non-zero, this command will make program the current program ob-
ject. This will install executable code as part of the current rendering state for each
shader stage present when the program was last linked successfully. If UsePro-
gram is called with program set to zero, then there is no current program object.
The command

The executable code for an individual shader stage is taken from the current
program for that stage. If there is a current program object established by Use-
Program, that program is considered current for all stages. Otherwise, if there is
a bound program pipeline object (see section 7.4), the program bound to the ap-
propriate stage of the pipeline object is considered current. If there is no current
program object or bound program pipeline object, no program is current for any
stage. The current program for a stage is considered active if it contains exe-
cutable code for that stage; otherwise, no program is considered active for that
stage. If there is no active program for the vertex or fragment shader stages,

If there is no active program for the tessellation control, tessellation
evaluation, or geometry shader stages, those stages are ignored. If there is no active
program for the compute shader stage, compute dispatches will generate an error.
The active program for the compute shader stage has no effect on the processing of
vertices, geometric primitives, and fragments, and the active program for all other
shader stages has no effect on compute dispatches.

Errors

An INVALID_VALUE error is generated if program is neither zero nor the
name of either a program or shader object.

An INVALID_OPERATION error is generated if program is not zero and is
the name of a shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully. The current rendering state is not modified.

While a program object is in use, applications are free to modify attached
shader objects, compile attached shader objects, attach additional shader objects,

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 98

and detach shader objects. These operations do not affect the link status or exe-
cutable code of the program object.

If LinkProgram or ProgramBinary successfully re-links a program object
that is active for any shader stage, then the newly generated executable code will
be installed as part of the current rendering state for all shader stages where the
program is active. Additionally, the newly generated executable code is made part
of the state of any program pipeline for all stages where the program is attached.

If a program object that is active for any shader stage is re-linked unsuccess-
fully, the link status will be set to FALSE, but any existing executables and associ-
ated state will remain part of the current rendering state until a subsequent call to
UseProgram, UseProgramStages, or BindProgramPipeline removes them from
use. If such a program is attached to any program pipeline object, the existing exe-
cutables and associated state will remain part of the program pipeline object until a
subsequent call to UseProgramStages removes them from use. A program which
has not been linked successfully may not be made part of the current rendering state
by UseProgram or added to program pipeline objects by UseProgramStages until
it is re-linked successfully. If such a program was attached to a program pipeline
at the time of a failed link, its existing executable may still be made part of the
current rendering state indirectly by BindProgramPipeline.

To set a program object parameter, call

void ProgramParameteri(uint program, enum pname,
int value);

pname identifies which parameter to set for program. value holds the value
being set.

If pname is PROGRAM_SEPARABLE, value must be TRUE or FALSE, and indi-
cates whether program can be bound for individual pipeline stages using UsePro-
gramStages after it is next linked.

If pname is PROGRAM_BINARY_RETRIEVABLE_HINT, value must be TRUE or
FALSE, and indicates whether a program binary is likely to be retrieved later, as
described for ProgramBinary in section 7.5.

State set with this command does not take effect until after the next time
LinkProgram or ProgramBinary is called successfully.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.
An INVALID_OPERATION error is generated if program is the name of a

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 99

shader object.

An INVALID_ENUM error is generated if pname is not PROGRAM -
SEPARABLE Oor PROGRAM_BINARY_RETRIEVABLE_HINT.

An INVALID_VALUE error is generated if value is not TRUE or FALSE.

Program objects can be deleted with the command
void DeleteProgram(uint program);

If program is not current for any GL context, is not the active program for any pro-
gram pipeline object, and is not the current program for any stage of any program
pipeline object, it is deleted immediately. Otherwise, program is flagged for dele-
tion and will be deleted after all of these conditions become true. When a program
object is deleted, all shader objects attached to it are detached. DeleteProgram
will silently ignore the value zero.

Errors

An INVALID_VALUE error is generated if program is neither zero nor the
name of either a program or shader object.

An INVALID_OPERATION error is generated if program is not zero and is
the name of a shader object.

The command
boolean IsProgram(uint program);

returns TRUE if program is the name of a program object. If program is zero, or a
non-zero value that is not the name of a program object, IsProgram returns FALSE.
No error is generated if program is not a valid program object name.

The command

uint CreateShaderProgramv(enum type, sizei count,
const char * const *strings);

creates a stand-alone program from an array of null-terminated source code strings
for a single shader type. CreateShaderProgramv is equivalent (assuming no er-
rors are generated) to:

const uint shader = CreateShader (type) ;

if (shader) {
ShaderSource (shader, count, strings, NULL);

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 100

CompileShader (shader) ;
const uint program =
if (program) {
int compiled = FALSE;
GetShaderiv (shader, COMPILE_STATUS, &compiled);
ProgramParameteri (program, PROGRAM_SEPARABLE, TRUE) ;
if (compiled) {
AttachShader (program, shader);
LinkProgram (program) ;
DetachShader (program, shader) ;

CreateProgram () ;

}
append-shader-info-log-to-program-info-log
}
DeleteShader (shader) ;
return program;
} else {
return O;
}

Because no shader is returned by CreateShaderProgramyv and the shader that
is created is deleted in the course of the command sequence, the info log of the
shader object is copied to the program so the shader’s failed info log for the failed
compilation is accessible to the application.

If an error is generated, zero is returned.

Errors

An INVALID_ENUM error is generated if fype is not one of the values in
table 7.1.

An INVALID_VALUE error is generated if count is negative.

Other errors are generated if the supplied shader code fails to compile
and link, as described for the commands in the pseudocode sequence above,
but all such errors are generated without any side effects of executing those
commands.

7.3.1 Program Interfaces

When a program object is made part of the current rendering state, its executable
code may communicate with other GL pipeline stages or application code through
a variety of interfaces. When a program is linked, the GL builds a list of active

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 101

resources for each interface. Examples of active resources include variables, inter-
face blocks, and subroutines used by shader code. Resources referenced in shader
code are considered active unless the compiler and linker can conclusively deter-
mine that they have no observable effect on the results produced by the executable
code of the program. For example, variables might be considered inactive if they
are declared but not used in executable code, used only in a clause of an if state-
ment that would never be executed, used only in functions that are never called, or
used only in computations of temporary variables having no effect on any shader
output. In cases where the compiler or linker cannot make a conclusive determina-
tion, any resource referenced by shader code will be considered active. The set of
active resources for any interface is implementation-dependent because it depends
on various analysis and optimizations performed by the compiler and linker.

If a program is linked successfully, the GL will generate lists of active resources
based on the executable code produced by the link. If a program is not linked suc-
cessfully, the link may have failed for a number of reasons, including cases where
the program required more resources than supported by the implementation. Imple-
mentations are permitted, but not required, to record lists of resources that would
have been considered active had the program linked successfully. If an implemen-
tation does not record information for any given interface, the corresponding list of
active resources is considered empty. If a program has never been linked, all lists
of active resources are considered empty.

The GL provides a number of commands to query properties of the interfaces of
a program object. Each such command accepts a programlinterface token, identify-
ing a specific interface. The supported values for programlinterface are as follows:

e UNIFORM corresponds to the set of active uniform variables (see section 7.6)
used by program.

e UNIFORM_BLOCK corresponds to the set of active uniform blocks (see sec-
tion 7.6) used by program.

e ATOMIC_COUNTER_BUFFER corresponds to the set of active atomic counter
buffer binding points (see section 7.6) used by program.

e PROGRAM_INPUT corresponds to the set of active input variables used by the
first shader stage of program. If program includes multiple shader stages,
input variables from any shader stage other than the first will not be enumer-
ated.

e PROGRAM_OUTPUT corresponds to the set of active output variables (see sec-
tion 11.1.2.1) used by the last shader stage of program. If program includes

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 102

multiple shader stages, output variables from any shader stage other than the
last will not be enumerated.

® VERTEX_SUBROUTINE, TESS_CONTROL_SUBROUTINE, TESS_-
EVALUATION_SUBROUTINE, GEOMETRY_SUBROUTINE, FRAGMENT_-—
SUBROUTINE, and COMPUTE_SUBROUTINE correspond to the set of active
subroutines for the vertex, tessellation control, tessellation evaluation, ge-
ometry, fragment, and compute shader stages of program, respectively (see
section 7.9).

® VERTEX_SUBROUTINE_UNIFORM, TESS_CONTROL_SUBROUTINE_-
UNIFORM, TESS_EVALUATION_SUBROUTINE_UNIFORM,
GEOMETRY_SUBROUTINE_UNIFORM, FRAGMENT_SUBROUTINE_UNIFORM,
and COMPUTE_SUBROUTINE_UNIFORM correspond to the set of active sub-
routine uniform variables used by the vertex, tessellation control, tessellation
evaluation, geometry, fragment, and compute shader stages of program, re-
spectively (see section 7.9).

e TRANSFORM_FEEDBACK_VARYING corresponds to the set of output vari-
ables in the last non-fragment stage of program that would be captured when
transform feedback is active (see section 13.2.3). The resources enumerated
by this query are listed as specified by the most recent call to Transform-
FeedbackVaryings before the last call to LinkProgram. When the resource
names an output array variable either a single element of the array or the
whole array is captured. If the variable name is specified with an array in-
dex syntax "name [x]", name is the name of the array resource and x is
the constant-integer index of the element captured. If the resource name is
an array and has no array index and square bracket, then the whole array is
captured.

e TRANSFORM_FEEDBACK_BUFFER corresponds to the set of active buffer
binding points to which output variables in the TRANSFORM_FEEDBACK_—
VARYING interface are written.

e BUFFER_VARIABLE corresponds to the set of active buffer variables used by
program (see section 7.8).

e SHADER_STORAGE_BLOCK corresponds to the set of active shader storage
blocks used by program (see section 7.8)

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 103

7.3.1.1 Naming Active Resources

When building a list of active variable or interface blocks, resources with aggre-
gate types (such as arrays or structures) may produce multiple entries in the active
resource list for the corresponding interface. Additionally, each active variable, in-
terface block, or subroutine in the list is assigned an associated name string that can
be used by applications to refer to the resource. For interfaces involving variables,
interface blocks, or subroutines, the entries of active resource lists are generated as
follows:

e For an active variable declared as a single instance of a basic type, a single
entry will be generated, using the variable name from the shader source.

e For an active variable declared as an array of basic types (e.g. not an array
of stuctures or an array of arrays), a single entry will be generated, with its
name string formed by concatenating the name of the array and the string
n [O] n .

e For an active variable declared as a structure, a separate entry will be gener-
ated for each active structure member. The name of each entry is formed by
concatenating the name of the structure, the " . " character, and the name of
the structure member. If a structure member to enumerate is itself a structure
or array, these enumeration rules are applied recursively.

e For an active variable declared as an array of an aggregate data type (struc-
tures or arrays), a separate entry will be generated for each active array el-
ement, unless noted immediately below. The name of each entry is formed
by concatenating the name of the array, the " [" character, an integer identi-
fying the element number, and the "] " character. These enumeration rules
are applied recursively, treating each enumerated array element as a separate
active variable.

e For an active shader storage block member declared as an array of an aggre-
gate type, an entry will be generated only for the first array element, regard-
less of its type. Such block members are referred to as fop-level arrays. If the
block member is an aggregate type, the enumeration rules are then applied
recursively.

e For an active interface block not declared as an array of block instances, a
single entry will be generated, using the block name from the shader source.

e For an active interface block declared as an array of arrays, a separate en-
try will be generated for each active instance. The name of each instance is

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 104

formed by concatenating the block name, the " [" character, an integer iden-
tifying the instance number, and the "] " character. These enumeration rules
are applied recursively, treating each enumerated array element as a separate
active interface block.

e For an active subroutine, a single entry will be generated, using the subrou-
tine name from the shader source.

When an integer array element or block instance number is part of the name
string, it will be specified in decimal form without a "+" or "-" sign or any
extra leading zeroes. Additionally, the name string will not include white space
anywhere in the string.

For shaders constructed from SPIR-V binaries (that is with a state of SPTR_—
V_BINARY equal to TRUE), variables may not have names associated with them,
as the OpName and OpMemberName debug instructions are optional and may not
be present in a SPIR-V module. When the Op*Name instructions are present, it is
implementation-dependent if these are reported via the name reflection APIs. If
no name reflection information is available, the name string associated with each
active variable is the empty string (" "). In this case, any queries that operate with
a name as input will return INVALID_INDEX or -1 as appropriate, and any queries
that return information about the name of a resource will report a name length of
one (for the null character) and return an empty string with a length of zero.

The order of the active resource list is implementation-dependent for all
interfaces except for TRANSFORM_FEEDBACK_VARYING. If variables in the
TRANSFORM_FEEDBACK_VARYING interface were specified using the Transform-
FeedbackVaryings command, the active resource list will be arranged in the vari-
able order specified in the most recent call to TransformFeedbackVaryings be-
fore the last call to LinkProgram. If variables in the TRANSFORM_FEEDBACK_—
VARYING interface were specified using 1ayout qualifiers in shader code, the or-
der of the active resource list is implementation-dependent.

For the ATOMIC_COUNTER_BUFFER interface, the list of active buffer binding
points is built by identifying each unique binding point associated with one or more
active atomic counter uniform variables. Active atomic counter buffers do not have
an associated name string.

For the UNIFORM, PROGRAM_INPUT, PROGRAM_OUTPUT, and TRANSFORM_-
FEEDBACK_VARYING interfaces, the active resource list will include all active vari-
ables for the interface, including any active built-in variables.

For PROGRAM_INPUT and PROGRAM_OUTPUT interfaces for shaders that re-
cieve or produce patch primitves, the active resource list will include both per-
vertex and per-patch inputs and outputs.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 105

For the TRANSFORM_FEEDBACK_BUFFER interface, the list of active buffer
binding points is built by identifying each unique binding point to which one or
more active output variables will be written in transform feedback mode. Active
transform feedback buffers do not have an associated name string.

For the TRANSFORM_FEEDBACK_VARYING interface, the active resource
list will include entries for the special variable names gl_NextBuffer,
gl_SkipComponentsl, gl_SkipComponents2, gl_SkipComponents3, and
gl_SkipComponents4 (see section 11.1.2.1). These variables are used to control
how output values are written to transform feedback buffers. When enumerating
the properties of such resources, these variables are considered to have a TYPE of
NONE and an ARRAY_SIZE of 0 (gl_NextBuffer), 1, 2, 3, and 4, respectively.

When a program is linked successfully, active variables in the UNIFORM,
PROGRAM_INPUT, PROGRAM_OUTPUT, or any of the subroutine uniform interfaces,
are assigned one or more signed integer locations. These locations can be used
by commands to assign values to uniforms and subroutine uniforms, to identify
generic vertex attributes associated with vertex shader inputs, or to identify frag-
ment color output numbers and indices associated with fragment shader outputs.
For such variables declared as arrays, separate locations will be assigned to each ac-
tive array element and are not required to be sequential. The location for "a[1]1"
may or may not be equal to the location for "a [0]" +1. Furthermore, since un-
used elements at the end of uniform arrays may be trimmed, the location of the
¢ + 1’th array element may not be valid even if the location of the i’th element
is valid. As a direct consequence, the value of the location of "a[0]" +1 may
refer to a different uniform entirely. Applications that wish to set individual array
elements should query the locations of each element separately.

Not all active variables are assigned valid locations; the following variables
will have an effective location of -1:

e uniforms declared as atomic counters
e members of a uniform block
e built-in inputs, outputs, and uniforms (starting with g1_)

e inputs (except for vertex shader inputs) not declared with a location
layout qualifier

e outputs (except for fragment shader outputs) not declared with a location
layout qualifier

If a program has not been linked successfully, no locations will be assigned.
The command

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 106

void GetProgramlInterfaceiv(uint program,
enum programlnterface, enum pname, int *params);

queries a property of the interface programinterface in program program, returning
its value in params. The property to return is specified by pname.

If pname is ACTIVE_RESOURCES, the value returned is the number of re-
sources in the active resource list for programinterface. If the list of active re-
sources for programlnterface is empty, zero is returned.

If pname is MAX_NAME_LENGTH, the value returned is the length of the longest
active name string for an active resource in programlinterface. This length includes
an extra character for the null terminator. If the list of active resources for pro-
gramlInterface is empty, zero is returned.

If pname is MAX_NUM_ACTIVE_VARIABLES, the value returned is the num-
ber of active variables belonging to the interface block or atomic counter buffer
resource in programlinterface with the most active variables. If the list of active
resources for programlnterface is empty, zero is returned.

If pname is MAX_NUM_COMPATIBLE_SUBROUTINES, the value returned is the
number of compatible subroutines for the active subroutine uniform in program-
Interface with the most compatible subroutines. If the list of active resources for
programlinterface is empty, zero is returned.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_ENUM error is
generated if pname is not ACTIVE_RESOURCES, MAX_NAME_LENGTH, MAX_—
NUM_ACTIVE_VARIABLES, or MAX_NUM_COMPATIBLE_SUBROUTINES.

An INVALID_OPERATION error is generated if pname is MAX_ -
NAME_LENGTH and programlnterface is ATOMIC_COUNTER BUFFER Or
TRANSFORM_FEEDBACK_BUFFER, since active atomic counter and transform
feedback buffer resources are not assigned name strings.

An INVALID_OPERATION error is generated if pname is MAX_NUM -
ACTIVE_VARIABLES and programlinterface is not ATOMIC_COUNTER_ —
BUFFER, SHADER_STORAGE_BLOCK, TRANSFORM_FEEDBACK_BUFFER, Or

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 107

UNIFORM_BLOCK.

An INVALID_OPERATION error is generated if pname is MAX_ -
NUM_COMPATIBLE_SUBROUTINES and programlinterface is not VERTEX_ —
SUBROUTINE_-

UNIFORM, TESS_CONTROL_SUBROUTINE_UNIFORM, TESS_EVALUATION_ -
SUBROUTINE_UNIFORM, GEOMETRY_SUBROUTINE_UNIFORM, FRAGMENT_ -
SUBROUTINE_UNIFORM, or COMPUTE_SUBROUTINE_UNIFORM.

Each entry in the active resource list for an interface is assigned a unique un-
signed integer index in the range zero to N — 1, where NV is the number of entries
in the active resource list. The command

uint GetProgramResourcelndex(uint program,
enum programlinterface, const char *name);

returns the unsigned integer index assigned to a resource named name in the inter-
face type programlinterface of program object program.

If name exactly matches the name string of one of the active resources for
programlnterface, the index of the matched resource is returned.

e For TRANSFORM_FEEDBACK_VARYING resources, name must match one of
the variables to be captured as specified by a previous call to Transform-
FeedbackVaryings, other than the special names gl_NextBuffer, gl_-
SkipComponentsl, gl_SkipComponents2, gl_SkipComponents3,
and gl_SkipComponents4 (see section 11.1.2.1). Otherwise, INVALID_—
INDEX is returned.

e For all other resource types, if name would exactly match the name string
of an active resource if " [0]" were appended to name, the index of the
matched resource is returned. Otherwise, name is considered not to be the
name of an active resource, and INVALID_ INDEX is returned. Note that if an
interface enumerates a single active resource list entry for an array variable
(e.g., "a[0]"), a name identifying any array element other than the first
(e.g., "a[1l]")is not considered to match.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 108

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_ENUM error is generated if programlinterface is ATOMIC_-—
COUNTER_BUFFER or TRANSFORM_FEEDBACK_BUFFER, since active atomic
counter and transform feedback buffer resources are not assigned name strings.

If name does not match a resource as described above, the value
INVALID_INDEX is returned, but no GL error is generated.

The command

void GetProgramResourceName(uint program,
enum programlnterface, uint index, sizei bufSize,
sizei *length, char *name);

returns the name string assigned to the single active resource with an index of index
in the interface programlinterface of program object program.

The name string assigned to the active resource identified by index is returned
as a null-terminated string in name. The actual number of characters written into
name, excluding the null terminator, is returned in length. If length is NULL,
no length is returned. The maximum number of characters that may be written
into name, including the null terminator, is specified by bufSize. If the length of
the name string (including the null terminator) is greater than bufSize, the first
bufSize — 1 characters of the name string will be written to name, followed by a
null terminator. If bufSize is zero, no error is generated but no characters will be
written to name. The length of the longest name string for programlinterface, in-
cluding a null terminator, may be queried by calling GetProgramInterfaceiv with
a pname of MAX_NAME_LENGTH.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_ENUM error is generated if programlinterface is ATOMIC_ -
COUNTER_BUFFER or TRANSFORM_FEEDBACK_BUFFER, since active atomic
counter and transform feedback buffer resources are not assigned name strings.

An INVALID_VALUE error is generated if index is greater than or equal to

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 109

the number of entries in the active resource list for programlinterface.
An INVALID_VALUE error is generated if bufSize is negative.

The command

void GetProgramResourceiv(uint program,
enum programlnterface, uint index, sizei propCount,
const enum *props, sizei bufSize, sizei *length,
int *params);

returns values for multiple properties of a single active resource with an index of
index in the interface programlinterface of program object program. Values for
propCount properties specified by the array props are returned.

The values associated with the properties of the active resource are written to
consecutive entries in params, in increasing order according to position in props. If
no error is generated, only the first bufSize integer values will be written to params;
any extra values will not be written. If length is not NULL, the actual number of
values written to params will be written to length.

Property

Supported Interfaces

FEEDBACK_BUFFER, UNIFORM_BLOCK

ACTIVE_VARIABLES, BUFFER_- | ATOMIC_COUNTER_BUFFER, SHADER —
BINDING, NUM_ACTIVE_VARIABLES STORAGE_BLOCK, TRANSFORM_-

CONTROL_SUBROUTINE_UNIFORM,
TESS_EVALUATION_SUBROUTINE_ -

SUBROUTINE_UNIFORM

ARRAY_STIZE BUFFER_VARIABLE, COMPUTE_ -
SUBROUTINE_UNIFORM, FRAGMENT_ -
SUBROUTINE_UNIFORM, GEOMETRY_ -
SUBROUTINE_UNIFORM, PROGRAM_ -
INPUT, PROGRAM_OUTPUT, TESS_-

UNIFORM, TRANSFORM_FEEDBACK_-—
VARYING, UNIFORM, VERTEX_—

ARRAY_STRIDE, BLOCK_INDEX, IS_- | BUFFER_VARIABLE, UNIFORM
ROW_MAJOR, MATRIX_STRIDE

ATOMIC_COUNTER_BUFFER_INDEX UNIFORM

STORAGE_BLOCK, UNIFORM_BLOCK

BUFFER_DATA_ SIZE ATOMIC_COUNTER_BUFFER, SHADER -

GetProgramResourceiv properties continued on next page

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS

110

GetProgramResourceiv properties continued from previous page

Property

|

Supported Interfaces

NUM_COMPATIBLE_SUBROUTINES,
COMPATIBLE_SUBROUTINES

COMPUTE_SUBROUTINE_UNIFORM,
FRAGMENT_SUBROUTINE_UNIFORM,
GEOMETRY__SUBROUTINE_UNIFORM,
TESS_CONTROL_SUBROUTINE_—
UNIFORM, TESS_EVALUATION_ -
SUBROUTINE_UNIFORM, VERTEX_—
SUBROUTINE_UNIFORM

IS_PER_PATCH

PROGRAM_INPUT, PROGRAM_OUTPUT

LOCATION

COMPUTE_SUBROUTINE_UNIFORM,
FRAGMENT_SUBROUTINE_UNIFORM,
GEOMETRY__SUBROUTINE_UNIFORM,
PROGRAM_INPUT, PROGRAM_OUTPUT,
TESS_CONTROL_SUBROUTINE_ -
UNIFORM, TESS_EVALUATION_ -
SUBROUTINE_UNIFORM, UNIFORM,
VERTEX_SUBROUTINE_UNIFORM

LOCATION_COMPONENT

PROGRAM__INPUT, PROGRAM_OUTPUT

LOCATION_INDEX

PROGRAM_OUTPUT

NAME_LENGTH

all but ATOMIC_COUNTER_BUFFER and
TRANSFORM_FEEDBACK_BUFFER

OFFSET

BUFFER_VARIABLE, TRANSFORM_ -
FEEDBACK_VARYING, UNIFORM

REFERENCED_BY_VERTEX_ -

SHADER, REFERENCED_BY_TESS_-—
CONTROL_SHADER, REFERENCED_ —
BY_TESS_EVALUATION_SHADER,
REFERENCED_BY_GEOMETRY_SHADER,
REFERENCED_BY_ FRAGMENT_SHADER,
REFERENCED_BY_COMPUTE_SHADER

ATOMIC_COUNTER_BUFFER, BUFFER_-

VARIABLE, PROGRAM__INPUT,
PROGRAM_OUTPUT, SHADER_ -
STORAGE_BLOCK, UNIFORM,

UNIFORM_BLOCK

TRANSFORM_FEEDBACK_BUFFER_-—
INDEX

TRANSFORM_FEEDBACK_VARYING

TRANSFORM_FEEDBACK_BUFFER_-—
STRIDE

TRANSFORM_FEEDBACK_BUFFER

TOP_LEVEL_ARRAY_SIZE,
LEVEL_ARRAY_STRIDE

TOP_—

BUFFER_VARIABLE

GetProgramResourceiv properties continued on next page

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 111

GetProgramResourceiv properties continued from previous page

roper upported Interfaces

Property Supported Interf:

TYPE BUFFER_VARIABLE, PROGRAM_INPUT,
PROGRAM_OUTPUT, TRANSFORM_—

FEEDBACK_VARYING, UNIFORM

Table 7.2: GetProgramResourceiv properties and supported in-
terfaces

For the property ACTIVE_VARIABLES, an array of active variable indices as-
sociated with an atomic counter buffer, active uniform block, shader storage block,
or transform feedback buffer is written to params. The number of values written to
params for an active resource is given by the value of the property NUM_ACTIVE_-
VARIABLES for the resource.

For the property ARRAY_SIZE, a single integer identifying the number of active
array elements of an active variable is written to params. The array size returned
is in units of the type associated with the property TYPE. For active variables not
corresponding to an array of basic types, the value one is written to params. If the
variable is an array whose size is not declared or determined when the program is
linked, the value zero is written to params.

For the property ARRAY_ STRIDE, a single integer identifying the stride be-
tween array elements in an active variable is written to params. For active variables
declared as an array of basic types, the value written is the difference, in basic ma-
chine units, between the offsets of consecutive elements in an array. For active
variables not declared as an array of basic types, zero is written to params. For
active variables not backed by a buffer object, -1 is written to params, regardless
of the variable type.

For the property ATOMIC_COUNTER_BUFFER_INDEX, a single integer identi-
fying the index of the active atomic counter buffer containing an active variable is
written to params. If the variable is not an atomic counter uniform, the value -1 is
written to params.

For the property BLOCK_INDEX, a single integer identifying the index of the
active interface block containing an active variable is written to params. The index
written for a member of an interface block declared as an array of block instances
is the index of the first block of the array. If the variable is not the member of an
interface block, the value -1 is written to params.

For the property BUFFER_BINDING, the index of the buffer binding point asso-
ciated with the active uniform block, atomic counter buffer, shader storage block,

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 112

or transform feedback buffer is written to params.

For the property BUFFER_DATA_SIZE, the implementation-dependent mini-
mum total buffer object size is written to params. This value is the size, in basic
machine units, required to hold all active variables associated with an active uni-
form block, shader storage block, or atomic counter buffer. If the final member of
an active shader storage block is an array with no declared size, the minimum buffer
size is computed assuming the array was declared as an array with one element.

For the property IS_PER_PATCH, a single integer identifying whether the input
or output is a per-patch attribute is written to params. If the active variable is a
per-patch attribute (declared with the patch qualifier), the value one is written to
params; otherwise, the value zero is written to params.

For the property IS_ROW_MAJOR, a single integer identifying whether an active
variable is a row-major matrix is written to params. For active variables backed by
a buffer object, declared as a single matrix or array of matrices, and stored in row-
major order, one is written to params. For all other active variables, zero is written
to params.

For the property LOCATION, a single integer identifying the assigned location
for an active uniform, input, output, or subroutine uniform variable is written to
params. For input, output, or uniform variables with locations specified by a
layout qualifier, the specified location is used. For vertex shader input, frag-
ment shader output, or uniform variables without a 1ayout qualifier, the location
assigned when a program is linked is written to params. For all other input and
output variables, the value -1 is written to params. For atomic counter uniforms
and uniforms in uniform blocks, the value -1 is written to params.

For the property LOCATION_COMPONENT, a single integer indicating the first
component of the location assigned to an active input or output variable is writ-
ten to params. For input and output variables with a component specified by a
layout qualifier, the specified component is written. For all other input and output
variables, the value zero is written.

For the property LOCATION_INDEX, a single integer identifying the fragment
color index of an active fragment shader output variable is written to params. If the
active variable is not an output for a fragment shader, the value -1 will be written
to params.

For the property MATRIX_STRIDE, a single integer identifying the stride be-
tween columns of a column-major matrix or rows of a row-major matrix is written
to params. For active variables declared a single matrix or array of matrices, the
value written is the difference, in basic machine units, between the offsets of con-
secutive columns or rows in each matrix. For active variables not declared as a
matrix or array of matrices, zero is written to params. For active variables not
backed by a buffer object, -1 is written to params, regardless of the variable type.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 113

For the property NAME_LENGTH, a single integer identifying the length of the
name string associated with an active variable, interface block, or subroutine is
written to params. The name length includes a terminating null character.

For the property NUM_ACTIVE_VARIABLES, the number of active variables as-
sociated with an active uniform block, atomic counter buffer, shader storage block,
or transform feedback buffer is written to params.

For the property OFFSET, a single integer identifying the offset of an ac-
tive variable is written to params. For variables in the BUFFER_VARIABLE and
UNIFORM interfaces that are backed by a buffer object, the value written is the
offset of that variable relative to the base of the buffer range holding its value.
For variables in the TRANSFORM_FEEDBACK_VARYING interface, the value writ-
ten is the offset in the transform feedback buffer storage assigned to each ver-
tex captured in transform feedback mode where the value of the variable will
be stored. Such offsets are specified via the xfb_offset layout qualifier
or assigned according to the variables position in the list of strings passed to
TransformFeedbackVaryings. Offsets are expressed in basic machine units.
For all variables not recorded in transform feedback mode, including the spe-
cial names g1_NextBuffer, gl_SkipComponentsl, gl_SkipComponents?2,
gl_SkipComponents3, and g1_SkipComponents4, -1 is written to params.

For the properties REFERENCED_BY VERTEX SHADER, REFERENCED_ -
BY_TESS_CONTROL_SHADER, REFERENCED_BY_TESS_EVALUATION_SHADER,
REFERENCED_BY GEOMETRY SHADER, REFERENCED_BY FRAGMENT_SHADER,
and REFERENCED_BY_COMPUTE_SHADER, a single integer is written to params,
identifying whether the active resource is referenced by the vertex, tessellation con-
trol, tessellation evaluation, geometry, fragment, or compute shaders, respectively,
in the program object. The value one is written to params if an active variable is
referenced by the corresponding shader, or if an active uniform block, shader stor-
age block, or atomic counter buffer contains at least one variable referenced by the
corresponding shader. Otherwise, the value zero is written to params.

For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying the
number of active array elements of the top-level shader storage block member con-
taining the active variable is written to params. If the top-level block member is not
declared as an array f an aggregate type, the value one is written to params. If the
top-level block member is an array of an aggregate type whose size is not declared
or determined when the program is linked, the value zero is written to params.

For the property TOP_LEVEL_ARRAY_STRIDE, a single integer identifying the
stride between array elements of the top-level shader storage block member con-
taining the active variable is written to params. For top-level block members de-
clared as arrays of an aggregate type, the value written is the difference, in basic
machine units, between the offsets of the active variable for consecutive elements

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 114

in the top-level array. For top-level block members not declared as an array of an
aggregate type, zero is written to params.

For the property TRANSFORM_FEEDBACK_BUFFER_INDEX, a single integer
identifying the index of the active transform feedback buffer associated with an
active variable is written to params. For variables corresponding to the spe-
cial names gl_NextBuffer, gl_SkipComponentsl, gl_SkipComponents2,
gl_SkipComponents3, and gl_SkipComponentsd4, -1 is written to params.

For the property TRANSFORM_FEEDBACK_BUFFER_STRIDE, a single integer
identifying the stride, in basic machine units, between consecutive vertices written
to the transform feedback buffer is written to params.

For the property TYPE, a single integer identifying the type of an active variable
is written to params. The integer returned is one of the values found in table 7.3.

Type Name Token | Keyword | Attrib| Xfb | Buffer
FLOAT float ° ° °
FLOAT_VEC2 vec?2 ° ° °
FLOAT_VEC3 vec3 ° ° °
FLOAT_VEC4 vecd ° ° °
DOUBLE double ° ° °
DOUBLE_VEC2 dvec?2 ° ° °
DOUBLE_VEC3 dvec3 ° ° °
DOUBLE_VEC4 dvec4 ° ° °
INT int ° ° °
INT_VEC2 ivec2 . ° °
INT_VEC3 ivec3 ° ° °
INT_VEC4 ivecd ° ° °
UNSIGNED_INT uint ° ° °
UNSIGNED_INT_VEC2 uvec?2 ° ° °
UNSIGNED_INT_VEC3 uvec3 ° ° °
UNSIGNED_INT_VEC4 uvec4d ° ° °
BOOL bool (]
BOOL_VEC2 bvec2 (]
BOOL_VEC3 bvec3 (]
BOOL_VEC4 bvecd °
FLOAT_MAT?2 mat2 ° ° °
FLOAT_MAT3 mat3 ° ° °
FLOAT_MAT4 mat4 ° ° °

(Continued on next page)

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 115
OpenGL Shading Language Type Tokens (continued)

Type Name Token | Keyword | Attrib| Xfb | Buffer

FLOAT_MAT2x3 mat2x3 . ° °

FLOAT_MAT2x4 mat2x4 ° ° °

FLOAT_MAT3x2 mat3x2 ° ° °

FLOAT_MAT3x4 mat3x4 . ° °

FLOAT_MAT4x2 mat4x2 ° ° °

FLOAT_MAT4x3 mat4x3 . ° °

DOUBLE_MAT?2 dmat?2 ° ° °

DOUBLE_MAT3 dmat3 o ° °

DOUBLE_MAT4 dmat4 [° °

DOUBLE_MAT2x3 dmat2x3 ° ° °

DOUBLE_MAT2x4 dmat2x4 ° ° °

DOUBLE_MAT3x2 dmat3x2 ° ° °

DOUBLE_MAT3x4 dmat 3x4 . ° °

DOUBLE_MAT4x2 dmat4x2 . ° °

DOUBLE_MAT4x3 dmat4x3 ° ° °

SAMPLER_1D samplerlD

SAMPLER_2D sampler2D

SAMPLER_3D sampler3D

SAMPLER_CUBE samplerCube

SAMPLER_1D_SHADOW samplerlDShadow

SAMPLER_2D_SHADOW sampler2DShadow

SAMPLER_1D_ARRAY samplerlDArray

SAMPLER_2D_ARRAY sampler2DArray

SAMPLER_CUBE_MAP_ARRAY samplerCubeArray

SAMPLER_1D_ARRAY_SHADOW samplerlDArrayShadow

SAMPLER_2D_ARRAY_SHADOW sampler2DArrayShadow

SAMPLER_2D_MULTISAMPLE sampler2DMS

SAMPLER_2D_MULTISAMPLE_- | sampler2DMSArray

ARRAY

SAMPLER_CUBE_SHADOW samplerCubeShadow

SAMPLER_CUBE_MAP_ARRAY_ - samplerCube-

SHADOW ArrayShadow

SAMPLER_BUFFER samplerBuffer

SAMPLER_2D_RECT sampler2DRect

SAMPLER_2D_RECT_SHADOW sampler2DRectShadow

(Continued on next page)

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS

116

OpenGL Shading Language Type Tokens (continued)

Type Name Token | Keyword | Attrib| Xfb | Buffer
INT_SAMPLER_1D isamplerlD

INT_SAMPLER_2D isampler2D

INT_SAMPLER_3D isampler3D

INT_SAMPLER_CUBE isamplerCube

INT_SAMPLER_1D_ARRAY isamplerlDArray

INT_SAMPLER_2D_ARRAY isampler2DArray

INT_SAMPLER_CUBE_MAP_ -
ARRAY

isamplerCubeArray

INT_SAMPLER_2D_ - isampler2DMS
MULTISAMPLE

INT_SAMPLER_2D_-— isampler2DMSArray
MULTISAMPLE_ARRAY

INT_SAMPLER_BUFFER isamplerBuffer
INT_SAMPLER_2D_RECT isampler2DRect
UNSIGNED_INT_SAMPLER_1D usamplerlD
UNSIGNED_INT_SAMPLER_2D usampler2D
UNSIGNED_INT_SAMPLER_3D usampler3D
UNSIGNED_INT_SAMPLER_ - usamplerCube
CUBE

UNSIGNED_INT_SAMPLER_-— usamplerlDArray
1D_ARRAY

UNSIGNED_INT_SAMPLER_ - usampler2DArray

2D_ARRAY

UNSIGNED_INT_SAMPLER_ -
CUBE_MAP_ARRAY

usamplerCubeArray

UNSIGNED_INT_SAMPLER_ — usampler2DMS
2D_MULTISAMPLE

UNSIGNED_INT_SAMPLER_ - usampler2DMSArray
2D_MULTISAMPLE_ARRAY

UNSIGNED_INT_SAMPLER_-— usamplerBuffer
BUFFER

UNSIGNED_INT_SAMPLER_- usampler2DRect
2D_RECT

IMAGE_1D imagelD

IMAGE_2D image2D

(Continued on next page)

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS

117

OpenGL Shading Language Type Tokens (continued)

Type Name Token | Keyword | Attrib| Xfb | Buffer
IMAGE_3D image3D
IMAGE_2D_RECT image2DRect
IMAGE_CUBE imageCube
IMAGE_BUFFER imageBuffer
IMAGE_1D_ARRAY imagelDArray
IMAGE_2D_ARRAY image2DArray
IMAGE_CUBE_MAP_ARRAY imageCubeArray
IMAGE_2D_MULTISAMPLE image2DMS
IMAGE_2D_MULTISAMPLE_ - image2DMSArray
ARRAY

INT_IMAGE_1D iimagelD
INT_IMAGE_2D iimage2D
INT_IMAGE_3D iimage3D
INT_IMAGE_2D_RECT iimage2DRect
INT_IMAGE_CUBE iimageCube
INT_IMAGE_BUFFER iimageBuffer
INT_IMAGE_1D_ARRAY iimagelDArray
INT_IMAGE_2D_ARRAY iimage2DArray
INT_IMAGE_CUBE_MAP_ARRAY | iimageCubeArray
INT_IMAGE_2D_MULTISAMPLE | iimage2DMS
INT_IMAGE_2D_- iimage2DMSArray
MULTISAMPLE_ARRAY

UNSIGNED_INT_IMAGE_1D uimagelD
UNSIGNED_INT_IMAGE_2D uimage2D
UNSIGNED_INT_IMAGE_3D uimage3D
UNSIGNED_INT_IMAGE_2D_- uimage2DRect
RECT

UNSIGNED_INT_IMAGE_CUBE uimageCube
UNSIGNED_INT_IMAGE_ - uimageBuffer
BUFFER

UNSIGNED_INT_IMAGE_1D_- uimagelDArray
ARRAY

UNSIGNED_INT_IMAGE_2D_- uimage2DArray
ARRAY

(Continued on next page)

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 118

OpenGL Shading Language Type Tokens (continued)

Type Name Token ‘ Keyword ‘ Attrib‘ Xfb ‘ Buffer
UNSIGNED_INT_IMAGE_- uimageCubeArray

CUBE_MAP_ARRAY

UNSIGNED_INT_IMAGE_2D_- uimage2DMS

MULTISAMPLE

UNSIGNED_INT_IMAGE_2D_- uimage2DMSArray

MULTISAMPLE_ARRAY

UNSIGNED_INT_ATOMIC_- atomic_uint

COUNTER

Table 7.3: OpenGL Shading Language type tokens, and corre-
sponding shading language keywords declaring each such type.
Types whose “Attrib” column is marked may be declared as ver-
tex attributes (see section 11.1.1). Types whose “Xfb” column
is marked may be the types of variables returned by transform
feedback (see section 11.1.2.1). Types whose “Buffer” column is
marked may be declared as buffer variables (see section 7.8).

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_VALUE error is generated if propCount is less than or equal
to zero, or if bufSize is negative.

An INVALID_ENUM error is generated if any value in props is not one of
the properties described above.

An INVALID_OPERATION error is generated if any value in props is not
allowed for programinterface. The set of allowed programlinterface values for
each property can be found in table 7.2.

The commands

int GetProgramResourceLocation(uint program,
enum programlinterface, const char *name);

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.3. PROGRAM OBJECTS 119

int GetProgramResourceLocationIndex(uint program,
enum programlinterface, const char *name);

return the location or the fragment color index, respectively, assigned to the
variable named name in interface programlinterface of program object program.
For GetProgramResourcelocation, programinterface must be one of UNIFORM,
PROGRAM_INPUT, PROGRAM_OUTPUT, VERTEX_SUBROUTINE_UNIFORM,
TESS_CONTROL_SUBROUTINE_UNIFORM, TESS_EVALUATION_SUBROUTINE_-—
UNIFORM, GEOMETRY_ SUBROUTINE_UNIFORM, FRAGMENT SUBROUTINE -
UNIFORM, or COMPUTE_SUBROUTINE_UNIFORM. For GetProgramResourcelLo-
cationIndex, programinterface must be PROGRAM_OUTPUT. The value -1 will be
returned by either command if an error occurs, if name does not identify an ac-
tive variable on programlinterface, or if name identifies an active variable that does
not have a valid location assigned, as described above. The locations returned by
these commands are the same locations returned when querying the LOCATION and
LOCATION_INDEX resource properties.

A string provided to GetProgramResourceLocation or GetProgramRe-
sourceLocationIndex is considered to match an active variable if

e the string exactly matches the name of the active variable;

e if the string identifies the base name of an active array, where the string
would exactly match the name of the variable if the suffix " [0] " were ap-
pended to the string; or

o if the string identifies an active element of the array, where the string ends
with the concatenation of the " [" character, an integer (with no "+" sign,
extra leading zeroes, or whitespace) identifying an array element, and the
"1™ character, the integer is less than the number of active elements of the
array variable, and where the string would exactly match the enumerated
name of the array if the decimal integer were replaced with zero.

Any other string is considered not to identify an active variable. If the string
specifies an element of an array variable, GetProgramResourceLocation and
GetProgramResourceLocationIndex return the location or fragment color index
assigned to that element. If it specifies the base name of an array, it identifies the
resources associated with the first element of the array.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.4. PROGRAM PIPELINE OBJECTS 120

ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully.

An INVALID_ENUM error is generated if programlinterface is not one of
the interfaces named above.

7.4 Program Pipeline Objects

Instead of packaging all shader stages into a single program object, shader types
might be contained in multiple program objects each consisting of part of the com-
plete pipeline. A program object may even contain only a single shader stage.
This facilitates greater flexibility when combining different shaders in various ways
without requiring a program object for each combination.

A program pipeline object contains bindings for each shader type associating
that shader type with a program object.

The command

void GenProgramPipelines(sizei n, uint *pipelines);

returns n previously unused program pipeline object names in pipelines. These
names are marked as used, for the purposes of GenProgramPipelines only, but
they acquire state only when they are first bound.

Errors
An INVALID_VALUE error is generated if # is negative.
Program pipeline objects are deleted by calling

void DeleteProgramPipelines(sizei n, const
uint *pipelines);

pipelines contains n names of program pipeline objects to be deleted. Once a
program pipeline object is deleted, it has no contents and its name becomes un-
used. If an object that is currently bound is deleted, the binding for that object
reverts to zero and no program pipeline object becomes current. Unused names in
pipelines that have been marked as used for the purposes of GenProgramPipelines
are marked as unused again. Unused names in pipelines are silently ignored, as is
the value zero.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.4. PROGRAM PIPELINE OBJECTS 121

Errors
An INVALID_VALUE error is generated if » is negative.
The command
boolean IsProgramPipeline(uint pipeline);

returns TRUE if pipeline is the name of a program pipeline object. If pipeline
is zero, or a non-zero value that is not the name of a program pipeline object,
IsProgramPipeline returns FATLSE. No error is generated if pipeline is not a valid
program pipeline object name.

A program pipeline object is created by binding a name returned by GenPro-
gramPipelines with the command

void BindProgramPipeline(uint pipeline);

pipeline is the program pipeline object name. The resulting program pipeline
object is a new state vector, comprising all the state and with the same initial values
listed in table 23.42.

BindProgramPipeline may also be used to bind an existing program pipeline
object. If the bind is successful, no change is made to the state of the bound
program pipeline object, and any previous binding is broken. If BindPro-
gramPipeline is called with pipeline set to zero, then there is no current program
pipeline object.

If no current program object has been established by UseProgram, the pro-
gram objects used for each shader stage and for uniform updates are taken from
the bound program pipeline object, if any. If there is a current program object
established by UseProgram, the bound program pipeline object has no effect on
rendering or uniform updates. When a bound program pipeline object is used for
rendering, individual shader executables are taken from its program objects as de-
scribed in the discussion of UseProgram in section 7.3).

Errors

An INVALID_OPERATION error is generated if pipeline is not zero or a
name returned from a previous call to GenProgramPipelines, or if such a
name has since been deleted with DeleteProgramPipelines.

Program pipeline objects may also be created with the command

void CreateProgramPipelines(sizei n, uint *pipelines);

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.4. PROGRAM PIPELINE OBJECTS 122

CreateProgramPipelines returns n previously unused program pipeline names
in pipelines, each representing a new program pipeline object which is a state vec-
tor comprising all the state and with the same initial values listed in table 23.42.

Errors

An INVALID_VALUE error is generated if # is negative.

The executables in a program object associated with one or more shader stages
can be made part of the program pipeline state for those shader stages with the
command

void UseProgramStages(uint pipeline, bitfield stages,
uint program);

where pipeline is the program pipeline object to be updated, stages is the bitwise
OR of accepted constants representing shader stages, and program identifies the
program from which the executables are taken.

The bits set in stages indicate the program stages for which the pro-
gram object named by program becomes current. These stages may in-
clude compute, vertex, tessellation control, tessellation evaluation, geome-
try, or fragment, indicated respectively by COMPUTE_SHADER_BIT, VERTEX_ -
SHADER_BIT, TESS_CONTROL_SHADER BIT, TESS_EVALUATION_SHADER —
BIT, GEOMETRY_SHADER_BIT, or FRAGMENT_SHADER_BIT. The constant ALL_-
SHADER_BITS indicates program is to be made current for all shader stages.

If program refers to a program object with a valid shader attached for an indi-
cated shader stage, this call installs the executable code for that stage in the indi-
cated program pipeline object state. If UseProgramsStages is called with program
set to zero or with a program object that contains no executable code for any stage
in stages, it is as if the pipeline object has no programmable stage configured for
that stage.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

Errors

An INVALID_VALUE error is generated if sfages is not the special value
ALL_SHADER BITS, and has any bits set other than VERTEX_ SHADER_BIT,
COMPUTE_SHADER_BIT, TESS_ -

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.4. PROGRAM PIPELINE OBJECTS 123

CONTROL_SHADER_BIT, TESS_EVALUATION_SHADER_BIT, GEOMETRY_-
SHADER_BIT, and FRAGMENT_SHADER_BIT.

An INVALID_VALUE error is generated if program is not zero and is not
the name of either a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program is not zero and
was linked without the PROGRAM_SEPARABLE parameter set, or has not been
linked successfully. The corresponding shader stages in pipeline are not mod-
ified.

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

The command
void ActiveShaderProgram(uint pipeline, uint program);

sets the linked program named by program to be the active program (see sec-
tion 7.6.1) used for uniform updates for the program pipeline object pipeline. If
program is zero, then it is as if there is no active program for pipeline.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

Errors

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

An INVALID_VALUE error is generated if program is not zero and is not
the name of either a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program is not zero and
has not been linked successfully. The active program is not modified.

7.4.1 Shader Interface Matching

When multiple shader stages are active, the outputs of one stage form an interface
with the inputs of the next stage. At each such interface, shader inputs are matched

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.4. PROGRAM PIPELINE OBJECTS 124

up against outputs from the previous stage:

e An output block is considered to match an input block in the subsequent
shader if the two blocks have the same block name, and the members of the
block match exactly in name, type, qualification, and declaration order.

e An output variable is considered to match an input variable in the subsequent
shader if:

— the two variables match in name, type, and qualification, and neither
has a location qualifier, or

— the two variables are declared with the same location and
component layout qualifiers and match in type and qualification.

For the purposes of interface matching, variables declared with a 1ocation
layout qualifier but without a component layout qualifier are considered to
have declared a component layout qualifier of zero. Variables or block mem-
bers declared as structures are considered to match in type if and only if structure
members match in name, type, qualification, and declaration order. Variables or
block members declared as arrays are considered to match in type only if both
declarations specify the same element type and array size. The rules for determin-
ing if variables or block members match in qualification are found in the OpenGL
Shading Language Specification.

Tessellation control shader per-vertex output variables and blocks and tessella-
tion control, tessellation evaluation, and geometry shader per-vertex input variables
and blocks are required to be declared as arrays, with each element representing
input or output values for a single vertex of a multi-vertex primitive. For the pur-
poses of interface matching, such variables and blocks are treated as though they
were not declared as arrays.

For program objects containing multiple shaders, LinkProgram will check
for mismatches on interfaces between shader stages in the program being linked
and generate a link error if a mismatch is detected. A link error is generated if
any statically referenced input variable or block does not have a matching out-
put. If either shader redeclares the built-in arrays

the array must have the same size in both
shaders.

With separable program objects, interfaces between shader stages may involve
the outputs from one program object and the inputs from a second program object.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.4. PROGRAM PIPELINE OBJECTS 125

For such interfaces, it is not possible to detect mismatches at link time, because the
programs are linked separately. When each such program is linked, all inputs or
outputs interfacing with another program stage are treated as active. The linker will
generate an executable that assumes the presence of a compatible program on the
other side of the interface. If a mismatch between programs occurs, no GL error is
generated, but some or all of the inputs on the interface will be undefined.

At an interface between program objects, the set of inputs and outputs are con-
sidered to match exactly if and only if:

e Every declared input block or variable must have a matching output, as de-
scribed above.

e There are no output blocks or user-defined output variables declared without
a matching input block or variable declaration.

When the set of inputs and outputs on an interface between programs matches
exactly, all inputs are well-defined except when the corresponding outputs were
not written in the previous shader. However, any mismatch between inputs and
outputs results in all inputs being undefined except for cases noted below. Even
if an input has a corresponding output that matches exactly, mismatches on other
inputs or outputs may adversely affect the executable code generated to read or
write the matching variable.

The inputs and outputs on an interface between programs need not match ex-
actly when input and output location qualifiers (sections 4.4.1(“Input Layout Qual-
ifiers”) and 4.4.2(“Output Layout Qualifiers”) of the OpenGL Shading Language
Specification) are used. When using location qualifiers, any input with an input
location qualifier will be well-defined as long as the other program writes to a
matching output, as described above. The names of variables need not match when
matching by location.

Additionally, scalar and vector inputs with 1ocation layout qualifiers will
be well-defined if there is a corresponding output satisfying all of the following
conditions:

e the input and output match exactly in qualification, including in the
location layout qualifier;

e the output is a vector with the same basic component type and has more
components than the input; and

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.4. PROGRAM PIPELINE OBJECTS 126

e the common component type of the input and output is int, uint, or float
(scalars, vectors, and matrices with double component type are excluded).

In this case, the components of the input will be taken from the first components
of the matching output, and the extra components of the output will be ignored.

To use any built-in input or output in the gl Pervertex and gl -
perfFragment blocks in separable program objects, shader code must redeclare
those blocks prior to use. A separable program will fail to link if:

e it contains multiple shaders of a single type with different redeclarations of
these built-in input and output blocks; or

e any shader uses a built-in block member not found in the redeclaration of
that block.

There is one exception to this rule described below.

As described above, an exact interface match requires matching built-in input
and output blocks. At an interface between two non-fragment shader stages, the
gl_PerVertex input and output blocks are considered to match if and only if the
block members match exactly in name, type, qualification, and declaration order.
At an interface involving the fragment shader stage, a g1_PerVertex output block
is considered to match a gl_PerFragment input block if all of the following
conditions apply:

e the gl_PerVertex block includes either gl_FrontColor or gl_-
BackColor if and only if the g1_PerFragment block includes g1_Color;

e the gl_PerVertex block includes either g1_FrontSecondaryColor or
gl_BackSecondaryColor if and only if the g1_PerFragment block in-
cludes g1_SecondaryColor;

e the gl_PerVertex block includes g1_FogFragCoord if and only if the
gl_PerFragment block also includes g1_FogFragCoord; and

e the size of gl_TexCoord[] in gl_PerVertex and gl_PerFragment is
identical.

At an interface between gl_PerVertex outputs and gl_PerFragment in-
puts, the presence or absence of any block members other than those listed imme-
diately above does not affect interface matching.

Built-in inputs or outputs not found in blocks do not affect interface match-
ing. Any such built-in inputs are well-defined unless they are derived from built-in
outputs not written by the previous shader stage.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.4. PROGRAM PIPELINE OBJECTS 127

7.4.2 SPIR-V Shader Interface Matching

SPIR-V shaders must also follow the rules in this section, whether they add to
or override those given in section 7.4.1. Most importantly, SPIR-V variables and
structure members do not have names and so no interface matching is done by
name strings.

All variables forming the input or output interfaces of shader stages must be
listed as operands to the OpEntryPoint instruction and are declared with the
Input or Output Storage Classes, respectively, in the SPIR-V module.

Shader built-in variables meeting the following requirements define the built-in
interface block. They must:

e be explicitly declared (there are no implicit built-ins),
e be decorated with the BuiltIn decoration,
e be declared in a block whose top-level members are the built-ins, and

e not have any Location or Component decorations.

Built-ins only participate in interface matching if they are declared in such a
block. There must be no more than one built-in interface block per shader per
interface.

User-defined interface variables must be decorated with a Location and can
also be decorated with a Component. These correspond to the location and com-
ponent discussed in section 7.4.1.

A user-defined output variable is considered to match an input variable in the
subsequent stage only if the two variables are declared with the same Location
and Component decoration and match in type and decoration, except that interpo-
lation decorations are not required to match.

Variables or block members declared as structures are considered to match in
type if and only if the structure members match in type, decoration, number, and
declaration order. Variables or block members declared as arrays are considered to
match in type only if both declarations specify the same element type and size.

At an interface between two non-fragment shader stages, the built-in interface
block must match exactly, as described above. At an interface involving the frag-
ment shader inputs, the presence or absence of any built-in output does not affect
the interface matching.

At an interface between two shader stages, the user-defined variable interface
must match exactly. Additionally, scalar and vector inputs are well-defined if there
is a corresponding output satisfying all of the following conditions:

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.5. PROGRAM BINARIES 128

e the input and output match exactly in decoration,

e the output is a vector with the same basic type and has at least as many
components as the input, and

e the common component type of the input and output is 32-bit integer or
floating-point (64-bit component types are excluded).

In this case, the components of the input will be taken from the first components
of the output, and any extra components of the output will be ignored.

7.4.3 Program Pipeline Object State

The state required to support program pipeline objects consists of a single binding
name of the current program pipeline object. This binding is initially zero indicat-
ing no program pipeline object is bound.

The state of each program pipeline object consists of:

e Unsigned integers holding the names of the active program and each of the
current vertex, tessellation control, tessellation evaluation, geometry, frag-
ment, and compute stage programs. Each integer is initially zero.

e A boolean holding the status of the last validation attempt, initially false.

e An array of type char containing the information log (see section 7.13),
initially empty.

e An integer holding the length of the information log.

7.5 Program Binaries

The command

void GetProgramBinary(uint program, sizei bufSize,
sizei *length, enum *binaryFormat, void *binary);

returns a binary representation of the program object’s compiled and linked exe-
cutable source, henceforth referred to as its program binary. The maximum number
of bytes that may be written into binary is specified by bufSize. The actual num-
ber of bytes written into binary is returned in length and its format is returned in
binaryFormat. If length is NULL, then no length is returned.

The number of bytes in the program binary may be queried by calling GetPro-
gramiv with pname PROGRAM_BINARY_LENGTH.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.5. PROGRAM BINARIES 129

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully. In this case its program binary length is zero.

An INVALID_VALUE error is generated if bufSize is negative.

An INVALID_OPERATION error is generated if bufSize is less than the
number of bytes in the program binary.

The command

void ProgramBinary(uint program, enum binaryFormat,
const void *binary, sizei length);

loads a program object with a program binary previously returned from GetPro-
gramBinary. This is useful to avoid online compilation, while still using OpenGL
Shading Language source shaders as a portable initial format. binaryFormat and
binary must be those returned by a previous call to GetProgramBinary, and length
must be the length of the program binary as returned by GetProgramBinary or
GetProgramiv with pname PROGRAM_BINARY_LENGTH. Loading the program bi-
nary will fail, setting the LINK_STATUS of program to FALSE, if these conditions
are not met.

Loading a program binary may also fail if the implementation determines that
there has been a change in hardware or software configuration from when the pro-
gram binary was produced such as having been compiled with an incompatible
or outdated version of the compiler. In this case the application should fall back
to providing the original OpenGL Shading Language source shaders, and perhaps
again retrieve the program binary for future use.

A program object’s program binary is replaced by calls to LinkProgram or
ProgramBinary. Where linking success or failure is concerned, ProgramBinary
can be considered to perform an implicit linking operation. LinkProgram and
ProgramBinary both set the program object’s LINK_STATUS to TRUE or FALSE,
as queried with GetProgramiv, to reflect success or failure and update the infor-
mation log, queried with GetProgramInfoLog, to provide details about warnings
Or erTors.

A successful call to ProgramBinary will reset all uniform variables in the
default uniform block, all uniform block buffer bindings, and all shader storage

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.5. PROGRAM BINARIES 130

block buffer bindings to their initial values. The initial value is either the value
of the variable’s initializer as specified in the original shader source, or zero if no
initializer was present.

Additionally, all vertex shader input and fragment shader output assignments
and atomic counter binding, offset and stride assignments that were in effect when
the program was linked before saving are restored when ProgramBinary is called
successfully.

If ProgramBinary fails to load a binary, no error is generated, but any infor-
mation about a previous link or load of that program object is lost. Thus, a failed
load does not restore the old state of program. The failure does not alter other
program state not affected by linking such as the attached shaders, and the vertex
attribute and fragment data location bindings as set by BindAttribLocation and
BindFragDatal.ocation.

OpenGL defines no specific binary formats. Queries of values NUM_-
PROGRAM_BINARY FORMATS and PROGRAM_BINARY_ FORMATS return the num-
ber of program binary formats and the list of program binary format values sup-
ported by an implementation. The binaryFormat returned by GetProgramBinary
must be present in this list.

Any program binary retrieved using GetProgramBinary and submitted using
ProgramBinary under the same configuration must be successful. Any programs
loaded successfully by ProgramBinary must be run properly with any legal GL
state vector.

If an implementation needs to recompile or otherwise modify program exe-
cutables based on GL state outside the program, GetProgramBinary is required
to save enough information to allow such recompilation.

To indicate that a program binary is likely to be retrieved, ProgramParameteri
should be called with pname set to PROGRAM_BINARY_RETRIEVABLE_HINT and
value set to TRUE. This setting will not be in effect until the next time LinkPro-
gram or ProgramBinary has been called successfully. Additionally, the appli-
cation may defer GetProgramBinary calls until after using the program with all
non-program state vectors that it is likely to encounter. Such deferral may allow
implementations to save additional information in the program binary that would
minimize recompilation in future uses of the program binary.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.
An INVALID_OPERATION error is generated if program is the name of a

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.6. UNIFORM VARIABLES 131

shader object.

An INVALID_ENUM error is generated if binaryFormat is not a binary for-
mat present in the list of specific binary formats supported.

An INVALID_VALUE error is generated if length is negative.

7.6 Uniform Variables

Shaders can declare named uniform variables, as described in the OpenGL Shading
Language Specification. A uniform is considered an active uniform if the compiler
and linker determine that the uniform will actually be accessed when the executable
code is executed. In cases where the compiler and linker cannot make a conclusive
determination, the uniform will be considered active.

Sets of uniforms, except for atomic counters, images, samplers, and subroutine
uniforms, can be grouped into uniform blocks.

Named uniform blocks, as described in the OpenGL Shading Language Speci-
fication, store uniform values in the data store of a buffer object corresponding to
the uniform block. Such blocks are assigned a uniform block index.

Uniforms that are declared outside of a named uniform block are part of the
default uniform block. The default uniform block has no name or uniform block
index. Uniforms in the default uniform block, except for subroutine uniforms, are
program object-specific state. They retain their values once loaded, and their values
are restored whenever a program object is used, as long as the program object has
not been re-linked.

Like uniforms, uniform blocks can be active or inactive. Active uniform blocks
are those that contain active uniforms after a program has been compiled and
linked. Uniform blocks declared in an array are considered active if any member
of the array would otherwise be considered active.

All members of a named uniform block declared with a shared or std140
layout qualifier are considered active, even if they are not referenced in any shader
in the program. The uniform block itself is also considered active, even if no
member of the block is referenced.

The implementation-dependent amount of storage available for uniform vari-
ables, except for subroutine uniforms and atomic counters, in the default uniform
block accessed by a shader for a particular shader stage may be queried by calling
GetIntegerv with pname as specified in table 7.4 for that stage.

The implementation-dependent constants MAX_VERTEX_UNIFORM_VECTORS
and MAX_FRAGMENT_UNIFORM_VECTORS have values respectively equal to
the values of MAX_VERTEX_UNIFORM COMPONENTS and MAX_ FRAGMENT_-
UNIFORM_COMPONENTS divided by four.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.6. UNIFORM VARIABLES 132

Shader Stage pname for querying default uniform
block storage, in components

Vertex (see section 11.1.2) MAX_VERTEX_UNIFORM_COMPONENTS

Tessellation control (see section 11.2.1.1) MAX_TESS_CONTROL_UNIFORM_COMPONENTS

Tessellation evaluation (see section 11.2.3.1) | MAX_TESS_EVALUATION_UNIFORM_COMPONENTS

Geometry (see section 11.3.3) MAX_GEOMETRY_UNIFORM_COMPONENTS
Fragment (see section 15.1) MAX_FRAGMENT_UNIFORM_COMPONENTS
Compute (see section 19.1) MAX_COMPUTE_UNIFORM_COMPONENTS

Table 7.4: Query targets for default uniform block storage, in components.

Shader Stage pname for querying combined uniform
block storage, in components

Vertex MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS
Tessellation control MAX_COMBINED_TESS_CONTROL_UNIFORM_COMPONENTS
Tessellation evaluation | MAX_COMBINED_TESS_EVALUATION_UNIFORM_COMPONENTS

Geometry MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS
Fragment MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS
Compute MAX_COMBINED_COMPUTE_UNIFORM_COMPONENTS

Table 7.5: Query targets for combined uniform block storage, in components.

The total amount of combined storage available for uniform variables in all
uniform blocks accessed by a shader for a particular shader stage can be queried
by calling GetIntegerv with pname as specified in table 7.5 for that stage.

These values represent the numbers of individual floating-point, integer, or
boolean values that can be held in uniform variable storage for a shader. For uni-
forms with boolean, integer, or floating-point components,

e A scalar uniform will consume no more than 1 component

e A vector uniform will consume no more than n components, where n is the
vector component count

e A matrix uniform will consume no more than 4 x min(r,c) components,
where r and c are the number of rows and columns in the matrix.

Scalar, vector, and matrix uniforms with double-precision components will
consume no more than twice the number of components of equivalent uniforms

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.6. UNIFORM VARIABLES 133

with floating-point components.
Errors

A link error is generated if an attempt is made to utilize more than the
space available for uniform variables in a shader stage.

When a program is linked successfully, all active uniforms, except for atomic
counters, belonging to the program object’s default uniform block are initialized
as defined by the version of the OpenGL Shading Language used to compile the
program. A successful link will also generate a location for each active uniform in
the default uniform block which doesn’t already have an explicit location defined
in the shader. The generated locations will never take the location of a uniform
with an explicit location defined in the shader, even if that uniform is determined
to be inactive. The values of active uniforms in the default uniform block can be
changed using this location and the appropriate Uniform* or ProgramUniform*
command (see section 7.6.1). These generated locations are invalidated and new
ones assigned after each successful re-link. The explicitly defined locations and the
generated locations must be in the range of zero to the value of MAX_UNIFORM_—
LOCATIONS minus one.

Similarly, when a program is linked successfully, all active atomic counters are
assigned bindings, offsets (and strides for arrays of atomic counters) according to
layout rules described in section 7.6.2.2. Atomic counter uniform buffer objects
provide the storage for atomic counters, so the values of atomic counters may be
changed by modifying the contents of the buffer object using the commands in
sections 6.2, 6.2.1, 6.3, 6.5, and 6.6. Atomic counters are not assigned a location
and may not be modified using the Uniform* commands. The bindings, offsets,
and strides belonging to atomic counters of a program object are invalidated and
new ones assigned after each successful re-link.

Similarly, when a program is linked successfully, all active uniforms belong-
ing to the program’s named uniform blocks are assigned offsets (and strides for
array and matrix type uniforms) within the uniform block according to layout rules
described below. Uniform buffer objects provide the storage for named uniform
blocks, so the values of active uniforms in named uniform blocks may be changed
by modifying the contents of the buffer object. Uniforms in a named uniform
block are not assigned a location and may not be modified using the Uniform*
commands. The offsets and strides of all active uniforms belonging to named uni-
form blocks of a program object are invalidated and new ones assigned after each
successful re-link.

To determine the set of active uniform variables used by a program, applica-

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.6. UNIFORM VARIABLES 134

tions can query the properties and active resources of the UNIFORM interface of a
program.

Additionally, several dedicated commands are provided to query properties of
active uniforms. The command

int GetUniformLocation(uint program, const
char *name);

is equivalent to
GetProgramResourceLocation (program, UNIFORM, name) ;
The command
void GetActiveUniformName(uint program,
uint uniformindex, sizei bufSize, sizei *length,
char *uniformName);

is equivalent to

GetProgramResourceName (program, UNIFORM, wuniformIndez,
bufSize, length, wuniformName) ;

The command

void GetUniformIndices(uint program,
sizei uniformCount, const char * const
*uniformNames, uint *uniformlndices);

is equivalent (assuming no errors are generated) to:

for (int i = 0; i < wniformCount; i++) {
uniformIndices [1] = GetProgramResourcelndex (program,
UNIFORM, uniformNames[i]) ;

}

The command
void GetActiveUniform(uint program, uint index,

sizei bufSize, sizei *length, int *size, enum *type,
char *name);

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.6. UNIFORM VARIABLES 135

pname prop

UNIFORM_TYPE TYPE

UNIFORM_SIZE ARRAY_SIZE
UNIFORM_NAME_LENGTH NAME_LENGTH
UNIFORM_BLOCK_INDEX BLOCK_INDEX

UNIFORM_OFFSET OFFSET

UNIFORM_ARRAY_STRIDE ARRAY_STRIDE
UNIFORM_MATRIX_ STRIDE MATRIX_STRIDE
UNIFORM_IS_ROW_MAJOR IS_ROW_MAJOR
UNIFORM_ATOMIC_COUNTER_BUFFER_INDEX | ATOMIC_COUNTER_BUFFER_INDEX

Table 7.6: GetProgramResourceiv properties used by GetActiveUniformsiv.

is equivalent (assuming no errors are generated) to:

const enum props[] = { ARRAY_SIZE, TYPE };
GetProgramResourceName (program, UNIFORM, index,
bufSize, length, name) ;
GetProgramResourceiv (program, UNIFORM, index,
1, &props[0], 1, NULL, size);
GetProgramResourceiv (program, UNIFORM, index,
1, &props([l], 1, NULL, (int x)type);

The command

void GetActiveUniformsiv(uint program,
sizei uniformCount, const uint *uniformindices,
enum pname, int *params);

is equivalent (assuming no errors are generated) to:

GLenum prop;
for (int i = 0; 1 < wuniformCount; i++) {
GetProgramResourceiv (program, UNIFORM, uniformlindices[i],
1, &prop, 1, NULL, ¶ms[i]);

}

where the value of prop is taken from table 7.6, based on the value of pname.
To determine the set of active uniform blocks used by a program, applications
can query the properties and active resources of the UNIFORM_BLOCK interface.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.6. UNIFORM VARIABLES 136
Additionally, several commands are provided to query properties of active uni-
form blocks. The command

uint GetUniformBlockIndex(uint program, const
char *uniformBlockName);

is equivalent to
GetProgramResourcelndex (program, UNIFORM_BLOCK, wuniformBlockName) ;
The command

void GetActiveUniformBlockName(uint program,
uint uniformBlockindex, sizei bufSize, sizei length,
char *uniformBlockName);

is equivalent to

GetProgramResourceName (program, UNIFORM_BLOCK,
uniformBlockIndex, bufSize, length, wuniformBlockName) ;

The command

void GetActiveUniformBlockiv(uint program,
uint uniformBlockindex, enum pname, int *params);

is equivalent to

GLenum prop;
GetProgramResourceiv (program, UNIFORM_BLOCK,
uniformBlockIndex, 1, &prop, maxSize, NULL, params);

where the value of prop is taken from table 7.7, based on the value of pname,
and maxSize is taken to specify a sufficiently large buffer to receive all values that
would be written to params.

To determine the set of active atomic counter buffer binding points used
by a program, applications can query the properties and active resources of the
ATOMIC_COUNTER_BUFFER interface of a program.

Additionally, the command

void GetActiveAtomicCounterBufferiv(uint program,
uint bufferindex, enum pname, int *params);

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.6. UNIFORM VARIABLES

137

pname

prop

UNIFORM_BLOCK_BINDING

BUFFER_BINDING

UNIFORM_BLOCK_DATA_SIZE

BUFFER_DATA_ SIZE

UNIFORM_BLOCK_NAME_LENGTH

NAME_LENGTH

UNIFORM_BLOCK_ACTIVE_UNIFORMS

NUM_ACTIVE_VARIABLES

UNIFORM_BLOCK_ACTIVE_UNIFORM_-
INDICES

ACTIVE_VARIABLES

UNIFORM_BLOCK_REFERENCED_BY_ -
VERTEX_SHADER

REFERENCED_BY_VERTEX_SHADER

UNIFORM_BLOCK_REFERENCED_BY_ -
TESS_CONTROL_SHADER

REFERENCED_BY_ TESS_CONTROL_-
SHADER

UNIFORM_BLOCK_REFERENCED_BY_ -
TESS_EVALUATION_SHADER

REFERENCED_BY_TESS_ -
EVALUATION_SHADER

UNIFORM_BLOCK_REFERENCED_BY_ -
GEOMETRY__SHADER

REFERENCED_BY_GEOMETRY_SHADER

UNIFORM_BLOCK_REFERENCED_BY_ -
FRAGMENT_SHADER

REFERENCED_BY_ FRAGMENT_SHADER

UNIFORM_BLOCK_REFERENCED_BY_ -
COMPUTE_SHADER

REFERENCED_BY_COMPUTE_SHADER

Table 7.7:
Blockiv.

GetProgramResourceiv properties used by GetActiveUniform-

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.6. UNIFORM VARIABLES

138

pname

prop

ATOMIC_COUNTER_BUFFER_BINDING

BUFFER_BINDING

ATOMIC_COUNTER_BUFFER_DATA_ -
SIZE

BUFFER_DATA_SIZE

ATOMIC_COUNTER_BUFFER_ACTIVE_-—
ATOMIC_COUNTERS

NUM_ACTIVE_VARIABLES

ATOMIC_COUNTER_BUFFER_ACTIVE_-
ATOMIC_COUNTER_INDICES

ACTIVE_VARIABLES

ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_VERTEX_SHADER

REFERENCED_BY_ VERTEX_SHADER

ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_TESS_CONTROL_—
SHADER

REFERENCED_BY_TESS_CONTROL_—
SHADER

ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_TESS_-
EVALUATION_SHADER

REFERENCED_BY_TESS_ -
EVALUATION_SHADER

ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_GEOMETRY_SHADER

REFERENCED_BY_GEOMETRY_SHADER

ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_FRAGMENT_SHADER

REFERENCED_BY_ FRAGMENT_SHADER

ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_COMPUTE_SHADER

REFERENCED_BY_COMPUTE_SHADER

Table 7.8: GetProgramResourceiv properties used by GetActiveAtomicCoun-

terBufferiv.

can be used to determine properties of active atomic counter buffer bindings used

by program and is equivalent to

GLenum prop;

GetProgramResourceiv (program, ATOMIC_COUNTER_BUFFER,

bufferIndexr, 1, &prop,

maxSize,

NULL, params);

where the value of prop is taken from table 7.8, based on the value of pname,
and maxSize is taken to specify a sufficiently large buffer to receive all values that

would be written to params.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.6. UNIFORM VARIABLES 139

7.6.1 Loading Uniform Variables In The Default Uniform Block

To load values into the uniform variables except for subroutine uniforms and
atomic counters, of the default uniform block of the active program object, use
the commands

void Uniform{1234}{ifd wi}(int location, T value);

void Uniform{1234}{ifd wi}v(int location, sizei count,
const T *value);

void UniformMatrix{234}{fd}v(int location, sizei count,
boolean transpose, const float *value);

void UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 } {fd } v(
int location, sizei count, boolean transpose, const
float *value);

If a non-zero program object is bound by UseProgram, it is the active pro-
gram object whose uniforms are updated by these commands. If no program ob-
ject is bound using UseProgram, the active program object of the current program
pipeline object set by ActiveShaderProgram is the active program object. If the
current program pipeline object has no active program or there is no current pro-
gram pipeline object, then there is no active program.

The given values are loaded into the default uniform block uniform variable
location identified by location and associated with a uniform variable.

The Uniform*f{v} commands will load count sets of one to four floating-point
values into a uniform defined as a float, a floating-point vector, or an array of either
of these types.

The Uniform*d{v} commands will load count sets of one to four double-
precision floating-point values into a uniform defined as a double, a double vector,
or an array of either of these types.

The Uniform*i{v} commands will load count sets of one to four integer values
into a uniform defined as a sampler, an image, an integer, an integer vector, or an
array of any of these types. Only the Uniform1i{v} commands can be used to load
sampler and image values (see sections 7.10 and 7.11).

The Uniform*ui{v} commands will load count sets of one to four unsigned
integer values into a uniform defined as a unsigned integer, an unsigned integer
vector, or an array of either of these types.

The UniformMatrix{234}fv and UniformMatrix{234}dv commands will
load count 2 x 2, 3 x 3, or 4 x 4 matrices (corresponding to 2, 3, or 4 in the
command name) of single- or double-precision floating-point values, respectively,
into a uniform defined as a matrix or an array of matrices. If transpose is FALSE,
the matrix is specified in column major order, otherwise in row major order.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.6. UNIFORM VARIABLES 140

The UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv and UniformMa-
trix{2x3,3x2,2x4,4x2,3x4,4x3 }dv commands will load count 2 x 3,3 x 2,2 x 4,
4 X 2,3 x 4, or 4 x 3 matrices (corresponding to the numbers in the command
name) of single- or double-precision floating-point values, respectively, into a
uniform defined as a matrix or an array of matrices. The first number in the
command name is the number of columns; the second is the number of rows.
For example, UniformMatrix2x4fv is used to load a single-precision matrix
consisting of two columns and four rows. If transpose is FALSE, the matrix is
specified in column major order, otherwise in row major order.

When loading values for a uniform declared as a boolean, a boolean vector,
or an array of either of these types, any of the Uniform*i{v}, Uniform*ui{v},
and Uniform*f{v} commands can be used. Type conversion is done by the GL.
Boolean values are set to FALSE if the corresponding input value is 0 or 0.0f, and
set to TRUE otherwise. The Uniform* command used must match the size of the
uniform, as declared in the shader. For example, to load a uniform declared as a
bvec2, any of the Uniform2{if ui}* commands may be used.

For all other uniform types loadable with Uniform* commands, the command
used must match the size and type of the uniform, as declared in the shader, and
no type conversions are done. For example, to load a uniform declared as a vec4,
Uniform4f{v} must be used, and to load a uniform declared as a dmat 3, Unifor-
mMatrix3dv must be used.

When loading N elements starting at an arbitrary position k in a uniform de-
clared as an array, elements k£ through k + N — 1 in the array will be replaced
with the new values. Values for any array element that exceeds the highest array
element index used, as reported by GetActiveUniform, will be ignored by the GL.

If the value of location is -1, the Uniform* commands will silently ignore the
data passed in, and the current uniform values will not be changed.

Errors

An INVALID_VALUE error is generated if count is negative.

An INVALID_VALUE error is generated if Uniformli{v} is used to set a
sampler uniform to a value less than zero or greater than or equal to the value
of MAX_COMBINED_TEXTURE_IMAGE_UNITS.

An INVALID_VALUE error is generated if Uniform1i{v} is used to set an
image uniform to a value less than zero or greater than or equal to the value of
MAX_IMAGE_UNITS.

An INVALID_OPERATION error is generated if any of the following con-
ditions occur:

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.6. UNIFORM VARIABLES 141

the size indicated in the name of the Uniform* command used does not
match the size of the uniform declared in the shader,

the component type and count indicated in the name of the Uniform*
command used does not match the type of the uniform declared in
the shader, where a boolean uniform component type is considered
to match any of the Uniform*i{v}, Uniform*ui{v}, or Uniform*f{v}
commands.

count is greater than one, and the uniform declared in the shader is not
an array variable,

no variable with a location of location exists in the program object cur-
rently in use and location is not -1, or

a sampler or image uniform is loaded with any of the Uniform* com-
mands other than Uniform1i{v}.

there is no active program object in use.

To load values into the uniform variables of the default uniform block of a
program which may not necessarily be bound, use the commands

void ProgramUniform{1234}{ifd}(uint program,

int location, T value);

void ProgramUniform{1234}{ifd}v(uint program,

int location, sizei count, const T *value);

void ProgramUniform{1234}ui(uint program, int location,

T value);

void ProgramUniform{1234}uiv(uint program,

int location, sizei count, const T *value);

void ProgramUniformMatrix{234}{fd}v(uint program,

int location, sizei count, boolean transpose, const
T *value);

void ProgramUniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 } {fd } v(

uint program, int location, sizei count,
boolean transpose, const T *value);

These commands operate identically to the corresponding commands above
without Program in the command name except, rather than updating the cur-
rently active program object, these Program commands update the program ob-
ject named by the initial program parameter. The remaining parameters following

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.6. UNIFORM VARIABLES 142

the initial program parameter match the parameters for the corresponding non-
Program uniform command.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully.

In addition, all errors described for the corresponding Uniform* com-
mands apply.

7.6.2 Uniform Blocks

The values of uniforms arranged in named uniform blocks are extracted from buffer
object storage. The mechanisms for placing individual uniforms in a buffer object
and connecting a uniform block to an individual buffer object are described below.

There is a set of implementation-dependent maximums for the number of active
uniform blocks used by each shader stage. If the number of uniform blocks used
by any shader stage in the program exceeds its corresponding limit, the program
will fail to link. The limits for vertex, tessellation control, tessellation evaluation,
geometry, fragment, and compute shaders can be obtained by calling GetIntegerv
with pname values of MAX_VERTEX_UNIFORM_BLOCKS, MAX_TESS_CONTROL_-
UNIFORM_BLOCKS, MAX_TESS_EVALUATION_UNIFORM_BLOCKS, MAX_-—
GEOMETRY_UNIFORM_BLOCKS, MAX_FRAGMENT_UNIFORM_BLOCKS, and MAX_—
COMPUTE_UNIFORM_BLOCKS, respectively.

Additionally, there is an implementation-dependent limit on the sum of the
number of active uniform blocks used by each shader stage of a program. If a
uniform block is used by multiple shader stages, each such use counts separately
against this combined limit. The combined uniform block use limit can be obtained
by calling GetIntegerv with a pname of MAX_COMBINED_UNIFORM_BLOCKS.

Finally, the total amount of buffer object storage available for any given uni-
form block is subject to an implementation-dependent limit. The maximum amount
of available space, in basic machine units, can be queried by calling GetIntegerv
with a pname of MAX_UNIFORM_BLOCK_SIZE. If the amount of storage required
for a uniform block exceeds this limit, a program will fail to link.

When a named uniform block is declared by multiple shaders in a program, it
must be declared identically in each shader. The uniforms within the block must

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.6. UNIFORM VARIABLES 143

be declared with the same names, types and layout qualifiers, and in the same
order. If a program contains multiple shaders with different declarations for the
same named uniform block, the program will fail to link.

7.6.2.1 Uniform Buffer Object Storage

When stored in buffer objects associated with uniform blocks, uniforms are repre-
sented in memory as follows:

e Members of type bool, int, uint, float, and double are respectively
extracted from a buffer object by reading a single uint, int, uint, float,
or double value at the specified offset.

e Vectors with NV elements with basic data types of bool, int, uint, float,
or double are extracted as N values in consecutive memory locations be-
ginning at the specified offset, with components stored in order with the first
(X) component at the lowest offset. The GL data type used for component
extraction is derived according to the rules for scalar members above.

e Column-major matrices with C' columns and R rows (using the types
dmatCxR and mat C'x R for double-precision and floating-point components
respectively, or simply dmatC and mat C respectively if C' = R) are treated
as an array of C' column vectors, each consisting of R double-precision or
floating-point components. The column vectors will be stored in order, with
column zero at the lowest offset. The difference in offsets between consecu-
tive columns of the matrix will be referred to as the column stride, and is con-
stant across the matrix. The column stride is an implementation-dependent
function of the matrix type, and may be determined after a program is linked
by querying the MATRIX_STRIDE property using GetProgramResourceiv
(see section 7.3.1).

e Row-major matrices with C' columns and R rows (using the types dmat CxR
and matCxR for double-precision and floating-point components respec-
tively, or simply dmatC and matC respectively if C' = R) are treated as
an array of R row vectors, each consisting of C' double-precision or floating-
point components. The row vectors will be stored in order, with row zero at
the lowest offset. The difference in offsets between consecutive rows of the
matrix will be referred to as the row stride, and is constant across the matrix.
The row stride is an implementation-dependent function of the matrix type,
and may be determined after a program is linked by querying the MATRIX_—
STRIDE property using GetProgramResourceiv (see section 7.3.1).

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.6. UNIFORM VARIABLES 144

e Arrays of scalars, vectors, and matrices are stored in memory by element
order, with array member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array stride,
UNIFORM_ARRAY_STRIDE, is an implementation-dependent value and may
be queried after a program is linked.

7.6.2.2 Standard Uniform Block Layout

By default, uniforms contained within a uniform block are extracted from buffer
storage in an implementation-dependent manner. Applications may query the off-
sets assigned to uniforms inside uniform blocks with query functions provided by
the GL.

The layout qualifier provides shaders with control of the layout of uniforms
within a uniform block. When the std140 layout is specified, the offset of each
uniform in a uniform block can be derived from the definition of the uniform block
by applying the set of rules described below.

When using the std140 storage layout, structures will be laid out in buffer
storage with their members stored in monotonically increasing order based on their
location in the declaration. A structure and each structure member have a base
offset and a base alignment, from which an aligned offset is computed by rounding
the base offset up to a multiple of the base alignment. The base offset of the first
member of a structure is taken from the aligned offset of the structure itself. The
base offset of all other structure members is derived by taking the offset of the
last basic machine unit consumed by the previous member and adding one. Each
structure member is stored in memory at its aligned offset. The members of a top-
level uniform block are laid out in buffer storage by treating the uniform block as
a structure with a base offset of zero.

1. If the member is a scalar consuming /N basic machine units, the base align-
ment is V.

2. If the member is a two- or four-component vector with components consum-
ing IV basic machine units, the base alignment is 2N or 4V, respectively.

3. If the member is a three-component vector with components consuming N
basic machine units, the base alignment is 4/V.

4. If the member is an array of scalars or vectors, the base alignment and array
stride are set to match the base alignment of a single array element, according
torules (1), (2), and (3), and rounded up to the base alignment of a vec4. The

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.6. UNIFORM VARIABLES 145

10.

array may have padding at the end; the base offset of the member following
the array is rounded up to the next multiple of the base alignment.

. If the member is a column-major matrix with C' columns and R rows, the

matrix is stored identically to an array of C' column vectors with R compo-
nents each, according to rule (4).

. If the member is an array of .S column-major matrices with C' columns and

R rows, the matrix is stored identically to a row of S x C column vectors
with R components each, according to rule (4).

. If the member is a row-major matrix with C' columns and R rows, the matrix

is stored identically to an array of R row vectors with C' components each,
according to rule (4).

. If the member is an array of S row-major matrices with C' columns and R

rows, the matrix is stored identically to a row of S x R row vectors with C'
components each, according to rule (4).

. If the member is a structure, the base alignment of the structure is IV, where

N is the largest base alignment value of any of its members, and rounded
up to the base alignment of a vec4. The individual members of this sub-
structure are then assigned offsets by applying this set of rules recursively,
where the base offset of the first member of the sub-structure is equal to the
aligned offset of the structure. The structure may have padding at the end;
the base offset of the member following the sub-structure is rounded up to
the next multiple of the base alignment of the structure.

If the member is an array of S structures, the S elements of the array are laid
out in order, according to rule (9).

Shader storage blocks (see section 7.8) also support the std140 layout qual-
ifier, as well as a std430 qualifier not supported for uniform blocks. When using
the std430 storage layout, shader storage blocks will be laid out in buffer storage
identically to uniform and shader storage blocks using the std140 layout, except
that the base alignment and stride of arrays of scalars and vectors in rule 4 and of
structures in rule 9 are not rounded up a multiple of the base alignment of a vec4.

7.6.2.3 SPIR-V Uniform Offsets and Strides

The SPIR-V decorations GLSLShared or GLSLPacked must not be used. A vari-
able in the Uniform Storage Class decorated as a Block must be explicitly laid

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.6. UNIFORM VARIABLES 146

out using the Offset, ArrayStride, and MatrixStride decorations. If the
variable is decorated as a BufferBlock, its offsets and strides must not contra-
dict std430 alignment and minimum offset requirements. Otherwise, its offsets and
strides must not contradict std140 alignment and minimum offset requirements.

7.6.3 Uniform Buffer Object Bindings

The value of an active uniform inside a named uniform block is extracted from the
data store of a buffer object bound to one of an array of uniform buffer binding
points. The number of binding points may be queried using GetIntegerv with the
constant MAX_UNIFORM_BUFFER_BINDINGS.

Regions of buffer objects are bound as storage for uniform blocks by calling
BindBuffer* commands (see section 6) with target set to UNTFORM_BUFFER.

Each of a program’s active uniform blocks has a corresponding uniform buffer
object binding point. The binding is established when a program is linked or re-
linked, and the initial value of the binding is specified by a 1ayout qualifier (if
present), or zero otherwise. The binding point can be assigned by calling

void UniformBlockBinding(uint program,
uint uniformBlockindex, uint uniformBlockBinding);

program is a name of a program object for which the command LinkProgram has
been issued in the past.

If successful, UniformBlockBinding specifies that program will use the data
store of the buffer object bound to the binding point uniformBlockBinding to extract
the values of the uniforms in the uniform block identified by uniformBlockIndex.

When executing shaders that access uniform blocks, the binding point corre-
sponding to each active uniform block must be populated with a buffer object with
a size no smaller than the minimum required size of the uniform block (the value
of UNIFORM_BLOCK_DATA_SIZE). For binding points populated by BindBuffer-
Range, the size in question is the value of the size parameter. If any active uniform
block is not backed by a sufficiently large buffer object, the results of shader ex-
ecution may be undefined or modified, as described in section 6.4. Shaders may
be executed to process the primitives and vertices specified by any command that
transfers vertices to the GL.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.7. ATOMIC COUNTER BUFFERS 147

ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if uniformBlockindex is not an
active uniform block index of program, or if uniformBlockBinding is greater
than or equal to the value of MAX_UNIFORM_BUFFER_BINDINGS.

7.7 Atomic Counter Buffers

The values of atomic counters are backed by buffer object storage. The mecha-
nisms for accessing individual atomic counters in a buffer object and connecting to
an atomic counter are described in this section.

There is a set of implementation-dependent maximums for the number of active
atomic counter buffers referenced by each shader. If the number of atomic counter
buffer bindings referenced by any shader in the program exceeds the corresponding
limit, the program will fail to link. The limits for vertex, tessellation control, tes-
sellation evaluation, geometry, fragment, and compute shaders can be obtained by
calling GetIntegerv with pname values of MAX_VERTEX_ATOMIC_COUNTER_-
BUFFERS, MAX_TESS_CONTROL_ATOMIC_COUNTER_BUFFERS, MAX_-—
TESS_EVALUATION_ATOMIC_COUNTER_BUFFERS, MAX_GEOMETRY_ATOMIC_-—
COUNTER_BUFFERS, MAX_FRAGMENT_ATOMIC_COUNTER_BUFFERS, and MAX_-
COMPUTE_ATOMIC_COUNTER_BUFFERS, respectively.

Additionally, there is an implementation-dependent limit on the sum of the
number of active atomic counter buffers used by each shader stage of a program.
If an atomic counter buffer is used by multiple shader stages, each such use counts
separately against this combined limit. The combined atomic counter buffer use
limit can be obtained by calling GetIntegerv with a pname of MAX_COMBINED_—
ATOMIC_COUNTER_BUFFERS.

7.7.1 Atomic Counter Buffer Object Storage

Atomic counters stored in buffer objects are represented in memory as follows:

e Members of type atomic_uint are extracted from a buffer object by read-
ing a single uint-typed value at the specified offset.

e Arrays of type atomic_uint are stored in memory by element order, with
array element member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array stride,

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.8. SHADER BUFFER VARIABLES AND SHADER STORAGE BLOCKS148

UNIFORM_ARRAY_STRIDE, is an implementation-dependent value and may
be queried after a program is linked.

7.7.2 Atomic Counter Buffer Bindings

The value of an active atomic counter is extracted from or written to the data store
of a buffer object bound to one of an array of atomic counter buffer binding points.
The number of binding points may be queried by calling GetIntegerv with a pname
of MAX_ATOMIC_COUNTER_BUFFER_BINDINGS.

Regions of buffer objects are bound as storage for atomic counters by calling
one of the BindBuffer* commands (see section 6) with farget set to ATOMIC_—
COUNTER_BUFFER.

Each of a program’s active atomic counter buffer bindings has a corresponding
atomic counter buffer binding point. This binding point is established with the
layout qualifier in the shader text, either explicitly or implicitly, as described in
the OpenGL Shading Language Specification.

When executing shaders that access atomic counters, each active atomic
counter buffer must be populated with a buffer object with a size no smaller than the
minimum required size for that buffer (the value of BUFFER_DATA_SIZE returned
by GetProgramResourceiv). For binding points populated by BindBufferRange,
the size in question is the value of the size parameter. If any active atomic counter
buffer is not backed by a sufficiently large buffer object, the results of shader exe-
cution may be undefined or modified, as described in section 6.4.

7.8 Shader Buffer Variables and Shader Storage Blocks

Shaders can declare named buffer variables, as described in the OpenGL Shading
Language Specification. Sets of buffer variables are grouped into interface blocks
called shader storage blocks. The values of each buffer variable in a shader storage
block are read from or written to the data store of a buffer object bound to the
binding point associated with the block. The values of active buffer variables may
be changed by executing shaders that assign values to them or perform atomic
memory operations on them; by modifying the contents of the bound buffer object’s
data store with the commands in sections 6.2, 6.2.1, 6.3, 6.5, and 6.6; by binding
a new buffer object to the binding point associated with the block; or by changing
the binding point associated with the block.

Buffer variables in shader storage blocks are represented in memory in the
same way as uniforms stored in uniform blocks, as described in section 7.6.2.1.
When a program is linked successfully, each active buffer variable is assigned an

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.8. SHADER BUFFER VARIABLES AND SHADER STORAGE BLOCKS149

offset relative to the base of the buffer object binding associated with its shader
storage block. For buffer variables declared as arrays and matrices, strides between
array elements or matrix columns or rows will also be assigned. Offsets and strides
of buffer variables will be assigned in an implementation-dependent manner unless
the shader storage block is declared using the std140 or std430 storage layout
qualifiers. For std140 and std430 shader storage blocks, offsets will be assigned
using the method described in section 7.6.2.2. If a program is re-linked, existing
buffer variable offsets and strides are invalidated, and a new set of active variables,
offsets, and strides will be generated.

The total amount of buffer object storage that can be accessed in any shader
storage block is subject to an implementation-dependent limit. The maximum
amount of available space, in basic machine units, may be queried by calling
GetIntegerv with pname MAX_SHADER_STORAGE_BLOCK_SIZE. If the amount
of storage required for any shader storage block exceeds this limit, a program will
fail to link.

If the number of active shader storage blocks referenced by the
shaders in a program exceeds implementation-dependent limits, the pro-
gram will fail to link. The limits for vertex, tessellation control, tes-
sellation evaluation, geometry, fragment, and compute shaders can be ob-
tained by calling GetIntegerv with pname values of MAX_VERTEX_SHADER_—
STORAGE_BLOCKS, MAX_TESS_CONTROL_SHADER_STORAGE_BLOCKS, MAX_ -
TESS_EVALUATION_SHADER STORAGE_BLOCKS, MAX_ GEOMETRY_ SHADER -
STORAGE_BLOCKS, MAX_FRAGMENT_SHADER_STORAGE_BLOCKS, and MAX_-
COMPUTE_SHADER_STORAGE_BLOCKS, respectively. Additionally, a program will
fail to link if the sum of the number of active shader storage blocks referenced by
each shader stage in a program exceeds the value of the implementation-dependent
limit MAX_COMBINED_SHADER_STORAGE_BLOCKS. If a shader storage block in a
program is referenced by multiple shaders, each such reference counts separately
against this combined limit.

When a named shader storage block is declared by multiple shaders in a pro-
gram, it must be declared identically in each shader. The buffer variables within
the block must be declared with the same names, types, qualification, and decla-
ration order. If a program contains multiple shaders with different declarations for
the same named shader storage block, the program will fail to link.

Regions of buffer objects are bound as storage for shader storage blocks by
calling one of the BindBuffer* commands (see section 6) with target SHADER -
STORAGE_BUFFER.

Each of a program’s active shader storage blocks has a corresponding shader
storage buffer object binding point. When a program object is linked, the shader
storage buffer object binding point assigned to each of its active shader storage

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.9. SUBROUTINE UNIFORM VARIABLES 150

blocks is reset to the value specified by the corresponding binding layout qual-
ifier, if present, or zero otherwise. After a program is linked, the command

void ShaderStorageBlockBinding(uint program,
uint storageBlockIndex, uint storageBlockBinding);

changes the active shader storage block with an assigned index of storage-
BlockIndex in program object program. ShaderStorageBlockBinding specifies
that program will use the data store of the buffer object bound to the binding point
storageBlockBinding to read and write the values of the buffer variables in the
shader storage block identified by storageBlockIndex.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if storageBlockIndex is not an
active shader storage block index in program, or if storageBlockBinding is
greater than or equal to the value of MAX_SHADER STORAGE_BUFFER_-
BINDINGS.

When executing shaders that access shader storage blocks, the binding point
corresponding to each active shader storage block must be populated with a buffer
object with a size no smaller than the minimum required size of the shader storage
block (the value of BUFFER_SIZE for the appropriate SHADER_STORAGE_BUFFER
resource). For binding points populated by BindBufferRange, the size in question
is the value of the size parameter or the size of the buffer minus the value of the
offset parameter, whichever is smaller. If any active shader storage block is not
backed by a sufficiently large buffer object, the results of shader execution may be
undefined or modified, as described in section 6.4.

7.9 Subroutine Uniform Variables

Subroutine uniform variables are similar to uniform variables, except they are con-
text state rather than program state, and apply only to a single program stage. Hav-
ing subroutine uniforms be context state allows them to have different values if the
program is used in multiple contexts simultaneously. There is a set of subroutine
uniforms for each shader stage.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.9. SUBROUTINE UNIFORM VARIABLES 151

A subroutine uniform may have an explicit location specified in the shader.
At link time, all active subroutine uniforms without an explicit location will be
assigned a unique location. The value of ACTIVE_SUBROUTINE_UNIFORM_-
LOCATIONS for a program object is the largest specified or assigned location plus
one. An assigned location will never take the location of an explicitly specified
location, even if that subroutine uniform is inactive. Between the location zero and
the value of ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS minus one there may
be unused locations, either because they were not assigned a subroutine uniform or
because the subroutine uniform was determined to be inactive by the linker. These
locations will be ignored when assigning the subroutine index as described below.

There is an implementation-dependent limit on the number of active subrou-
tine uniform locations in each shader stage; a program will fail to link if the num-
ber of subroutine uniform locations required is greater than the value of MAX_—
SUBROUTINE_UNIFORM_LOCATIONS or if an explicit subroutine uniform location
is outside this limit. For active subroutine uniforms declared as arrays, the declared
array elements are assigned consecutive locations.

Each function in a shader associated with a subroutine type is considered an
active subroutine, unless the compiler conclusively determines that the function
could never be assigned to an active subroutine uniform. The subroutine func-
tions can be assigned an explicit index in the shader between zero and the value
of MAX_SUBROUTINES minus one. At link time, all active subroutines without an
explicit index will be assigned an index between zero and the value of ACTIVE_-
SUBROUTINES minus one. An assigned index will never take the same index of
an explicitly specified index in the shader, even if that subroutine is inactive. Be-
tween index zero and the vaue of ACTIVE_SUBROUTINES minus one there may
be unused indices either because they weren’t assigned an index by the linker or
because the subroutine was determined to be inactive by the linker. If there are no
explicitly defined subroutine indices in the shader the implementation must assign
indices between zero and the value of ACTIVE_SUBROUTINES minus one with no
index unused. It is recommended, but not required, that the application assigns a
range of tightly packed indices starting from zero to avoid indices between zero
and the value of ACTIVE_SUBROUTINES minus one being unused.

To determine the set of active subroutines and subroutines used by a partic-
ular shader stage of a program, applications can query the properties and active
resources of the interfaces for the shader type, as listed in tables 7.9 and 7.10.

Additionally, dedicated commands are provided to determine properties of ac-
tive subroutines and active subroutine uniforms. The commands

uint GetSubroutineIndex(uint program, enum shadertype,
const char *name);

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.9. SUBROUTINE UNIFORM VARIABLES

152

Interface Shader Type
VERTEX_SUBROUTINE VERTEX_SHADER
TESS_CONTROL_SUBROUTINE TESS_CONTROL_SHADER
TESS_EVALUATION_SUBROUTINE | TESS_EVALUATION_SHADER
GEOMETRY_SUBROUTINE GEOMETRY_SHADER
FRAGMENT_SUBROUTINE FRAGMENT_SHADER
COMPUTE_SUBROUTINE COMPUTE_SHADER

Table 7.9: Interfaces for active subroutines for a particular shader type in a pro-

gram.

Interface

Shader Type

VERTEX_SUBROUTINE_UNIFORM

VERTEX_SHADER

TESS_CONTROL_SUBROUTINE_UNIFORM

TESS_CONTROL_SHADER

TESS_EVALUATION_SUBROUTINE_UNIFORM

TESS_EVALUATION_SHADER

GEOMETRY__SUBROUTINE_UNIFORM

GEOMETRY_SHADER

FRAGMENT_SUBROUTINE_UNIFORM

FRAGMENT_SHADER

COMPUTE_SUBROUTINE_UNIFORM

COMPUTE_SHADER

Table 7.10: Interfaces for active subroutine uniforms for a particular shader type in

a program.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.9. SUBROUTINE UNIFORM VARIABLES 153

void GetActiveSubroutineName(uint program,
enumn shadertype, uint index, sizei bufSize,
sizei *length, char *name);

are equivalent to
GetProgramResourcelndex (program, programiInterface, name) ;
and

GetProgramResourceName (program, programlinterface,
index, bufSize, length, name);

respectively, where programlinterface is taken from table 7.9 according to the value
of shadertype.
The commands

int GetSubroutineUniformLocation(uint program,
enum shadertype, const char *name);
void GetActiveSubroutineUniformName(uint program,
enum shadertype, uint index, sizei bufSize,
sizei *length, char *name);
void GetActiveSubroutineUniformiv(uint program,
enum shadertype, uint index, enum pname, int *values);

are equivalent to
GetProgramResourcelLocation (program, programlinterface, name) ;

GetProgramResourceName (program, programlInterface,
index, bufSize, length, name);

and

GetProgramResourceiv (program, programlinterface,
index, 1, &pname, maxSize, NULL, walues);

respectively, where programlnterface is taken from table 7.10 according to the
value of shadertype. For GetActiveSubroutineUniformiv, pname must be one of
NUM_COMPATIBLE_SUBROUTINES or COMPATIBLE_ SUBROUTINES, and maxSize
is taken to specify a sufficiently large buffer to receive all values that would be
written to params.

The command

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.10. SAMPLERS 154

void UniformSubroutinesuiv(enum shadertype, sizei count,
const uint *indices);

will load all active subroutine uniforms for shader stage shadertype with subrou-
tine indices from indices, storing indices[i] into the uniform at location i. The
indices for any locations between zero and the value of ACTIVE_SUBROUTINE_—
UNIFORM_LOCATIONS minus one which are not used will be ignored.

Errors

An INVALID_ENUM error is generated if shadertype is not one of the val-
ues in table 7.1.

An INVALID_VALUE error is generated if count is negative, is not equal to
the value of ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS for the program
currently in use at shader stage shadertype, or if the uniform at location ¢
is used and the value in indices[¢] is greater than or equal to the value of
ACTIVE_SUBROUTINES for the shader stage.

An INVALID_VALUE error is generated if the value of indices|[i] for a used
uniform location specifies an unused subroutine index.

An INVALID_OPERATION error is generated if, for any subroutine index
being loaded to a particular uniform location, the function corresponding to the
subroutine index was not associated (as defined in section 6.1.2 of the OpenGL
Shading Language Specification) with the type of the subroutine variable at
that location.

An INVALID_OPERATION error is generated if no program is active for
the shader stage identified by shadertype.

Each subroutine uniform must have at least one subroutine to assign to the uni-
form. A program will fail to link if any stage has one or more subroutine uniforms
that has no subroutine associated with the subroutine type of the uniform.

When the active program for a shader stage is re-linked or changed by a call
to UseProgram, BindProgramPipeline, or UseProgramStages, subroutine uni-
forms for that stage are reset to arbitrarily chosen default functions with compatible
subroutine types.

7.10 Samplers
Samplers are special uniforms used in the OpenGL Shading Language to identify

the texture object used for each texture lookup. The value of a sampler indicates
the texture image unit being accessed. Setting a sampler’s value to ¢ selects texture

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.11. IMAGES 155

image unit number ¢. The value of ¢ may range from zero to the implementation-
dependent maximum supported number of texture image units minus one.

The type of the sampler identifies the target on the texture image unit, as shown
in table 7.3 for sampler~* types. The texture object bound to that texture image
unit’s target is then used for the texture lookup. For example, a variable of type
sampler2D selects target TEXTURE_ 2D on its texture image unit. Binding of tex-
ture objects to targets is done as usual with BindTexture. Selecting the texture
image unit to bind to is done as usual with ActiveTexture.

The location of a sampler is queried with GetUniformLocation, just like any
uniform variable. Sampler values must be set by calling Uniform1i{v}.

Errors

It is not allowed to have variables of different sampler types pointing to
the same texture image unit within a program object. This situation can only
be detected at the next rendering command issued which triggers shader invo-
cations, and an INVALID_OPERATION error will then be generated.

Active samplers are samplers actually being used in a program object. The
LinkProgram command determines if a sampler is active or not. The LinkPro-
gram command will attempt to determine if the active samplers in the shader(s)
contained in the program object exceed the maximum allowable limits. If it deter-
mines that the count of active samplers exceeds the allowable limits, then the link
fails (these limits can be different for different types of shaders). Each active sam-
pler variable counts against the limit, even if multiple samplers refer to the same
texture image unit.

Errors

If this cannot be determined at link time (for example, if the program ob-
ject only contains a vertex shader), then it will be determined at the next ren-
dering command issued which triggers shader invocations, and an INVALID_-
OPERATION error will then be generated.

7.11 Images
Images are special uniforms used in the OpenGL Shading Language to identify a

level of a texture to be read or written using built-in image load, store, or atomic
functions in the manner described in section 8.26. The value of an image uniform is

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.12. SHADER MEMORY ACCESS 156

an integer specifying the image unit accessed. Image units are numbered beginning
at zero, and there is an implementation-dependent number of available image units
(the value of MAX_IMAGE_UNITS).

Note that image units used for image variables are independent of the texture
image units used for sampler variables; the number of units provided by the imple-
mentation may differ. Textures are bound independently and separately to image
and texture image units.

The type of an image variable must match the texture target of the image cur-
rently bound to the image unit; otherwise the result of a load, store, or atomic
operation is undefined (see section 4.1.7.2 of the OpenGL Shading Language Spec-
ification for more details).

The location of an image variable needs to be queried with GetUniformLo-
cation, just like any uniform variable. Image values must be set by calling Uni-
formli{v}.

Unlike samplers, there is no limit on the number of active image variables that
may be used by a program or by any particular shader. However, given that there
is an implementation-dependent limit on the number of unique image units, the
actual number of images that may be used by all shaders in a program is limited.

7.12 Shader Memory Access

As described in the OpenGL Shading Language Specification, shaders may per-
form random-access reads and writes to buffer object memory by reading from,
assigning to, or performing atomic memory operation on shader buffer variables,
or to texture or buffer object memory by using built-in image load, store, and
atomic functions operating on shader image variables. The ability to perform such
random-access reads and writes in systems that may be highly pipelined results in
ordering and synchronization issues discussed in the sections below.

7.12.1 Shader Memory Access Ordering

The order in which texture or buffer object memory is read or written by shaders
is largely undefined. For some shader types (vertex, tessellation evaluation, and in
some cases, fragment), even the number of shader invocations that might perform
loads and stores is undefined.

In particular, the following rules apply:

e While a vertex or tessellation evaluation shader will be executed at least once
for each unique vertex specified by the application (vertex shaders) or gener-
ated by the tessellation primitive generator (tessellation evaluation shaders),

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.12. SHADER MEMORY ACCESS 157

it may be executed more than once for implementation-dependent reasons.
Additionally, if the same vertex is specified multiple times in a collection
of primitives (e.g., repeating an index in DrawElements), the vertex shader
might be run only once.

e For each fragment generated by the GL, the number of fragment shader in-
vocations depends on a number of factors. If the fragment fails the pixel
ownership test (see section 14.9.1), scissor test (see section 14.9.2), or is dis-
carded by any of the multisample fragment operations (see section 14.9.3),
the fragment shader will not be executed

In addition, if early per-fragment tests are enabled (see section 14.9), the
fragment shader will not be executed if the fragment is discarded during the
early per-fragment tests.

When fragment shaders are executed, the number of invocations per frag-
ment is exactly one when the framebuffer has no multisample buffer (the
value of SAMPLE_BUFFERS is zero). Otherwise, the number of invocations
is in the range [1, N] where NV is the number of samples covered by the frag-
ment; if the fragment shader specifies per-sample shading, it will be invoked
exactly N times.

o If a fragment shader is invoked to process fragments or samples not covered
by a primitive being rasterized to facilitate the approximation of derivatives
for texture lookups, then stores, atomics, and atomic counter updates have
no effect.

e The relative order of invocations of the same shader type are undefined. A
store issued by a shader when working on primitive B might complete prior
to a store for primitive A, even if primitive A is specified prior to primitive
B. This applies even to fragment shaders; while fragment shader outputs
are always written to the framebuffer in primitive order, stores executed by
fragment shader invocations are not.

o The relative order of invocations of different shader types is largely unde-
fined. However, when executing a shader whose inputs are generated from
a previous programmable stage, the shader invocations from the previous
stage are guaranteed to have executed far enough to generate final values
for all next-stage inputs. That implies shader completion for all stages ex-
cept geometry; geometry shaders are guaranteed only to have executed far
enough to emit all vertices used to generate the primitive being processed by
the fragment shader.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.12. SHADER MEMORY ACCESS 158

The above limitations on shader invocation order also make some forms of
synchronization between shader invocations within a single set of primitives unim-
plementable. For example, having one invocation poll memory written by another
invocation assumes that the other invocation has been launched and can complete
its writes. The only case where such a guarantee is made is when the inputs of
one shader invocation are generated from the outputs of a shader invocation in a
previous stage.

Stores issued to different memory locations within a single shader invocation
may not be visible to other invocations in the order they were performed. The built-
in function memoryBarrier may be used to provide stronger ordering of reads
and writes performed by a single invocation. Calling memoryBarrier guaran-
tees that any memory transactions issued by the shader invocation prior to the call
complete prior to the memory transactions issued after the call. Memory barriers
may be needed for algorithms that require multiple invocations to access the same
memory and require the operations to be performed in a partially-defined relative
order. For example, if one shader invocation does a series of writes, followed by a
memoryBarrier call, followed by another write, then another invocation that sees
the results of the final write will also see the previous writes. Without the memory
barrier, the final write may be visible before the previous writes.

The built-in atomic memory transaction and atomic counter functions may be
used to read and write a given memory address atomically. While built-in atomic
functions issued by multiple shader invocations are executed in undefined order
relative to each other, these functions perform both a read and a write of a memory
address and guarantee that no other memory transaction will write to the underlying
memory between the read and write. Atomics allow shaders to use shared global
addresses for mutual exclusion or as counters, among other uses.

7.12.2 Shader Memory Access Synchronization

Data written to textures or buffer objects by a shader invocation may eventually be
read by other shader invocations, sourced by other fixed pipeline stages, or read
back by the application. When data is written using API commands such as Tex-
SubImage* or BufferSubData, the GL implementation knows when and where
writes occur and can perform implicit synchronization to ensure that operations re-
quested before the update see the original data and that subsequent operations see
the modified data. Without logic to track the target address of each shader instruc-
tion performing a store, automatic synchronization of stores performed by a shader
invocation would require the GL implementation to make worst-case assumptions
at significant performance cost. To permit cases where textures or buffers may
be read or written in different pipeline stages without the overhead of automatic

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.12. SHADER MEMORY ACCESS 159

synchronization, buffer object and texture stores performed by shaders are not au-
tomatically synchronized with other GL operations using the same memory.

Explicit synchronization is required to ensure that the effects of buffer and tex-
ture data stores performed by shaders will be visible to subsequent operations using
the same objects and will not overwrite data still to be read by previously requested
operations. Without manual synchronization, shader stores for a “new” primitive
may complete before processing of an “old” primitive completes. Additionally,
stores for an “old” primitive might not be completed before processing of a “new”
primitive starts. The command

void MemoryBarrier(bitfield barriers);

defines a barrier ordering the memory transactions issued prior to the command
relative to those issued after the barrier. For the purposes of this ordering, memory
transactions performed by shaders are considered to be issued by the rendering
command that triggered the execution of the shader. barriers is a bitfield indicating
the set of operations that are synchronized with shader stores; the bits used in
barriers are as follows:

e VERTEX_ATTRIB_ARRAY BARRIER BIT: If set, vertex data sourced from
buffer objects after the barrier will reflect data written by shaders prior to
the barrier. The set of buffer objects affected by this bit is derived from the
buffer object bindings used

for arrays of generic vertex attributes (VERTEX_—
ATTRIB_ARRAY_BUFFER bindings).

e ELEMENT_ARRAY_BARRIER_BIT: If set, vertex array indices sourced from
buffer objects after the barrier will reflect data written by shaders prior to
the barrier. The buffer objects affected by this bit are derived from the
ELEMENT_ARRAY_ BUFFER binding.

e UNIFORM_BARRIER_BIT: Shader uniforms sourced from buffer objects af-
ter the barrier will reflect data written by shaders prior to the barrier.

e TEXTURE_FETCH_BARRIER BIT: Texture fetches from shaders, including
fetches from buffer object memory via buffer textures, after the barrier will
reflect data written by shaders prior to the barrier.

e SHADER_IMAGE_ACCESS_BARRIER_BIT: Memory accesses using shader
built-in image load, store, and atomic functions issued after the barrier will
reflect data written by shaders prior to the barrier. Additionally, image stores

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.12.

SHADER MEMORY ACCESS 160

and atomics issued after the barrier will not execute until all memory ac-
cesses (e.g., loads, stores, texture fetches, vertex fetches) initiated prior to
the barrier complete.

COMMAND_BARRIER_BIT: Command data sourced from buffer objects by
Draw*Indirect and DispatchComputelndirect commands after the bar-
rier will reflect data written by shaders prior to the barrier. The buffer ob-
jects affected by this bit are derived from the DRAW_INDIRECT_BUFFER and
DISPATCH_INDIRECT_BUFFER bindings.

PIXEL_BUFFER_BARRIER BIT: Reads/writes of buffer objects via the
PIXEL_PACK_BUFFER and PIXEL_UNPACK_BUFFER bindings (ReadPix-
els, TexSubImage, etc.) after the barrier will reflect data written by shaders
prior to the barrier. Additionally, buffer object writes issued after the barrier
will wait on the completion of all shader writes initiated prior to the barrier.

TEXTURE_UPDATE_BARRIER_BIT: Writes
to a texture via Tex(Sub)Image*, ClearTex*Image, CopyTex*, or Com-
pressedTex*, and reads via GetTexImage after the barrier will not execute
until all shader writes initiated prior to the barrier complete.

BUFFER_UPDATE_BARRIER_ BIT: Reads and writes to buffer object mem-
ory after the barrier using the commands in sections 6.2, 6.2.1, 6.3, 6.6,
and 6.5 will reflect data written by shaders prior to the barrier. Additionally,
writes via these commands issued after the barrier will wait on the comple-
tion of any shader writes to the same memory initiated prior to the barrier.

CLIENT_MAPPED_BUFFER_BARRIER_BIT: Access by the client to persis-
tent mapped regions of buffer objects will reflect data written by shaders
prior to the barrier. Note that this may cause additional synchronization op-
erations.

QUERY_BUFFER_BARRIER_BIT: Writes of buffer objects via the QUERY_ -
BUFFER binding (see section 4.2.3) after the barrier will reflect data written
by shaders prior to the barrier. Additionally, buffer object writes issued after
the barrier will wait on the completion of all shader writes initiated prior to
the barrier.

FRAMEBUFFER_BARRIER_BIT: Reads and writes via framebuffer object at-
tachments after the barrier will reflect data written by shaders prior to the
barrier. Additionally, framebuffer writes issued after the barrier will wait on
the completion of all shader writes issued prior to the barrier.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.12. SHADER MEMORY ACCESS 161

e TRANSFORM_FEEDBACK_BARRIER_BIT: Writes via transform feedback
bindings after the barrier will reflect data written by shaders prior to the
barrier. Additionally, transform feedback writes issued after the barrier will
wait on the completion of all shader writes issued prior to the barrier.

e ATOMIC_COUNTER_BARRIER BIT: Memory accesses using shader atomic
counter built-in functions issued after the barrier will reflect data written by
shaders prior to the barrier. Additionally, atomic counter function invoca-
tions after the barrier will not execute until all memory accesses (e.g., loads,
stores, texture fetches, vertex fetches) initiated prior to the barrier complete.

e SHADER_STORAGE_BARRIER_BIT: Memory accesses using shader buffer
variables issued after the barrier will reflect data written by shaders prior to
the barrier. Additionally, assignments to and atomic operations performed
on shader buffer variables after the barrier will not execute until all memory
accesses initiated prior to the barrier complete.

If barriers is ALL_BARRIER_BITS, shader memory accesses will be synchro-
nized relative to all the operations described above.

Errors

An INVALID_VALUE error is generated if barriers is not the special value
ALL_BARRIER_BITS, and has any bits set other than those described above.

Implementations may cache buffer object and texture image memory that could
be written by shaders in multiple caches; for example, there may be separate caches
for texture, vertex fetching, and one or more caches for shader memory accesses.
Implementations are not required to keep these caches coherent with shader mem-
ory writes. Stores issued by one invocation may not be immediately observable
by other pipeline stages or other shader invocations because the value stored may
remain in a cache local to the processor executing the store, or because data over-
written by the store is still in a cache elsewhere in the system. When Memo-
ryBarrier is called, the GL flushes and/or invalidates any caches relevant to the
operations specified by the barriers parameter to ensure consistent ordering of op-
erations across the barrier.

To allow for independent shader invocations to communicate by reads and
writes to a common memory address, image variables in the OpenGL Shading
Language may be declared as coherent. Buffer object or texture image memory
accessed through such variables may be cached only if caches are automatically
updated due to stores issued by any other shader invocation. If the same address

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.12. SHADER MEMORY ACCESS 162

is accessed using both coherent and non-coherent variables, the accesses using
variables declared as coherent will observe the results stored using coherent vari-
ables in other invocations. Using variables declared as coherent guarantees only
that the results of stores will be immediately visible to shader invocations using
similarly-declared variables; calling MemoryBarrier is required to ensure that the
stores are visible to other operations.

The following guidelines may be helpful in choosing when to use coherent
memory accesses and when to use barriers.

e Data that are read-only or constant may be accessed without using coher-
ent variables or calling MemoryBarrier. Updates to the read-only data via
commands such as BufferSubData will invalidate shader caches implicitly
as required.

e Data that are shared between shader invocations at a fine granularity (e.g.,
written by one invocation, consumed by another invocation) should use co-
herent variables to read and write the shared data.

e Data written by one shader invocation and consumed by other shader in-
vocations launched as a result of its execution (dependent invocations)
should use coherent variables in the producing shader invocation and call
memoryBarrier after the last write. The consuming shader invocation
should also use coherent variables.

e Data written to image variables in one rendering pass and read by the shader
in a later pass need not use coherent variables or memoryBarrier. Calling
MemoryBarrier with the SHADER_IMAGE_ACCESS_BARRIER_BIT set in
barriers between passes is necessary.

e Data written by the shader in one rendering pass and read by another mech-
anism (e.g., vertex or index buffer pulling) in a later pass need not use co-
herent variables or memoryBarrier. Calling MemoryBarrier with the ap-
propriate bits set in barriers between passes is necessary.

The command
void MemoryBarrierByRegion(bitfield barriers);

behaves as described above for MemoryBarrier, with two differences:

First, it narrows the region under consideration so that only reads and writes of
prior fragment shaders that are invoked for a smaller region of the framebuffer will
be completed/reflected prior to subsequent reads and writes of following fragment

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 163

shaders. The size of the region is implementation-dependent and may be as small
as one framebuffer pixel.

Second, it only applies to memory transactions that may be read by or written
by a fragment shader. Therefore, only the barrier bits

e ATOMIC_COUNTER_BARRIER_BIT

FRAMEBUFFER_BARRIER_BIT

SHADER_IMAGE_ACCESS_BARRIER_BIT

SHADER_STORAGE_BARRIER_BIT
e TEXTURE_FETCH_BARRIER_BIT

e UNIFORM_BARRIER_BIT

are supported.

When barriers is ALL_BARRIER_BITS, shader memory accesses will be syn-
chronized relative to all these barrier bits, but not to other barrier bits specific to
MemoryBarrier. This implies that reads and writes for scatter/gather-like algo-
rithms may or may not be completed/reflected after a MemoryBarrierByRegion
command. However, for uses such as deferred shading, where a linked list of vis-
ible surfaces with the head at a framebuffer address may be constructed, and the
entirety of the list is only dependent on previous executions at that framebuffer ad-
dress, MemoryBarrierByRegion may be significantly more efficient than Mem-
oryBarrier.

Errors
An INVALID_VALUE error is generated if barriers is not the special value
ALL_BARRIER_BITS, and has any bits set other than those described above.
7.13 Shader, Program, and Program Pipeline Queries
The command
void GetShaderiv(uint shader, enum pname, int *params);

returns properties of the shader object named shader in params. The parameter
value to return is specified by pname.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 164

If pname is SHADER_TYPE, one of the values from table 7.1 corresponding to
the type of shader is returned.

If pname is DELETE_STATUS, TRUE is returned if the shader has been flagged
for deletion and FALSE is returned otherwise.

If pname is COMPILE_STATUS, TRUE is returned if the shader was last com-
piled or specialized successfully, and FALSE is returned otherwise.

If pname is INFO_LOG_LENGTH, the length of the info log, including a null
terminator, is returned. If there is an empty info log, zero is returned.

If pname is SHADER_SOURCE_LENGTH, the length of the concatenation of the
source strings making up the shader source, including a null terminator, is returned.
If no source has been defined, zero is returned.

If pname is SPIR_V_BINARY, TRUE is returned if the shader has been success-
fully associated with a SPIR-V binary module by the ShaderBinary command,
and FALSE is returned otherwise.

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_ENUM error is generated if pname is not
SHADER_TYPE, DELETE_STATUS, COMPILE_STATUS, INFO_LOG_LENGTH,
SHADER_SOURCE_LENGTH, or SPIR_V_BINARY.

The command

void GetProgramiv(uint program, enum pname,
int *params);

returns properties of the program object named program in params. The parameter
value to return is specified by pname.

Most properties set within program objects are specified not to take effect until
the next call to LinkProgram or ProgramBinary. Some properties further require
a successful call to either of these commands before taking effect. GetProgramiv
returns the properties currently in effect for program, which may differ from the
properties set within program since the most recent call to LinkProgram or Pro-
gramBinary, which have not yet taken effect. If there has been no such call putting
changes to pname into effect, initial values are returned.

If pname is DELETE_STATUS, TRUE is returned if the program has been flagged
for deletion, and FALSE is returned otherwise.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 165

If pname is LINK_STATUS, TRUE is returned if the program was last linked
successfully, and FALSE is returned otherwise.

If pname is VALIDATE_STATUS, TRUE is returned if the last call to Vali-
dateProgram (see section 11.1.3.12) with program was successful, and FALSE
is returned otherwise.

If pname is INFO_LOG_LENGTH, the length of the info log, including a null
terminator, is returned. If there is an empty info log, zero is returned.

If pname is ATTACHED_SHADERS, the number of objects attached is returned.

If pname is ACTIVE_ATTRIBUTES, the number of active attributes (see sec-
tion 7.3.1) in program is returned. If no active attributes exist, zero is returned.

If pname is ACTIVE_ATTRIBUTE_MAX_LENGTH, the length of the longest ac-
tive attribute name, including a null terminator, is returned. If no active attributes
exist, zero is returned. If no name reflection information is available, one is re-
turned.

If pname is ACTIVE_UNIFORMS, the number of active uniforms is returned. If
no active uniforms exist, zero is returned.

If pname is ACTIVE_UNIFORM_ MAX_ LENGTH, the length of the longest active
uniform name, including a null terminator, is returned. If no active uniforms exist,
zero is returned. If no name reflection information is available, one is returned.

If pname is TRANSFORM_FEEDBACK_BUFFER_MODE, the buffer mode used
when transform feedback (see section 11.1.2.1) is active is returned. It can be
one of SEPARATE_ATTRIBS or INTERLEAVED_ATTRIBS.

If pname is TRANSFORM_FEEDBACK_VARYINGS, the number of output vari-
ables to capture in transform feedback mode for the program is returned.

If pname is TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH, the length of
the longest output variable name specified to be used for transform feedback, in-
cluding a null terminator, is returned. If no outputs are used for transform feedback,
zero 18 returned. If no name reflection information is available, one is returned.

If pname is ACTIVE_UNIFORM_BLOCKS, the number of uniform blocks for
program containing active uniforms is returned.

If pname is ACTIVE_UNIFORM_BLOCK_MAX_NAME_LENGTH, the length of the
longest active uniform block name, including the null terminator, is returned. If
no active uniform blocks exist, zero is returned. If no name reflection information
is available, one is returned.

If pname is GEOMETRY_VERTICES_OUT, the maximum number of vertices the
geometry shader (see section 11.3) will output is returned.

If pname is GEOMETRY_INPUT_TYPE, the geometry shader input type,
which must be one of POINTS, LINES, LINES_ADJACENCY, TRIANGLES or
TRIANGLES_ADJACENCY, is returned.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 166

If pname is GEOMETRY_OUTPUT_TYPE, the geometry shader output type,
which must be one of POINTS, LINE_STRIP or TRIANGLE_STRIP, is returned.

If pname is GEOMETRY_SHADER_INVOCATIONS, the number of geometry
shader invocations per primitive will be returned.

If pname is TESS_CONTROL_OUTPUT_VERTICES, the number of vertices in
the tessellation control shader (see section 11.2.1) output patch is returned.

If pname is TESS_GEN_MODE, QUADS, TRIANGLES, or ISOLINES is returned,
depending on the primitive mode declaration in the tessellation evaluation shader
(see section 11.2.3).

If pname is
TESS_GEN_SPACING, EQUAL, FRACTIONAL_EVEN, or FRACTIONAL_ODD is re-
turned, depending on the spacing declaration in the tessellation evaluation shader.

If pname is TESS_GEN_VERTEX_ORDER, CCW or CW is returned, depending on
the vertex order declaration in the tessellation evaluation shader.

If pname is TESS_GEN_POINT_MODE, TRUE is returned if point mode is en-
abled in a tessellation evaluation shader declaration; FALSE is returned otherwise.

If pname is COMPUTE_WORK_GROUP_SIZE, an array of three integers contain-
ing the local work group size of the compute program (see chapter 19), as specified
by its input layout qualifier(s), is returned.

If pname is PROGRAM_SEPARABLE, TRUE is returned if the program has been
flagged for use as a separable program object that can be bound to individual shader
stages with UseProgramStages.

If pname is PROGRAM_BINARY_RETRIEVABLE_HINT, the value of whether
the binary retrieval hint is enabled for program is returned.

If pname is ACTIVE_ATOMIC_COUNTER_BUFFERS, the number of active
atomic counter buffers used by program is returned.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if pname is not one of the values
listed above.

An INVALID_OPERATION error is generated if GEOMETRY_VERTICES_-—
OUT, GEOMETRY_INPUT_TYPE, GEOMETRY_OUTPUT_TYPE, or GEOMETRY_—
SHADER_INVOCATIONS are queried for a program which has not been linked
successfully, or which does not contain objects to form a geometry shader.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 167

An INVALID_OPERATION error is generated if TESS_CONTROL_-—
OUTPUT_VERTICES is queried for a program which has not been linked suc-
cessfully, or which does not contain objects to form a tessellation control
shader.

An INVALID_OPERATION error is generated if TESS_GEN_MODE,
TESS_GEN_SPACING, TESS_GEN_VERTEX_ORDER, or TESS_GEN_POINT_-
MODE are queried for a program which has not been linked successfully, or
which does not contain objects to form a tessellation evaluation shader.

An INVALID_OPERATION error is generated if COMPUTE_WORK_-
GROUP_SIZE is queried for a program which has not been linked successfully,
or which does not contain objects to form a compute shader,

The command

void GetProgramPipelineiv(uint pipeline, enum pname,
int *params);

returns properties of the program pipeline object named pipeline in params. The
parameter value to return is specified by pname.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

If pname is ACTIVE_PROGRAM, the name of the active program object (used
for uniform updates) of pipeline is returned.

If pname is one of the shader stage type arguments in table 7.1, the name of the
program object current for the corresponding shader stage of pipeline is returned.

If pname is VALIDATE_STATUS, the validation status of pipeline, as deter-
mined by ValidateProgramPipeline (see section 11.1.3.12) is returned.

If pname is INFO_LOG_LENGTH, the length of the info log for pipeline, includ-
ing a null terminator, is returned. If there is an empty info log, zero is returned.

Errors

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

An INVALID_ENUM error is generated if pname is not ACTIVE_PROGRAM,
INFO_LOG_LENGTH, VALIDATE_STATUS, or one of the fype arguments in
table 7.1.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 168

The command

void GetAttachedShaders(uint program, sizei maxCount,
sizel *count, uint *shaders);

returns the names of shader objects attached to program in shaders. The actual
number of shader names written into shaders is returned in count. If no shaders
are attached, count is set to zero. If count is NULL then it is ignored. The max-
imum number of shader names that may be written into shaders is specified by
maxCount. The number of objects attached to program may be queried by calling
GetProgramiv with ATTACHED_SHADERS.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if maxCount is negative.

A string that contains information about the last compilation attempt on a
shader object, last link or validation attempt on a program object, or last valida-
tion attempt on a program pipeline object, called the info log, can be obtained with
the commands

void GetShaderInfolLog(uint shader, sizei bufSize,
sizei *length, char *infoLog);

void GetProgramlnfolog(uint program, sizei bufSize,
sizei *length, char *infoLog);

void GetProgramPipelinelnfolog(uint pipeline,
sizei bufSize, sizei *length, char *infolLog);

These commands return an info log string for the corresponding type of object in
infoLog. This string will be null-terminated even if the INFO_LOG_LENGTH query
returns zero. The actual number of characters written into infoLog, excluding the
null terminator, is returned in length. If length is NULL, then no length is returned.
The maximum number of characters that may be written into infoLog, including
the null terminator, is specified by bufSize. The number of characters in the info
log for a shader object, program object, or program pipeline object may be queried
respectively with GetShaderiv, GetProgramiv, or GetProgramPipelineiv with
pname INFO_LOG_LENGTH.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 169

If shader is a shader object, GetShaderInfol.og will return either an empty
string or information about the last compilation or specialization attempt for that
object.

If program is a program object, GetProgramInfoLog will return either an
empty string or information about the last link attempt or last validation attempt
(see section 11.1.3.12) for that object.

If pipeline is a program pipeline object, GetProgramPipelineInfol.og will
return either an empty string or information about the last validation attempt for
that object.

The info log is typically only useful during application development and an
application should not expect different GL implementations to produce identical
info logs.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID VALUE error is generated if pipeline is not the name of an
existing program pipeline object.

An INVALID_VALUE error is generated if bufSize is negative.

The command

void GetShaderSource(uint shader, sizei bufSize,
sizei *length, char *source);

returns in source the string making up the source code for the shader object shader.
The string source will be null-terminated. The actual number of characters written
into source, excluding the null terminator, is returned in length. If length is NULL,
no length is returned. The maximum number of characters that may be written into
source, including the null terminator, is specified by bufSize. The string source is a
concatenation of the strings passed to the GL using ShaderSource. The length of
this concatenation is given by SHADER_SOURCE_LENGTH, which may be queried
with GetShaderiv.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 170

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_VALUE error is generated if bufSize is negative.

The command

void GetShaderPrecisionFormat(enum shadertype,
enum precisiontype, int *range, int *precision);

returns the range and precision for different numeric formats supported by the
shader compiler. shadertype must be VERTEX_SHADER or FRAGMENT_SHADER.
precisiontype must be one of LOW_FLOAT, MEDIUM_FLOAT, HIGH_FLOAT, LOW_-
INT,MEDIUM_INT or HIGH_INT. range points to an array of two integers in which
encodings of the format’s numeric range are returned. If min and max are the
smallest and largest values representable in the format, then the values returned are
defined to be

range[0] = [loga(|min])]
range[1] = |logs(jmaz])]
precision points to an integer in which the number of bits of precision of the for-

mat is returned. If the smallest representable value greater than 1 is 1 + ¢, then
*precision will contain | —loga(€) |, and every value in the range

[_2r¢znge[0] ’ 2'r’ange[1]]

can be represented to at least one part in 2*P"¢¢s" For example, an IEEE single-
precision floating-point format would return range[0] = 127, range[l] = 127,
and *preciston = 23, while a 32-bit two’s-complement integer format would re-
turn range[0] = 31, range[l] = 30, and xprecision = 0.

The minimum required precision and range for formats corresponding to the
different values of precisiontype are described in section 4.7(*Precision and Preci-
sion Qualifiers”) of the OpenGL Shading Language Specification.

Errors

An INVALID_ENUM error is generated if shadertype is not VERTEX -

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 171

SHADER or FRAGMENT__SHADER.

The commands

void GetUniformfv(uint program, int location,
float *params);

void GetUniformdv(uint program, int location,
double *params);

void GetUniformiv(uint program, int location,
int *params);

void GetUniformuiv(uint program, int location,
uint *params);

void GetnUniformfv(uint program, int location,
sizei bufSize, £loat *params);

void GetnUniformdv(uint program, int location,
sizei bufSize, double *params);

void GetnUniformiv(uint program, int location,
sizei bufSize, int *params);

void GetnUniformuiv(uint program, int location,
sizei bufSize, uint *params);

return the value or values of the uniform at location /ocation of the default uniform
block for program object program in the array params. The type of the uniform at
location determines the number of values returned.

In order to query the values of an array of uniforms, a GetUniform* command
needs to be issued for each array element. If the uniform queried is a matrix, the
values of the matrix are returned in column major order.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully, or if location is not a valid location for program.

An INVALID_OPERATION error is generated by GetnUniform* if the
buffer size required to store the requested data is greater than bufSize.

The command

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.13. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 172

void GetUniformSubroutineuiv(enum shadertype,
int location, uint *params);

returns the value of the subroutine uniform at location location for shader stage
shadertype of the current program. If location represents an unused location, the
value INVALID_INDEX is returned and no error is generated.

Errors

An INVALID_ENUM error is generated if shadertype is not one of the val-
ues in table 7.1.

An INVALID_VALUE error is generated if location is greater than or equal
to the value of ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS for the shader
currently in use at shader stage shadertype.

An INVALID_OPERATION error is generated if no program is active.

The command

void GetProgramStageiv(uint program, enum shadertype,
enum pname, int *values);

returns properties of the program object program specific to the programmable
stage corresponding to shadertype in values. The parameter value to return is
specified by pname. If pname is ACTIVE_SUBROUTINE_UNIFORMS, the number
of active subroutine variables in the stage is returned. If pname is ACTIVE_-
SUBROUTINE_UNIFORM_LOCATIONS, the number of active subroutine variable
locations in the stage is returned. If pname is ACTIVE_SUBROUTINES, the number
of active subroutines in the stage is returned. If pname is ACTIVE_SUBROUTINE_—
UNIFORM_MAX_LENGTH or ACTIVE_SUBROUTINE_MAX_ LENGTH, the length of
the longest subroutine uniform or subroutine name, respectively, for the stage is
returned. The returned name length includes space for a null terminator. If there
is no shader of type shadertype in program, the values returned will be consistent
with a shader with no subroutines or subroutine uniforms.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if shadertype is not one of the val-

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.14. REQUIRED STATE 173

ues in table 7.1.

7.14 Required State

The GL maintains state to indicate which shader and program object names are in
use. Initially, no shader or program objects exist, and no names are in use.
The state required per shader object consists of:

e An unsigned integer specifying the shader object name.

e An integer holding the value of SHADER_TYPE.

e A boolean holding the delete status, initially FALSE.

e A boolean holding the status of the last compile, initially FALSE.

e A boolean holding the SPIR-V binary status, initially FALSE.

e An array of type char containing the information log, initially empty.
e An integer holding the length of the information log.

e An array of type char containing the concatenated shader string, initially
empty.

e An integer holding the length of the concatenated shader string.
The state required per program object consists of:

e An unsigned integer indicating the program object name.

e A boolean holding the delete status, initially FALSE.

e A boolean holding the status of the last link attempt, initially FALSE.

e A boolean holding the status of the last validation attempt, initially FALSE.
e An integer holding the number of attached shader objects.

e A list of unsigned integers to keep track of the names of the shader objects
attached.

e An array of type char containing the information log, initially empty.

e An integer holding the length of the information log.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

7.14.

REQUIRED STATE 174

An integer holding the number of active uniforms.

For each active uniform, three integers, holding its location, size, and type,
and an array of type char holding its name.

An array holding the values of each active uniform.
An integer holding the number of active attributes.

For each active attribute, three integers holding its location, size, and type,
and an array of type char holding its name.

A boolean holding the hint to the retrievability of the program binary, ini-
tially FALSE.

Additional state required to support vertex shaders consists of:

A bit indicating whether or not program point size mode (section 14.4.1) is
enabled, initially disabled.

Additional state required to support transform feedback consists of:

An integer holding the transform feedback mode, initially INTERLEAVED_—
ATTRIBS.

An integer holding the number of outputs to be captured, initially zero.

An integer holding the length of the longest output name being captured,
initially zero.

For each output being captured, two integers holding its size and type, and
an array of type char holding its name.

Additionally, one unsigned integer is required to hold the name of the current pro-
gram object, if any.

This list of program object state is not complete. Tables 23.43-23.53 describe
additional program object state specific to program binaries, geometry shaders,
tessellation control and evaluation shaders, shader subroutines, and uniform blocks.

Table 23.54 describes state related to vertex and geometry shaders that is not
program object state.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

Chapter 8

Textures and Samplers

Texturing maps a portion of one or more specified images onto

This mapping is accomplished in shaders by
sampling the color of an image at the location indicated by specified (s, ¢, r) texture
coordinates.

Texture lookups are typically used to modify a fragment’s RGBA color but may be
used for any purpose in a shader.

This chapter first describes how pixel rectangles, texture images, and texture
and sampler object parameters are specified and queried, in sections 8.1-8.11. The
remainder of the chapter in sections 8.12-8.26 describe how texture sampling is
performed in shaders.

The internal data type of a texture may be signed or unsigned normalized fixed-
point, signed or unsigned integer, or floating-point, depending on the internal for-
mat of the texture. The correspondence between the internal format and the internal
data type is given in tables 8.19-8.21. Fixed-point and floating-point textures return
a floating-point value and integer textures return signed or unsigned integer values.

shader is responsible for interpreting the re-
sult of a texture lookup as the correct data type, otherwise the result is undefined.

Each of the supported types of texture is a collection of fexture images built
from one-, two-, or three-dimensional arrays of texels (see section 2.6.6). One-,
two-, and three-dimensional textures consist respectively of one-, two-, or three-
dimensional texture images. One- and two-dimensional array textures are arrays
of one- or two-dimensional images. Each image consists of one or more layers.

175

176

Two-dimensional multisample and two-dimensional multisample array textures are
special two-dimensional and two-dimensional array textures, respectively, contain-
ing multiple samples in each texel. Cube maps are special two-dimensional array
textures with six layers that represent the faces of a cube. When accessing a cube
map, the texture coordinates are projected onto one of the six faces of the cube. A
cube map array is a collection of cube map layers stored as a two-dimensional array
texture. When accessing a cube map array, the texture coordinates s, ¢, and r are
applied similarly as cube maps while the last texture coordinate ¢ is used as the in-
dex of one of the cube map slices. Rectangle textures are special two-dimensional
textures consisting of only a single image and accessed using unnormalized coor-
dinates. Buffer textures are special one-dimensional textures whose texture images
are stored in separate buffer objects.

Implementations must support texturing using multiple images. For fixed-
function fragment processsing, each fragment or vertex carries multiple sets of
texture coordinates (s, ¢, r, q) which are used to index separate images to produce
color values which are collectively used to modify the resulting transformed vertex
or fragment color. Texturing is specified only for RGBA mode; its use in color
index mode is undefined.

The following subsections (up to and including section 8.14) specify the GL
operation with a single texture. Multiple texture images may be sampled and com-
bined by shaders as described in section 11.1.3.5. For fixed-function fragment
processing, section 16.2 specifies the details of how multiple texture units interact.

The GL provides two ways to specify the details of how texturing of a primi-
tive 1s effected. The first is referred to as fixed-function fragment shading, or simply
fixed-function, and is described in this section. The second is texture access from
programmable shaders, as described in section 11.1.3.5. The specification of the
image to be texture mapped and the means by which the image is filtered when
applied to the primitive are common to both methods and are discussed in this sec-
tion. The fixed-function method for determining what RGBA value is produced is
also described in this section. If a fragment shader is active, the method for deter-
mining the RGBA value is specified by an application-supplied fragment shader as
described in the OpenGL Shading Language Specification.

When no fragment shader is active, and when cube map texturing is not en-
abled, the coordinates used for texturing are (s/q,t/q,r/q), derived from the orig-
inal texture coordinates (s, ¢, r,). If the ¢ texture coordinate is less than or equal to
zero, the coordinates used for texturing are undefined. Otherwise, when cube map
texturing is enabled, texture coordinates are treated as described in section 8.13
When a fragment shader is active, the (s, t,r,q) coordinates are available to the
fragment shader.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

177

The coordinates used for texturing in a fragment shader are defined by the
OpenGL Shading Language Specification.
The command

void ActiveTexture(enum fexture);

specifies the active texture unit selector. The selector may be queried by calling
Getlntegerv with pname set to ACTIVE_TEXTURE.

Each texture unit contains up to two distinct sub-units: a texture coordinate
processing unit consisting of a texture matrix stack and texture coordinate gener-
ation state, and a texture image unit consisting of all the texture state defined in
section 8.22. In implementations with a different number of supported texture co-
ordinate sets and texture image units, some texture units may consist of only one
of the two sub-units.

The active texture unit selector selects the texture image unit accessed by com-
mands involving texture image processing (see chapter 8). Such commands include
all variants of TexEnv (except for those controlling point sprite coordinate replace-
ment), TexParameter, TexImage, BindTexture, Enable/Disable for any texture
target (e.g., TEXTURE_2D), and queries of all such state.

Errors

An INVALID_OPERATION error is generated by any such command if the
texture image unit number corresponding to the current value of ACTIVE_—
TEXTURE is greater than or equal to the value of the implementation-dependent
constant MAX_COMBINED_TEXTURE_IMAGE_UNITS.

The active texture unit selector also specifies the texture coordinate set accessed
by commands involving texture coordinate processing (see section 12.1.1).

Errors

An INVALID_ENUM error is generated if an invalid fexture is specified.
texture is a symbolic constant of the form TEXTUREs, indicating that texture
unit ¢ is to be modified. Each TEXTURE: adheres to TEXTURE? = TEXTUREO
+ ¢, where ¢ is in the range zero to k — 1, and k is the larger of the values of
MAX TEXTURE COORDS and MAX_COMBINED_TEXTURE_IMAGE_UNITS.

For backwards compatibility, the implementation-dependent constant
MAX_TEXTURE_UNITS specifies the number of conventional texture units sup-

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.1. TEXTURE OBJECTS 178

The state required for the active texture image unit selector is a single integer.
The initial value is TEXTUREO.

8.1 Texture Objects

Textures in GL are represented by named objects. The name space for tex-
ture objects is the unsigned integers, with zero reserved by the GL to represent
the default texture object. The default texture object is bound to each of the
TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_ARRAY, TEXTURE_—
2D_ARRAY, TEXTURE_RECTANGLE, TEXTURE_BUFFER, TEXTURE_CUBE_MAP,
TEXTURE_CUBE_MAP_ARRAY, TEXTURE_2D_MULTISAMPLE, and TEXTURE_-
2D_MULTISAMPLE_ARRAY targets during context initialization.

A new texture object is created by binding an unused name to one of these
texture targets. The command

void GenTextures(sizei n, uint *fextures);

returns n previously unused texture names in fextures. These names are marked as
used, for the purposes of GenTextures only, but they acquire texture state and a
dimensionality only when they are first bound, just as if they were unused.

Errors
An INVALID_VALUE error is generated if # is negative.
The binding is effected by calling
void BindTexture(enum target, uint texture);

with target set to the desired texture target and fexture set to the unused name. The
resulting texture object is a new state vector, comprising all the state and with the
same initial values listed in section 8.22. The new texture object bound to farget
is, and remains a texture of the dimensionality and type specified by farger until it
is deleted.

BindTexture may also be used to bind an existing texture object to any of these
targets. If the bind is successful no change is made to the state of the bound texture
object, and any previous binding to target is broken.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.1. TEXTURE OBJECTS 179

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return
state from the bound object.

Errors

An INVALID_ENUM error is generated if farget is not one of the texture
targets described in the introduction to section 8.1.

An INVALID_OPERATION error is generated if an attempt is made to bind
a texture object of different dimensionality than the specified rarget.

The command

void BindTextures(uint first, sizei count, const
uint *textures);

binds count existing texture objects to texture image units numbered first through
first + count — 1. If textures is not NULL, it specifies an array of count values,
each of which must be zero or the name of an existing texture object. When an
entry in fextures is the name of an existing texture object, that object is bound to
the target, in the corresponding texture unit, that was specified when the object was
created. When an entry in fextures is zero, each of the targets enumerated at the
beginning of this section is reset to its default texture for the corresponding texture
image unit. If textures is NULL, each target of each affected texture image unit from
first to first 4+ count — 1 is reset to its default texture.
BindTextures is equivalent (assuming no errors are generated to):

for (i = 0; 1 < count; i++) {
uint texture;
if (tertures == NULL) {
texture = 0;
} else {
texture = textures[i];

}

ActiveTexture (TEXTUREO + first + 1i);

if (texture != 0) {
enum target = /% target of textures[i] =/;
BindTexture (target, textures[i]) ;

} else {

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.1. TEXTURE OBJECTS 180

for (target in all supported targets) {
BindTexture (target, 0);

}

except that the active texture selector retains its original value upon completion of
the command, and that textures will not be created if they do not exist.

The values specified in textures will be checked separately for each texture
image unit. When a value for a specific texture image unit is invalid, the state for
that texture image unit will be unchanged and an error will be generated. However,
state for other texture image units will still be changed if their corresponding values
are valid.

Errors

An INVALID_OPERATION error is generated if first + count is greater
than the number of texture image units supported by the implementation.

An INVALID_OPERATION error is generated if any value in textures is not
zero or the name of an existing texture object (per binding).

The command
void BindTextureUnit(uint unit, uint texture);

binds an existing texture object to the texture unit numbered unit. texture must
be zero or the name of an existing texture object. When fexture is the name of
an existing texture object, that object is bound to the target, in the corresponding
texture unit, that was specified when the object was created. When fexture is zero,
each of the targets enumerated at the beginning of this section is reset to its default
texture for the corresponding texture image unit.

Errors

An INVALID_OPERATION error is generated by BindTextureUnit if fex-
ture is not zero or the name of an existing texture object.

Texture objects may also be created with the command

void CreateTextures(enum farget, sizei n, uint *fextures);

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.1. TEXTURE OBJECTS 181

CreateTextures returns n previously unused texture names in textures, each
representing a new texture object that is a state vector comprising all the state and
with the same initial values listed in section 8.22. The new texture objects are and
remain textures of the dimensionality and type specified by farget until they are
deleted.

Errors
An INVALID_VALUE error is generated if # is negative.
Texture objects are deleted by calling
void DeleteTextures(sizei n, const uint *fextures);

textures contains n names of texture objects to be deleted. After a texture object
is deleted, it has no contents or dimensionality, and its name is again unused. If
a texture that is currently bound to any of the target bindings of BindTexture is
deleted, it is as though BindTexture had been executed with the same target and
texture zero. Additionally, special care must be taken when deleting a texture if any
of the images of the texture are attached to a framebuffer object. See section 9.2.8
for details.

Unused names in fextures that have been marked as used for the purposes of
GenTextures are marked as unused again. Unused names in textures are silently
ignored, as is the name zero.

Errors
An INVALID_VALUE error is generated if # is negative.
The command
boolean IsTexture(uint texture);

returns TRUE if texture is the name of a texture object. If fexture is zero, or is a non-
zero value that is not the name of a texture object, or if an error condition occurs,
IsTexture returns FALSE.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.1. TEXTURE OBJECTS 182

returns TRUE if all of the n texture objects named in fextures are resident, or if the
implementation does not distinguish a working set. If at least one of the texture ob-
jects named in fextures is not resident, then FALSE is returned, and the residence of
each texture object is returned in residences. Otherwise the contents of residences
are not changed.

AreTexturesResident indicates only whether a texture object is currently resi-
dent, not whether it could not be made resident. An implementation may choose to
make a texture object resident only on first use, for example. The client may guide
the GL implementation in determining which texture objects should be resident by
specifying a priority for each texture object.

If an error is generated, FALSE is returned.

The residence status of a single bound texture object can also be queried by
calling GetTexParameteriv or GetTexParameterfv with target set to the target to
which the texture object is bound, and pname set to TEXTURE_RESIDENT.

The command

void PrioritizeTextures(sizei n, uint *fextures, const
float *priorities);

sets the priorities of the n texture objects named in fextures to the values in priori-
ties. Each priority value is clamped to the range [0, 1] before it is assigned. Zero in-
dicates the lowest priority, with the least likelihood of being resident. One indicates
the highest priority, with the greatest likelihood of being resident. The priority of a
single bound texture object may also be changed by calling TexParameteri, Tex-
Parameterf, TexParameteriv, or TexParameterfv with rarget set to the target to
which the texture object is bound, pname set to TEXTURE_PRIORITY, and param
or params specifying the new priority value (which is clamped to the range [0, 1]
before being assigned). PrioritizeTextures silently ignores attempts to prioritize
unused texture object names or zero (default textures).

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.2. SAMPLER OBJECTS 183

The texture object name space, including the initial one-, two-, and three- di-
mensional, one- and two-dimensional array, rectangle, buffer, cube map, cube map
array, two-dimensional multisample, and two-dimensional multisample array tex-
ture objects, is shared among all texture units. A texture object may be bound to
more than one texture unit simultaneously. After a texture object is bound, any
GL operations on that target object affect any other texture units to which the same
texture object is bound.

Texture binding is affected by the setting of the state ACTIVE_TEXTURE. If a
texture object is deleted, it as if all texture units which are bound to that texture
object are rebound to texture object zero.

8.2 Sampler Objects

The state necessary for texturing can be divided into two categories as described
in section 8.22. A GL texture object includes both categories. The first category
represents dimensionality and other image parameters, and the second category
represents sampling state. Additionally, a sampler object may be created to encap-
sulate only the sampling state of a texture object.

A new sampler object is created by binding an unused name to a texture unit.
The command

void GenSamplers(sizei count, uint *samplers);

returns count previously unused sampler object names in samplers. The name zero
is reserved by the GL to represent no sampler being bound to a sampler unit. The
names are marked as used, for the purposes of GenSamplers only, but they acquire
state only when they are first used as a parameter to BindSampler, SamplerPa-
rameter*, GetSamplerParameter*, or IsSampler. When a sampler object is first
used in one of these functions, the resulting sampler object is initialized with a
new state vector, comprising all the state and with the same initial values listed in
table 23.23.

Errors
An INVALID_VALUE error is generated if count is negative.
Sampler objects may also be created with the command

void CreateSamplers(sizei n, uint *samplers);

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.2. SAMPLER OBJECTS 184

CreateSamplers returns n previously unused sampler names in samplers, each
representing a new sampler object which is a state vector comprising all the state
and with the same initial values listed in table 23.23".

Errors
An INVALID_VALUE error is generated if » is negative.

When a sampler object is bound to a texture unit, its state supersedes that of
the texture object bound to that texture unit. If the sampler name zero is bound to
a texture unit, the currently bound texture’s sampler state becomes active. A single
sampler object may be bound to multiple texture units simultaneously.

A sampler object binding is effected with the command

void BindSampler(uint unit, uint sampler);

with unit set to the zero-based index of the texture unit to which to bind the sampler
and sampler set to the name of a sampler object returned from a previous call to
GenSamplers.

If the bind is successful no change is made to the state of the bound sampler
object, and any previous binding to unit is broken.

If state is present in a sampler object bound to a texture unit that would have
been rejected by a call to TexParameter* for the texture bound to that unit, the
behavior of the implementation is as if the texture were incomplete. For example, if
TEXTURE_WRAP_S or TEXTURE_WRAP_T is set to REPEAT, MIRRORED_REPEAT,
or MIRROR_CLAMP_TO_EDGE on the sampler object bound to a texture unit and
the texture bound to that unit is a rectangle texture, the texture will be considered
incomplete.

Sampler object state which does not affect sampling for the type of texture
bound to a texture unit, such as TEXTURE_WRAP_R for a rectangle texture, does
not affect completeness.

The currently bound sampler may be queried by calling GetIntegerv with
pname set to SAMPLER_BINDING. When a sampler object is unbound from the
texture unit (by binding the sampler object named zero to that unit), the modified
state is again replaced with the sampler state associated with the texture object
bound to that texture unit.

! Note that unlike texture objects, the initial sampler object state for TEXTURE_MIN_ —
FILTER and TEXTURE_WRAP_ x are fixed, rather than dependent on the type of texture image.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.2. SAMPLER OBJECTS

Errors

An INVALID_VALUE error is generated if unit is greater than or equal to
the value of MAX_COMBINED_TEXTURE_IMAGE_UNITS.

An INVALID_OPERATION error is generated if sampler is not zero or a
name returned from a previous call to GenSamplers, or if such a name has
since been deleted with DeleteSamplers.

The command

void BindSamplers(uint first, sizei count, const
uint *samplers);

binds count existing sampler objects to texture image units numbered first through
first 4+ count — 1. If samplers is not NULL, it specifies an array of count values,
each of which must be zero or the name of an existing sampler object. If samplers
is NULL, each affected texture image unit from first through first + count — 1 will
be reset to have no bound sampler object.

BindSamplers is equivalent (assuming no errors are generated to):

for (i = 0; i < count; i++) {
if (samplers == NULL) {
BindSampler (first + 1, 0);
} else {

BindSampler (first + i, samplers[i]);
}
}

The values specified in samplers will be checked separately for each texture
image unit. When a value for a specific texture image unit is invalid, the state for
that texture image unit will be unchanged and an error will be generated. However,
state for other texture image units will still be changed if their corresponding values
are valid.

Errors

An INVALID_OPERATION error is generated if first + count is greater
than the number of texture image units supported by the implementation.

An INVALID_OPERATION error is generated if any value in samplers is
not zero or the name of an existing sampler object (per binding).

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

185

8.2. SAMPLER OBJECTS 186

The parameters represented by a sampler object are a subset of those described
in section 8.10. Each parameter of a sampler object is set by calling

void SamplerParameter{if}(uint sampler, enum pname,
T param);

void SamplerParameter{if}v(uint sampler, enum pname,
const T *param);

void SamplerParameterI{i wi}v(uint sampler, enum pname,
const T *params);

sampler is the name of a sampler object previously reserved by a call to GenSam-
plers. pname is the name of a parameter to modify and param is the new value of
that parameter. pname must be one of the sampler state names in table 23.23.
Texture state listed in tables 23.21- 23.22 but not listed here and in the sampler
state in table 23.23 is not part of the sampler state, and remains in the texture object.
Data conversions are performed as specified in section 2.2.1, with these excep-
tions:

e If the values for TEXTURE_BORDER_COLOR are specified with SamplerPa-
rameterliv or SamplerParameterluiv, they are unmodified and stored with
an internal data type of integer. If specified with SamplerParameteriv, they
are converted to floating-point using equation 2.2. Otherwise, the values are
unmodified and stored as floating-point.

Modifying a parameter of a sampler object affects all texture units to which
that sampler object is bound. Calling TexParameter has no effect on the sampler
object bound to the active texture unit. It will modify the parameters of the texture
object bound to that unit.

Errors

An INVALID_OPERATION error is generated if sampler is not the name of
a sampler object previously returned from a call to GenSamplers.

An INVALID_ENUM error is generated if pname is not one of the sampler
state names in table 23.23.

An INVALID_ENUM error is generated if SamplerParameter{if} is called
for a non-scalar parameter (pname TEXTURE_BORDER_COLOR Or TEXTURE_ -
SWIZZLE_RGBA).

If the value of param is not an acceptable value for the parameter specified

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.3. SAMPLER OBJECT QUERIES 187

in pname, an error is generated as specified in the description of TexParame-
ter™.

Sampler objects are deleted by calling
void DeleteSamplers(sizei count, const uint *samplers);

samplers contains count names of sampler objects to be deleted. After a sampler
object is deleted, its name is again unused. If a sampler object that is currently
bound to one or more texture units is deleted, it is as though BindSampler is called
once for each texture unit to which the sampler is bound, with unit set to the texture
unit and sampler set to zero. Unused names in samplers that have been marked as
used for the purposes of GenSamplers are marked as unused again. Unused names
in samplers are silently ignored, as is the reserved name zero.

Errors
An INVALID_VALUE error is generated if count is negative.
The command
boolean IsSampler(uint sampler);

may be called to determine whether sampler is the name of a sampler object. Is-
Sampler will return TRUE if sampler is the name of a sampler object previously
returned from a call to GenSamplers and FALSE otherwise. Zero is not the name
of a sampler object.

8.3 Sampler Object Queries
The current values of the parameters of a sampler object may be queried by calling

void GetSamplerParameter{if}v(uint sampler,
enum pname, T *params);

void GetSamplerParameterlI{i ui}v(uint sampler,
enum pname, T *params);

sampler is the name of the sampler object from which to retrieve parameters.
pname is the name of the parameter to be queried, and must be one of the sam-
pler state names in table 23.23. params is the address of an array into which the
current value of the parameter will be placed.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 188

Querying TEXTURE_BORDER_COLOR with GetSamplerParameterliv or Get-
SamplerParameterluiv returns the border color values as signed integers or un-
signed integers, respectively; otherwise the values are returned as described in sec-
tion 2.2.2. If the border color is queried with a type that does not match the original
type with which it was specified, the result is undefined.

Errors

An INVALID_OPERATION error is generated if sampler is not the name of
a sampler object previously returned from a call to GenSamplers.

An INVALID_ENUM error is generated if pname is not one of the sampler
state names in table 23.23.

8.4 Pixel Rectangles

Rectangles of color, depth, and certain other values may be specified to the GL us-
ing TexImage*D 8.5

18.1) Some of the parameters and operations gov-
erning the operation of these commands are shared by

ReadPixels (used to obtain

pixel values from the framebuffer); the discussion of ReadPixels,
however, is deferred until chapter 9 after the framebuffer has been discussed in de-
tail. Nevertheless, we note in this section when parameters and state pertaining to
these commands also pertain to ReadPixels.

A number of parameters control the encoding of pixels in buffer object or client
memory (for reading and writing) and how pixels are processed before being placed
in or after being read from the framebuffer (for reading, writing, and copying).
These parameters are set with

8.4.1 Pixel Storage Modes and Pixel Buffer Objects

Pixel storage modes affect the operation of TexImage*D, TexSubImage*D, Com-
pressed TexImage*D, Compressed TexSubImage*D, and ReadPix-
els 14.6.2 14.8) when one of these
commands is issued.

21.4). Pixel storage modes
are set with

void PixelStore{if}(enum pname, T param);

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 189

Parameter Name Type Initial Value \ Valid Range ‘
UNPACK_SWAP_BYTES boolean FALSE TRUE/FALSE
UNPACK_LSB_FIRST boolean FALSE TRUE/FALSE
UNPACK_ROW_LENGTH integer 0 [0, 00)
UNPACK_SKIP_ROWS integer 0 [0, 00)
UNPACK_SKIP_PIXELS integer 0 [0, 00)
UNPACK_ALIGNMENT integer 4 1,2,4,8
UNPACK_IMAGE_HEIGHT integer 0 [0, 00)
UNPACK_SKIP_IMAGES integer 0 [0, 00)
UNPACK_COMPRESSED_BLOCK_WIDTH | integer 0 [0, 00)
UNPACK_COMPRESSED_BLOCK_HEIGHT | integer 0 [0, 00)
UNPACK_COMPRESSED_BLOCK_DEPTH integer 0 [0, 00)
UNPACK_COMPRESSED_BLOCK_SIZE integer 0 [0, 00)

Table 8.1: PixelStore* parameters pertaining to one or more of

TexImage*D, TexSubImage*D, Compressed-
TexImage*D and Compressed TexSubImage*D.

pname is a symbolic constant indicating a parameter to be set, and param is the
value to set it to. Tables 8.1 and 18.1 summarize the pixel storage parameters, their
types, their initial values, and their allowable ranges.

Errors

An INVALID_ENUM error is generated if pname is not one of the paramater
names in table 8.1 or 18.1.

An INVALID_VALUE error is generated if param is outside the given range
for the corresponding pname in table 8.1 or 18.1.

Data conversions are performed as specified in section 2.2.1.

In addition to storing pixel data in client memory, pixel data may also be
stored in buffer objects (described in section 6). The current pixel unpack and
pack buffer objects are designated by the PIXEL_UNPACK_BUFFER and PIXEL_—
PACK_BUFFER targets respectively.

Initially, zero is bound for the PIXEL_UNPACK_BUFFER, indicating that im-
age specification commands such as source their pixels from client
memory pointer parameters. However, if a non-zero buffer object is bound as the
current pixel unpack buffer, then the pointer parameter is treated as an offset into

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 190

the designated buffer object.

8.4.2 The Imaging Subset

Some pixel transfer operations are only made available in GL implementations
which incorporate the optional imaging subset. The imaging subset includes both
new commands, and new enumerants allowed as parameters to existing commands.
If the subset is supported, all of these calls and enumerants must be implemented
as described later in this section.

The individual operations available only in the imaging subset are described in
section 8.4.3. Imaging subset operations include:

e Color tables, including all commands and enumerants described in sub-
sections Color Table Specification, Alternate Color Table Specification
Commands, Color Table State and Proxy State, Color Table Lookup,
Post Convolution Color Table Lookup, and Post Color Matrix Color Ta-
ble Lookup, as well as the query commands described in section 8.4.3.4.

e Convolution, including all commands and enumerants described in sub-
sections Convolution Filter Specification, Alternate Convolution Filter
Specification Commands, and Convolution, as well as the query com-
mands described in section 8.4.3.8.

e Color matrix, including all commands and enumerants described in subsec-
tions Color Matrix Specification and Color Matrix Transformation, as
well as the simple query commands described in section 8.4.3.11.

e Histogram and minmax, including all commands and enumerants de-
scribed in subsections Histogram Table Specification, Histogram State
and Proxy State, Histogram, Minmax Table Specification, and Min-
max, as well as the query commands described in section 8.4.3.13 and sec-
tion 8.4.3.16.

The imaging subset is supported only if the EXTENSIONS string includes
the substring ”GL_ARB_imaging” Querying EXTENSIONS is described in sec-
tion 22.2.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 191

\ Parameter Name \ Type \ Initial Value \ Valid Range \
MAP_COLOR boolean FALSE TRUE/FALSE
MAP_STENCIL boolean FALSE TRUE/FALSE
INDEX_SHIFT integer 0 (—00,00)
INDEX_OFFSET integer 0 (—00, 00)
z_SCALE float 1.0 (—00,00)
DEPTH_SCALE float 1.0 (—00,00)
x_BIAS float 0.0 (—00,0)
DEPTH_BIAS float 0.0 (—00,00)
POST_CONVOLUTION_x_SCALE float 1.0 (—00,)
POST_CONVOLUTION_z_BIAS float 0.0 (—00,)
POST_COLOR_MATRIX_ z_SCALE | float 1.0 (—00,00)
POST_COLOR_MATRIX_z_BIAS float 0.0 (—00,00)

Table 8.2: PixelTransfer parameters. x is RED, GREEN, BLUE, or ALPHA.

If the imaging subset is not supported, the related pixel transfer operations are
not performed; pixels are passed unchanged to the next operation.

8.4.3 Pixel Transfer Modes

Pixel transfer modes affect the operation of DrawPixels (section 18.1), ReadPix-
els (section 18.2), and CopyPixels (section 18.3) at the time when one of these
commands is executed (which may differ from the time the command is issued).
Some pixel transfer modes are set with

void PixelTransfer{if}(enum param, T value);

param is a symbolic constant indicating a parameter to be set, and value is the

value to set it to. Table 8.2 summarizes the pixel transfer parameters that are set

with PixelTransfer, their types, their initial values, and their allowable ranges.
Data conversions are performed as specified in section 2.2.1.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 192

Map Name H Address Value Init. Size | Init. Value
PIXEL_MAP_I_TO_I color idx color idx 1 0.0
PIXEL_MAP_S_TO_S | stencil idx | stencil idx 1 0
PIXEL_MAP_I_TO_R || coloridx R 1 0.0
PIXEL_MAP_I_TO_G color idx G 1 0.0
PIXEL_MAP_I_TO_B || coloridx B 1 0.0
PIXEL_MAP_I_TO_A || coloridx A 1 0.0
PIXEL_MAP_R_TO_R R R 1 0.0
PIXEL_MAP_G_TO_G G G 1 0.0
PIXEL_MAP_B_TO_B B B 1 0.0
PIXEL_MAP_A_TO_A A A 1 0.0

Table 8.3: PixelMap parameters.

The pixel map lookup tables are set with

void PixelMap{ui us f}v(enum map, sizei size, const
T *values);

map is a symbolic map name, indicating the map to set, size indicates the size of
the map, and values refers to an array of size map values.

The entries of a table may be specified using one of three types: single-
precision floating-point, unsigned short integer, or unsigned integer, depending on
which of the three versions of PixelMap is called. A table entry is converted to
the appropriate type when it is specified. An entry giving a color component value
is converted as described in equation 2.1 and then clamped to the range [0, 1]. An
entry giving a color index value is converted from an unsigned short integer or un-
signed integer to floating-point. An entry giving a stencil index is converted from
single-precision floating-point to an integer by rounding to nearest. The various
tables and their initial sizes and entries are summarized in table 8.3.

The maximum allowable size of each table is specified by the implementation-
dependent value of MAX_PIXEL_MAP_TABLE, but must be at least 32 (a single
maximum applies to all tables).

If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_—
UNPACK_BUFFER_BINDING), values is an offset into the pixel unpack buffer; oth-
erwise, values is a pointer to client memory. All pixel storage and pixel transfer

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 193

modes are ignored when specifying a pixel map. n machine units are read where
n is the size of the pixel map times the size of a f1oat, uint, or ushort datum
in basic machine units, depending on the respective PixelMap version.

8.4.3.1 Pixel Map Queries

The commands

void GetPixelMap{ui us f}v(enum map, T *data);
void GetnPixelMap{ui us f}v(enum map, sizei bufSize,
T data);

return all values in the pixel map map in data. map must be a map name from
table 8.3. Get*PixelMapuiv and Get*PixelMapusv convert floating-point pixel
map values to integers according to the UNSIGNED_INT and UNSIGNED_SHORT
entries, respectively, of table 18.2.

GetnPixelMap* do not write more than bufSize bytes into data.

If a pixel pack buffer is bound (as indicated by a non-zero value of PIXEL_—
PACK_BUFFER_BINDING), data is an offset into the pixel pack buffer; otherwise,
data is a pointer to client memory. All pixel storage and pixel transfer modes are
ignored when returning a pixel map. n machine units are written where n is the size
of the pixel map times the size of FLOAT, UNSIGNED_INT, or UNSIGNED_SHORT
respectively in basic machine units.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 194

8.4.3.2 Color Table Specification

Color lookup tables are specified with

void ColorTable(enum rarget, enum internalformat,
sizei width, enum format, enum type, const
void *data);

target must be one of the regular color table names listed in table 8.4 to define
the table. A proxy table name is a special case discussed later in this section.
width, format, type, and data specify an image in memory with the same mean-
ing and allowed values as the corresponding arguments to DrawPixels (see sec-
tion 18.1), with height taken to be 1. The maximum allowable width of a table
is implementation-dependent, but must be at least 32. The formats COLOR_-
INDEX, DEPTH_COMPONENT, DEPTH_STENCIL, and STENCIL_INDEX and the
type BITMAP are not allowed.

The specified image is taken from memory and processed just as if DrawPixels
were called, stopping after the final expansion to RGBA. The R, G, B, and A com-
ponents of each pixel are then scaled by the four COLOR_TABLE_SCALE param-
eters and biased by the four COLOR_TABLE_BIAS parameters. These parameters
are set by calling ColorTableParameterfv as described below. If fragment color
clamping is enabled or internalformat is fixed-point, components are clamped to
[0, 1]. Otherwise, components are not modified.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with the base internal format specified by (or derived from) inter-
nalformat, in the same manner as for textures (section 8.5). internalformat must
be one of the formats in table 8.18 or tables 8.19- 8.21, with the exception of the

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 195

Table Name || Type |

COLOR_TABLE regular
POST_CONVOLUTION_COLOR_TABLE
POST_COLOR_MATRIX_COLOR_TABLE
PROXY_COLOR_TABLE proxy
PROXY_POST_CONVOLUTION_COLOR_TABLE
PROXY_POST_COLOR_MATRIX COLOR_TABLE

Table 8.4: Color table names. Regular tables have associated image data. Proxy
tables have no image data, and are used only to determine if an image can be loaded
into the corresponding regular table.

RED, RG, DEPTH_COMPONENT, and DEPTH_STENCIL base and sized internal for-
mats in those tables, all sized internal formats with non-fixed internal data types
(see section 8), and sized internal format RGB9_ES5.

The color lookup table is redefined to have width entries, each with the speci-
fied internal format. The table is formed with indices 0 through width — 1. Table
location 7 is specified by the ith image pixel, counting from zero.

The scale and bias parameters for a table are specified by calling

void ColorTableParameter{if}v(enum target, enum pname,
const T *params);

target must be a regular color table name. pname is one of COLOR_TABLE_SCALE
or COLOR_TABLE_BIAS. params points to an array of four values: red, green, blue,
and alpha, in that order.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 196

Data conversions are performed as specified in section 2.2.1.

A GL implementation may vary its allocation of internal component resolution
based on any ColorTable parameter, but the allocation must not be a function of
any other factor, and cannot be changed once it is established. Allocations must
be invariant; the same allocation must be made each time a color table is specified
with the same parameter values. These allocation rules also apply to proxy color
tables, which are described later in this section.

8.4.3.3 Alternate Color Table Specification Commands

Color tables may also be specified using image data taken directly from the frame-
buffer, and portions of existing tables may be respecified.
The command

void CopyColorTable(enum target, enum internalformat,
int x, inty, sizei width);

defines a color table in exactly the manner of ColorTable, except that table data
are taken from the framebuffer, rather than from client memory. farget must be a
regular color table name. x, y, and width correspond precisely to the corresponding
arguments of CopyPixels (refer to section 18.3); they specify the image’s width
and the lower left (z,y) coordinates of the framebuffer region to be copied. The
image is taken from the framebuffer exactly as if these arguments were passed to
CopyPixels with argument type set to COLOR and height set to 1, stopping after the
final expansion to RGBA.

Subsequent processing is identical to that described for ColorTable, begin-
ning with scaling by COLOR_TABLE_SCALE. Parameters farget, internalformat and
width are specified using the same values, with the same meanings, as the corre-
sponding arguments of ColorTable. format is taken to be RGBA.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES

Two additional commands,

void ColorSubTable(enum rarget, sizei start, sizei count,
enum format, enum type, const void *data);

void CopyColorSubTable(enum target, sizei start, int x,
inty, sizei count);

respecify only a portion of an existing color table. No change is made to the inter-
nalformat or width parameters of the specified color table, nor is any change made
to table entries outside the specified portion. target must be a regular color table
name.

ColorSubTable arguments format, type, and data match the corresponding ar-
guments to ColorTable, meaning that they are specified using the same values,
and have the same meanings. Likewise, CopyColorSubTable arguments x, y, and
count match the x, y, and width arguments of CopyColorTable. Both of the Color-
SubTable commands interpret and process pixel groups in exactly the manner of
their ColorTable counterparts, except that the assignment of R, G, B, and A pixel
group values to the color table components is controlled by the internalformat of
the table, not by an argument to the command.

Arguments start and count of ColorSubTable and CopyColorSubTable spec-
ify a subregion of the color table starting at index start and ending at index
start + count — 1. Counting from zero, the nth pixel group is assigned to the
table entry with index count + n.

8.4.3.4 Color Table Query

The current contents of a color table are queried with the commands

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

197

8.4. PIXEL RECTANGLES 198

| format Name
RED

GREEN
BLUE

Table 8.5: Pixel data format parameter values accepted for the color table, convolu-
tion filter, histogram table, and minmax table query commands. These commands
accept only a subset of the formats accepted by GetTexImage, but the specifica-
tion and interpretation of pixels in those formats is identical to that described for
the same formats in table 8.8.

void GetColorTable(enum target, enum format, enum type,
void *table);

void GetnColorTable(enum target, enum format, enum type,
sizei bufSize, void *table);

target must be one of the regular color table names listed in table 8.4. format
must be a pixel format from table 8.5 and fype must be a data type from table 8.6.
The one-dimensional color table image is returned to pixel pack buffer or client
memory starting at table. No pixel transfer operations are performed on this image,
but pixel storage modes that are applicable to ReadPixels are performed. Color
components that are requested in the specified format, but which are not included in
the internal format of the color lookup table, are returned as zero. The assignments
of internal color components to the components requested by format are described
in table 8.26.

Errors

An INVALID_ENUM error is generated if farget is not one of the regular
color table names from table 8.4.
An INVALID_ENUM error is generated if format is not one of the pixel

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 199

‘ type Name

UNSIGNED_BYTE

BYTE

UNSIGNED_SHORT

SHORT

UNSIGNED_INT

INT

UNSIGNED_BYTE_3_3_2
UNSIGNED_BYTE_2_3_3_REV
UNSIGNED_SHORT_5_6_5
UNSIGNED_SHORT_5_6_5_REV
UNSIGNED_SHORT_4_4_4_4
UNSIGNED_SHORT 4_4_4_ 4 REV
UNSIGNED_SHORT_5_5_5_1
UNSIGNED_SHORT_1_5_5_5_REV
UNSIGNED_INT_8_8_8_8
UNSIGNED_INT_8_8_8_8_REV

UNSIGNED_INT_10_10_10_2
UNSIGNED_INT_2_10_10_10_REV

Table 8.6: Pixel data type parameter values accepted for the color table, convolu-
tion filter, histogram table, and minmax table query commands. These commands
accept only a subset of the types accepted by GetTexImage, but the specification
and interpretation of pixels in those types is identical to that described for the same
types in table 8.7.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 200

The command

void GetColorTableParameter{if}v(enum rarget,
enum pname, T params);

is used for integer and floating-point query.

target must be one of the regular or proxy color table names listed in ta-
ble 8.4. pname is one of COLOR_TABLE_SCALE, COLOR_TABLE_BIAS, COLOR_—
TABLE_FORMAT, COLOR_TABLE_WIDTH, COLOR_TABLE_RED_SIZE, COLOR_-
TABLE_GREEN_SIZE, COLOR_TABLE_BLUE_SIZE, COLOR_TABLE_ALPHA -
SIZE, COLOR_TABLE_LUMINANCE_SIZE, or COLOR_TABLE_INTENSITY_ SIZE.
The value of the specified parameter is returned in params.

8.4.3.5 Color Table State and Proxy State

The state necessary for color tables can be divided into two categories. For each
of the three tables, there is an array of values. Each array has associated with it
a width, an integer describing the internal format of the table, six integer values
describing the resolutions of each of the red, green, blue, alpha, luminance, and
intensity components of the table, and two groups of four floating-point numbers to
store the table scale and bias. Each initial array is null (zero width, internal format
RGBA, with zero-sized components). The initial value of the scale parameters is
(1,1,1,1) and the initial value of the bias parameters is (0,0,0,0).

In addition to the color lookup tables, partially instantiated proxy color lookup
tables are maintained. Each proxy table includes width and internal format state
values, as well as state for the red, green, blue, alpha, luminance, and intensity
component resolutions. Proxy tables do not include image data, nor do they include
scale and bias parameters. When ColorTable is executed with rarget specified as

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 201

one of the proxy color table names listed in table 8.4, the proxy state values of the
table are recomputed and updated. If the table is too large, no error is generated, but
the proxy format, width and component resolutions are set to zero. If the color table
would be accommodated by ColorTable called with zarget set to the corresponding
regular table name (COLOR_TABLE is the regular name corresponding to PROXY_ -
COLOR_TABLE, for example), the proxy state values are set exactly as though the
regular table were being specified. Calling ColorTable with a proxy target has no
effect on the image or state of any actual color table.

There is no image associated with any of the proxy targets. They cannot be
used as color tables, and cannot be queried using GetColorTable.

8.4.3.6 Convolution Filter Specification
A two-dimensional convolution filter image is specified by calling

void ConvolutionFilter2D(enum farget, enum internalformat,
sizei width, sizei height, enum format, enum type,
const void *data);

target must be CONVOLUTION_2D. width, height, format, type, and data specify an
image in memory with the same meaning and allowed values as the correspond-
ing parameters to DrawPixels. The formats COLOR_INDEX, DEPTH_COMPONENT,
DEPTH_STENCIL, and STENCIL_INDEX and the type BITMAP are not allowed.

The specified image is extracted from memory and processed just as if
DrawPixels were called, stopping after the final expansion to RGBA. The
R, G, B, and A components of each pixel are then scaled by the four two-
dimensional CONVOLUTION_FILTER_SCALE parameters and biased by the four
two-dimensional CONVOLUTION_FILTER_BIAS parameters. These parameters
are set by calling ConvolutionParameterfv as described below. No clamping
takes place at any time during this process.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with the base internal format specified by (or derived from) inter-
nalformat, in the same manner as for textures (section 8.5). internalformat accepts
the same values as the corresponding argument of ColorTable.

The red, green, blue, alpha, luminance, and/or intensity components of the
pixels are stored in floating-point, rather than integer format. They form a two-
dimensional image indexed with coordinates 7, j such that ¢ increases from left to
right, starting at zero, and j increases from bottom to top, also starting at zero.
Image location i, j is specified by the Nth pixel, counting from zero, where

N =14 j xwidth

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 202

The scale and bias parameters for a two-dimensional filter are specified by
calling

void ConvolutionParameter{if}v(enum rarget, enum pname,
const T *params);

with target CONVOLUTION_2D. pname is one of CONVOLUTION_FILTER_SCALE
or CONVOLUTION_FILTER_BIAS. params points to an array of four values: red,
green, blue, and alpha, in that order.

Data conversions are performed as specified in section 2.2.1.

A one-dimensional convolution filter is defined using

void ConvolutionFilter1D(enum target, enum internalformat,
sizei width, enum format, enum type, const
void *data);

target must be CONVOLUTION_1D. internalformat, width, format, and type have
identical semantics and accept the same values as do their two-dimensional coun-
terparts. data must point to a one-dimensional image, however.

The image is extracted from memory and processed as if ConvolutionFilter2D
were called with a height of 1, except that it is scaled and biased by the one-
dimensional CONVOLUTION_FILTER_SCALE and CONVOLUTION_FILTER_BIAS
parameters. These parameters are specified exactly as the two-dimensional param-
eters, except that ConvolutionParameterfv is called with target CONVOLUTION_-
1D.

The image is formed with coordinates ¢ such that 7 increases from left to right,
starting at zero. Image location ¢ is specified by the ith pixel, counting from zero.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 203

Special facilities are provided for the definition of two-dimensional sepa-
rable filters — filters whose image can be represented as the product of two
one-dimensional images, rather than as full two-dimensional images. A two-
dimensional separable convolution filter is specified with

void SeparableFilter2D(enum target, enum internalformat,
sizei width, sizei height, enum format, enum type,
const void *row, const void *column);

target must be SEPARABLE_2D. internalformat specifies the formats of the table
entries of the two one-dimensional images that will be retained. row points to a
width pixel wide image of the specified format and type. column points to a height
pixel high image, also of the specified format and type.

The two images are extracted from memory and processed as if Convolu-
tionFilter1D were called separately for each, except that each image is scaled
and biased by the two-dimensional separable CONVOLUTION_FILTER_SCALE and
CONVOLUTION_FILTER_BIAS parameters. These parameters are specified ex-
actly as the one-dimensional and two-dimensional parameters, except that Con-
volutionParameteriv is called with target SEPARABLE_2D.

8.4.3.7 Alternate Convolution Filter Specification Commands

One and two-dimensional filters may also be specified using image data taken di-
rectly from the framebuffer.
The command

void CopyConvolutionFilter2D(enum target,
enumn internalformat, int x, inty, sizei width,
sizei height);

defines a two-dimensional filter in exactly the manner of ConvolutionFilter2D,
except that image data are taken from the framebuffer, rather than from client mem-
ory. target must be CONVOLUTION_2D. x, y, width, and height correspond precisely
to the corresponding arguments of CopyPixels (refer to section 18.3); they specity
the image’s width and height, and the lower left (x,y) coordinates of the frame-
buffer region to be copied. The image is taken from the framebuffer exactly as

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES

if these arguments were passed to CopyPixels with argument fype set to COLOR,
stopping after the final expansion to RGBA.

Subsequent processing is identical to that described for ConvolutionFilter2D,
beginning with scaling by CONVOLUTION_FILTER_SCALE. Parameters farget, in-
ternalformat, width, and height are specified using the same values, with the same
meanings, as the corresponding arguments of ConvolutionFilter2D. format is
taken to be RGBA.

The command

void CopyConvolutionFilter1D(enum target,
enum internalformat, int x, inty, sizei width);

defines a one-dimensional filter in exactly the manner of ConvolutionFilter1D, ex-
cept that image data are taken from the framebuffer, rather than from client mem-
ory. target must be CONVOLUTION_1D. x, y, and width correspond precisely to
the corresponding arguments of CopyPixels (see section 18.3); they specify the
image’s width and the lower left (x,y) coordinates of the framebuffer region to
be copied. The image is taken from the framebuffer exactly as if these arguments
were passed to CopyPixels with argument rype set to COLOR and height set to 1,
stopping after the final expansion to RGBA.

Subsequent processing is identical to that described for ConvolutionFilter1D,
beginning with scaling by CONVOLUTION_FILTER_SCALE. Parameters farget, in-
ternalformat, and width are specified using the same values, with the same mean-
ings, as the corresponding arguments of ConvolutionFilter2D. format is taken to
be RGBA.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

204

8.4. PIXEL RECTANGLES 205

8.4.3.8 Convolution Query

The contents of a convolution filter image are queried with the commands

void GetConvolutionFilter(enum target, enum format,
enumn type, void *image);

void GetnConvolutionFilter(enum target, enum format,
enum type, sizei bufSize, void *image);

target must be CONVOLUTION_1D or CONVOLUTION_2D. format must be a pixel
format from table 8.5 and fype must be a data type from table 8.6. The one- or
two-dimensional image is returned to pixel pack buffer or client memory starting
at image. Pixel processing and component mapping are identical to those of Get-
TexImage.

The contents of a separable filter image are queried with the commands

void GetSeparableFilter(enum rarget, enum format,
enum type, void *row, void *column, void *span);
void GetnSeparableFilter(enum farget, enum format,
enum type, sizei rowBufSize, void *row,
sizei columnBufSize, void *column, void *span);

target must be SEPARABLE_2D. format must be a pixel format from table 8.5 and
type must be a data type from table 8.6. The row and column images are returned
to pixel pack buffer or client memory starting at row and column respectively. span
is unused. Pixel processing and component mapping are identical to those of Get-
TexImage.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 206

The commands

void GetConvolutionParameter{if}v(enum rarget,
enum pname, T *params);

are used for integer and floating-point query. farget must be CONVOLUTION_1D,
CONVOLUTION_2D, or SEPARABLE_2D. pname is one of CONVOLUTION_-
BORDER_COLOR, CONVOLUTION_BORDER_MODE, CONVOLUTION_-—
FILTER_SCALE, CONVOLUTION_FILTER_BIAS, CONVOLUTION_FORMAT,
CONVOLUTION_WIDTH, CONVOLUTION_HEIGHT, MAX_CONVOLUTION_WIDTH,
or MAX_CONVOLUTION_HEIGHT. The value of the specified parameter is returned
in params.

8.4.3.9 Convolution Filter State

The required state for convolution filters includes a one-dimensional filter image,
two one-dimensional filter images, for the separable filter, and a two-dimensional
filter image. Each filter has associated with it a width and height (two-dimensional
and separable only), an integer describing the internal format of the filter, and two
groups of four floating-point numbers to store the filter scale and bias.

Each initial convolution filter is null (zero width and height, internal format
RGBA, with zero-sized components). The initial value of all scale parameters is
(1,1,1,1) and the initial value of all bias parameters is (0,0,0,0).

8.4.3.10 Color Matrix Specification

Setting the matrix mode to COLOR causes the matrix operations described in sec-
tion 12.1.1 to apply to the top matrix on the color matrix stack. All matrix opera-
tions have the same effect on the color matrix as they do on the other matrices.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 207

8.4.3.11 Color Matrix Query

The scale and bias variables are queried using GetFloatv with pname set to the
appropriate variable name. The top matrix on the color matrix stack is returned
by GetFloatv called with pname set to COLOR_MATRIX or TRANSPOSE_COLOR_—
MATRIX. The depth of the color matrix stack, and the maximum depth of the color
matrix stack, are queried with GetIntegerv, setting pname to COLOR_MATRIX_—
STACK_DEPTH and MAX_COLOR_MATRIX_STACK_DEPTH respectively.

8.4.3.12 Histogram Table Specification
The histogram table is specified with

void Histogram(enum target, sizei width,
enum internalformat, boolean sink);

target must be HISTOGRAM if a histogram table is to be specified. rarget value
PROXY_HISTOGRAM is a special case discussed later in this section. width speci-
fies the number of entries in the histogram table, and internalformat specifies the
format of each table entry. The maximum allowable width of the histogram table
is implementation-dependent, but must be at least 32. sink specifies whether pixel
groups will be consumed by the histogram operation (TRUE) or passed on to the
minmax operation (FALSE).

The specified histogram table is redefined to have width entries, each with the
specified internal format. The entries are indexed O through width — 1. Each
component in each entry is set to zero. The values in the previous histogram table,
if any, are lost.

A GL implementation may vary its allocation of internal component resolution
based on any Histogram parameter, but the allocation must not be a function of any
other factor, and cannot be changed once it is established. In particular, allocations
must be invariant; the same allocation must be made each time a histogram is
specified with the same parameter values. These allocation rules also apply to the
proxy histogram, which is described later in this section.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 208

8.4.3.13 Histogram Query

The contents of the histogram table are queried with the commands

void GetHistogram(enum target, boolean reset,
enum format, enum type, void *values);
void GetnHistogram(enum farget, boolean reset,
enum format, enum type, sizei bufSize, void *values);

target must be HISTOGRAM. format must be a pixel format from table 8.5 and type
must be a data type from table 8.6. The one-dimensional histogram table image is
returned to pixel pack buffer or client memory starting at values. Pixel processing
and component mapping are identical to those of GetTexImage, except that instead
of applying the Final Conversion pixel storage mode, component values are simply
clamped to the range of the target data type.

If reset is TRUE, then all counters of all elements of the histogram are reset to
zero. Counters are reset whether returned or not.

No counters are modified if reset is FALSE.

The command

void ResetHistogram(enum target);

resets all counters of all elements of the histogram table to zero. farget must be
HISTOGRAM.

It is not an error to reset or query the contents of a histogram table with zero
entries.

The commands

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 209

void GetHistogramParameter{if}v(enum rarget,
enum pname, T *params);

are used for integer and floating-point query. farget must be HISTOGRAM or
PROXY_HISTOGRAM. pname is one of HISTOGRAM _FORMAT, HISTOGRAM_WIDTH,
HISTOGRAM_RED_SIZE, HISTOGRAM_GREEN_SIZE, HISTOGRAM_BLUE_SIZE,
HISTOGRAM ALPHA_SIZE, or HISTOGRAM LUMINANCE_SIZE. pname may be
HISTOGRAM_SINK only for farget HISTOGRAM. The value of the specified param-
eter is returned in params.

8.4.3.14 Histogram State and Proxy State

The state necessary for histogram operation is an array of values, with which is
associated a width, an integer describing the internal format of the histogram, five
integer values describing the resolutions of each of the red, green, blue, alpha,
and luminance components of the table, and a flag indicating whether or not pixel
groups are consumed by the operation. The initial array is null (zero width, internal
format RGBA, with zero-sized components). The initial value of the flag is FALSE.

In addition to the histogram table, a partially instantiated proxy histogram table
is maintained. It includes width, internal format, and red, green, blue, alpha, and
luminance component resolutions. The proxy table does not include image data or
the flag. When Histogram is executed with target set to PROXY_HISTOGRAM, the
proxy state values are recomputed and updated. If the histogram array is too large,
no error is generated, but the proxy format, width, and component resolutions are
set to zero. If the histogram table would be accomodated by Histogram called
with target set to HISTOGRAM, the proxy state values are set exactly as though
the actual histogram table were being specified. Calling Histogram with target
PROXY_HTISTOGRAM has no effect on the actual histogram table.

There is no image associated with PROXY_HISTOGRAM. It cannot be used as a
histogram, and its image cannot be queried using GetHistogram.

8.4.3.15 Minmax Table Specification
The minmax table is specified with

void Minmax(enum farget, enum internalformat,
boolean sink);

target must be MINMAX. internalformat specifies the format of the table entries.
sink specifies whether pixel groups will be consumed by the minmax operation
(TRUE) or passed on to final conversion (FALSE).

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 210

internalformat accepts the same values as the corresponding argument of Col-
orTable, with the exception of the values 1, 2, 3, and 4, as well as the INTENSITY
base and sized internal formats. The resulting table always has 2 entries, each with
values corresponding only to the components of the internal format.

The state necessary for minmax operation is a table containing two elements
(the first element stores the minimum values, the second stores the maximum val-
ues), an integer describing the internal format of the table, and a flag indicating
whether or not pixel groups are consumed by the operation. The initial state is
a minimum table entry set to the maximum representable value and a maximum
table entry set to the minimum representable value. Internal format is set to RGBA
and the initial value of the flag is FALSE.

8.4.3.16 Minmax Query

The contents of the minmax table are queried with the commands

void GetMinmax(enum farget, boolean reset, enum format,
enumn type, void *values);

void GetnMinmax(enum target, boolean reset,
enum format, enum type, sizei bufSize, void *values);

target must be MINMAX. format must be a pixel format from table 8.5 and type must
be a data type from table 8.6. A one-dimensional image of width 2 is returned
to pixel pack buffer or client memory starting at values. Pixel processing and
component mapping are identical to those of GetTexImage.

If reset is TRUE, then each minimum value is reset to the maximum repre-
sentable value, and each maximum value is reset to the minimum representable
value. All values are reset, whether returned or not.

No values are modified if reset is FALSE.

The command

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 211

void ResetMinmax(enum target);

resets all minimum and maximum values of farget to to their maximum and mini-
mum representable values, respectively, target must be MINMAX.
The commands

void GetMinmaxParameter{if}v(enum rarget, enum pname,
T *params);

are used for integer and floating-point query. farget must be MINMAX. pname 1s
MINMAX_FORMAT or MINMAX_SINK. The value of the specified parameter is re-
turned in params.

8.4.4 Transfer of Pixel Rectangles

The process of transferring pixels encoded in buffer object or client memory is
diagrammed in figure 8.1. We describe the stages of this process in the order in
which they occur.

Commands accepting or returning pixel rectangles take the following argu-
ments (as well as additional arguments specific to their function):

format is a symbolic constant indicating what the values in memory represent.

width and height are the width and height, respectively, of the pixel rectangle
to be transferred.

data refers to the data to be drawn. These data are represented with one of
several GL data types, specified by type. The correspondence between the type
token values and the GL data types they indicate is given in table 8.7.

Not all combinations of format and type are valid.

Errors

An INVALID_OPERATION error is generated if format is one of the
INTEGER component formats defined in table 8.8 and type is one of the
floating-point types defined in table 8.7.

An INVALID_ENUM error is generated if type is BITMAP and format is not
COLOR_INDEX Or STENCIL_INDEX.

Some additional constraints on the combinations of format and type values
that are accepted are discussed below. Additional restrictions may be imposed by
specific commands.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 212

byte, short, int, o r float pixel
data stream (index or component)

convert
to float
convert
L to RGB
scale shift
and bias and offset

index to index

look up

color table

color table
» scale and bias lookup

.

post ! color table histogram
convolution 1 lookup

color matrix minmax
scale and bias

clamp final mask to
to [0,1] conversion @"-1)
RGBA pixel |—> color index pixel |—>
data out data out

Figure 8.1. Transfer of pixel rectangles to the GL. Output is RGBA pixels if the GL
is in RGBA mode, color index pixels otherwise. Operations in dashed boxes may
be enabled ()Oilje"n@w4‘6Cﬂ%mphﬁ@f}1'tjﬂlp@6ﬂ1ie{)ﬂ ﬂuqu» 30; 20071 depth and

stencil pixel paths are not shown.

8.4. PIXEL RECTANGLES 213
type Parameter Corresponding Special Floating-
Token Name GL Data Type | Interpretation Point
UNSIGNED_BYTE ubyte No No
BYTE byte No No
UNSIGNED_SHORT ushort No No
SHORT short No No
UNSIGNED_INT uint No No
INT int No No
HALF_FLOAT half No Yes
FLOAT float No Yes
UNSIGNED_BYTE_3_3_2 ubyte Yes No
UNSIGNED_BYTE_2_3_3_REV ubyte Yes No
UNSIGNED_SHORT_5_6_5 ushort Yes No
UNSIGNED_SHORT_5_6_5_REV ushort Yes No
UNSIGNED_SHORT_4_4_4_4 ushort Yes No
UNSIGNED_SHORT_4_4_4_4_REV ushort Yes No
UNSIGNED_SHORT_5_5_5_1 ushort Yes No
UNSIGNED_SHORT_1_5_5_5_REV ushort Yes No
UNSIGNED_INT_8_8_8_8 uint Yes No
UNSIGNED_INT_8_8_8_8_REV uint Yes No
UNSIGNED_INT_10_10_10_2 uint Yes No
UNSIGNED_INT_2_10_10_10_REV uint Yes No
UNSIGNED_INT_24_8 uint Yes No
UNSIGNED_INT_10F_11F_11F_REV uint Yes Yes
UNSIGNED_INT_5_9_9_9 REV uint Yes Yes
FLOAT_32_UNSIGNED_INT_24_8_REV n/a Yes No

Table 8.7: Pixel data type parameter values and the corresponding GL data types.
Refer to table 2.2 for definitions of GL data types. Special interpretations are
described in section 8.4.4.2. Floating-point types are incompatible with INTEGER

formats as described above.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 214

8.4.4.1 Unpacking

Data are taken from the currently bound pixel unpack buffer or client memory as a
sequence of signed or unsigned bytes (GL data types byte and ubyte), signed or
unsigned short integers (GL data types short and ushort), signed or unsigned
integers (GL data types int and uint), or floating-point values (GL data types
half and float). These elements are grouped into sets of one, two, three, or
four values, depending on the format, to form a group. Table 8.8 summarizes the
format of groups obtained from memory; it also indicates those formats that yield
indices and those that yield floating-point or integer components.

If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_-
UNPACK_BUFFER_BINDING), data is an offset into the pixel unpack buffer and
the pixels are unpacked from the buffer relative to this offset; otherwise, data is a
pointer to client memory and the pixels are unpacked from client memory relative
to the pointer.

Errors

An INVALID_OPERATION error is generated if a pixel unpack buffer ob-
ject is bound and unpacking the pixel data according to the process described
below would access memory beyond the size of the pixel unpack buffer’s
memory size.

An INVALID_OPERATION error is generated if a pixel unpack buffer ob-
ject is bound and data is not evenly divisible by the number of basic machine
units needed to store in memory the corresponding GL data type from table 8.7
for the fype parameter (or not evenly divisible by 4 for type FLOAT 32_-
UNSIGNED_INT_24_8_ REV, which does not have a corresponding GL data

type).

By default the values of each GL data type are interpreted as they would be
specified in the language of the client’s GL binding. If UNPACK_SWAP_BYTES is
enabled, however, then the values are interpreted with the bit orderings modified
as per table 8.9. The modified bit orderings are defined only if the GL data type
ubyte has eight bits, and then for each specific GL data type only if that type is
represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This rect-
angle consists of a series of rows, with the first element of the first group of the
first row pointed to by data. If the value of UNPACK_ROW_LENGTH is zero, then the
number of groups in a row is width; otherwise the number of groups is the value of
UNPACK_ROW_LENGTH. If p indicates the location in memory of the first element

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES

215

| Format Name

| Element Meaning and Order |

Target Buffer

STENCIL_INDEX Stencil Index Stencil
DEPTH_COMPONENT Depth Depth
DEPTH_STENCIL Depth and Stencil Index Depth and Stencil
RED R Color
GREEN G Color
BLUE B Color
|apra A [Color |
RG R,G Color
RGB R,G,B Color
RGBA R,G,B, A Color
BGR B,G,R Color
BGRA B,G, R, A Color

RED_INTEGER iR Color
GREEN_INTEGER iG Color
BLUE_INTEGER iB Color

RG_INTEGER iR, i1G Color
RGB_INTEGER iR, iG, iB Color
RGBA_INTEGER iR, iG, iB, iA Color
BGR_INTEGER iB, iG, iR Color
BGRA_INTEGER iB, iG, iR, 1A Color

Table 8.8: Pixel data formats. The second column gives a description of and the
number and order of elements in a group. Unless specified as an index, formats
yield components. Components are floating-point unless prefixed with the letter
’1’, which indicates they are integer.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 216

Element Size ‘ Default Bit Ordering ‘ Modified Bit Ordering ‘

8 bit [7.0] [7.0]
16 bit [15..0] [7..0][15..8]
32 bit [31..0] [7..0][15..8][23..16][31..24]

Table 8.9: Bit ordering modification of elements when UNPACK_SWAP_BYTES is
enabled. These reorderings are defined only when GL data type ubyte has 8 bits,
and then only for GL data types with 8, 16, or 32 bits. Bit O is the least significant.

of the first row, then the first element of the Nth row is indicated by

p+ Nk (8.1)

where NN is the row number (counting from zero) and k is defined as

z >
k—{z[an o 8.2)

where n is the number of elements in a group, [is the number of groups in the row,
a is the value of UNPACK_ALIGNMENT, and s is the size, in units of GL ubytes, of
an element. If the number of bits per element is not 1, 2, 4, or 8 times the number
of bits in a GL ubyte, then k = nl for all values of a.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer parameters:
UNPACK_ROW_LENGTH, UNPACK_SKIP_ROWS, and UNPACK_SKIP_PIXELS. Be-
fore obtaining the first group from memory, the data pointer is advanced by
(UNPACK_SKIP_PIXELS)n + (UNPACK_SKIP_ROWS)k elements. Then width
groups are obtained from contiguous elements in memory (without advancing the
pointer), after which the pointer is advanced by k elements. height sets of width
groups of values are obtained this way. See figure 8.2.

8.4.4.2 Special Interpretations

A type matching one of the types in table 8.10 is a special case in which all the
components of each group are packed into a single unsigned byte, unsigned short,
or unsigned int, depending on the type. If type is FLOAT_32_UNSIGNED_INT_ -
24_8_REV, the components of each group are contained within two 32-bit words;
the first word contains the float component, and the second word contains a packed
24-bit unused field, followed by an 8-bit index. The number of components per

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 217

ROW LENGTH

SKI P_PI XELS

SKI P_ROWS

Figure 8.2. Selecting a subimage from an image. The indicated parameter names
are prefixed by UNPACK_ and by PACK__ for ReadPixels.

packed pixel is fixed by the type, and must match the number of components per
group indicated by the format parameter, as listed in table 8.10.

Errors

An INVALID_OPERATION error is generated by any command processing
pixel rectangles if a mismatch occurs.

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in tables 8.11- 8.14. Each bitfield is interpreted as
an unsigned integer value.

Components are normally packed with the first component in the most signif-
icant bits of the bitfield, and successive components occupying progressively less
significant locations. Types whose token names end with _REV reverse the compo-
nent packing order from least to most significant locations. In all cases, the most
significant bit of each component is packed in the most significant bit location of
its location in the bitfield.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 218
type Parameter GL Data | Number of | Matching
Token Name Type Components | Pixel Formats
UNSIGNED_BYTE_3_3_2 ubyte 3 RGB, RGB_INTEGER
UNSIGNED_BYTE_2_3_3_REV ubyte 3 RGB, RGB_INTEGER
UNSIGNED_SHORT_5_6_5 ushort 3 RGB, RGB_INTEGER
UNSIGNED_SHORT_5_6_5_REV ushort 3 RGB, RGB_INTEGER
UNSIGNED_SHORT_4_4_4_4 ushort 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_—
INTEGER
UNSIGNED_SHORT_4_4_4_4_REV ushort 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_—
INTEGER
UNSIGNED_SHORT_5_5_5_1 ushort 4 RGBA, BGRA, RGBA_-
INTEGER, BGRA_—
INTEGER
UNSIGNED_SHORT_1_5_5_5_REV ushort 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_—
INTEGER
UNSIGNED_INT_8_8_8_8 uint 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_-—
INTEGER
UNSIGNED_INT_8_8_8_8_REV uint 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_—
INTEGER
UNSIGNED_INT_10_10_10_2 uint 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_—
INTEGER
UNSIGNED_INT_2_10_10_10_REV uint 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_—
INTEGER
UNSIGNED_INT_24_8 uint 2 DEPTH_STENCIL
UNSIGNED_INT_10F_11F_11F_REV uint 3 RGB
UNSIGNED_INT_5_9_9 9_REV uint 4 RGB
FLOAT_32_UNSIGNED_INT_24_8_REV n/a 2 DEPTH_STENCIL

Table 8.10: Packed pixel formats.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 219

UNSIGNED_BYTE_3_3_2:

7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED_BYTE_2_3_3_REV:

7 6 5 4 3 2 1 0

3rd 2nd 1st Component

Table 8.11: UNSIGNED_BYTE formats. Bit numbers are indicated for each compo-
nent.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 220
UNSIGNED_SHORT_5_6_5:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1st Component 2nd 3rd
UNSIGNED_SHORT_5_6_5_REV:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
3rd 2nd 1st Component
UNSIGNED_SHORT_4_4_4_4:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1st Component 2nd 3rd 4th
UNSIGNED_SHORT_4_4_4_4_REV:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
4th 3rd 2nd 1st Component
UNSIGNED_SHORT_5_5_5_1:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1st Component 2nd 3rd 4th ‘
UNSIGNED_SHORT_1_5_5_5_REV:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ 4th ‘ 3rd 2nd 1st Component

Table 8.12: UNSIGNED_SHORT formats

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES

UNSIGNED_INT_8_8_8_8:

221

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0
1st Component 3rd 4th
UNSIGNED_INT_8_8_8_8_REV:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0

4th 2nd 1st Component
UNSIGNED_INT_10_10_10_2:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0
1st Component 3rd ‘ 4th ‘
UNSIGNED_INT_2_10_10_10_REV:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0
’ 4th ‘ 3rd 2nd 1st Component
UNSIGNED_INT_24_8:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0
1st Component 2nd
UNSIGNED_INT_10F_11F_11F_REV:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0

3rd

1st Component

UNSIGNED_INT_5_9_9_9_ REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 131211109 8 7 6 5 4 3 2 1 0

4th 3rd

2nd

1st Component

Table 8.13: UNSIGNED_INT formats

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 222

FLOAT_32_UNSIGNED_INT_24_8_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 1211109 8 7 6 5 4 3 2 1 0

‘ 1st Component ‘

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211109 8 7 6 5 4 3 2 1 0

’ Unused 2nd ‘

Table 8.14: FLOAT_UNSIGNED_INT formats

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 223
Format First Second Third Fourth
Component | Component | Component | Component
RGB red green blue
RGBA red green blue alpha
BGRA blue green red alpha
DEPTH_STENCIL depth stencil

Table 8.15: Packed pixel field assignments.

The assignment of components to fields in the packed pixel is as described in
table 8.15.

Byte swapping, if enabled, is performed before the components are extracted
from each pixel. The above discussions of row length and image extraction are
valid for packed pixels, if “group” is substituted for “component” and the number
of components per group is understood to be one.

A type of UNSIGNED_INT_10F_11F_11F_REV and format of RGB is a special
case in which the data are a series of GL uint values. Each uint value specifies
3 packed components as shown in table 8.13. The 1st, 2nd, and 3rd components
are called frcq (11 bits), fgreen (11 bits), and fy,e (10 bits) respectively.

freda and fg,cen are treated as unsigned 11-bit floating-point values and con-
verted to floating-point red and green components respectively as described in sec-
tion 2.3.4.3. fpe is treated as an unsigned 10-bit floating-point value and con-
verted to a floating-point blue component as described in section 2.3.4.4.
in which the data are a series of GL uint values. Each uint value specifies 4
packed components as shown in table 8.13. The 1st, 2nd, 3rd, and 4th components
are called pred, Pgreens Polue, and pesp respectively and are treated as unsigned
integers. These are then used to compute floating-point RGB components (ignoring
the “Conversion to floating-point™ section below in this case) as follows:

red = pred2pmpiBiN
green = pgreen2pezPiBiN
blue = pblue2pﬁzpiBiN

where B = 15 (the exponent bias) and N = 9 (the number of mantissa bits).

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 224

8.4.4.3 Conversion to floating-point

This step applies only to groups of floating-point components. It is not performed
on indices or integer components. For groups containing both components and
indices, such as DEPTH_STENCIL, the indices are not converted.

Each element in a group is converted to a floating-point value. For unsigned
or signed normalized fixed-point elements, equations 2.1 or 2.2, respectively, are
used.

8.4.4.4 Conversion to RGB

This step is applied only if the format is LUMINANCE or LUMINANCE_ATPHA. If
the format is LUMINANCE, then each group of one element is converted to a group
of R, G, and B (three) elements by copying the original single element into each of
the three new elements. If the format is LUMINANCE_ALPHA, then each group of
two elements is converted to a group of R, G, B, and A (four) elements by copying
the first original element into each of the first three new elements and copying the
second original element to the A (fourth) new element.

8.4.4.5 Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group is con-
verted to a group of 4 elements as follows: if a group does not contain an A element,
then A is added and set to one for integer components or 1.0 for floating-point com-
ponents. If any of R, G, or B is missing from the group, each missing element is
added and assigned a value of O for integer components or 0.0 for floating-point
components.

8.4.4.6 Pixel Transfer Operations

This step is actually a sequence of steps. Because the pixel transfer operations
are performed equivalently during the drawing, copying, and reading of pixels (see
chapter 18), and during the specification of texture images (either from memory
or from the framebuffer), they are described separately in section 8.4.5. After
the operations described in that section are completed, groups are processed as
described in the following sections.

8.4.5 Pixel Transfer Operations

The GL defines six kinds of pixel groups:

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 225

1. Floating-point RGBA component: Each group comprises four color compo-
nents in floating-point format: red, green, blue, and alpha.

2. Integer RGBA component: Each group comprises four color components in
integer format: red, green, blue, and alpha.

3. Depth component: Each group comprises a single depth component.
4. Color index: Each group comprises a single color index.
5. Stencil index: Each group comprises a single stencil index.

6. Depth/stencil: Each group comprises a single depth component and a single
stencil index.

Each operation described in this section is applied sequentially to each pixel
group in an image. Many operations are applied only to pixel groups of certain
kinds; if an operation is not applicable to a given group, it is skipped. None of the
operations defined in this section affect integer RGBA component pixel groups.

This step applies only to RGBA component and depth component groups, and
to the depth components in depth/stencil groups. Each component is multiplied
by an appropriate signed scale factor: RED_SCALE for an R component, GREEN_ -
scaLE for a G component, BLUE_SCALE for a B component, and ALPHA_SCALE
for an A component, or DEPTH_SCALE for a depth component. Then the result
is added to the appropriate signed bias: RED_BIAS, GREEN_BIAS, BLUE_BIAS,
ALPHA_BTIAS, or DEPTH_BIAS.

8.4.5.1 Arithmetic on Indices

This step applies only to color index and stencil index groups, and to the stencil
indices in depth/stencil groups. If the index is a floating-point value, it is converted
to fixed-point, with an unspecified number of bits to the right of the binary point
and at least [logy(MAX_PIXEL_MAP_TABLE)] bits to the left of the binary point.
Indices that are already integers remain so; any fraction bits in the resulting fixed-
point value are zero.

The fixed-point index is then shifted by |INDEX_SHIFT| bits, left if
INDEX_SHIFT > 0 and right otherwise. In either case the shift is zero-filled.
Then, the signed integer offset INDEX_OFFSET is added to the index.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 226

8.4.5.2 RGBA to RGBA Lookup

This step applies only to RGBA component groups, and is skipped if MAP_COLOR
is FALSE. First, each component is clamped to the range [0,1]. There is a ta-
ble associated with each of the R, G, B, and A component elements: PIXEL_—
MAP_R_TO_RforR, PIXEL_MAP_G_TO_G for G, PIXEL_MAP_B_TO_B for B, and
PIXEL_MAP_A_TO_A for A. Each element is multiplied by an integer one less than
the size of the corresponding table, and, for each element, an address is found by
rounding this value to the nearest integer. For each element, the addressed value in
the corresponding table replaces the element.

8.4.5.3 Color Index Lookup

This step applies only to color index groups. If the GL command that invokes the
pixel transfer operation requires that RGBA component pixel groups be generated,
then a conversion is performed at this step. RGBA component pixel groups are
required if

e The groups will be rasterized, and the GL is in RGBA mode, or
e The groups will be loaded as an image into texture memory, or

e The groups will be returned to client memory with a format other than
COLOR_INDEX.

If RGBA component groups are required, then the integer part of the index is
used to reference 4 tables of color components: PIXEL_MAP_TI_TO_R, PIXEL_—
MAP_I_TO_G,PIXEL_MAP_I_ TO_B,and PIXEL_MAP_I_TO_A. Each of these ta-
bles must have 2" entries for some integer value of n (n may be different for each
table). For each table, the index is first rounded to the nearest integer; the result
is ANDed with 2™ — 1, and the resulting value used as an address into the table.
The indexed value becomes an R, G, B, or A value, as appropriate. The group of
four elements so obtained replaces the index, changing the group’s type to RGBA
component.

If RGBA component groups are not required, and if MAP_COLOR is enabled,
then the index is looked up in the PIXEL,_MAP_TI_TO_T table (otherwise, the index
is not looked up). Again, the table must have 2" entries for some integer n. The
index is first rounded to the nearest integer; the result is ANDed with 2™ — 1, and
the resulting value used as an address into the table. The value in the table replaces
the index. The floating-point table value is first rounded to a fixed-point value with
unspecified precision. The group’s type remains color index.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 227

Base Internal Format | R | G | B | A |

ALPHA A
LUMINANCE Ly | Ly | Ly
LUMINANCE_ALPHA | Ly | Ly | Ly | Ay
INTENSITY L | I | I | I
RGB R, | G | By
RGBA Rt Gt Bt At

Table 8.16: Color table lookup. Ry, Gy, By, Ay, Ly, and I, are color table values
that are assigned to pixel components R, G, B, and A depending on the table
format. When there is no assignment, the component value is left unchanged by
lookup.

8.4.5.4 Stencil Index Lookup

This step applies only to stencil index groups, and to the stencil indices in
depth/stencil groups. If MAP_STENCIL is enabled, then the index is looked up
in the PTXET,_MAP_S_TO_S table (otherwise, the index is not looked up). The ta-
ble must have 2" entries for some integer n. The integer index is ANDed with
2" — 1, and the resulting value used as an address into the table. The integer value
in the table replaces the index.

8.4.5.5 Color Table Lookup

This step applies only to RGBA component groups. Color table lookup is only
done if COLOR_TABLE is enabled. If a zero-width table is enabled, no lookup is
performed.

The internal format of the table determines which components of the group
will be replaced (see table 8.16). The components to be replaced are converted
to indices by clamping to [0, 1], multiplying by an integer one less than the width
of the table, and rounding to the nearest integer. Components are replaced by the
table entry at the index.

The required state is one bit indicating whether color table lookup is enabled
or disabled. In the initial state, lookup is disabled.

8.4.5.6 Convolution

This step applies only to RGBA component groups. If CONVOLUTION_1D
is enabled, the one-dimensional convolution filter is applied only to the one-

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 228

| Base Filter Format | R | G | B | A |
ALPHA R, G, By Agx Ay
LUMINANCE Rox Ly | Gox Ly | Box Ly | Ag
LUMINANCE_ALPHA | Rg*x Ly | Ggx Ly | Bsx Ly | Ag* Ay
INTENSITY Rex1lp | Goxlp | Bsx 1y | Agx Iy
RGB Rsx Ry | Gox Gy | Bgx By | A
RGBA Ryx Ry | Gox Gy | Bo*x By | Agx Ay

Table 8.17: Computation of filtered color components depending on filter image
format. C' x F' indicates the convolution of image component C' with filter F'.

dimensional texture images passed to TexImagelD, TexSubImagelD, Copy-
TexImagelD, and CopyTexSubImagelD. If CONVOLUTION_2D is enabled, the
two-dimensional convolution filter is applied only to the two-dimensional im-
ages passed to DrawPixels, CopyPixels, ReadPixels, TexImage2D, TexSubIm-
age2D, CopyTexImage2D, CopyTexSubIlmage2D, and CopyTexSubImage3D.
If SEPARABLE_2D is enabled, and CONVOLUTION_2D is disabled, the separable
two-dimensional convolution filter is instead applied these images.

The convolution operation is a sum of products of source image pixels and
convolution filter pixels. Source image pixels always have four components: red,
green, blue, and alpha, denoted in the equations below as Rs, G, B, and Ag.
Filter pixels may be stored in one of five formats, with 1, 2, 3, or 4 components.
These components are denoted as Ry, G, By, A f» Ly, and I in the equations
below. The result of the convolution operation is the 4-tuple R,G,B,A. Depending
on the internal format of the filter, individual color components of each source
image pixel are convolved with one filter component, or are passed unmodified.
The rules for this are defined in table 8.17.

The convolution operation is defined differently for each of the three convolu-
tion filters. The variables W, and H refer to the dimensions of the convolution
filter. The variables W and H refer to the dimensions of the source pixel image.

The convolution equations are defined as follows, where C refers to the filtered
result, Cy refers to the one- or two-dimensional convolution filter, and C,.,,, and
Creotumn refer to the two one-dimensional filters comprising the two-dimensional
separable filter. C’ depends on the source image color Cy and the convolution
border mode as described below. C)., the filtered output image, depends on all
of these variables and is described separately for each border mode. The pixel
indexing nomenclature is decribed in section 8.4.3.5.

One-dimensional filter:

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 229

We—1
Cli'| =) Clli" +n]* Cyln]
n=0
Two-dimensional filter:
Wi—1Hp—1

Ccli', i = Z Z Cili' +n,j +m|x C¢ln,m]

n=0 m=0

Two-dimensional separable filter:

Wi—1Hp—1
Cli', i1 =Y > Cli"+n,5 +m] * Crow[n] * Ceotumn[m]

n=0 m=0

If W of a one-dimensional filter is zero, then C[i] is always set to zero. Like-
wise, if either Wy or Hy of a two-dimensional filter is zero, then C[4, j] is always
set to zero.

The convolution border mode for a specific convolution filter is specified by
calling

void ConvolutionParameter{if}(enum rarget, enum pname,
T param);

where target is the name of the filter, pname is CONVOLUTION_BORDER_MODE, and
param is one of REDUCE, CONSTANT_BORDER or REPLICATE_BORDER.

8.4.5.7 Border Mode REDUCE

The width and height of source images convolved with border mode REDUCE are
reduced by Wy — 1 and Hy — 1, respectively. If this reduction would generate
a resulting image with zero or negative width and/or height, the output is simply
null, with no error generated. The coordinates of the image that results from a con-
volution with border mode REDUCE are zero through W — W, in width, and zero
through H, — Hy in height. In cases where errors can result from the specification
of invalid image dimensions, it is these resulting dimensions that are tested, not
the dimensions of the source image. (A specific example is TexImagelD and Tex-
Image2D, which specify constraints for image dimensions. Even if TexImagelD
or TexImage2D is called with a NULL pixel pointer, the dimensions of the result-
ing texture image are those that would result from the convolution of the specified
image).

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 230

When the border mode is REDUCE, C', equals the source image color Cs and
C, equals the filtered result C.
For the remaining border modes, define

[
- |2

The coordinates (Cy,, C},) define the center of the convolution filter.

8.4.5.8 Border Mode CONSTANT_BORDER

If the convolution border mode is CONSTANT_BORDER, the output image has the
same dimensions as the source image. The result of the convolution is the same as
if the source image were surrounded by pixels with the same color as the current
convolution border color. Whenever the convolution filter extends beyond one of
the edges of the source image, the constant-color border pixels are used as input
to the filter. The current convolution border color is set by calling Convolution-
Parameterfv or ConvolutionParameteriv with pname set to CONVOLUTION_—
BORDER_COLOR and params containing four values that comprise the RGBA color
to be used as the image border. Integer color components are interpreted linearly
such that the largest positive integer maps to 1.0, and the smallest negative inte-
ger maps to -1.0. Floating-point color components are not clamped when they are
specified.
For a one-dimensional filter, the result color is defined by

Crli] = Cli — Cy)
where C[i'] is computed using the following equation for C"[i']:

o[G, 0<i < W,
Gl = { C., otherwise

and C'. is the convolution border color.
For a two-dimensional or two-dimensional separable filter, the result color is
defined by

Cr[%]] - C[Z - Cwaj - Ch]

where C[i, j'] is computed using the following equation for C’[4', 7']:

g Csli, 5], 0<i <W,0<j <H
AN A S 9 9 - Sy - s
Gl il = { c.,, otherwise

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 231

8.4.5.9 Border Mode REPLICATE_BORDER

The convolution border mode REPLICATE_BORDER also produces an output im-
age with the same dimensions as the source image. The behavior of this mode is
identical to that of the CONSTANT_BORDER mode except for the treatment of pixel
locations where the convolution filter extends beyond the edge of the source im-
age. For these locations, it is as if the outermost one-pixel border of the source
image was replicated. Conceptually, each pixel in the leftmost one-pixel column
of the source image is replicated C,, times to provide additional image data along
the left edge, each pixel in the rightmost one-pixel column is replicated C', times
to provide additional image data along the right edge, and each pixel value in the
top and bottom one-pixel rows is replicated to create C}, rows of image data along
the top and bottom edges. The pixel value at each corner is also replicated in order
to provide data for the convolution operation at each corner of the source image.
For a one-dimensional filter, the result color is defined by

CTM - C[Z - Cw]

where C[i'] is computed using the following equation for C".[i']:

CLli"] = Cg[clamp(i’, Wy)]
and the clamping function clamp(val, max) is defined as
0, val < 0

clamp(val, mazx) = ¢ wal, 0 <wal < mazx
max — 1, wval > mazx

For a two-dimensional or two-dimensional separable filter, the result color is
defined by
07[Z7]] - C[Z - sz.j o Ch]

where C[i’, j'] is computed using the following equation for C7[', 5']:

CLli',§'] = Cs[clamp(i’, W), clamp(j’, Hy)]

If a convolution operation is performed, each component of the resulting image
is scaled by the corresponding PixelTransfer parameters: POST_CONVOLUTION_—
RED_SCALE for an R component, POST_CONVOLUTION_GREEN_SCALE for a G
component, POST_CONVOLUTION_BLUE_SCALE for a B component, and POST_—
CONVOLUTION_ALPHA_SCALE for an A component. The result is added to the

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 232

corresponding bias: POST_CONVOLUTION_RED_BIAS, POST_CONVOLUTION_-
GREEN_BIAS, POST_CONVOLUTION_BLUE_BIAS, or POST_CONVOLUTION_-
ALPHA_BIAS.

The required state is three bits indicating whether each of one-dimensional,
two-dimensional, or separable two-dimensional convolution is enabled or disabled,
an integer describing the current convolution border mode, and four floating-point
values specifying the convolution border color. In the initial state, all convolu-
tion operations are disabled, the border mode is REDUCE, and the border color is
(0,0,0,0).

8.4.5.10 Post Convolution Color Table Lookup

This step applies only to RGBA component groups. Post convolution color table
lookup is enabled or disabled by calling Enable or Disable with farget POST_-
CONVOLUTION_COLOR_TABLE. The post convolution table is defined by calling
ColorTable with a target argument of POST_CONVOLUTION_COLOR_TABLE. In
all other respects, operation is identical to color table lookup, as defined earlier in
section 8.4.5.5.

The required state is one bit indicating whether post convolution table lookup
is enabled or disabled. In the initial state, lookup is disabled.

8.4.5.11 Color Matrix Transformation

This step applies only to RGBA component groups. The components are
transformed by the color matrix. Each transformed component is multi-
plied by an appropriate signed scale factor: POST_COLOR_MATRIX_RED_SCALE
for an R component, POST_COLOR_MATRIX_GREEN_SCALE for a G compo-
nent, POST_COLOR_MATRIX_ BLUE_SCALE for a B component, and POST -
COLOR_MATRIX_ALPHA_SCALE for an A component. The result is added
to a signed bias: POST_COLOR_MATRIX_RED_BIAS, POST_COLOR_MATRIX_—
GREEN_BIAS, POST_COLOR_MATRIX_BLUE_BIAS, or POST_COLOR_MATRIX_ -
ALPHA_BIAS. The resulting components replace each component of the original
group.

That is, if M, is the color matrix, a subscript of s represents the scale term for
a component, and a subscript of b represents the bias term, then the components

= Q s

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.4. PIXEL RECTANGLES 233

are transformed to

R R, 0 0 0 R R,
¢l o e o o G Gy
gl=1o o B ol|M|B|T]|B
Al 0 0 0 A, A A,

8.4.5.12 Post Color Matrix Color Table Lookup

This step applies only to RGBA component groups. Post color matrix color table
lookup is enabled or disabled by calling Enable or Disable with farget POST_—
COLOR_MATRIX_COLOR_TABLE. The post color matrix table is defined by calling
ColorTable with a target argument of POST_COLOR_MATRIX_COLOR_TABLE. In
all other respects, operation is identical to color table lookup, as defined in sec-
tion 8.4.5.5.

The required state is one bit indicating whether post color matrix lookup is
enabled or disabled. In the initial state, lookup is disabled.

8.4.5.13 Histogram

This step applies only to RGBA component groups. Histogram operation is en-
abled or disabled by calling Enable or Disable with farget HISTOGRAM.

If the width of the table is non-zero, then indices R;, G;, B;, and A; are de-
rived from the red, green, blue, and alpha components of each pixel group (without
modifying these components) by clamping each component to [0, 1], multiplying
by one less than the width of the histogram table, and rounding to the nearest in-
teger. If the format of the HI STOGRAM table includes red or luminance, the red or
luminance component of histogram entry R; is incremented by one. If the format
of the HISTOGRAM table includes green, the green component of histogram entry
G; is incremented by one. The blue and alpha components of histogram entries
B, and A; are incremented in the same way. If a histogram entry component is
incremented beyond its maximum value, its value becomes undefined; this is not
an error.

If the Histogram sink parameter is FALSE, histogram operation has no effect
on the stream of pixel groups being processed. Otherwise, all RGBA pixel groups
are discarded immediately after the histogram operation is completed. Because
histogram precedes minmax, no minmax operation is performed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.5. TEXTURE IMAGE SPECIFICATION 234

8.4.5.14 Minmax

This step applies only to RGBA component groups. Minmax operation is enabled
or disabled by calling Enable or Disable with rarget MINMAX.

If the format of the minmax table includes red or luminance, the red compo-
nent value replaces the red or luminance value in the minimum table element if
and only if it is less than that component. Likewise, if the format includes red or
luminance and the red component of the group is greater than the red or luminance
value in the maximum element, the red group component replaces the red or lumi-
nance maximum component. If the format of the table includes green, the green
group component conditionally replaces the green minimum and/or maximum if
it is smaller or larger, respectively. The blue and alpha group components are
similarly tested and replaced, if the table format includes blue and/or alpha. The
internal type of the minimum and maximum component values is floating-point,
with at least the same representable range as a floating-point number used to rep-
resent colors (section 2.3.4). There are no semantics defined for the treatment of
group component values that are outside the representable range.

If the Minmax sink parameter is FALSE, minmax operation has no effect on
the stream of pixel groups being processed. Otherwise, all RGBA pixel groups are
discarded immediately after the minmax operation is completed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

8.5 Texture Image Specification
The command

void TexImage3D(enum farget, int level, int internalformat,
sizei width, sizei height, sizei depth, int border,
enum format, enum type, const void *data);

is used to specify a three-dimensional texture image. farget must be one of
TEXTURE_ 3D for a three-dimensional texture, TEXTURE_2D_ARRAY for a two-
dimensional array texture, or TEXTURE_CUBE_MAP_ARRAY for a cube map ar-
ray texture. Additionally, farget may be either PROXY_TEXTURE_3D for a three-
dimensional proxy texture, PROXY_TEXTURE_2D_ARRAY for a two-dimensional
proxy array texture, or PROXY_TEXTURE_CUBE_MAP_ARRAY for a cube map array
texture, as discussed in section 8.22. format, type, and data specify the format of

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.5. TEXTURE IMAGE SPECIFICATION 235

the image data, the type of those data, and a reference to the image data in the cur-
rently bound pixel unpack buffer or client memory, as described in section 8.4.4.

The groups in memory are treated as being arranged in a sequence of adjacent
rectangles. Each rectangle is a two-dimensional image, whose size and organiza-
tion are specified by the width and height parameters to TexImage3D. The val-
ues of UNPACK_ROW_LENGTH and UNPACK_ALIGNMENT control the row-to-row
spacing in these images as described in section 8.4.4. If the value of the integer
parameter UNPACK_IMAGE_HEIGHT is not positive, then the number of rows in
each two-dimensional image is height; otherwise the number of rows is UNPACK_—
IMAGE_HEIGHT. Each two-dimensional image comprises an integral number of
rows, and is exactly adjacent to its neighbor images.

The mechanism for selecting a sub-volume of a three-dimensional image relies
on the integer parameter UNPACK_SKIP_IMAGES. If UNPACK_SKIP_IMAGES is
positive, the pointer is advanced by UNPACK_SKIP_IMAGES times the number of
elements in one two-dimensional image before obtaining the first group from mem-
ory. Then depth two-dimensional images are processed, each having a subimage
extracted as described in section 8.4.4.

The selected groups are transferred to the GL as described in section 8.4.4
and then clamped to the representable range of the internal format. If the inter-
nalformat of the texture is signed or unsigned integer, components are clamped
to [-271, 2771 — 1] or [0,2" — 1], respectively, where n is the number of bits
per component. For color component groups, if the internalformat of the texture
is signed or unsigned normalized fixed-point, components are clamped to [—1, 1]
or [0, 1], respectively. For depth component groups, the depth value is clamped
to [0, 1]. Otherwise, values are not modified. Stencil index values are masked by
2™ — 1, where n is the number of stencil bits in the internal format resolution (see
below). If the base internal format is DEPTH_STENCIL and format is not DEPTH_—
STENCIL, then the values of the stencil index texture components are undefined.

Components are then selected from the resulting R, G, B, A, depth, or stencil
values to obtain a texture with the base internal format specified by (or derived
from) internalformat. Table 8.18 summarizes the mapping of R, G, B, A, depth,
or stencil values to texture components, as a function of the base internal format
of the texture image. internalformat may be specified as one of the internal format
symbolic constants listed in table 8.18, as one of the sized internal format symbolic
constants listed in tables 8.19- 8.21, as one of the generic compressed internal
format symbolic constants listed in table 8.22, or as one of the specific compressed
internal format symbolic constants (if listed in table §.22).

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.5. TEXTURE IMAGE SPECIFICATION 236

| Base Internal Format | RGBA, Depth, and Stencil Values | Internal Components |

DEPTH_COMPONENT
DEPTH_STENCIL

Depth
Depth,Stencil

RED R R

RG R,G R.G

RGB R,G,B R,G,B
RGBA R,G,BA R,G,B,A
STENCIL_INDEX Stencil S

Table 8.18: Conversion from RGBA, depth, and stencil pixel components to inter-
nal texture, table, or filter components. See section 16.1 for a description of the
texture components R, G, B, A, L, I, D, and S.

Textures with a base internal format of DEPTH_COMPONENT, DEPTH_ -
STENCIL, or STENCIIL_INDEX are supported by texture image specification
commands only if target is TEXTURE_1D, TEXTURE_2D, TEXTURE_2D_-
MULTISAMPLE, TEXTURE_1D_ARRAY, TEXTURE_2D_ARRAY, TEXTURE_-—
2D_MULTISAMPLE_ARRAY, TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP,
TEXTURE_CUBE_MAP_ARRAY, PROXY_TEXTURE_1D, PROXY_TEXTURE_-
2D, PROXY_TEXTURE_2D_MULTISAMPLE, PROXY_TEXTURE_1D_ARRAY,
PROXY_TEXTURE_2D_ARRAY, PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY,
PROXY_TEXTURE_RECTANGLE, PROXY_TEXTURE_CUBE_MAP, oOr PROXY_ -
TEXTURE_CUBE_MAP_ARRAY.

An INVALID_OPERATION error is generated if these formats are used in con-
junction with any other target.

Textures with a base internal format of DEPTH_COMPONENT or DEPTH_-—
STENCIL require either depth component data or depth/stencil component data.
Textures with other base internal formats require RGBA component data.

Textures with integer internal formats (see tables 8.19- 8.20) require integer
data.

In addition to the specific compressed internal formats listed in table 8.22, the
GL provides a mechanism to query token values for specific compressed internal

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.5. TEXTURE IMAGE SPECIFICATION 237

formats, suitable for general-purpose” usage. Formats with restrictions that need to
be specifically understood prior to use will not be returned by this query. The num-
ber of specific compressed internal formats is obtained by querying the value of
NUM_COMPRESSED_TEXTURE_FORMATS. The set of specific compressed internal
formats is obtained by querying COMPRESSED_TEXTURE_FORMATS with GetInte-
gerv, returning an array containing that number of values.

Generic compressed internal formats are never used directly as the internal for-
mats of texture images. If internalformat is one of the six generic compressed
internal formats, its value is replaced by the symbolic constant for a specific com-
pressed internal format of the GL’s choosing with the same base internal format.
If no specific compressed format is available, internalformat is instead replaced by
the corresponding base internal format. If internalformat is given as or mapped
to a specific compressed internal format, but the GL can not support images com-
pressed in the chosen internal format for any reason (e.g., the compression format
might not support internalformat is replaced by the corre-
sponding base internal format and the texture image will not be compressed by the
GL.

The internal component resolution is the number of bits allocated to each value
in a texture image. If internalformat is specified as a base internal format, the GL
stores the resulting texture with internal component resolutions of its own choos-
ing, referred to as the effective internal format. The effective internal format chosen
may change depending only on the values of format and type, and affects format
compatibility for commands such as TextureView (see section 8.18) and Copy-
ImageSubData (see section 18.3.3). If a sized internal format is specified, the
mapping of the R, G, B, A, depth, and stencil values to texture components is
equivalent to the mapping of the corresponding base internal format’s components,
as specified in table 8.18; the type (unsigned int, float, etc.) is assigned the same
type specified by internalformat; and the memory allocation per texture component
is assigned by the GL to match the allocations listed in tables 8.19- 8.21 as closely
as possible. (The definition of closely is left up to the implementation. However,
a non-zero number of bits must be allocated for each component whose desired
allocation in tables 8.19- 8.21 is non-zero, and zero bits must be allocated for all
other components).

8.5.1 Required Texture Formats

Implementations are required to support at least one allocation of internal com-
ponent resolution for each type (unsigned int, float, etc.) for each base internal

% These queries have been deprecated in OpenGL 4.2, because the vagueness of the term “general-
purpose’” makes it possible for implementations to choose to return no formats from the query.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.5. TEXTURE IMAGE SPECIFICATION 238

format.

In addition, implementations are required to support the following sized and
compressed internal formats. Requesting one of these sized internal formats for
any texture type will allocate at least the internal component sizes, and exactly the
component types shown for that format in the corresponding table:

e Color formats which are checked in the “Req. tex.” column of table 8.19.
o All of the specific compressed texture formats in table 8.22.

e Depth, depth+stencil, and stencil formats which are checked in the “Req.
format” column of table 8.21.

8.5.2 Encoding of Special Internal Formats

If internalformat is R11F_G11F_B10F, the red, green, and blue bits are converted
to unsigned 11-bit, unsigned 11-bit, and unsigned 10-bit floating-point values as
described in sections 2.3.4.3 and 2.3.4.4.

If internalformat is RGB9_ES5, the red, green, and blue bits are converted to a
shared exponent format according to the following procedure:

Components red, green, and blue are first clamped (in the process, mapping
NaN to zero) as follows:

red. = max(0, min(sharedexpmag, red))
green, = max(0, min(sharedexpmaz, green))

blue. = max (0, min(sharedexpmay, blue))

where

@Y = 1) s

sharedexpma, = 9N

N is the number of mantissa bits per component (9), B is the exponent bias (15),
and F,,,; is the maximum allowed biased exponent value (31).
The largest clamped component, max., is determined:

maz. = max(red., green,, blue.)

A preliminary shared exponent exp,, is computed:

expp, = max(—B — 1, [logy(maz.)|) + 1+ B

A refined shared exponent exp, is computed:

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.5. TEXTURE IMAGE SPECIFICATION 239

MaT, 1
Mars = | Sop—B-N T g

0 < mazxs < 2N

=N

) expp,
“ibs = max
S

exp, + 1,

Finally, three integer values in the range 0 to 2" — 1 are computed:

red, 1
reds = _—2ezps_B_N + 5_
_ green, n 1
greens = _—Qemps_B_N 2
blue,. 1
blues - _Qexps—B—N + 5_

The resulting reds, greens, blueg, and exp, are stored in the red, green, blue,
and shared bits respectively of the texture image.
REV with format RGB is allowed to store the components “as is” if the implementa-
tion can determine the current pixel transfer state acts as an identity transform on
the components.

Sized Base Bits/component CR | Req. | Req.
Internal Internal S are shared bits rend. | tex.
Format Format R | G | B | A | S

RS RED 8 v v v
R8_SNORM RED s8 v v
R16 RED 16 v v v
R16_SNORM RED s16 v v
RG8 RG 8 8 v v v
RG8_SNORM RG s8 s8 v v
RG16 RG 16 16 v v v
Sized internal color formats continued on next page

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.5. TEXTURE IMAGE SPECIFICATION 240
Sized internal color formats continued from previous page

Sized Base Bits/component CR | Req. | Req.
Internal Internal S are shared bits rend. | tex.
Format Format R ‘ G ‘ B ‘ A ‘ S

RG16_SNORM RG s16 | sl16 v v
R3_G3_B2 RGB 3 3 2 v v
RGB4 RGB 4 4 4 v v
RGB5 RGB 5 5 5 v v
RGB565 RGB 5 6 5 v v v
RGBS RGB 8 8 8 v v
RGBS_SNORM RGB s8 s8 s8 v v
RGB10 RGB 10 10 10 v v
RGB12 RGB 12 12 12 v v
RGB16 RGB 16 16 16 v v
RGB16_SNORM RGB s16 | s16 | sl6 v v
RGBA2 RGBA 2 2 2 2 v v
RGBA4 RGBA 4 4 4 4 v v v
RGB5_A1l RGBA 5 5 5 1 v v v
RGBAS RGBA 8 8 8 8 v v v
RGBAS8_SNORM RGBA s8 s8 s8 s8 v v
RGB10_A2 RGBA 10 10 10 2 v v v
RGB10_A2UI RGBA uilO | wilO | wilQ | wi2 v v v
RGBA12 RGBA 12 12 12 12 v v
RGBA16 RGBA 16 16 16 16 v v v
RGBAL6_SNORM RGBA s16 | s16 | s16 | sl16 v v
SRGBS RGB 8 8 8 v v
SRGBS_ALPHAS RGBA 8 8 8 8 v v v
R16F RED f16 v v v
RG16F RG fl6 | fl16 v v v
RGB16F RGB fl6 | fl6 | fl6 v v
RGBA16F RGBA fl6 | fl6 | fl6 | fl16 v v v
R32F RED 32 v v v
RG32F RG 32 | 32 v v v
RGB32F RGB 32 | 32 | 132 v v
RGBA32F RGBA 32 | 32 | 32 | 32 v v v
R11F_G11F_B10F | RGB f11 | f11 | f10 v v v
RGB9_E5 RGB 9 9 9 5 v

Sized internal color formats continued on next page

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.5. TEXTURE IMAGE SPECIFICATION 241

Sized internal color formats continued from previous page

Sized Base Bits/component CR | Req. | Req.
Internal Internal S are shared bits rend. | tex.
Format Format R ‘ G ‘ B ‘ A ‘ S

R8I RED 8 v v v
R8UI RED ui8 v v v
R161I RED 116 v v v
R16UI RED uil6 v v v
R321I RED i32 v v v
R32UI RED ui32 v v v
RG8I RG i8 i8 v v v
RG8UI RG ui8 | ui8 v v v
RG161I RG il6 | il16 v v v
RG16UI RG uil6 | uil6 v v v
RG32I RG i32 | i32 v v v
RG32UI RG ui32 | ui32 v v v
RGBST RGB 8 8 18 v v
RGBS8UI RGB ui8 | ui8 | ui8 v v
RGB161I RGB il6 | 116 | il6 v v
RGB16UI RGB uil6 | uil6 | uil6 v v
RGB321 RGB 132 | 132 | 132 v v
RGB32UI RGB ui32 | uwi32 | ui32 v v
RGBASI RGBA 8 18 8 8 v v v
RGBASUI RGBA ui8 ui8 ui8 ui8 v v v
RGBA161I RGBA i16 | 116 116 116 v v v
RGBA16UI RGBA uil6 | uil6 | uil6 | uil6 v v v
RGBA321I RGBA 132 | 132 | i32 | i32 v v v
RGBA32UI RGBA ui32 | uwi32 | uwi32 | uwi32 v v v

Table 8.19: Correspondence of sized internal color formats to base
internal formats, internal data type, and desired component reso-
lutions for each sized internal format. The component resolution
prefix indicates the internal data type: fis floating-point, i is signed
integer, ui is unsigned integer, s is signed normalized fixed-point,
and no prefix is unsigned normalized fixed-point. The “CR”, “Req.
tex.”, and “Req. rend.” columns are described in sections 9.4,
8.5.1, and 9.2.5, respectively.

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.5. TEXTURE IMAGE SPECIFICATION

Sized

Internal Format

Base
Internal Format

bits

bits

bits

Table 8.20: Correspondence of sized internal luminance and in-

tensity formats to base internal formats, internal data type, and
desired component resolutions for each sized internal format. The
component resolution prefix indicates the internal data type: fis
floating-point, i is signed integer, ui is unsigned integer, and no

prefix is fixed-point.

242

If a compressed internal format is specified, the mapping of the R, G, B, and
A values to texture components is equivalent to the mapping of the corresponding
base internal format’s components, as specified in table 8.18. The specified image
is compressed using a (possibly lossy) compression algorithm chosen by the GL.

A GL implementation may vary its allocation of internal component resolution
or compressed internal format based on any TexImage3D, TexImage2D (see be-
low), or TexImagelD (see below) parameter (except targer), but the allocation and
chosen compressed image format must not be a function of any other state and can-
not be changed once they are established. In addition, the choice of a compressed
image format may not be affected by the dara parameter. Allocations must be in-
variant; the same allocation and compressed image format must be chosen each

OpenGL 4.6 (Compatibility Profile) - July 30, 2017

8.5. TEXTURE IMAGE SPECIFICATION 243

Sized Base Internal D S Req.
Internal Format Format bits | bits | format
DEPTH_COMPONENT16 | DEPTH_COMPONENT | 16 v
DEPTH_COMPONENT24 | DEPTH_COMPONENT | 24 v

DEPTH_COMPONENT32 DEPTH_COMPONENT 32

DEPTH_COMPONENT3