
OpenGL R© ES
Version 3.2 (November 3, 2016)

Editor: Jon Leech

Copyright c© 2006-2016 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary
to the Khronos Group, Inc. It or any components may not be reproduced, repub-
lished, distributed, transmitted, displayed, broadcast or otherwise exploited in any
manner without the express prior written permission of Khronos Group. You may
use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the
receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor
or Adopter member of Khronos to copy and redistribute UNMODIFIED versions
of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version
of the API is used whenever possible. Such distributed specification may be re-
formatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A link
to the current version of this specification on the Khronos Group web-site should
be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or war-
ranties, express or implied, regarding this specification, including, without limita-
tion, any implied warranties of merchantability or fitness for a particular purpose
or non-infringement of any intellectual property. Khronos Group makes no, and
expressly disclaims any, warranties, express or implied, regarding the correctness,
accuracy, completeness, timeliness, and reliability of the specification. Under no
circumstances will the Khronos Group, or any of its Promoters, Contributors or
Members or their respective partners, officers, directors, employees, agents or rep-
resentatives be liable for any damages, whether direct, indirect, special or conse-
quential damages for lost revenues, lost profits, or otherwise, arising from or in
connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trade-
mark, and OpenGL ES is a trademark, of Silicon Graphics International.

Contents

1 Introduction 1
1.1 Formatting of the OpenGL ES Specification 1

1.1.1 Formatting of Changes 1
1.2 What is the OpenGL ES Graphics System? 2
1.3 Programmer’s View of OpenGL ES 2
1.4 Implementor’s View of OpenGL ES 2
1.5 Our View . 3
1.6 Related APIs . 3

1.6.1 OpenGL ES Shading Language 3
1.6.2 WebGL . 4
1.6.3 Window System Bindings 4
1.6.4 OpenCL . 4

1.7 Filing Bug Reports . 5

2 OpenGL ES Fundamentals 6
2.1 OpenGL ES Fundamentals . 6
2.2 Command Syntax . 8

2.2.1 Data Conversion For State-Setting Commands 10
2.2.2 Data Conversions For State Query Commands 12

2.3 Command Execution . 13
2.3.1 Errors . 13
2.3.2 Graphics Reset Recovery 16
2.3.3 Flush and Finish . 17
2.3.4 Numeric Representation and Computation 18
2.3.5 Fixed-Point Data Conversions 22

2.4 Rendering Commands . 23
2.5 Context State . 24

2.5.1 Generic Context State Queries 24
2.6 Objects and the Object Model 24

i

CONTENTS ii

2.6.1 Object Management . 25
2.6.2 Buffer Objects . 26
2.6.3 Shader Objects . 26
2.6.4 Program Objects . 27
2.6.5 Program Pipeline Objects 27
2.6.6 Texture Objects . 27
2.6.7 Sampler Objects . 27
2.6.8 Renderbuffer Objects . 28
2.6.9 Framebuffer Objects . 28
2.6.10 Vertex Array Objects . 28
2.6.11 Transform Feedback Objects 28
2.6.12 Query Objects . 29
2.6.13 Sync Objects . 29

3 Dataflow Model 30

4 Event Model 33
4.1 Sync Objects and Fences . 33

4.1.1 Waiting for Sync Objects 35
4.1.2 Signaling . 37
4.1.3 Sync Object Queries . 38

4.2 Query Objects and Asynchronous Queries 39
4.2.1 Query Object Queries 42

5 Shared Objects and Multiple Contexts 44
5.1 Object Deletion Behavior . 44

5.1.1 Side Effects of Shared Context Destruction 44
5.1.2 Automatic Unbinding of Deleted Objects 45
5.1.3 Deleted Object and Object Name Lifetimes 45

5.2 Sync Objects and Multiple Contexts 46
5.3 Propagating Changes to Objects 46

5.3.1 Determining Completion of Changes to an object 47
5.3.2 Definitions . 47
5.3.3 Rules . 48

6 Buffer Objects 50
6.1 Creating and Binding Buffer Objects 51

6.1.1 Binding Buffer Objects to Indexed Targets 53
6.2 Creating and Modifying Buffer Object Data Stores 54
6.3 Mapping and Unmapping Buffer Data 56

OpenGL ES 3.2 (November 3, 2016)

CONTENTS iii

6.3.1 Unmapping Buffers . 60
6.3.2 Effects of Mapping Buffers on Other GL Commands . . . 60

6.4 Effects of Accessing Outside Buffer Bounds 61
6.5 Copying Between Buffers . 61
6.6 Buffer Object Queries . 62

6.6.1 Indexed Buffer Object Limits and Binding Queries 63
6.7 Buffer Object State . 65

7 Programs and Shaders 66
7.1 Shader Objects . 67
7.2 Shader Binaries . 70
7.3 Program Objects . 71

7.3.1 Program Interfaces . 79
7.4 Program Pipeline Objects . 93

7.4.1 Shader Interface Matching 96
7.4.2 Program Pipeline Object State 98

7.5 Program Binaries . 98
7.6 Uniform Variables . 101

7.6.1 Loading Uniform Variables In The Default Uniform Block 106
7.6.2 Uniform Blocks . 111
7.6.3 Uniform Buffer Object Bindings 114

7.7 Atomic Counter Buffers . 115
7.7.1 Atomic Counter Buffer Object Storage 116
7.7.2 Atomic Counter Buffer Bindings 116

7.8 Shader Buffer Variables and Shader Storage Blocks 117
7.9 Samplers . 118
7.10 Images . 119
7.11 Shader Memory Access . 120

7.11.1 Shader Memory Access Ordering 120
7.11.2 Shader Memory Access Synchronization 122

7.12 Shader, Program, and Program Pipeline Queries 126
7.13 Required State . 134

8 Textures and Samplers 137
8.1 Texture Objects . 138
8.2 Sampler Objects . 140
8.3 Sampler Object Queries . 143
8.4 Pixel Rectangles . 144

8.4.1 Pixel Storage Modes and Pixel Buffer Objects 144
8.4.2 Transfer of Pixel Rectangles 146

OpenGL ES 3.2 (November 3, 2016)

CONTENTS iv

8.5 Texture Image Specification . 157
8.5.1 Required Texture Formats 160
8.5.2 Encoding of Special Internal Formats 160
8.5.3 Texture Image Structure 164

8.6 Alternate Texture Image Specification Commands 168
8.6.1 Texture Copying Feedback Loops 176

8.7 Compressed Texture Images . 176
8.8 Multisample Textures . 182
8.9 Buffer Textures . 184
8.10 Texture Parameters . 187
8.11 Texture Queries . 190

8.11.1 Active Texture . 190
8.11.2 Texture Parameter Queries 190
8.11.3 Texture Level Parameter Queries 191

8.12 Depth Component Textures . 192
8.13 Cube Map Texture Selection . 193

8.13.1 Seamless Cube Map Filtering 193
8.14 Texture Minification . 194

8.14.1 Scale Factor and Level of Detail 194
8.14.2 Coordinate Wrapping and Texel Selection 197
8.14.3 Mipmapping . 201
8.14.4 Manual Mipmap Generation 203

8.15 Texture Magnification . 204
8.16 Combined Depth/Stencil Textures 205
8.17 Texture Completeness . 205

8.17.1 Effects of Sampler Objects on Texture Completeness . . . 206
8.17.2 Effects of Completeness on Texture Application 207
8.17.3 Effects of Completeness on Texture Image Specification . 207

8.18 Immutable-Format Texture Images 207
8.19 Texture State . 210
8.20 Texture Comparison Modes . 212

8.20.1 Depth Texture Comparison Mode 212
8.21 sRGB Texture Color Conversion 212
8.22 Shared Exponent Texture Color Conversion 213
8.23 Texture Image Loads and Stores 215

8.23.1 Image Unit Queries . 221

OpenGL ES 3.2 (November 3, 2016)

CONTENTS v

9 Framebuffers and Framebuffer Objects 222
9.1 Framebuffer Overview . 222
9.2 Binding and Managing Framebuffer Objects 224

9.2.1 Framebuffer Object Parameters 227
9.2.2 Attaching Images to Framebuffer Objects 229
9.2.3 Framebuffer Object Queries 230
9.2.4 Renderbuffer Objects . 234
9.2.5 Required Renderbuffer Formats 237
9.2.6 Renderbuffer Object Queries 237
9.2.7 Attaching Renderbuffer Images to a Framebuffer 238
9.2.8 Attaching Texture Images to a Framebuffer 240

9.3 Feedback Loops Between Textures and the Framebuffer 245
9.3.1 Rendering Feedback Loops 245
9.3.2 Texture Copying Feedback Loops 246

9.4 Framebuffer Completeness . 247
9.4.1 Framebuffer Attachment Completeness 247
9.4.2 Whole Framebuffer Completeness 248
9.4.3 Required Framebuffer Formats 251
9.4.4 Effects of Framebuffer Completeness on Framebuffer Op-

erations . 251
9.4.5 Effects of Framebuffer State on Framebuffer Dependent

Values . 252
9.5 Mapping between Pixel and Element in Attached Image 253
9.6 Conversion to Framebuffer-Attachable Image Components 253
9.7 Conversion to RGBA Values . 254
9.8 Layered Framebuffers . 254

10 Vertex Specification and Drawing Commands 256
10.1 Primitive Types . 258

10.1.1 Points . 258
10.1.2 Line Strips . 258
10.1.3 Line Loops . 258
10.1.4 Separate Lines . 258
10.1.5 Triangle Strips . 259
10.1.6 Triangle Fans . 260
10.1.7 Separate Triangles . 260
10.1.8 Lines with Adjacency 260
10.1.9 Line Strips with Adjacency 260
10.1.10 Triangles with Adjacency 262
10.1.11 Triangle Strips with Adjacency 263

OpenGL ES 3.2 (November 3, 2016)

CONTENTS vi

10.1.12 Separate Patches . 263
10.1.13 General Considerations For Polygon Primitives 264

10.2 Current Vertex Attribute Values 264
10.2.1 Current Generic Attributes 264
10.2.2 Vertex Attribute Queries 266
10.2.3 Required State . 266

10.3 Vertex Arrays . 266
10.3.1 Specifying Arrays for Generic Vertex Attributes 266
10.3.2 Vertex Attribute Divisors 271
10.3.3 Transferring Array Elements 272
10.3.4 Primitive Restart . 272
10.3.5 Robust Buffer Access . 273
10.3.6 Packed Vertex Data Formats 273
10.3.7 Vertex Arrays in Buffer Objects 274
10.3.8 Array Indices in Buffer Objects 274
10.3.9 Indirect Commands in Buffer Objects 275

10.4 Vertex Array Objects . 276
10.5 Drawing Commands Using Vertex Arrays 277
10.6 Vertex Array and Vertex Array Object Queries 284
10.7 Required State . 286

11 Programmable Vertex Processing 287
11.1 Vertex Shaders . 287

11.1.1 Vertex Attributes . 287
11.1.2 Vertex Shader Variables 292
11.1.3 Shader Execution . 296

11.2 Tessellation . 306
11.2.1 Tessellation Control Shaders 308
11.2.2 Tessellation Primitive Generation 313
11.2.3 Tessellation Evaluation Shaders 321

11.3 Geometry Shaders . 326
11.3.1 Geometry Shader Input Primitives 327
11.3.2 Geometry Shader Output Primitives 328
11.3.3 Geometry Shader Variables 329
11.3.4 Geometry Shader Execution Environment 329

12 Fixed-Function Vertex Post-Processing 335
12.1 Transform Feedback . 335

12.1.1 Transform Feedback Objects 336
12.1.2 Transform Feedback Primitive Capture 338

OpenGL ES 3.2 (November 3, 2016)

CONTENTS vii

12.2 Primitive Queries . 344
12.3 Flatshading . 344
12.4 Primitive Clipping . 345

12.4.1 Clipping Shader Outputs 346
12.5 Coordinate Transformations . 347

12.5.1 Controlling the Viewport 347

13 Fixed-Function Primitive Assembly and Rasterization 349
13.1 Discarding Primitives Before Rasterization 351
13.2 Primitive Bounding Box . 351
13.3 Invariance . 352
13.4 Multisampling . 353

13.4.1 Sample Shading . 355
13.5 Points . 355

13.5.1 Basic Point Rasterization 356
13.5.2 Point Multisample Rasterization 356

13.6 Line Segments . 357
13.6.1 Basic Line Segment Rasterization 357
13.6.2 Other Line Segment Features 360
13.6.3 Line Rasterization State 361
13.6.4 Line Multisample Rasterization 361

13.7 Polygons . 362
13.7.1 Basic Polygon Rasterization 362
13.7.2 Depth Offset . 365
13.7.3 Polygon Multisample Rasterization 366
13.7.4 Polygon Rasterization State 366

13.8 Early Per-Fragment Tests . 367
13.8.1 Pixel Ownership Test . 367
13.8.2 Scissor Test . 367
13.8.3 Multisample Fragment Operations 368
13.8.4 The Early Fragment Test Qualifier 369

14 Programmable Fragment Processing 370
14.1 Fragment Shader Variables . 370
14.2 Shader Execution . 371

14.2.1 Texture Access . 372
14.2.2 Shader Inputs . 372
14.2.3 Shader Outputs . 375
14.2.4 Early Fragment Tests . 377

OpenGL ES 3.2 (November 3, 2016)

CONTENTS viii

15 Writing Fragments and Samples to the Framebuffer 378
15.1 Per-Fragment Operations . 378

15.1.1 Alpha To Coverage . 378
15.1.2 Stencil Test . 380
15.1.3 Depth Buffer Test . 382
15.1.4 Occlusion Queries . 382
15.1.5 Blending . 383
15.1.6 sRGB Conversion . 393
15.1.7 Dithering . 394
15.1.8 Additional Multisample Fragment Operations 394

15.2 Whole Framebuffer Operations 395
15.2.1 Selecting Buffers for Writing 395
15.2.2 Fine Control of Buffer Updates 397
15.2.3 Clearing the Buffers . 399
15.2.4 Invalidating Framebuffer Contents 402

16 Reading and Copying Pixels 405
16.1 Reading Pixels . 405

16.1.1 Selecting Buffers for Reading 405
16.1.2 ReadPixels . 406
16.1.3 Obtaining Pixels from the Framebuffer 408
16.1.4 Conversion of RGBA values 409
16.1.5 Final Conversion . 409
16.1.6 Placement in Pixel Pack Buffer or Client Memory 410

16.2 Copying Pixels . 411
16.2.1 Blitting Pixel Rectangles 411
16.2.2 Copying Between Images 414

16.3 Pixel Draw and Read State . 419

17 Compute Shaders 420
17.1 Compute Shader Variables . 422

18 Debug Output 423
18.1 Debug Messages . 424
18.2 Debug Message Callback . 426
18.3 Debug Message Log . 427
18.4 Controlling Debug Messages . 428
18.5 Externally Generated Messages 429
18.6 Debug Groups . 429
18.7 Debug Labels . 431

OpenGL ES 3.2 (November 3, 2016)

CONTENTS ix

18.8 Asynchronous and Synchronous Debug Output 432
18.9 Debug Output Queries . 433

19 Special Functions 436
19.1 Hints . 436

20 Context State Queries 438
20.1 Simple Queries . 438
20.2 Pointer, String, and Related Context Queries 440
20.3 Internal Format Queries . 442

20.3.1 Internal Format Query Parameters 443

21 State Tables 445

A Invariance 503
A.1 Repeatability . 503
A.2 Multi-pass Algorithms . 504
A.3 Invariance Rules . 504
A.4 Tessellation Invariance . 506
A.5 Atomic Counter Invariance . 508
A.6 What All This Means . 509

B Corollaries 510

C Compressed Texture Image Formats 512
C.1 ASTC Compressed Texture Image Formats 512
C.2 ETC Compressed Texture Image Formats 514

D Version 3.0 and Before 515
D.1 New Features . 515
D.2 Change Log for 3.0.3 . 517
D.3 Change Log for 3.0.2 . 519
D.4 Change Log for 3.0.1 . 520
D.5 Credits and Acknowledgements 522

E Version 3.1 525
E.1 New Features . 525
E.2 Change Log for Released Specifications 526
E.3 Credits and Acknowledgements 532

OpenGL ES 3.2 (November 3, 2016)

CONTENTS x

F Version 3.2 535
F.1 New Features . 535
F.2 Change Log for Released Specifications 536
F.3 Credits and Acknowledgements 541

G Backwards Compatibility 543
G.1 Legacy Features . 543
G.2 Differences in Runtime Behavior 544

Index 545

OpenGL ES 3.2 (November 3, 2016)

List of Figures

3.1 Block diagram of the OpenGL ES pipeline. 31

8.1 Transfer of pixel rectangles. 146
8.2 Selecting a subimage from an image 152
8.3 UNSIGNED_SHORT formats . 154
8.4 UNSIGNED_INT formats . 155
8.5 FLOAT_UNSIGNED_INT formats 155
8.6 A texture image and the coordinates used to access it. 167
8.7 Example of the components returned for textureGather. 199

10.1 Vertex processing and primitive assembly. 256
10.2 Triangle strips, fans, and independent triangles. 259
10.3 Lines with adjacency. 260
10.4 Triangles with adjacency. 260
10.5 Triangle strips with adjacency. 262
10.6 Packed component layout . 274

11.1 Domain parameterization for tessellation. 313
11.2 Inner triangle tessellation. 317
11.3 Inner quad tessellation. 319
11.4 Isoline tessellation. 321

13.1 Rasterization . 349
13.2 Visualization of Bresenham’s algorithm. 358
13.3 Rasterization of wide lines. 360
13.4 The region used in rasterizing a multisampled line segment. 361

15.1 Per-fragment operations. 378

16.1 Operation of ReadPixels. 405

xi

List of Tables

2.1 GL command suffixes . 9
2.2 GL data types . 11
2.3 Summary of GL errors . 15

4.1 Initial properties of a sync object created with FenceSync. 34
4.2 Asynchronous query targets . 39

6.1 Buffer object binding targets. 52
6.2 Buffer object parameters and their values. 52
6.3 Buffer object initial state. 55
6.4 Buffer object state set by MapBufferRange. 58
6.5 Indexed buffer object limits and binding queries 64

7.1 CreateShader type values and the corresponding shader stages. . 68
7.2 GetProgramResourceiv properties and supported interfaces . . . 86
7.3 OpenGL ES Shading Language type tokens 91
7.4 Query targets for default uniform block storage, in components. . 102
7.5 Query targets for combined uniform block storage, in components. 102
7.6 GetProgramResourceiv properties used by GetActiveUniformsiv. 105
7.7 GetProgramResourceiv properties used by GetActiveUniform-

Blockiv. 107

8.1 PixelStorei parameters. 145
8.2 Valid combinations of format, type, and sized internalformat. . . . 148
8.3 Valid combinations of format, type, and unsized internalformat. . 149
8.4 Pixel data types. 150
8.5 Pixel data formats. 151
8.6 Packed pixel formats. 154
8.7 Packed pixel field assignments. 156

xii

LIST OF TABLES xiii

8.8 Conversion from RGBA, depth, and stencil pixel components to
internal texture components. 159

8.9 Effective internal format . 160
8.10 Sized internal color formats. 163
8.11 Sized internal depth and stencil formats. 164
8.12 ReadPixels format and type used during CopyTex*. 168
8.13 Valid CopyTexImage source framebuffer/destination texture base

internal format combinations. 169
8.14 Effective internal format corresponding to floating-point framebuffers171
8.15 Effective internal format corresponding to destination internalfor-

mat and linear source buffer component sizes. 171
8.16 Effective internal format corresponding to destination internalfor-

mat and sRGB source buffer component sizes. 172
8.17 Compressed internal formats. 178
8.18 Internal formats for buffer textures 186
8.19 Texture parameters and their values. 188
8.20 Selection of cube map images. 193
8.21 Texel location wrap mode application. 197
8.22 Depth texture comparison functions. 213
8.23 sRGB texture internal formats. 214
8.24 Layer numbers for cube map texture faces. 216
8.25 Mapping of image load, store and atomic texel coordinate compo-

nents to texel numbers. 217
8.26 Supported image unit formats, with equivalent format layout qual-

ifiers. 219
8.27 Texel sizes, compatibility classes, and pixel format/type combina-

tions for each image format. 221

9.1 Framebuffer attachment points. 239

10.1 Triangles generated by triangle strips with adjacency. 263
10.2 Vertex array sizes (values per vertex) and data types for generic

vertex attributes. 267
10.3 Indirect commands and corresponding indirect buffer targets. . . . 275

11.1 Generic attribute components accessed by attribute variables. . . . 288
11.2 Generic attributes and vector types used by column vectors of ma-

trix variables bound to generic attribute index i. 289
11.3 Scalar and vector vertex attribute types 289

12.1 Transform feedback modes . 339

OpenGL ES 3.2 (November 3, 2016)

LIST OF TABLES xiv

12.2 Output types for OpenGL ES Shading Language variables 341
12.3 Provoking vertex selection. 345

14.1 Correspondence of filtered texture components to texture base
components. 373

15.1 RGB and alpha blend equations. 386
15.2 Blending functions. 387
15.3 Advanced Blend Equations . 389
15.4 Hue-Saturation-Luminosity Advanced Blend Equations 391
15.5 Buffer selection for a framebuffer object 395

16.1 PixelStorei parameters. 407
16.2 ReadPixels GL data types and reversed component conversion for-

mulas. 410
16.3 Compatible internal formats for copying 416
16.4 Compatible internal formats for CopyImageSubData 418

18.1 Sources of debug output messages 424
18.2 Types of debug output messages 425
18.3 Severity levels of messages . 425
18.4 Object namespace identifiers . 431

19.1 Hint targets and descriptions . 436

20.1 Internal format targets . 442

21.1 State Variable Types . 446
21.2 Current Values and Associated Data 447
21.3 Vertex Array Object State . 448
21.4 Vertex Array Data (not in vertex array objects) 449
21.5 Buffer Object State . 450
21.6 Transformation State . 451
21.7 Rasterization . 452
21.8 Multisampling . 453
21.9 Textures (selector, state per texture unit) 454
21.10Textures (state per texture object) 455
21.11Textures (state per texture image) 456
21.12Textures (state per sampler object) 457
21.13Pixel Operations . 458
21.14Framebuffer Control . 459

OpenGL ES 3.2 (November 3, 2016)

LIST OF TABLES xv

21.15Framebuffer (state per framebuffer object) 460
21.16Framebuffer (state per attachment point) 461
21.17Renderbuffer (state per renderbuffer object) 462
21.18Pixels . 463
21.19Shader Object State . 464
21.20Program Pipeline Object State 465
21.21Program Object State . 466
21.22Program Object State (cont.) . 467
21.23Program Object State (cont.) . 468
21.24Program Object State (cont.) . 469
21.25Program Object State (cont.) . 470
21.26Program Object State (cont.) . 471
21.27Program Interface State . 472
21.28Program Object Resource State 473
21.29Program Object Resource State (cont.) 474
21.30Vertex Shader State (not part of program objects) 475
21.31Query Object State . 476
21.32Atomic Counter Buffer Binding State 477
21.33Image State (state per image unit) 478
21.34Shader Storage Buffer Binding State 479
21.35Transform Feedback State . 480
21.36Uniform Buffer Binding State 481
21.37Sync (state per sync object) . 482
21.38Hints . 483
21.39Compute Dispatch State . 484
21.40Implementation Dependent Values 485
21.41Implementation Dependent Values (cont.)

† These queries return the maximum no. of samples for all internal
formats required to support multisampled rendering. 486

21.42Implementation Dependent Values (cont.) 487
21.43Implementation Dependent Version and Extension Support 488
21.44Implementation Dependent Vertex Shader Limits 489
21.45Implementation Dependent Tessellation Shader Limits 490
21.46Implementation Dependent Tessellation Shader Limits (cont.) . . 491
21.47Implementation Dependent Geometry Shader Limits 492
21.48Implementation Dependent Fragment Shader Limits 493
21.49Implementation Dependent Compute Shader Limits 494
21.50Implementation Dependent Aggregate Shader Limits 495
21.51Implementation Dependent Aggregate Shader Limits (cont.) . . . 496
21.52Implementation Dependent Aggregate Shader Limits (cont.) . . . 497

OpenGL ES 3.2 (November 3, 2016)

LIST OF TABLES xvi

21.53Debug Output State . 498
21.54Implementation Dependent Debug Output State 499
21.55Implementation Dependent Transform Feedback Limits 500
21.56Framebuffer Dependent Values 501
21.57Miscellaneous . 502

C.1 Mapping of OpenGL ES ASTC formats to descriptions. 513
C.2 Mapping of OpenGL ES ETC formats to descriptions. 514

OpenGL ES 3.2 (November 3, 2016)

Chapter 1

Introduction

This document, referred to as the “OpenGL ES Specification” or just “Specifica-
tion” hereafter, describes the OpenGL ES graphics system: what it is, how it acts,
and what is required to implement it. We assume that the reader has at least a
rudimentary understanding of computer graphics. This means familiarity with the
essentials of compute graphics algorithms and terminology as well as with modern
GPUs (Graphic Processing Units).

The canonical version of the Specification is available in the official OpenGL
ES Registry, located at URL

http://www.khronos.org/registry/gles

1.1 Formatting of the OpenGL ES Specification

Starting with version 3.1, the OpenGL ES Specification has undergone major re-
structuring to describe important concepts and objects in the context of the entire
API before describing details of their use in the graphics pipeline, matching similar
restructuring of the OpenGL 4.3 Specification.

1.1.1 Formatting of Changes

This version of the OpenGL ES 3.2 Specification marks changes relative to the first
public release by typesetting them in purple, like this paragraph. Note that only
functional changes and additions are so labelled; the specification restructuring
described above is not marked.

1

http://www.khronos.org/registry/gles/

1.2. WHAT IS THE OPENGL ES GRAPHICS SYSTEM? 2

1.2 What is the OpenGL ES Graphics System?

OpenGL ES (“Open Graphics Library for Embedded Systems”) is an API (Appli-
cation Programming Interface) to graphics hardware. The API consists of a set
of several hundred procedures and functions that allow a programmer to specify
the shader programs, objects and operations involved in producing high-quality
graphical images, specifically color images of three-dimensional objects.

Most of OpenGL ES requires that the graphics hardware contain a framebuffer.
Many OpenGL ES calls control drawing geometric objects such as points, lines,
and polygons, but the way that some of this drawing occurs (such as when an-
tialiasing or multisampling is in use) relies on the existence of a framebuffer. Some
commands explicitly manage the framebuffer.

1.3 Programmer’s View of OpenGL ES

To the programmer, OpenGL ES is a set of commands that allow the specifica-
tion of shader programs or shaders, data used by shaders, and state controlling
aspects of OpenGL ES outside the scope of shaders. Typically the data represent
geometry in two or three dimensions and texture images, while the shaders control
the geometric processing, rasterization of geometry and the lighting and shading
of fragments generated by rasterization, resulting in rendering geometry into the
framebuffer.

A typical program that uses OpenGL ES begins with calls to open a window
into the framebuffer into which the program will draw. Then, calls are made to
allocate an OpenGL EScontext and associate it with the window. Once a context
is allocated, OpenGL ES commands to define shaders,geometry, and textures are
made, followed by commands which draw geometry by transferring specified por-
tions of the geometry to the shaders. Drawing commands specify simple geometric
objects such as points, line segments, and polygons, which can be further manipu-
lated by shaders. There are also commands which directly control the framebuffer
by reading and writing pixels.

1.4 Implementor’s View of OpenGL ES

To the implementor, OpenGL ES is a set of commands that control the operation of
the GPU. Modern GPUs accelerate almost all OpenGL ES operations, storing data
and framebuffer images in GPU memory and executing shaders in dedicated GPU
processors. However, OpenGL ES may be implemented on less capable GPUs, or
even without a GPU, by moving some or all operations into the host CPU.

OpenGL ES 3.2 (November 3, 2016)

1.5. OUR VIEW 3

The implementor’s task is to provide a software library on the CPU which
implements the OpenGL ES API, while dividing the work for each OpenGL ES
command between the CPU and the graphics hardware as appropriate for the capa-
bilities of the GPU.

OpenGL ES contains a considerable amount of information including many
types of objects representing programmable shaders and the data they consume and
generate, as well as other context state controlling non-programmable aspects of
OpenGL ES. Most of these objects and state are available to the programmer, who
can set, manipulate, and query their values through OpenGL ES commands. Some
of it, however, is derived state visible only by the effect it has on how OpenGL
ES operates. One of the main goals of this Specification is to describe OpenGL
ES objects and context state explicitly, to elucidate how they change in response to
OpenGL ES commands, and to indicate what their effects are.

1.5 Our View

We view OpenGL ES as a pipeline having some programmable stages and some
state-driven fixed-function stages that are invoked by a set of specific drawing oper-
ations. This model should engender a specification that satisfies the needs of both
programmers and implementors. It does not, however, necessarily provide a model
for implementation. An implementation must produce results conforming to those
produced by the specified methods, but there may be ways to carry out a particular
computation that are more efficient than the one specified.

1.6 Related APIs

Other APIs related to OpenGL are described below. Most of the specifications for
these APIs are available on the Khronos Group websites, although some vendor-
specific APIs are documented on that vendor’s developer website.

1.6.1 OpenGL ES Shading Language

The OpenGL ES Specification should be read together with a companion docu-
ment titled The OpenGL ES Shading Language. The latter document (referred to
as the OpenGL ES Shading Language Specification hereafter) defines the syntax
and semantics of the programming language used to write shaders (see sections 7).
Descriptions of shaders later in this document may include references to concepts
and terms (such as shading language variable types) defined in the companion doc-
ument.

OpenGL ES 3.2 (November 3, 2016)

1.6. RELATED APIS 4

OpenGL ES 3.2 implementations are guaranteed to support versions 3.20, 3.10,
3.00 and 1.00 of the OpenGL ES Shading Language. All references to sections of
that specification refer to version 3.20. The latest supported version of the shading
language may be queried as described in section 20.2.

The OpenGL ES Shading Language Specification is available in the OpenGL
ES Registry.

1.6.2 WebGL

WebGL is a cross-platform, royalty-free web standard for a low-level 3D graphics
API based on OpenGL ES.Developers familiar with OpenGL ES will recognize
WebGL as a shader-based API using the OpenGL ES Shading Language, with
constructs that are semantically similar to those of the underlying OpenGL ES API.
It stays very close to the OpenGL ES specification, with some concessions made
for what developers expect out of memory-managed languages such as JavaScript.

The WebGL Specification and related documentation are available in the
Khronos API Registry.

1.6.3 Window System Bindings

OpenGL ES requires a companion API to create and manage graphics contexts,
windows to render into, and other resources beyond the scope of this Specification.
There are several such APIs supporting different operating and window systems.

The Khronos Native Platform Graphics Interface or “EGL Specification” de-
scribes the EGL API for use of OpenGL ES on mobile and embedded devices.
EGL implementations may be available supporting OpenGL as well. The EGL
Specification is available in the Khronos Extension Registry at URL

http://www.khronos.org/registry/egl

The EAGL API supports use of OpenGL ES with iOS. EAGL is documented
on Apple’s developer website.

1.6.4 OpenCL

OpenCL is an open, royalty-free standard for cross-platform, general-purpose par-
allel programming of processors found in personal computers, servers, and mobile
devices, including GPUs. OpenCL defines interop methods to share OpenCL mem-
ory and image objects with corresponding OpenGL ES buffer and texture objects,
and to coordinate control of and transfer of data between OpenCL and OpenGL ES.
This allows applications to split processing of data between OpenCL and OpenGL

OpenGL ES 3.2 (November 3, 2016)

http://www.khronos.org/registry/egl

1.7. FILING BUG REPORTS 5

ES; for example, by using OpenCL to implement a physics model and then render-
ing and interacting with the resulting dynamic geometry using OpenGL ES.

The OpenCL Specification is available in the Khronos API Registry.

1.7 Filing Bug Reports

Bug reports on the OpenGL ES and OpenGL ES Shading Language Specifications
can be filed in the Khronos Public Bugzilla, located at URL

http://www.khronos.org/bugzilla/
Please file bugs against Product: OpenGL ES, Component: Specification, and

the appropriate version of the specification. It is best to file bugs against the most
recently released versions, since older versions are usually not updated for bug-
fixes.

OpenGL ES 3.2 (November 3, 2016)

http://www.khronos.org/bugzilla/

Chapter 2

OpenGL ES Fundamentals

This chapter introduces fundamental concepts including the OpenGL ES execution
model, API syntax, contexts and threads, numeric representation, context state and
state queries, and the different types of objects and shaders. It provides a frame-
work for interpreting more specific descriptions of commands and behavior in the
remainder of the Specification.

2.1 OpenGL ES Fundamentals

OpenGL ES (henceforth, the “GL”) is concerned only with processing data in GPU
memory, including rendering into a framebuffer and reading values stored in that
framebuffer. There is no support for other input or output devices. Programmers
must rely on other mechanisms to obtain user input.

The GL draws primitives processed by a variety of shader programs and fixed-
function processing units controlled by context state. Each primitive is a point, line
segment, or polygon. Context state may be changed independently; the setting of
one piece of state does not affect the settings of others (although state and shaders
all interact to determine what eventually ends up in the framebuffer). State is set,
primitives drawn, and other GL operations described by sending commands in the
form of function or procedure calls.

Primitives are defined by a group of one or more vertices. A vertex defines
a point, an endpoint of a line segment, or a corner of a polygon where two edges
meet. Data such as positional coordinates, colors, normals, texture coordinates, etc.
are associated with a vertex and each vertex is processed independently, in order,
and in the same way. The only exception to this rule is if the group of vertices
must be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping

6

2.1. OPENGL ES FUNDAMENTALS 7

depends on which primitive the group of vertices represents.
Commands are always processed in the order in which they are received, al-

though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all
previously invoked GL commands, except where explicitly specified otherwise. In
general, the effects of a GL command on either GL modes or the framebuffer must
be complete before any subsequent command can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a
OpenGL ES command are interpreted when that command is received. Even if
the command requires a pointer to data, those data are interpreted when the call is
made, and any subsequent changes to the data have no effect on the GL (unless the
same pointer is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of parameters of application-defined shader
programs performing transformation, lighting, texturing, and shading operations,
as well as built-in functionality such as antialiasing and texture filtering. It does not
provide a means for describing or modeling complex geometric objects. In other
words, OpenGL ES provides mechanisms to describe how complex geometric ob-
jects are to be rendered, rather than mechanisms to describe the complex objects
themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer or in the same address space as the client. In this sense, the GL is
network-transparent. A server may maintain a number of GL contexts, each of
which is an encapsulation of current GL state and objects. A client may choose to
make any one of these contexts current.

Issuing GL commands when the program does not have a current context re-
sults in undefined behavior.

There are two classes of framebuffers: a window system-provided framebuffer
associated with a context when the context is made current, and application-created
framebuffers. The window system-provided framebuffer is referred to as the de-
fault framebuffer. Application-created framebuffers, referred to as framebuffer ob-
jects, may be created as desired. A context may be associated with two frame-
buffers, one for each of reading and drawing operations. The default framebuffer
and framebuffer objects are distinguished primarily by the interfaces for configur-
ing and managing their state.

The effects of GL commands on the default framebuffer are ultimately con-

OpenGL ES 3.2 (November 3, 2016)

2.2. COMMAND SYNTAX 8

trolled by the window system, which allocates framebuffer resources, determines
which portions of the default framebuffer the GL may access at any given time, and
communicates to the GL how those portions are structured. Therefore, there are
no GL commands to initialize a GL context or configure the default framebuffer.
Similarly, display of framebuffer contents on a physical display device (including
the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by the GL.

Allocation and configuration of the default framebuffer occurs outside of the
GL in conjunction with the window system, using companion APIs described in
section 1.6.3.

Allocation and initialization of GL contexts is also done using these companion
APIs. GL contexts can typically be associated with different default framebuffers,
and some context state is determined at the time this association is performed.

It is possible to use a GL context without a default framebuffer, in which case
a framebuffer object must be used to perform all rendering. This is useful for
applications needing to perform offscreen rendering.

OpenGL ES is designed to be run on a range of graphics platforms with vary-
ing graphics capabilities and performance. To accommodate this variety, we spec-
ify ideal behavior instead of actual behavior for certain GL operations. In cases
where deviation from the ideal is allowed, we also specify the rules that an im-
plementation must obey if it is to approximate the ideal behavior usefully. This
allowed variation in GL behavior implies that two distinct GL implementations
may not agree pixel for pixel when presented with the same input even when run
on identical framebuffer configurations.

Finally, command names, constants, and types are prefixed in the C language
binding to OpenGL ES (by gl, GL_, and GL, respectively), to reduce name clashes
with other packages. The prefixes are omitted in this document for clarity.

2.2 Command Syntax

The Specification describes OpenGL ES commands as functions or procedures us-
ing ANSI C syntax. Languages such as C++ and Javascript that allow passing
of argument type information permit language bindings with simpler declarations
and fewer entry points.

Various groups of GL commands perform the same operation but differ in how
arguments are supplied to them. To conveniently accommodate this variation, we
adopt a notation for describing commands and their arguments.

GL commands are formed from a name which may be followed, depending on
the particular command, by a sequence of characters describing a parameter to the

OpenGL ES 3.2 (November 3, 2016)

2.2. COMMAND SYNTAX 9

Type Descriptor Corresponding GL Type
i int

i64 int64
f float

ui uint

Table 2.1: Correspondence of command suffix type descriptors to GL argument
types. Refer to table 2.2 for definitions of the GL types.

command. If present, a digit indicates the required length (number of values) of the
indicated type. Next, a string of characters making up one of the type descriptors
from table 2.1 indicates the specific size and data type of parameter values. A
final v character, if present, indicates that the command takes a pointer to an array
(a vector) of values rather than a series of individual arguments. Two specific
examples are:

void Uniform4f(int location, float v0, float v1,
float v2, float v3);

and

void GetFloatv(enum pname, float *data);

In general, a command declaration has the form

rtype Name{ε1234}{ε i i64 f ui }{εv}
([args ,] T arg1 , . . . , T argN [, args]);

rtype is the return type of the function. The braces ({}) enclose a series of type
descriptors (see table 2.1), of which one is selected. ε indicates no type descriptor.
The arguments enclosed in brackets ([args ,] and [, args]) may or may not be
present. The N arguments arg1 through argN have type T, which corresponds to
one of the type descriptors indicated in table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then N is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only arg1 is present and it is an array of N values of
the indicated type.

For example,

void Uniform{1234}{if}(int location, T value);

OpenGL ES 3.2 (November 3, 2016)

2.2. COMMAND SYNTAX 10

indicates the eight declarations

void Uniform1i(int location, int value);
void Uniform1f(int location, float value);
void Uniform2i(int location, int v0, int v1);
void Uniform2f(int location, float v0, float v1);
void Uniform3i(int location, int v0, int v1, int v2);
void Uniform3f(int location, float v0, float v1,

float v2);
void Uniform4i(int location, int v0, int v1, int v2,

int v3);
void Uniform4f(int location, float v0, float v1,

float v2, float v3);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of the GL data types summarized in table 2.2, or pointers to one of these
types1. Since many GL operations represent bitfields within these types, transfer
blocks of data in these types to graphics hardware which uses the same data types,
or otherwise requires these sizes, it is not possible to implement the GL API on an
architecture which cannot satisfy the exact bit width requirements in table 2.2.

2.2.1 Data Conversion For State-Setting Commands

Many GL commands specify a value or values to which GL state of a specific type
(boolean, enum, integer, or floating-point) is to be set. When multiple versions of
such a command exist, using the type descriptor syntax described above, any such
version may be used to set the state value. When state values are specified using
a different parameter type than the actual type of that state, data conversions are
performed as follows:

• When the type of internal state is boolean, zero integer or floating-point val-
ues are converted to FALSE and non-zero values are converted to TRUE.

• When the type of internal state is integer or enum, boolean values of FALSE
and TRUE are converted to 0 and 1, respectively. Floating-point values are
rounded to the nearest integer. If the resulting value is so large in magnitude
that it cannot be represented by the internal state variable, the internal state
value is undefined.

1 Note that OpenGL ES 3.x uses float where OpenGL ES 2.0 used clampf. Clamping is
now explicitly specified to occur only where and when appropriate, retaining proper clamping in
conjunction with fixed-point framebuffers. Because clampf and float are both defined as the
same floating-point type, this change should not introduce compatibility obstacles.

OpenGL ES 3.2 (November 3, 2016)

2.2. COMMAND SYNTAX 11

GL Type Description
Bit Width

boolean 8 Boolean
byte 8 Signed two’s complement binary inte-

ger
ubyte 8 Unsigned binary integer
char 8 Characters making up strings
short 16 Signed two’s complement binary inte-

ger
ushort 16 Unsigned binary integer
int 32 Signed two’s complement binary inte-

ger
uint 32 Unsigned binary integer
int64 64 Signed two’s complement binary inte-

ger
uint64 64 Unsigned binary integer
fixed 32 Signed two’s complement 16.16

scaled integer
sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
intptr ptrbits Signed two’s complement binary inte-

ger
sizeiptr ptrbits Non-negative binary integer size
sync ptrbits Sync object handle (see section 4.1)
bitfield 32 Bit field
half 16 Half-precision floating-point value

encoded in an unsigned scalar
float 32 Floating-point value
clampf 32 Floating-point value clamped to [0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation must use exactly the number of
bits indicated in the table to represent a GL type.
ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr, sizeiptr, and sync must be sufficiently large as to store any
address.

OpenGL ES 3.2 (November 3, 2016)

2.2. COMMAND SYNTAX 12

• When the type of internal state is floating-point, boolean values of FALSE
and TRUE are converted to 0.0 and 1.0, respectively. Integer values are con-
verted to floating-point.

For commands taking arrays of the specified type, these conversions are per-
formed for each element of the passed array.

Each command following these conversion rules refers back to this section.
Some commands have additional conversion rules specific to certain state values
and data types, which are described following the reference.

Validation of values performed by state-setting commands is performed after
conversion, unless specified otherwise for a specific command.

2.2.2 Data Conversions For State Query Commands

Query commands (commands whose name begins with Get) return a value or val-
ues to which GL state has been set. Some of these commands exist in multiple
versions returning different data types. When a query command is issued that re-
turns data types different from the actual type of that state, data conversions are
performed as follows. If more than one step is applicable, all relevant steps are
applied in the following order:

• If a command returning boolean data is called, such as GetBooleanv, a
floating-point or integer value converts to FALSE if and only if it is zero.
Otherwise it converts to TRUE.

• If a command returning unsigned integer data is called, such as GetSam-
plerParameterIuiv, negative values are clamped to zero.

• If a command returning integer data is called, such as GetIntegerv or Get-
Integer64v, a boolean value of TRUE or FALSE is interpreted as one or zero,
respectively. A floating-point value is rounded to the nearest integer, unless
the value is an RGBA color component, a DepthRangef value, or a depth
buffer clear value. In these cases, the query command converts the floating-
point value to an integer according to the INT entry of table 16.2; a value
not in [−1, 1] converts to an undefined value.

• If a command returning floating-point data is called, such as GetFloatv, a
boolean value of TRUE or FALSE is interpreted as 1.0 or 0.0, respectively.
An integer value is coerced to floating-point.

OpenGL ES 3.2 (November 3, 2016)

2.3. COMMAND EXECUTION 13

Following these steps, if a value is so large in magnitude that it cannot be
represented by the returned data type, then the nearest value representable using
that type is returned.

When querying bitmasks (such as SAMPLE_MASK_VALUE or STENCIL_-

WRITEMASK) with GetIntegerv, the mask value is treated as a signed integer, so
that mask values with the high bit set will not be clamped when returned as signed
integers.

Unless otherwise indicated, multi-valued state variables return their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the two DepthRangef parameters are returned in the order n
followed by f.

Most texture state variables are qualified by the value of ACTIVE_TEXTURE to
determine which server texture state vector is queried. Table 21.9 indicates those
state variables which are qualified by ACTIVE_TEXTURE during state queries.

Vertex array state variables are qualified by the value of VERTEX_ARRAY_-
BINDING to determine which vertex array object is queried. Table 21.3 defines the
set of state stored in a vertex array object.

2.3 Command Execution

Most of the Specification discusses the behavior of a single context bound to a
single CPU thread. It is also possible for multiple contexts to share GL objects
and for each such context to be bound to a different thread. This section introduces
concepts related to GL command execution including error reporting, command
queue flushing, and synchronization between command streams. Using these tools
can increase performance and utilization of the GPU by separating loosely related
tasks into different contexts.

Methods to create, manage, and destroy CPU threads are defined by the host
CPU operating system and are not described in the Specification. Binding of GL
contexts to CPU threads is controlled through a window system binding layer such
as those described in section 1.6.3.

2.3.1 Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError(void);

OpenGL ES 3.2 (November 3, 2016)

2.3. COMMAND EXECUTION 14

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO_ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO_ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO_ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set, results
of GL operation are undefined only if an OUT_OF_MEMORY error has occurred. In
other cases, there are no side effects unless otherwise noted; the command which
generates the error is ignored so that it has no effect on GL state or framebuffer
contents. Except as otherwise noted, if the generating command returns a value, it
returns zero. If the generating command modifies values through a pointer argu-
ment, no change is made to these values.

These error semantics apply only to GL errors, not to system errors such as
memory access errors. This behavior is the current behavior; the action of the GL
in the presence of errors is subject to change, and extensions to OpenGL ES may
define behavior currently considered as an error.

Several error generation conditions are implicit in the description of every GL
command:

• If the GL context has been reset as a result of previous GL command, or if
the context is reset as a side effect of execution of a command, a CONTEXT_-
LOST error is generated.

• If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, an
INVALID_ENUM error is generated. This is the case even if the argument is
a pointer to a symbolic constant, if the value pointed to is not allowable for
the given command.

• If a negative number is provided where an argument of type sizei or
sizeiptr is specified, an INVALID_VALUE error is generated.

• If memory is exhausted as a side effect of the execution of a command, an
OUT_OF_MEMORY error may be generated.

OpenGL ES 3.2 (November 3, 2016)

2.3. COMMAND EXECUTION 15

Error Description Offending com-
mand ignored?

CONTEXT_LOST Context has been lost and reset
by the driver

Except as noted
for specific
commands

INVALID_ENUM enum argument out of range Yes
INVALID_VALUE Numeric argument out of range Yes
INVALID_OPERATION Operation illegal in current state Yes
INVALID_-

FRAMEBUFFER_-

OPERATION

Framebuffer object is not com-
plete

Yes

OUT_OF_MEMORY Not enough memory left to exe-
cute command

Unknown

STACK_OVERFLOW Command would cause a stack
overflow

Yes

STACK_UNDERFLOW Command would cause a stack
underflow

Yes

Table 2.3: Summary of GL errors

The Specification attempts to explicitly describe these implicit error conditions
(with the exception of CONTEXT_LOST2 and OUT_OF_MEMORY3) wherever they
apply. However, they apply even if not explicitly described, unless a specific com-
mand describes different behavior. For example, certain commands use a sizei
parameter to indicate the length of a string, and also use negative values of the pa-
rameter to indicate a null-terminated string. These commands do not generate an
INVALID_VALUE error, because they explicitly describe different behavior.

Otherwise, errors are generated only for conditions that are explicitly described
in this specification.

When a command could potentially generate several different errors (for ex-
ample, when it is passed separate enum and numeric parameters which are both
out of range), the GL implementation may choose to generate any of the applicable
errors.

When an error is generated, the GL may also generate a debug output message
2 CONTEXT_LOST is not described because it can potentially be generated by almost all GL

commands, and occurs for reasons not directly related to the affected commands.
3 OUT_OF_MEMORY is not described because it can potentially be generated by any GL com-

mand, even those which do not explicitly allocate GPU memory.

OpenGL ES 3.2 (November 3, 2016)

2.3. COMMAND EXECUTION 16

describing its cause (see chapter 18). The message has source DEBUG_SOURCE_-
API, type DEBUG_TYPE_ERROR, and an implementation-dependent ID.

Most commands include a complete summary of errors at the end of their de-
scription, including even the implicit errors described above.

Such error summaries are set in a distinct style, like this sentence.

In some cases, however, errors may be generated for a single command for
reasons not directly related to that command. One such example is that deferred
processing for shader programs may result in link errors detected only when at-
tempting to draw primitives using vertex specification commands. In such cases,
errors generated by a command may be described elsewhere in the specification
than the command itself.

2.3.2 Graphics Reset Recovery

Certain events can result in a reset of the GL context. After such an event, it is
referred to as a lost context and is unusable for almost all purposes. Recovery re-
quires creating a new context and recreating all relevant state from the lost context.
The current status of the graphics reset state is returned by

enum GetGraphicsResetStatus(void);

The value returned indicates if the GL context has been in a reset state at any
point since the last call to GetGraphicsResetStatus:

• NO_ERROR indicates that the GL context has not been in a reset state since
the last call.

• GUILTY_CONTEXT_RESET indicates that a reset has been detected that is
attributable to the current GL context.

• INNOCENT_CONTEXT_RESET indicates a reset has been detected that is not
attributable to the current GL context.

• UNKNOWN_CONTEXT_RESET indicates a detected graphics reset whose cause
is unknown.

If a reset status other than NO_ERROR is returned and subsequent calls return
NO_ERROR, the context reset was encountered and completed. If a reset status is
repeatedly returned, the context may be in the process of resetting.

OpenGL ES 3.2 (November 3, 2016)

2.3. COMMAND EXECUTION 17

Reset notification behavior is determined at context creation time, and may be
queried by calling GetIntegerv with pname RESET_NOTIFICATION_STRATEGY.

If the reset notification behavior is NO_RESET_NOTIFICATION, then the im-
plementation will never deliver notification of reset events, and GetGraphicsRe-
setStatus will always return NO_ERROR4.

If the behavior is LOSE_CONTEXT_ON_RESET, a graphics reset will result in
a lost context and require creating a new context as described above. In this case
GetGraphicsResetStatus may return any of the values described above.

If a graphics reset notification occurs in a context, a notification must also occur
in all other contexts which share objects with that context5.

After a graphics reset has occurred on a context, subsequent GL commands
on that context (or any context which shares with that context) will generate a
CONTEXT_LOST error. Such commands will not have side effects (in particular,
they will not modify memory passed by pointer for query results), and may not
block indefinitely or cause termination of the application. Exceptions to this be-
havior include:

• GetError and GetGraphicsResetStatus behave normally following a
graphics reset, so that the application can determine a reset has occurred,
and when it is safe to destroy and re-create the context.

• Any commands which might cause a polling application to block indefinitely
will generate a CONTEXT_LOST error, but will also return a value indicating
completion to the application. Such commands include:

– GetSynciv with pname SYNC_STATUS ignores the other parameters
and returns SIGNALED in values.

– GetQueryObjectuiv with pname QUERY_RESULT_AVAILABLE ig-
nores the other parameters and returns TRUE in params.

2.3.3 Flush and Finish

Implementations may buffer multiple commands in a command queue before send-
ing them to the GL server for execution. This may happen in places such as the
network stack (for network transparent implementations), CPU code executing as
part of the GL client or the GL server, or internally to the GPU hardware. Coarse
control over command queues is available using the command

4In this case, it is recommended that implementations should not allow loss of context state no
matter what events occur. However, this is only a recommendation, and cannot be relied upon by
applications.

5The values returned by GetGraphicsResetStatus in the different contexts may differ.

OpenGL ES 3.2 (November 3, 2016)

2.3. COMMAND EXECUTION 18

void Flush(void);

which causes all previously issued GL commands to complete in finite time (al-
though such commands may still be executing when Flush returns).

The command

void Finish(void);

forces all previous GL commands to complete. Finish does not return until all
effects from previously issued commands on GL client and server state and the
framebuffer are fully realized.

Finer control over command execution can be expressed using fence commands
and sync objects, as discussed in section 4.1.

2.3.4 Numeric Representation and Computation

The GL must perform a number of floating-point operations during the course of
its operation.

Implementations normally perform computations in floating-point, and must
meet the range and precision requirements defined in section 2.3.4.1 below.

These requirements only apply to computations performed in GL operations
outside of shader execution, such as texture image specification and sampling, and
per-fragment operations. Range and precision requirements during shader execu-
tion differ and are specified by the OpenGL ES Shading Language Specification.

In some cases, the representation and/or precision of operations is implicitly
limited by the specified format of vertex, texture, or renderbuffer data consumed
by the GL. Specific floating-point formats are described later in this section.

2.3.4.1 Floating-Point Computation

We do not specify how floating-point numbers are to be represented, or the de-
tails of how operations on them are performed. We require simply that numbers’
floating-point parts contain enough bits and that their exponent fields are large
enough so that individual results of floating-point operations are accurate to about
1 part in 105. The maximum representable magnitude for all floating-point val-
ues must be at least 232. x · 0 = 0 · x = 0 for any non-infinite and non-NaN x.
1 · x = x · 1 = x. x + 0 = 0 + x = x. 00 = 1. (Occasionally further require-
ments will be specified.) Most single-precision floating-point formats meet these
requirements.

The special values Inf and −Inf encode values with magnitudes too large to
be represented; the special value NaN encodes “Not A Number” values resulting

OpenGL ES 3.2 (November 3, 2016)

2.3. COMMAND EXECUTION 19

from undefined arithmetic operations such as 0
0 . Implementations are permitted,

but not required, to support Inf s and NaN s in their floating-point computations.
Any representable floating-point value is legal as input to a GL command that

requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

2.3.4.2 16-Bit Floating-Point Numbers

A 16-bit floating-point number has a 1-bit sign (S), a 5-bit exponent (E), and a
10-bit mantissa (M). The value V of a 16-bit floating-point number is determined
by the following:

V =



(−1)S × 0.0, E = 0,M = 0

(−1)S × 2−14 × M
210
, E = 0,M 6= 0

(−1)S × 2E−15 ×
(
1 + M

210

)
, 0 < E < 31

(−1)S × Inf , E = 31,M = 0

NaN , E = 31,M 6= 0

If the floating-point number is interpreted as an unsigned 16-bit integerN , then

S =

⌊
N mod 65536

32768

⌋
E =

⌊
N mod 32768

1024

⌋
M = N mod 1024.

Any representable 16-bit floating-point value is legal as input to a GL command
that accepts 16-bit floating-point data. The result of providing a value that is not a
floating-point number (such as Inf or NaN) to such a command is unspecified, but
must not lead to GL interruption or termination. Providing a denormalized number
or negative zero to GL must yield predictable results, whereby the value is either
preserved or forced to positive or negative zero.

2.3.4.3 Unsigned 11-Bit Floating-Point Numbers

An unsigned 11-bit floating-point number has no sign bit, a 5-bit exponent (E), and
a 6-bit mantissa (M). The value V of an unsigned 11-bit floating-point number is

OpenGL ES 3.2 (November 3, 2016)

2.3. COMMAND EXECUTION 20

determined by the following:

V =



0.0, E = 0,M = 0

2−14 × M
64 , E = 0,M 6= 0

2E−15 ×
(
1 + M

64

)
, 0 < E < 31

Inf , E = 31,M = 0

NaN , E = 31,M 6= 0

If the floating-point number is interpreted as an unsigned 11-bit integerN , then

E =

⌊
N

64

⌋
M = N mod 64.

When a floating-point value is converted to an unsigned 11-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 65024 (the maximum finite representable unsigned 11-bit
floating-point value) are converted to 65024. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NaN .

Any representable unsigned 11-bit floating-point value is legal as input to a
GL command that accepts 11-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results, whereby the value is
either preserved or forced to zero.

2.3.4.4 Unsigned 10-Bit Floating-Point Numbers

An unsigned 10-bit floating-point number has no sign bit, a 5-bit exponent (E), and
a 5-bit mantissa (M). The value V of an unsigned 10-bit floating-point number is
determined by the following:

OpenGL ES 3.2 (November 3, 2016)

2.3. COMMAND EXECUTION 21

V =



0.0, E = 0,M = 0

2−14 × M
32 , E = 0,M 6= 0

2E−15 ×
(
1 + M

32

)
, 0 < E < 31

Inf , E = 31,M = 0

NaN , E = 31,M 6= 0

If the floating-point number is interpreted as an unsigned 10-bit integerN , then

E =

⌊
N

32

⌋
M = N mod 32.

When a floating-point value is converted to an unsigned 10-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 64512 (the maximum finite representable unsigned 10-bit
floating-point value) are converted to 64512. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NaN .

Any representable unsigned 10-bit floating-point value is legal as input to a
GL command that accepts 10-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results, whereby the value is
either preserved or forced to zero.

2.3.4.5 Fixed-Point Computation

Vertex attributes may be specified using a 32-bit two’s complement signed repre-
sentation with 16 bits to the right of the binary point (fraction bits).

2.3.4.6 General Requirements

Some calculations require division. In such cases (including implied divisions re-
quired by vector normalizations), a division by zero produces an unspecified result
but must not lead to GL interruption or termination.

OpenGL ES 3.2 (November 3, 2016)

2.3. COMMAND EXECUTION 22

2.3.5 Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are repre-
sented as integers, they are often (but not always) considered to be normalized.
Normalized integer values are treated specially when being converted to and from
floating-point values, and are usually referred to as normalized fixed-point. Such
values are always either signed or unsigned.

In the remainder of this section, b denotes the bit width of the fixed-point in-
teger representation. When the integer is one of the types defined in table 2.2, b
is the minimum required bit width of that type. When the integer is a texture or
renderbuffer color or depth component (see section 8.5), b is the number of bits
allocated to that component in the internal format of the texture or renderbuffer.
When the integer is a framebuffer color or depth component (see section 9), b is
the number of bits allocated to that component in the framebuffer.

The signed and unsigned fixed-point representations are assumed to be b-bit
binary two’s-complement integers and binary unsigned integers, respectively.

All the conversions described below are performed as defined, even if the im-
plemented range of an integer data type is greater than the minimum required range.

2.3.5.1 Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0, 1].
The conversion from an unsigned normalized fixed-point value c to the correspond-
ing floating-point value f is defined as

f =
c

2b − 1
. (2.1)

Signed normalized fixed-point integers represent numbers in the range [−1, 1].
The conversion from a signed normalized fixed-point value c to the corresponding
floating-point value f is performed using

f = max

{
c

2b−1 − 1
,−1.0

}
. (2.2)

Only the range [−2b−1 + 1, 2b−1 − 1] is used to represent signed fixed-point
values in the range [−1, 1]. For example, if b = 8, then the integer value−127 cor-
responds to−1.0 and the value 127 corresponds to 1.0. Note that while zero can be
exactly expressed in this representation, one value (−128 in the example) is outside
the representable range, and must be clamped before use.This equation is used ev-
erywhere that signed normalized fixed-point values are converted to floating-point,
including for all signed normalized fixed-point parameters in GL commands, such

OpenGL ES 3.2 (November 3, 2016)

2.4. RENDERING COMMANDS 23

as vertex attribute values6, as well as for specifying texture or framebuffer values
using signed normalized fixed-point.

2.3.5.2 Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned nor-
malized fixed-point value c is defined by first clamping f to the range [0, 1], then
computing

f ′ = convert float uint(f × (2b − 1), b) (2.3)

where convert float uint(r, b) returns one of the two unsigned binary integer
values with exactly b bits which are closest to the floating-point value r (where
rounding to nearest is preferred).

The conversion from a floating-point value f to the corresponding signed nor-
malized fixed-point value c is performed by clamping f to the range [−1, 1], then
computing:

f ′ = convert float int(f × (2b−1 − 1), b) (2.4)

where convert float int(r, b) returns one of the two signed two’s-complement
binary integer values with exactly b bits which are closest to the floating-point
value r (where rounding to nearest is preferred).

This equation is used everywhere that floating-point values are converted to
signed normalized fixed-point, including when querying floating-point state (see
section 20) and returning integers7, as well as for specifying signed normalized
texture or framebuffer values using floating-point.

2.4 Rendering Commands

GL commands performing rendering into a framebuffer are called rendering com-
mands, and include the drawing commands *Draw* (see section 10.5), as well as
these additional commands:

• BlitFramebuffer (see section 16.2.1)
6 This is a behavior change in OpenGL ES 3.0. In previous versions, a different conversion for

signed normalized values was used in which−128 mapped to−1.0, 127 mapped to 1.0, and 0.0 was
not exactly representable.

7 This is a behavior change in OpenGL ES 3.0. In previous versions, a different conversion for
signed normalized values was used in which−1.0 mapped to−128, 1.0 mapped to 127, and 0.0 was
not exactly representable.

OpenGL ES 3.2 (November 3, 2016)

2.5. CONTEXT STATE 24

• Clear (see section 15.2.3)

• ClearBuffer* (see section 15.2.3.1)

• DispatchCompute* (see section 17)

2.5 Context State

Context state is state that belongs to the GL context as a whole, rather than to
instances of the different object types described in section 2.6. Context state con-
trols fixed-function stages of the GPU, such as clipping, primitive rasterization, and
framebuffer clears, and also specifies bindings of objects to the context specifying
which objects are used during command execution.

The Specification describes all visible context state variables and describes how
each one can be changed. State variables are grouped somewhat arbitrarily by their
function. Although we describe operations that the GL performs on the frame-
buffer, the framebuffer is not a part of GL state.

There are two types of context state. Server state resides in the GL server;
the majority of GL state falls into this category. Client state resides in the GL
client. Unless otherwise specified, all state is server state; client state is specifically
identified. Each instance of a context includes a complete set of server state; each
connection from a client to a server also includes a complete set of client state.

While an implementation of OpenGL ES may be hardware dependent, the
Specification is independent of any specific hardware on which it is implemented.
We are concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

2.5.1 Generic Context State Queries

Context state queries are described in detail in chapter 20.

2.6 Objects and the Object Model

Many types of objects are defined in the remainder of the Specification. Applica-
tions may create, modify, query, and destroy many instances of each of these object
types, limited in most cases only by available graphics memory. Specific instances
of different object types are bound to a context. The set of bound objects define
the shaders which are invoked by GL drawing operations; specify the buffer data,
texture image, and framebuffer memory that is accessed by shaders and directly

OpenGL ES 3.2 (November 3, 2016)

2.6. OBJECTS AND THE OBJECT MODEL 25

by GL commands; and contain the state used by other operations such as fence
synchronization and timer queries.

Each object type corresponds to a distinct set of commands which manage ob-
jects of that type. However, there is an object model describing how most types
of objects are managed, described below. Exceptions to the object model for spe-
cific object types are described later in the Specification together with those object
types.

Following the description of the object model, each type of object is briefly
described below, together with forward references to full descriptions of that ob-
ject type in later chapters of the Specification. Objects are described in an order
corresponding to the structure of the remainder of the Specification.

2.6.1 Object Management

2.6.1.1 Name Spaces, Name Generation, and Object Creation

Each object type has a corresponding name space. Names of objects are repre-
sented by unsigned integers of type uint. The name zero is reserved by the GL;
for some object types, zero names a default object of that type, and in others zero
will never correspond to an actual instance of that object type.

Names of most types of objects are created by generating unused names us-
ing commands starting with Gen followed by the object type. For example, the
command GenBuffers returns one or more previously unused buffer object names.

Generated names are marked by the GL as used, for the purpose of name gener-
ation only. Object names marked in this fashion will not be returned by additional
calls to generate names of the same type until the names are marked unused again
by deleting them (see below).

Generated names do not initially correspond to an instance of an object. Ob-
jects with generated names are created by binding a generated name to the context.
For example, a buffer object is created by calling the command BindBuffer with
a name returned by GenBuffers, which allocates resources for the buffer object
and its state, and associate the name with that object. Sampler objects may also be
created by commands in addition to BindSampler, as described in section 8.2.

A few types of objects are created by commands which return the name of the
new object at the same time they create the object. Examples include CreatePro-
gram for program objects and FenceSync for fence sync objects.

2.6.1.2 Name Deletion and Object Deletion

Objects are deleted by calling deletion commands specific to that object type. For
example, the command DeleteBuffers is passed an array of buffer object names

OpenGL ES 3.2 (November 3, 2016)

2.6. OBJECTS AND THE OBJECT MODEL 26

to delete. After an object is deleted it has no contents, and its name is once again
marked unused for the purpose of name generation. If names are deleted that do not
correspond to an object, but have been marked for the purpose of name generation,
such names are marked as unused again. If unused and unmarked names are deleted
they are silently ignored, as is the name zero.

If an object is deleted while it is currently in use by a GL context, its name
is immediately marked as unused, and some types of objects are automatically
unbound from binding points in the current context, as described in section 5.1.2.
However, the actual underlying object is not deleted until it is no longer in use.
This situation is discussed in more detail in section 5.1.3.

2.6.1.3 Shared Object State

It is possible for groups of contexts to share some server state. Enabling such shar-
ing between contexts is done through window system binding APIs such as those
described in section 1.6.3. These APIs are responsible for creation and manage-
ment of contexts, and are not discussed further here. More detailed discussion of
the behavior of shared objects is included in chapter 5. Except as defined below
for specific object types, all state in a context is specific to that context only.

2.6.2 Buffer Objects

The GL uses many types of data supplied by the client. Some of this data must be
stored in server memory, and it is desirable to store other types of frequently used
client data, such as vertex array and pixel data, in server memory for performance
reasons, even if the option to store it in client memory exists.

Buffer objects contain a data store holding a fixed-sized allocation of server
memory, and provide a mechanism to allocate, initialize, read from, and write to
such memory.

Buffer objects may be shared. They are described in detail in chapter 6.

2.6.3 Shader Objects

The source and/or binary code representing part or all of a shader program that is
executed by one of the programmable stages defined by the GL (such as a vertex
or fragment shader) is encapsulated in one or more shader objects.

Shader objects may be shared. They are described in detail in chapter 7.

OpenGL ES 3.2 (November 3, 2016)

2.6. OBJECTS AND THE OBJECT MODEL 27

2.6.4 Program Objects

Shader objects that are to be used by one or more of the programmable stages of
the GL are linked together to form a program object. The shader programs that
are executed by these programmable stages are called executables. All information
necessary for defining each executable is encapsulated in a program object.

Program objects may be shared. They are described in detail in chapter 7.

2.6.5 Program Pipeline Objects

Program pipeline objects contain a separate program object binding point for each
programmable stage. They allow a primitive to be processed by independent pro-
grams in each programmable stage, instead of requiring a single program object
for each combination of shader operations. They allow greater flexibility when
combining different shaders in various ways, without requiring a program object
for each such combination.

Program pipeline objects are container objects including references to program
objects, and are not shared. They are described in detail in chapter 7.

2.6.6 Texture Objects

Texture objects or textures include a collection of texture images built from arrays
of image elements referred to as texels. There are many types of texture objects
varying by dimensionality and structure; the different texture types are described
in detail in the introduction to chapter 8.

Texture objects also include state describing the image parameters of the tex-
ture images, and state describing how sampling is performed when a shader ac-
cesses a texture.

Shaders may sample a texture at a location indicated by specified texture co-
ordinates, with details of sampling determined by the sampler state of the texture.
The resulting texture samples are typically used to modify a fragment’s color, in
order to map an image onto a geometric primitive being drawn, but may be used
for any purpose in a shader.

Texture objects may be shared. They are described in detail in chapter 8.

2.6.7 Sampler Objects

Sampler objects contain the subset of texture object state controlling how sampling
is performed when a shader accesses a texture. Sampler and texture objects may be
bound together so that the sampler object state is used by shaders when sampling
the texture, overriding equivalent state in the texture object. Separating texture

OpenGL ES 3.2 (November 3, 2016)

2.6. OBJECTS AND THE OBJECT MODEL 28

image data from the method of sampling that data allows reuse of the same sampler
state with many different textures without needing to set the sampler state in each
texture.

Sampler objects may be shared. They are described in detail in chapter 8.

2.6.8 Renderbuffer Objects

Renderbuffer objects contain a single image in a format which can be rendered
to. Renderbuffer objects are attached to framebuffer objects (see below) when
performing off-screen rendering.

Renderbuffer objects may be shared. They are described in detail in chapter 9.

2.6.9 Framebuffer Objects

Framebuffer objects encapsulate the state of a framebuffer, including a collection of
color, depth, and stencil buffers. Each such buffer is represented by a renderbuffer
object or texture object attached to the framebuffer object.

Framebuffer objects are container objects including references to renderbuffer
and/or texture objects, and are not shared. They are described in detail in chapter 9.

2.6.10 Vertex Array Objects

Vertex array objects represent a collection of sets of vertex attributes. Each set
is stored as an array in a buffer object data store, with each element of the array
having a specified format and component count. The attributes of the currently
bound vertex array object are used as inputs to the vertex shader when executing
drawing commands.

Vertex array objects are container objects including references to buffer objects,
and are not shared. They are described in detail in chapter 10.

2.6.11 Transform Feedback Objects

Transform feedback objects are used to capture attributes of the vertices of trans-
formed primitives passed to the transform feedback stage when transform feedback
mode is active. They include state required for transform feedback together with
references to buffer objects in which attributes are captured.

Transform feedback objects are container objects including references to buffer
objects, and are not shared. They are described in detail in section 12.1.1.

OpenGL ES 3.2 (November 3, 2016)

2.6. OBJECTS AND THE OBJECT MODEL 29

2.6.12 Query Objects

Query objects return information about the processing of a sequence of GL com-
mands, such as the number of primitives processed by drawing commands; the
number of primitives written to transform feedback buffers; the number of sam-
ples that pass the depth test during fragment processing; and the amount of time
required to process commands.

Query objects are not shared. They are described in detail in section 4.2.

2.6.13 Sync Objects

A sync object acts as a synchronization primitive – a representation of events whose
completion status can be tested or waited upon. Sync objects may be used for syn-
chronization with operations occurring in the GL state machine or in the graphics
pipeline, and for synchronizing between multiple graphics contexts, among other
purposes.

Sync objects may be shared. They are described in detail in section 4.1.

OpenGL ES 3.2 (November 3, 2016)

Chapter 3

Dataflow Model

Figure 3.1 shows a block diagram of the GL. Some commands specify geometric
objects to be drawn while others specify state controlling how objects are han-
dled by the various stages, or specify data contained in textures and buffer objects.
Commands are effectively sent through a processing pipeline. Different stages of
the pipeline use data contained in different types of buffer objects.

The first stage assembles vertices to form geometric primitives such as points,
line segments, and polygons. In the next stage vertices may be transformed, fol-
lowed by assembly into geometric primitives. Tessellation and geometry shaders
may then generate multiple primitives from single input primitives. Optionally, the
results of these pipeline stages may be fed back into buffer objects using transform
feedback.

The final resulting primitives are clipped to a clip volume in preparation for
the next stage, rasterization. The rasterizer produces a series of framebuffer ad-
dresses and values using a two-dimensional description of a point, line segment,
or polygon. Each fragment so produced is fed to the next stage that performs op-
erations on individual fragments before they finally alter the framebuffer. These
operations include conditional updates into the framebuffer based on incoming and
previously stored depth values (to effect depth buffering), blending of incoming
fragment colors with stored colors, as well as masking.

Pixels may also be read back from the framebuffer or copied from one portion
of the framebuffer to another. These transfers may include some type of decoding
or encoding.

Finally, compute shaders which may read from and write to buffer objects may
be executed independently of the pipeline shown in figure 3.1.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the

30

31

various operations of the GL.

OpenGL ES 3.2 (November 3, 2016)

32

F
ra

m
e

b
u

ff
e

r

V
e

rt
e

x
 P

u
ll

e
r

V
e

rt
e

x
 S

h
a

d
e

r

T
e

s
s
e

ll
a

ti
o

n
 C

o
n

tr
o

l
S

h
a

d
e

r

T
e

s
s
e

ll
a

ti
o

n
 P

ri
m

it
iv

e
 G

e
n

.

G
e

o
m

e
tr

y
 S

h
a

d
e

r

T
ra

n
s
fo

rm
 F

e
e

d
b

a
c
k

R
a

s
te

ri
z
a

ti
o

n

F
ra

g
m

e
n

t
S

h
a

d
e

r

D
is

p
a

tc
h

 I
n

d
ir

e
c
t

B
u

ff
e

r
b

P
ix

e
l
A

s
s
e

m
b

ly

P
ix

e
l
O

p
e

ra
ti

o
n

s

P
ix

e
l
P

a
c
k

P
e

r-
F
ra

g
m

e
n

t
O

p
e

ra
ti

o
n

s

I
m

a
g

e
 L

o
a

d
 /

 S
to

re
 t

/
b

A
to

m
ic

 C
o

u
n

te
r

b

S
h

a
d

e
r

S
to

ra
g

e
 b

T
e

x
tu

re
 F

e
tc

h
 t

/
b

U
n

if
o

rm
 B

lo
c
k

 b

P
ix

e
l
U

n
p

a
c
k

 B
u

ff
e

r
b

T
e

x
tu

re
 I

m
a

g
e

 t

P
ix

e
l
P

a
c
k

 B
u

ff
e

r
b

E
le

m
e

n
t

A
rr

a
y
 B

u
ff

e
r

b

D
ra

w
 I

n
d

ir
e

c
t

B
u

ff
e

r
b

V
e

rt
e

x
 B

u
ff

e
r

O
b

je
c
t

b

T
ra

n
s
fo

rm
 F

e
e

d
b

a
c
k

B

u
ff

e
r

b

F
ro

m
 A

p
p

li
c
a

ti
o

n

F
ro

m
 A

p
p

li
c
a

ti
o

n

t
–

 T
e

x
tu

re
 B

in
d

in
g

b
 –

 B
u

ff
e

r
B

in
d

in
g

P
ro

g
ra

m
m

a
b

le
 S

ta
g

e

F
ix

e
d

 F
u

n
c
ti

o
n

 S
ta

g
e

T
e

s
s
e

ll
a

ti
o

n
 E

v
a

l.
 S

h
a

d
e

r

D
is

p
a

tc
h

C
o

m
p

u
te

 S
h

a
d

e
r

F
ro

m
 A

p
p

li
c
a

ti
o

n

L
e

g
e

n
d

Figure 3.1. Block diagram of the OpenGL ES pipeline.

OpenGL ES 3.2 (November 3, 2016)

Chapter 4

Event Model

4.1 Sync Objects and Fences

A sync object acts as a synchronization primitive – a representation of events whose
completion status can be tested or waited upon. Sync objects may be used for syn-
chronization with operations occurring in the GL state machine or in the graphics
pipeline, and for synchronizing between multiple graphics contexts, among other
purposes.

Sync objects have a status value with two possible states: signaled and
unsignaled. Events are associated with a sync object. When a sync object is cre-
ated, its status is set to unsignaled. When the associated event occurs, the sync
object is signaled (its status is set to signaled). The GL may be asked to wait for a
sync object to become signaled.

Initially, only one specific type of sync object is defined: the fence sync object,
whose associated event is triggered by a fence command placed in the GL com-
mand stream. Fence sync objects are used to wait for partial completion of the GL
command stream, as a more flexible form of Finish.

The command

sync FenceSync(enum condition, bitfield flags);

creates a new fence sync object, inserts a fence command in the GL command
stream and associates it with that sync object, and returns a non-zero name corre-
sponding to the sync object.

When the specified condition of the sync object is satisfied by the fence com-
mand, the sync object is signaled by the GL, causing any ClientWaitSync or Wait-
Sync commands (see below) blocking on sync to unblock. No other state is affected
by FenceSync or by execution of the associated fence command.

33

4.1. SYNC OBJECTS AND FENCES 34

Property Name Property Value
OBJECT_TYPE SYNC_FENCE

SYNC_CONDITION condition
SYNC_STATUS UNSIGNALED

SYNC_FLAGS flags

Table 4.1: Initial properties of a sync object created with FenceSync.

condition must be SYNC_GPU_COMMANDS_COMPLETE. This condition is satis-
fied by completion of the fence command corresponding to the sync object and all
preceding commands in the same command stream. The sync object will not be
signaled until all effects from these commands on GL client and server state and the
framebuffer are fully realized. Note that completion of the fence command occurs
once the state of the corresponding sync object has been changed, but commands
waiting on that sync object may not be unblocked until some time after the fence
command completes.

flags must be zero.
Each sync object contains a number of properties which determine the state of

the object and the behavior of any commands associated with it. Each property has
a property name and property value. The initial property values for a sync object
created by FenceSync are shown in table 4.1.

Properties of a sync object may be queried with GetSynciv (see section 4.1.3).
The SYNC_STATUS property will be changed to SIGNALED when condition is sat-
isfied.

Errors

If FenceSync fails to create a sync object, zero will be returned and a GL
error is generated.

An INVALID_ENUM error is generated if condition is not SYNC_GPU_-
COMMANDS_COMPLETE.

An INVALID_VALUE error is generated if flags is not zero.

A sync object can be deleted by passing its name to the command

void DeleteSync(sync sync);

If the fence command corresponding to the specified sync object has com-
pleted, or if no ClientWaitSync or WaitSync commands are blocking on sync, the
object is deleted immediately. Otherwise, sync is flagged for deletion and will be

OpenGL ES 3.2 (November 3, 2016)

4.1. SYNC OBJECTS AND FENCES 35

deleted when it is no longer associated with any fence command and is no longer
blocking any ClientWaitSync or WaitSync command. In either case, after return-
ing from DeleteSync the sync name is invalid and can no longer be used to refer to
the sync object.

DeleteSync will silently ignore a sync value of zero.

Errors

An INVALID_VALUE error is generated if sync is neither zero nor the name
of a sync object.

4.1.1 Waiting for Sync Objects

The command

enum ClientWaitSync(sync sync, bitfield flags,
uint64 timeout);

causes the GL to block, and will not return until the sync object sync is signaled,
or until the specified timeout period expires. timeout is in units of nanoseconds.
timeout is adjusted to the closest value allowed by the implementation-dependent
timeout accuracy, which may be substantially longer than one nanosecond, and
may be longer than the requested period.

If sync is signaled at the time ClientWaitSync is called, then ClientWait-
Sync returns immediately. If sync is unsignaled at the time ClientWaitSync is
called, then ClientWaitSync will block and will wait up to timeout nanoseconds
for sync to become signaled. flags controls command flushing behavior, and may
be SYNC_FLUSH_COMMANDS_BIT, as discussed in section 4.1.2.

ClientWaitSync returns one of four status values. A return value of
ALREADY_SIGNALED indicates that sync was signaled at the time ClientWait-
Sync was called. ALREADY_SIGNALED will always be returned if sync was sig-
naled, even if the value of timeout is zero. A return value of TIMEOUT_EXPIRED
indicates that the specified timeout period expired before sync was signaled. A re-
turn value of CONDITION_SATISFIED indicates that sync was signaled before the
timeout expired. Finally, if an error occurs, in addition to generating a GL error
as specified below, ClientWaitSync immediately returns WAIT_FAILED without
blocking.

If the value of timeout is zero, then ClientWaitSync does not block, but simply
tests the current state of sync. TIMEOUT_EXPIRED will be returned in this case if
sync is not signaled, even though no actual wait was performed.

OpenGL ES 3.2 (November 3, 2016)

4.1. SYNC OBJECTS AND FENCES 36

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_VALUE error is generated if flags contains any bits other than
SYNC_FLUSH_COMMANDS_BIT.

The command

void WaitSync(sync sync, bitfield flags,
uint64 timeout);

is similar to ClientWaitSync, but instead of blocking and not returning to the ap-
plication until sync is signaled, WaitSync returns immediately, instead causing the
GL server to block1 until sync is signaled2.

sync has the same meaning as for ClientWaitSync.
timeout must currently be the special value TIMEOUT_IGNORED, and is not

used. Instead, WaitSync will always wait no longer than an implementation-
dependent timeout. The duration of this timeout in nanoseconds may be queried
by calling GetInteger64v with the symbolic constant MAX_SERVER_WAIT_-

TIMEOUT. There is currently no way to determine whether WaitSync unblocked
because the timeout expired or because the sync object being waited on was sig-
naled.

flags must be zero.
If an error occurs, WaitSync generates a GL error as specified below, and does

not cause the GL server to block.

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_VALUE error is generated if timeout is not TIMEOUT_-
IGNORED or flags is not zeroa.

a flags and timeout are placeholders for anticipated future extensions of sync object capa-
bilities. They must have these reserved values in order that existing code calling WaitSync
operate properly in the presence of such extensions.

1 The GL server may choose to wait either in the CPU executing server-side code, or in the GPU
hardware if it supports this operation.

2 WaitSync allows applications to continue to queue commands from the client in anticipation of
the sync being signaled, increasing client-server parallelism.

OpenGL ES 3.2 (November 3, 2016)

4.1. SYNC OBJECTS AND FENCES 37

4.1.1.1 Multiple Waiters

It is possible for both the GL client to be blocked on a sync object in a ClientWait-
Sync command, the GL server to be blocked as the result of a previous WaitSync
command, and for additional WaitSync commands to be queued in the GL server,
all for a single sync object. When such a sync object is signaled in this situation,
the client will be unblocked, the server will be unblocked, and all such queued
WaitSync commands will continue immediately when they are reached.

See section 5.2 for more information about blocking on a sync object in multi-
ple GL contexts.

4.1.2 Signaling

A fence sync object enters the signaled state only once the corresponding fence
command has completed and signaled the sync object.

If the sync object being blocked upon will not be signaled in finite time (for
example, by an associated fence command issued previously, but not yet flushed
to the graphics pipeline), then ClientWaitSync may hang forever. To help prevent
this behavior3, if ClientWaitSync is called and all of the following are true:

• the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,

• sync is unsignaled when ClientWaitSync is called,

• and the calls to ClientWaitSync and FenceSync were issued from the same
context,

then the GL will behave as if the equivalent of Flush were inserted immediately
after the creation of sync.

If a sync object is marked for deletion while a client is blocking on that object
in a ClientWaitSync command, or a GL server is blocking on that object as a result
of a prior WaitSync command, deletion is deferred until the sync object is signaled
and all blocked GL clients and servers are unblocked.

Additional constraints on the use of sync objects are discussed in chapter 5.
State must be maintained to indicate which sync object names are currently

in use. The state required for each sync object in use is an integer for the specific
type, an integer for the condition, and a bit indicating whether the object is signaled

3 The simple flushing behavior defined by SYNC_FLUSH_COMMANDS_BIT will not help
when waiting for a fence command issued in another context’s command stream to complete. Ap-
plications which block on a fence sync object must take additional steps to assure that the context
from which the corresponding fence command was issued has flushed that command to the graphics
pipeline.

OpenGL ES 3.2 (November 3, 2016)

4.1. SYNC OBJECTS AND FENCES 38

or unsignaled. The initial values of sync object state are defined as specified by
FenceSync.

4.1.3 Sync Object Queries

Properties of sync objects may be queried using the command

void GetSynciv(sync sync, enum pname, sizei bufSize,
sizei *length, int *values);

The value or values being queried are returned in the parameters length and
values.

On success, GetSynciv replaces up to bufSize integers in values with the cor-
responding property values of the object being queried. The actual number of
integers replaced is returned in *length. If length is NULL, no length is returned.

If pname is OBJECT_TYPE, a single value representing the specific type of the
sync object is placed in values. The only type supported is SYNC_FENCE.

If pname is SYNC_STATUS, a single value representing the status of the sync
object (SIGNALED or UNSIGNALED) is placed in values.

If pname is SYNC_CONDITION, a single value representing the condition of
the sync object is placed in values. The only condition supported is SYNC_GPU_-
COMMANDS_COMPLETE.

If pname is SYNC_FLAGS, a single value representing the flags with which the
sync object was created is placed in values. No flags are currently supported.

Errors

An INVALID_VALUE error is generated if sync is not the name of a sync
object.

An INVALID_ENUM error is generated if pname is not one of the values
described above.

An INVALID_VALUE error is generated if bufSize is negative.

The command

boolean IsSync(sync sync);

returns TRUE if sync is the name of a sync object. If sync is not the name of a sync
object, or if an error condition occurs, IsSync returns FALSE (note that zero is not
the name of a sync object).

Sync object names immediately become invalid after calling DeleteSync, as
discussed in sections 4.1 and 5.2, but the underlying sync object will not be deleted

OpenGL ES 3.2 (November 3, 2016)

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 39

Query target Information Returned
PRIMITIVES_GENERATED Number of primitives processed by the GL (see

section 12.2)
TRANSFORM_FEEDBACK_-

PRIMITIVES_WRITTEN

Number of primitives written to one or more
buffer objects. There may be at most one active
query of this type (see section 12.2).

ANY_SAMPLES_PASSED,
ANY_SAMPLES_PASSED_-

CONSERVATIVE

Set a boolean to true when any fragments or sam-
ples pass the depth test. There may be at most one
active query of this type (see section 15.1.4).

Table 4.2: Asynchronous query targets

until it is no longer associated with any fence command and no longer blocking
any *WaitSync command.

4.2 Query Objects and Asynchronous Queries

Asynchronous queries provide a mechanism to return information about the pro-
cessing of a sequence of GL commands. Query types supported by the GL are
summarized in table 4.2.

The results of asynchronous queries are not returned by the GL immediately
after the completion of the last command in the set; subsequent commands can
be processed while the query results are not complete. When available, the query
results are stored in an associated query object. The commands described in sec-
tion 4.2.1 provide mechanisms to determine when query results are available and
return the actual results of the query. The name space for query objects is the
unsigned integers, with zero reserved by the GL.

The command

void GenQueries(sizei n, uint *ids);

returns n previously unused query object names in ids. These names are marked as
used, for the purposes of GenQueries only, but no object is associated with them
until the first time they are used by BeginQuery.

Errors

An INVALID_VALUE error is generated if n is negative.

OpenGL ES 3.2 (November 3, 2016)

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 40

Query objects are deleted by calling

void DeleteQueries(sizei n, const uint *ids);

ids contains n names of query objects to be deleted. After a query object is deleted,
its name is again unused. If an active query object is deleted its name immediately
becomes unused, but the underlying object is not deleted until it is no longer active
(see section 5.1). Unused names in ids that have been marked as used for the
purposes of GenQueries are marked as unused again. Unused names in ids are
silently ignored, as is the value zero.

Errors

An INVALID_VALUE error is generated if n is negative.

Each type of query supported by the GL has an active query object name. If an
active query object name is non-zero, the GL is currently tracking the correspond-
ing information, and the query results will be written into that query object. If an
active query object name is zero, no such information is being tracked.

A query object may be created and made active with the command

void BeginQuery(enum target, uint id);

target indicates the type of query to be performed. The valid values of target are
discussed in more detail in subsequent sections.

BeginQuery sets the active query object name for target and index to id.
If id is an unused query object name, the name is marked as used and associated

with a new query object of the type specified by target. Otherwise id must be the
name of an existing query object of that type. Note that an occlusion query object
is specified by either of the two valid targets, and may be reused for either target
in future queries.

Errors

An INVALID_ENUM error is generated if target is not one of the valid
targets listed in table 4.2

An INVALID_OPERATION error is generated if id is not a name returned
from a previous call to GenQueries, or if such a name has since been deleted
with DeleteQueries.

An INVALID_OPERATION error is generated if id is any of:

• zero

OpenGL ES 3.2 (November 3, 2016)

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 41

• the name of an existing query object whose type does not match target

• an active query object name for any target.

An INVALID_OPERATION error is generated if the active query object
name for target is non-zero (for the targets ANY_SAMPLES_PASSED and
ANY_SAMPLES_PASSED_CONSERVATIVE, if the active query for either target
is non-zero).

The command

void EndQuery(enum target);

marks the end of the sequence of commands to be tracked for the active query
specified by target. The corresponding active query object is updated to indicate
that query results are not available, and the active query object name for target
is reset to zero. When the commands issued prior to EndQuery have completed
and a final query result is available, the query object active when EndQuery was
called is updated to contain the query result and to indicate that the query result is
available.

target has the same meaning as for BeginQuery.

Errors

An INVALID_ENUM error is generated if target is not one of the valid
targets listed in table 4.2

An INVALID_OPERATION error is generated if the active query object
name for target is zero.

Query objects contain two pieces of state: a single bit indicating whether a
query result is available, and an integer containing the query result value. The
number of bits, n, used to represent the query result depends on the query type as
described in section 4.2.1. In the initial state of a query object, the result is not
available (the flag is FALSE), and the result value is zero.

If the query result overflows (exceeds the value 2n − 1), its value becomes
undefined. It is recommended, but not required, that implementations handle this
overflow case by saturating at 2n − 1 and incrementing no further.

The necessary state for each possible active query target is an unsigned integer
holding the active query object name (zero if no query object is active), and any
state necessary to keep the current results of an asynchronous query in progress.
Only a single type of occlusion query can be active at one time, so the required
state for occlusion queries is shared.

OpenGL ES 3.2 (November 3, 2016)

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 42

4.2.1 Query Object Queries

The number of bits required to represent query results cannot be queried, but must
be at least 1 bit for query targets ANY_SAMPLES_PASSED and ANY_SAMPLES_-

PASSED_CONSERVATIVE, and at least 32 bits for query target TRANSFORM_-
FEEDBACK_PRIMITIVES_WRITTEN.

The command

boolean IsQuery(uint id);

returns TRUE if id is the name of a query object. If id is zero, or if id is a non-zero
value that is not the name of a query object, IsQuery returns FALSE.

Information about an active query object can be queried with the command

void GetQueryiv(enum target, enum pname, int *params);

target specifies the active query, and has the same meaning as for BeginQuery.
If pname is CURRENT_QUERY, the name of the currently active query object for

target, or zero if no query is active, will be placed in params.

Errors

An INVALID_ENUM error is generated if target is not one of the valid
targets listed in table 4.2

An INVALID_ENUM error is generated if pname is not CURRENT_QUERY.

The state of a query object can be queried with the commands

void GetQueryObjectuiv(uint id, enum pname,
uint *params);

id is the name of a query object.
There may be an indeterminate delay before a query object’s result value is

available. If pname is QUERY_RESULT_AVAILABLE, FALSE is returned if such a
delay would be required; otherwise TRUE is returned. It must always be true that
if any query object returns a result available of TRUE, all queries of the same type
issued prior to that query must also return TRUE. Repeatedly querying QUERY_-

RESULT_AVAILABLE for any given query object is guaranteed to return TRUE

eventually4.
4 Note that multiple queries to the same occlusion object may result in a significant performance

loss. For better performance it is recommended to wait N frames before querying this state. N is
implementation-dependent but is generally between one and three.

OpenGL ES 3.2 (November 3, 2016)

4.2. QUERY OBJECTS AND ASYNCHRONOUS QUERIES 43

If pname is QUERY_RESULT, then the query object’s result value is returned as
a single integer in params. If the value is so large in magnitude that it cannot be
represented with the requested type, then the nearest value representable using the
requested type is returned. Querying QUERY_RESULT for any given query object
forces that query to complete within a finite amount of time.

If multiple queries are issued using the same object name prior to calling Get-
QueryObject*, the result and availability information returned will always be from
the last query issued. The results from any queries before the last one will be lost
if they are not retrieved before starting a new query on the same target and id.

Errors

An INVALID_OPERATION error is generated if id is not the name of a
query object, or if the query object named by id is currently active.

An INVALID_ENUM error is generated if pname is not QUERY_RESULT or
QUERY_RESULT_AVAILABLE.

OpenGL ES 3.2 (November 3, 2016)

Chapter 5

Shared Objects and Multiple
Contexts

This chapter describes special considerations for objects shared between multiple
OpenGL ES contexts, including deletion behavior and how changes to shared ob-
jects are propagated between contexts.

Objects that can be shared between contexts include buffer objects, program
and shader objects, renderbuffer objects, sampler objects, sync objects, and texture
objects (except for the texture objects named zero).

Objects which contain references to other objects include framebuffer, program
pipeline, query, transform feedback, and vertex array objects. Such objects are
called container objects and are not shared.

Implementations may allow sharing between contexts implementing different
OpenGL ES versions. However, implementation-dependent behavior may result
when aspects and/or behaviors of such shared objects do not apply to, and/or are
not described by more than one version or profile.

5.1 Object Deletion Behavior

5.1.1 Side Effects of Shared Context Destruction

The share list is the group of all contexts which share objects. If a shared object
is not explicitly deleted, then destruction of any individual context has no effect
on that object unless it is the only remaining context in the share list. Once the
last context on the share list is destroyed, all shared objects, and all other resources
allocated for that context or share list, will be deleted and reclaimed by the imple-
mentation as soon as possible.

44

5.1. OBJECT DELETION BEHAVIOR 45

5.1.2 Automatic Unbinding of Deleted Objects

When a buffer, texture, transform feedback or renderbuffer object is successfully
deleted, it is unbound from any bind points it is bound to in the current context, and
detached from any attachments of container objects that are bound to the current
context, as described for DeleteBuffers, DeleteTextures, DeleteTransformFeed-
backs and DeleteRenderbuffers. If the object binding was established with other
related state (such as a buffer range in BindBufferRange or selected level and layer
information in FramebufferTexture or BindImageTexture), all such related state
are restored to default values by the automatic unbind. Bind points in other con-
texts are not affected. Attachments to unbound container objects, such as deletion
of a buffer attached to a vertex array object which is not bound to the context, are
not affected and continue to act as references on the deleted object, as described in
the following section.

5.1.3 Deleted Object and Object Name Lifetimes

When a buffer, query, renderbuffer, sampler, sync, or texture object is deleted, its
name immediately becomes invalid (e.g. is marked unused), but the underlying
object will not be deleted until it is no longer in use.

A buffer, renderbuffer,sampler, or texture object is in use if any of the following
conditions are satisfied:

• the object is attached to any container object (such as a buffer object attached
to a vertex array object, or a renderbuffer or texture attached to a framebuffer
object)

• the object is bound to a context bind point in any context

A sync object is in use while there is a corresponding fence command which
has not yet completed and signaled the sync object, or while there are any GL
clients and/or servers blocked on the sync object as a result of ClientWaitSync or
WaitSync commands.

Query objects are in use so long as they are active, as described in section 4.2.
When a shader object or program object is deleted, it is flagged for deletion, but

its name remains valid until the underlying object can be deleted because it is no
longer in use. A shader object is in use while it is attached to any program object.
A program object is in use while it is attached to any program pipeline object or is
a current program in any context.

Caution should be taken when deleting an object attached to a container object,
or a shared object bound in multiple contexts. Following its deletion, the object’s

OpenGL ES 3.2 (November 3, 2016)

5.2. SYNC OBJECTS AND MULTIPLE CONTEXTS 46

name may be returned by Gen* commands, even though the underlying object
state and data may still be referred to by container objects, or in use by contexts
other than the one in which the object was deleted. Such a container or other
context may continue using the object, and may still contain state identifying its
name as being currently bound, until such time as the container object is deleted,
the attachment point of the container object is changed to refer to another object,
or another attempt to bind or attach the name is made in that context. Since the
name is marked unused, binding the name will create a new object with the same
name, and attaching the name will generate an error.

The underlying storage backing a deleted object will not be reclaimed by the
GL until all references to the object from container object attachment points or
context binding points are removed.

5.2 Sync Objects and Multiple Contexts

When multiple GL clients and/or servers are blocked on a single sync object and
that sync object is signalled, all such blocks are released. The order in which blocks
are released is implementation-dependent.

5.3 Propagating Changes to Objects

GL objects contain two types of information, data and state. Collectively these
are referred to below as the contents of an object. For the purposes of propagating
changes to object contents as described below, data and state are treated consis-
tently.

Data is information the GL implementation does not have to inspect, and does
not have an operational effect. Currently, data consists of:

• Pixels in the framebuffer.

• The contents of the data stores of buffer objects, renderbuffers, and textures.

State determines the configuration of the rendering pipeline, and the GL imple-
mentation does have to inspect it.

In hardware-accelerated GL implementations, state typically lives in GPU reg-
isters, while data typically lives in GPU memory.

When the contents of an object T are changed, such changes are not always
immediately visible, and do not always immediately affect GL operations involving
that object. Changes may occur via any of the following means:

OpenGL ES 3.2 (November 3, 2016)

5.3. PROPAGATING CHANGES TO OBJECTS 47

• State-setting commands, such as TexParameter.

• Data-setting commands, such as TexSubImage* or BufferSubData.

• Data-setting through rendering to renderbuffers or textures attached to a
framebuffer object.

• Data-setting through transform feedback operations followed by an End-
TransformFeedback command.

• Commands that affect both state and data, such as TexImage* and Buffer-
Data.

• Changes to mapped buffer data followed by a command such as Unmap-
Buffer or FlushMappedBufferRange.

• Rendering commands that trigger shader invocations, where the shader per-
forms image or buffer variable stores or atomic operations, or built-in atomic
counter functions.

When T is a texture, the contents of T are construed to include the contents of
the data store of T.

5.3.1 Determining Completion of Changes to an object

The contents of an object T are considered to have been changed once a command
such as described in section 5.3 has completed. Completion of a command1 may
be determined either by calling Finish, or by calling FenceSync and executing a
WaitSync command on the associated sync object. The second method does not
require a round trip to the GL server and may be more efficient, particularly when
changes to T in one context must be known to have completed before executing
commands dependent on those changes in another context. In cases where a feed-
back loop has been established (see sections 8.6.1, 8.14.2.1, and 9.3, as well as the
discussion of rule 1 below in section 5.3.3) the resulting contents of an object may
be undefined.

5.3.2 Definitions

In the remainder of this section, the following terminology is used:
1 The GL already specifies that a single context processes commands in the order they are re-

ceived. This means that a change to an object in a context at time t must be completed by the time a
command issued in the same context at time t+ 1 uses the result of that change.

OpenGL ES 3.2 (November 3, 2016)

5.3. PROPAGATING CHANGES TO OBJECTS 48

• An object T is directly attached to the current context if it has been bound to
one of the context binding points. Examples include but are not limited to
bound textures, bound framebuffers, bound vertex arrays, and current pro-
grams.

• T is indirectly attached to the current context if it is attached to another ob-
ject C, referred to as a container object, and C is itself directly or indirectly
attached. Examples include but are not limited to renderbuffers or textures
attached to framebuffers; buffers attached to vertex arrays; and shaders at-
tached to programs.

• An object T which is directly attached to the current context may be re-
attached by re-binding T at the same bind point. An object T which is indi-
rectly attached to the current context may be re-attached by re-attaching the
container object C to which T is attached.

Corollary: re-binding C to the current context re-attaches C and its hierarchy
of contained objects.

5.3.3 Rules

The following rules must be obeyed by all GL implementations:

Rule 1 If the contents of an object T are changed in the current context while T is
directly or indirectly attached, then all operations on T will use the new contents
in the current context.

Note: The intent of this rule is to address changes in a single context only. The
multi-context case is handled by the other rules.

Note: “Updates” via rendering or transform feedback are treated consistently
with update via GL commands. Once EndTransformFeedback has been issued,
any subsequent command in the same context that uses the results of the trans-
form feedback operation will see the results. If a feedback loop is setup between
rendering and transform feedback (see section 11.1.2.1), results will be undefined.

Rule 2 While a container object C is bound, any changes made to the contents of
C’s attachments in the current context are guaranteed to be seen. To guarantee see-
ing changes made in another context to objects attached to C, such changes must be
completed in that other context (see section 5.3.1) prior to C being bound. Changes
made in another context but not determined to have completed as described in sec-
tion 5.3.1, or after C is bound in the current context, are not guaranteed to be
seen.

OpenGL ES 3.2 (November 3, 2016)

5.3. PROPAGATING CHANGES TO OBJECTS 49

Rule 3 Changes to the contents of shared objects are not automatically propa-
gated between contexts. If the contents of a shared object T are changed in a
context other than the current context, and T is already directly or indirectly at-
tached to the current context, any operations on the current context involving T via
those attachments are not guaranteed to use its new contents.

Rule 4 If the contents of an object T are changed in a context other than the cur-
rent context, T must be attached or re-attached to at least one binding point in the
current context, or at least one attachment point of a currently bound container
object C, in order to guarantee that the new contents of T are visible in the current
context.

Note: “Attached or re-attached” means either attaching an object to a binding
point it wasn’t already attached to, or attaching an object again to a binding point
it was already attached to.

Example: If a texture image is bound to multiple texture bind points and the
texture is changed in another context, re-binding the texture at any one of the tex-
ture bind points is sufficient to cause the changes to be visible at all texture bind
points.

OpenGL ES 3.2 (November 3, 2016)

Chapter 6

Buffer Objects

Buffer objects contain a data store holding a fixed-sized allocation of server mem-
ory. This chapter specifies commands to create, manage, and destroy buffer objects.
Specific types of buffer objects and their uses are briefly described together with
references to their full specification.

The name space for buffer objects is the unsigned integers, with zero reserved
by the GL.

The command

void GenBuffers(sizei n, uint *buffers);

returns n previously unused buffer object names in buffers. These names are
marked as used, for the purposes of GenBuffers only, but they acquire buffer state
only when they are first bound with BindBuffer (see below), just as if they were
unused.

Errors

An INVALID_VALUE error is generated if n is negative.

Buffer objects are deleted by calling

void DeleteBuffers(sizei n, const uint *buffers);

buffers contains n names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. If any portion of a buffer
object being deleted is mapped in the current context or any context current to
another thread, it is as though UnmapBuffer (see section 6.3.1) is executed in
each such context prior to deleting the data store of the buffer.

50

6.1. CREATING AND BINDING BUFFER OBJECTS 51

Unused names in buffers that have been marked as used for the purposes of
GenBuffers are marked as unused again. Unused names in buffers are silently
ignored, as is the value zero.

Errors

An INVALID_VALUE error is generated if n is negative.

The command

boolean IsBuffer(uint buffer);

returns TRUE if buffer is the name of an buffer object. If buffer is zero, or if buffer is
a non-zero value that is not the name of an buffer object, IsBuffer returns FALSE.

6.1 Creating and Binding Buffer Objects

A buffer object is created by binding an unused name to a buffer target. The binding
is effected by calling

void BindBuffer(enum target, uint buffer);

target must be one of the targets listed in table 6.1. If the buffer object named
buffer has not been previously bound, or has been deleted since the last binding,
the GL creates a new state vector, initialized with a zero-sized memory buffer and
comprising all the state and with the same initial values listed in table 6.2.

Buffer objects created by binding an unused name to any of the valid targets are
formally equivalent, but the GL may make different choices about storage location
and layout based on the initial binding.

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding to target is broken.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object. Operations on the target also affect any
other bindings of that object.

If a buffer object is deleted while it is bound, all bindings to that object in
the current context (i.e. in the thread that called DeleteBuffers) are reset to zero.
Bindings to that buffer in other contexts are not affected, and the deleted buffer
may continue to be used at any places it remains bound or attached, as described
in appendix 5.1.

Initially, each buffer object target is bound to zero.

OpenGL ES 3.2 (November 3, 2016)

6.1. CREATING AND BINDING BUFFER OBJECTS 52

Target name Purpose Described in section(s)
ARRAY_BUFFER Vertex attributes 10.3.7
ATOMIC_COUNTER_BUFFER Atomic counter storage 7.7
COPY_READ_BUFFER Buffer copy source 6.5
COPY_WRITE_BUFFER Buffer copy destination 6.5
DISPATCH_INDIRECT_BUFFER Indirect compute dispatch commands 10.3.9
DRAW_INDIRECT_BUFFER Indirect command arguments 10.3.9
ELEMENT_ARRAY_BUFFER Vertex array indices 10.3.8
PIXEL_PACK_BUFFER Pixel read target 16.1, 20
PIXEL_UNPACK_BUFFER Texture data source 8.4
SHADER_STORAGE_BUFFER Read-write storage for shaders 7.8
TEXTURE_BUFFER Texture data buffer 8.9
TRANSFORM_FEEDBACK_BUFFER Transform feedback buffer 12.1
UNIFORM_BUFFER Uniform block storage 7.6.2

Table 6.1: Buffer object binding targets.

Name Type Initial Value Legal Values
BUFFER_SIZE int64 0 any non-negative integer
BUFFER_USAGE enum STATIC_DRAW STREAM_DRAW, STREAM_READ,

STREAM_COPY, STATIC_DRAW,
STATIC_READ, STATIC_COPY,
DYNAMIC_DRAW, DYNAMIC_READ,
DYNAMIC_COPY

BUFFER_ACCESS_FLAGS int 0 See section 6.3
BUFFER_MAPPED boolean FALSE TRUE, FALSE
BUFFER_MAP_POINTER void* NULL address
BUFFER_MAP_OFFSET int64 0 any non-negative integer
BUFFER_MAP_LENGTH int64 0 any non-negative integer

Table 6.2: Buffer object parameters and their values.

OpenGL ES 3.2 (November 3, 2016)

6.1. CREATING AND BINDING BUFFER OBJECTS 53

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed in table 6.1.

There is no buffer object corresponding to the name zero, so client attempts
to modify or query buffer object state for a target bound to zero generate an
INVALID_OPERATION error.

6.1.1 Binding Buffer Objects to Indexed Targets

Buffer objects may be created and bound to indexed targets by calling one of the
commands

void BindBufferRange(enum target, uint index,
uint buffer, intptr offset, sizeiptr size);

void BindBufferBase(enum target, uint index, uint buffer);

target must be ATOMIC_COUNTER_BUFFER, SHADER_-

STORAGE_BUFFER, TRANSFORM_FEEDBACK_BUFFER or UNIFORM_BUFFER. Ad-
ditional language specific to each target is included in sections referred to for each
target in table 6.1.

Each target represents an indexed array of buffer object binding points, as well
as a single general binding point that can be used by other buffer object manipu-
lation functions, such as BindBuffer or MapBufferRange. Both commands bind
the buffer object named by buffer to both the general binding point, and to the bind-
ing point in the array given by index. If the binds are successful no change is made
to the state of the bound buffer object, and any previous bindings to the general
binding point or to the binding point in the array are broken.

If the buffer object named buffer has not been previously bound, or has been
deleted since the last binding, the GL creates a new state vector, initialized with
a zero-sized memory buffer and comprising all the state and with the same initial
values listed in table 6.2.

For BindBufferRange, offset specifies a starting offset into the buffer object
buffer, and size specifies the amount of data that can be read from or written to
the buffer object while used as an indexed target. Both offset and size are in basic
machine units.

BindBufferBase binds the entire buffer, even when the size of the buffer is
changed after the binding is established. The starting offset is zero, and the amount
of data that can be read from or written to the buffer is determined by the size of
the bound buffer at the time the binding is used.

OpenGL ES 3.2 (November 3, 2016)

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 54

Regardless of the size specified with BindBufferRange, the GL will never read
or write beyond the end of a bound buffer. In some cases this constraint may result
in visibly different behavior when a buffer overflow would otherwise result, such
as described for transform feedback operations in section 12.1.2.

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed above.

An INVALID_VALUE error is generated if index is greater than or equal
to the number of target-specific indexed binding points, as described in sec-
tion 6.6.1.

An INVALID_VALUE error is generated by BindBufferRange if buffer is
non-zero and offset is negative.

An INVALID_VALUE error is generated by BindBufferRange if buffer is
non-zero and size is less than or equal to zero.

An INVALID_VALUE error is generated by BindBufferRange if buffer is
non-zero and offset or size do not respectively satisfy the constraints described
for those parameters for the specified target, as described in section 6.6.1.

6.2 Creating and Modifying Buffer Object Data Stores

The data store of a buffer object is created and initialized by calling

void BufferData(enum target, sizeiptr size, const
void *data, enum usage);

with target set to one of the targets listed in table 6.1, size set to the size of the data
store in basic machine units, and data pointing to the source data in client memory.
If data is non-NULL, then the source data is copied to the buffer object’s data store.
If data is NULL, then the contents of the buffer object’s data store are undefined.

usage is specified as one of nine enumerated values, indicating the expected
application usage pattern of the data store. In the following descriptions, a buffer’s
data store is sourced when it is read from as a result of GL commands which specify
images, or invoke shaders accessing buffer data as a result of drawing commands
or compute shader dispatch.

The values are:

STREAM_DRAW The data store contents will be specified once by the application,
and sourced at most a few times.

OpenGL ES 3.2 (November 3, 2016)

6.2. CREATING AND MODIFYING BUFFER OBJECT DATA STORES 55

Name Value
BUFFER_SIZE size
BUFFER_USAGE usage
BUFFER_ACCESS_FLAGS 0
BUFFER_MAPPED FALSE

BUFFER_MAP_POINTER NULL

BUFFER_MAP_OFFSET 0
BUFFER_MAP_LENGTH 0

Table 6.3: Buffer object initial state.

STREAM_READ The data store contents will be specified once by reading data from
the GL, and queried at most a few times by the application.

STREAM_COPY The data store contents will be specified once by reading data from
the GL, and sourced at most a few times

STATIC_DRAW The data store contents will be specified once by the application,
and sourced many times.

STATIC_READ The data store contents will be specified once by reading data from
the GL, and queried many times by the application.

STATIC_COPY The data store contents will be specified once by reading data from
the GL, and sourced many times.

DYNAMIC_DRAW The data store contents will be respecified repeatedly by the ap-
plication, and sourced many times.

DYNAMIC_READ The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMIC_COPY The data store contents will be respecified repeatedly by reading
data from the GL, and sourced many times.

usage is provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

BufferData deletes any existing data store, and sets the values of the buffer
object’s state variables as shown in table 6.3.

If any portion of the buffer object is mapped in the current context or any
context current to another thread, it is as though UnmapBuffer (see section 6.3.1)
is executed in each such context prior to deleting the existing data store.

OpenGL ES 3.2 (November 3, 2016)

6.3. MAPPING AND UNMAPPING BUFFER DATA 56

Clients must align data elements consistently with the requirements of the
client platform, with an additional base-level requirement that an offset within a
buffer to a datum comprising N basic machine units be a multiple of N .

Errors

An INVALID_OPERATION error is generated if zero is bound to target.
An INVALID_VALUE error is generated if size is negative.
An INVALID_ENUM error is generated if target is not one of the targets

listed in table 6.1.
An INVALID_ENUM error is generated if usage is not one of the nine us-

ages described above.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the command

void BufferSubData(enum target, intptr offset,
sizeiptr size, const void *data);

with target set to one of the targets listed in table 6.1. offset and size indicate the
range of data in the buffer object that is to be replaced, in terms of basic machine
units. data specifies a region of client memory size basic machine units in length,
containing the data that replace the specified buffer range.

Errors

An INVALID_OPERATION error is generated if zero is bound to target.
An INVALID_ENUM error is generated if target is not one of the targets

listed in table 6.1.
An INVALID_VALUE error is generated if offset or size is negative, or if

offset + size is greater than the value of BUFFER_SIZE for the buffer bound
to target.

An INVALID_OPERATION error is generated if any part of the specified
buffer range is mapped with MapBufferRange (see section 6.3).

6.3 Mapping and Unmapping Buffer Data

All or part of the data store of a buffer object may be mapped into the client’s
address space by calling

OpenGL ES 3.2 (November 3, 2016)

6.3. MAPPING AND UNMAPPING BUFFER DATA 57

void *MapBufferRange(enum target, intptr offset,
sizeiptr length, bitfield access);

with target set to one of the targets listed in table 6.1. offset and length indicate the
range of data in the buffer object that is to be mapped, in terms of basic machine
units. access is a bitfield containing flags which describe the requested mapping.
These flags are described below.

If no error occurs, a pointer to the beginning of the mapped range is returned
once all pending operations on that buffer have completed, and may be used to
modify and/or query the corresponding range of the buffer, according to the fol-
lowing flag bits set in access:

• MAP_READ_BIT indicates that the returned pointer may be used to read
buffer object data. No GL error is generated if the pointer is used to query
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

• MAP_WRITE_BIT indicates that the returned pointer may be used to modify
buffer object data. No GL error is generated if the pointer is used to modify
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

Pointer values returned by MapBufferRange may not be passed as parameter
values to GL commands. For example, they may not be used to specify array
pointers, or to specify or query pixel or texture image data; such actions produce
undefined results, although implementations may not check for such behavior for
performance reasons.

Mappings to the data stores of buffer objects may have nonstandard perfor-
mance characteristics. For example, such mappings may be marked as uncacheable
regions of memory, and in such cases reading from them may be very slow. To en-
sure optimal performance, the client should use the mapping in a fashion consistent
with the values of BUFFER_USAGE and access. Using a mapping in a fashion in-
consistent with these values is liable to be multiple orders of magnitude slower
than using normal memory.

The following optional flag bits in access may be used to modify the mapping:

• MAP_INVALIDATE_RANGE_BIT indicates that the previous contents of the
specified range may be discarded. Data within this range are undefined with
the exception of subsequently written data. No GL error is generated if sub-
sequent GL operations access unwritten data, but the result is undefined and
system errors (possibly including program termination) may occur. This flag
may not be used in combination with MAP_READ_BIT.

OpenGL ES 3.2 (November 3, 2016)

6.3. MAPPING AND UNMAPPING BUFFER DATA 58

Name Value
BUFFER_ACCESS_FLAGS access
BUFFER_MAPPED TRUE

BUFFER_MAP_POINTER pointer to the data store
BUFFER_MAP_OFFSET offset
BUFFER_MAP_LENGTH length

Table 6.4: Buffer object state set by MapBufferRange.

• MAP_INVALIDATE_BUFFER_BIT indicates that the previous contents of the
entire buffer may be discarded. Data within the entire buffer are undefined
with the exception of subsequently written data. No GL error is generated if
subsequent GL operations access unwritten data, but the result is undefined
and system errors (possibly including program termination) may occur. This
flag may not be used in combination with MAP_READ_BIT.

• MAP_FLUSH_EXPLICIT_BIT indicates that one or more discrete subranges
of the mapping may be modified. When this flag is set, modifications to
each subrange must be explicitly flushed by calling FlushMappedBuffer-
Range. No GL error is set if a subrange of the mapping is modified and
not flushed, but data within the corresponding subrange of the buffer are un-
defined. This flag may only be used in conjunction with MAP_WRITE_BIT.
When this option is selected, flushing is strictly limited to regions that are
explicitly indicated with calls to FlushMappedBufferRange prior to un-
map; if this option is not selected UnmapBuffer will automatically flush the
entire mapped range when called.

• MAP_UNSYNCHRONIZED_BIT indicates that the GL should not attempt to
synchronize pending operations on the buffer prior to returning from Map-
BufferRange. No GL error is generated if pending operations which source
or modify the buffer overlap the mapped region, but the result of such previ-
ous and any subsequent operations is undefined.

If MAP_UNSYNCHRONIZED_BIT is used in conjunction with either MAP_-

INVALIDATE_BUFFER_BIT or MAP_INVALIDATE_RANGE_BIT, the GL may dis-
card previous contents without attempting to synchronize pending operations on
the buffer.

A successful MapBufferRange sets buffer object state values as shown in ta-
ble 6.4.

OpenGL ES 3.2 (November 3, 2016)

6.3. MAPPING AND UNMAPPING BUFFER DATA 59

Errors

If an error occurs, MapBufferRange returns a NULL pointer.
An INVALID_VALUE error is generated if offset or length is negative, if

offset + length is greater than the value of BUFFER_SIZE, or if access has
any bits set other than those defined above.

An INVALID_OPERATION error is generated for any of the following con-
ditions:

• length is zero.

• The buffer is already in a mapped state.

• Neither MAP_READ_BIT nor MAP_WRITE_BIT is set.

• MAP_READ_BIT is set and any of MAP_INVALIDATE_RANGE_BIT,
MAP_INVALIDATE_BUFFER_BIT, or MAP_UNSYNCHRONIZED_BIT is
set.

• MAP_FLUSH_EXPLICIT_BIT is set and MAP_WRITE_BIT is not set.

No error is generated if memory outside the mapped range is modified
or queried, but the result is undefined and system errors (possibly including
program termination) may occur.

If a buffer is mapped with the MAP_FLUSH_EXPLICIT_BIT flag, modifications
to the mapped range may be indicated by calling

void FlushMappedBufferRange(enum target, intptr offset,
sizeiptr length);

with target set to one of the targets listed in table 6.1. offset and length indi-
cate a modified subrange of the mapping, in basic machine units. The specified
subrange to flush is relative to the start of the currently mapped range of buffer.
FlushMappedBufferRange may be called multiple times to indicate distinct sub-
ranges of the mapping which require flushing.

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed in table 6.1.

An INVALID_OPERATION error is generated if zero is bound to target.

OpenGL ES 3.2 (November 3, 2016)

6.3. MAPPING AND UNMAPPING BUFFER DATA 60

An INVALID_OPERATION error is generated if the buffer bound to target
is not mapped, or is mapped without the MAP_FLUSH_EXPLICIT_BIT flag.

An INVALID_VALUE error is generated if offset or length is negative, or if
offset + length exceeds the size of the mapping.

6.3.1 Unmapping Buffers

After the client has specified the contents of a mapped buffer range, and before the
data in that range are dereferenced by any GL commands, the mapping must be
relinquished by calling

boolean UnmapBuffer(enum target);

with target set to one of the targets listed in table 6.1. Unmapping a mapped buffer
object invalidates the pointer to its data store and sets the object’s BUFFER_-

MAPPED, BUFFER_MAP_POINTER, BUFFER_ACCESS_FLAGS, BUFFER_MAP_-

OFFSET, and BUFFER_MAP_LENGTH state variables to the initial values shown in
table 6.3.

UnmapBuffer returns TRUE unless data values in the buffer’s data store have
become corrupted during the period that the buffer was mapped. Such corruption
can be the result of a screen resolution change or other window system-dependent
event that causes system heaps such as those for high-performance graphics mem-
ory to be discarded. GL implementations must guarantee that such corruption can
occur only during the periods that a buffer’s data store is mapped. If such corrup-
tion has occurred, UnmapBuffer returns FALSE, and the contents of the buffer’s
data store become undefined.

Unmapping that occurs as a side effect of buffer deletion (see section 5.1.2) or
reinitialization by BufferData is not an error.

Buffer mappings are buffer object state, and are not affected by whether or not
a context owing a buffer object is current.

Errors

An INVALID_OPERATION error is generated if the buffer data store is
already in the unmapped state, and FALSE is returned.

6.3.2 Effects of Mapping Buffers on Other GL Commands

Any GL command which attempts to read from, write to, or change the state of
a buffer object may generate an INVALID_OPERATION error if all or part of the
buffer object is mapped. However, only commands which explicitly describe this

OpenGL ES 3.2 (November 3, 2016)

6.4. EFFECTS OF ACCESSING OUTSIDE BUFFER BOUNDS 61

error are required to do so. If an error is not generated, using such commands to
perform invalid reads, writes, or state changes will have undefined results and may
result in GL interruption or termination.

6.4 Effects of Accessing Outside Buffer Bounds

Most, but not all GL commands operating on buffer objects will detect attempts to
read from or write to a location in a bound buffer object at an offset less than zero,
or greater than or equal to the buffer’s size. When such an attempt is detected, a
GL error is generated. Any command which does not detect these attempts, and
performs such an invalid read or write has undefined results, and may result in GL
interruption or termination.

6.5 Copying Between Buffers

All or part of the data store of a buffer object may be copied to the data store of
another buffer object by calling

void CopyBufferSubData(enum readtarget, enum writetarget,
intptr readoffset, intptr writeoffset, sizeiptr size);

with readtarget and writetarget each set to one of the targets listed in table 6.1.
While any of these targets may be used, the COPY_READ_BUFFER and COPY_-

WRITE_BUFFER targets are provided specifically for copies, so that they can be
done without affecting other buffer binding targets that may be in use.

writeoffset and size specify the range of data in the buffer object bound to write-
target that is to be replaced, in terms of basic machine units. readoffset and size
specify the range of data in the buffer object bound to readtarget that is to be copied
to the corresponding region of writetarget.

Errors

An INVALID_VALUE error is generated if any of readoffset, writeoffset,
or size are negative, if readoffset + size exceeds the size of the buffer object
bound to readtarget, or if writeoffset + size exceeds the size of the buffer
object bound to writetarget.

An INVALID_VALUE error is generated if the same buffer object is bound
to both readtarget and writetarget, and the ranges [readoffset , readoffset +
size) and [writeoffset ,writeoffset + size) overlap.

OpenGL ES 3.2 (November 3, 2016)

6.6. BUFFER OBJECT QUERIES 62

An INVALID_OPERATION error is generated if zero is bound to readtarget
or writetarget.

An INVALID_OPERATION error is generated if the buffer objects bound
to either readtarget or writetarget are mapped

6.6 Buffer Object Queries

The commands

void GetBufferParameteriv(enum target, enum pname,
int *data);

void GetBufferParameteri64v(enum target, enum pname,
int64 *data);

return information about a bound buffer object. target must be one of the targets
listed in table 6.1, and pname must be one of the buffer object parameters in ta-
ble 6.2, other than BUFFER_MAP_POINTER. The value of the specified parameter
of the buffer object bound to target is returned in data.

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed in table 6.1.

An INVALID_OPERATION error is generated if zero is bound to target.
An INVALID_ENUM error is generated if pname is not one of the buffer

object parameters other than BUFFER_MAP_POINTER.

While part or all of the data store of a buffer object is mapped, the pointer to
the mapped range of the data store can be queried by calling

void GetBufferPointerv(enum target, enum pname,
void **params);

with target set to one of the targets listed in table 6.1 and pname set to BUFFER_-

MAP_POINTER. The single buffer map pointer is returned in params. GetBuffer-
Pointerv returns the NULL pointer value if the buffer’s data store is not currently
mapped, or if the requesting client did not map the buffer object’s data store, and
the implementation is unable to support mappings on multiple clients.

OpenGL ES 3.2 (November 3, 2016)

6.6. BUFFER OBJECT QUERIES 63

Errors

An INVALID_ENUM error is generated if target is not one of the targets
listed in table 6.1.

An INVALID_ENUM error is generated if pname is not BUFFER_MAP_-
POINTER.

An INVALID_OPERATION error is generated if zero is bound to target.

6.6.1 Indexed Buffer Object Limits and Binding Queries

Several types of buffer bindings support an indexed array of binding points for
specific use by the GL, in addition to a single generic binding point for general
management of buffers of that type. Each type of binding is described in table 6.5
together with the token names used to refer to each buffer in the array of binding
points, the starting offset of the binding for each buffer in the array, any constraints
on the corresponding offset value passed to BindBufferRange (see section 6.1.1),
the size of the binding for each buffer in the array, any constraints on the corre-
sponding size value passed to BindBufferRange, and the size of the array (the
number of bind points supported).

To query which buffer objects are bound to an indexed array, call GetIntegeri -
v with target set to the name of the array binding points. index must be in the range
zero to the number of bind points supported minus one. The name of the buffer
object bound to index is returned in values. If no buffer object is bound for index,
zero is returned in values.

To query the starting offset or size of the range of a buffer object binding in
an indexed array, call GetInteger64i v with target set to respectively the starting
offset or binding size name from table 6.5 for that array. index must be in the range
zero to the number of bind points supported minus one. If the starting offset or
size was not specified when the buffer object was bound (e.g. if it was bound with
BindBufferBase), or if no buffer object is bound to the target array at index, zero
is returned1.

Errors

An INVALID_VALUE error is generated by GetIntegeri v and GetInte-
ger64i v if target is one of the array binding point names, starting offset
names, or binding size names from table 6.5 and index is greater than or equal

1A zero size is a sentinel value indicating that the actual binding range size is determined by the
size of the bound buffer at the time the binding is used.

OpenGL ES 3.2 (November 3, 2016)

6.6. BUFFER OBJECT QUERIES 64

Atomic counter array bindings (see sec. 7.7.2)
binding points ATOMIC_COUNTER_BUFFER_BINDING

starting offset ATOMIC_COUNTER_BUFFER_START

offset restriction multiple of 4
binding size ATOMIC_COUNTER_BUFFER_SIZE

size restriction none
no. of bind points value of MAX_ATOMIC_COUNTER_BUFFER_-

BINDINGS

Shader storage array bindings (see sec. 7.8)
binding points SHADER_STORAGE_BUFFER_BINDING

starting offset SHADER_STORAGE_BUFFER_START

offset restriction multiple of value of SHADER_STORAGE_-

BUFFER_OFFSET_ALIGNMENT

binding size SHADER_STORAGE_BUFFER_SIZE

size restriction none
no. of bind points value of MAX_SHADER_STORAGE_BUFFER_-

BINDINGS

Transform feedback array bindings (see sec. 12.1.2)
binding points TRANSFORM_FEEDBACK_BUFFER_BINDING

starting offset TRANSFORM_FEEDBACK_BUFFER_START

offset restriction multiple of 4
binding size TRANSFORM_FEEDBACK_BUFFER_SIZE

size restriction multiple of 4
no. of bind points value of MAX_TRANSFORM_FEEDBACK_-

SEPARATE_ATTRIBS

Uniform buffer array bindings (see sec. 7.6.3)
binding points UNIFORM_BUFFER_BINDING

starting offset UNIFORM_BUFFER_START

offset restriction multiple of value of UNIFORM_BUFFER_-

OFFSET_ALIGNMENT

binding size UNIFORM_BUFFER_SIZE

size restriction none
no. of bind points value of MAX_UNIFORM_BUFFER_BINDINGS

Table 6.5: Indexed buffer object limits and binding queries

OpenGL ES 3.2 (November 3, 2016)

6.7. BUFFER OBJECT STATE 65

to the number of binding points for target as described in the same table.

6.7 Buffer Object State

The state required to support buffer objects consists of binding names for each of
the buffer targets in table 6.1, and for each of the indexed buffer targets in sec-
tion 6.1.1. The state required for index buffer targets for atomic counters, shader
storage, transform feedback, and uniform buffer array bindings is summarized in
tables 21.32, 21.34, 21.35 and 21.36, respectively.

Additionally, each vertex array has an associated binding so there is a buffer
object binding for each of the vertex attribute arrays. The initial values for all buffer
object bindings is zero.

The state of each buffer object consists of a buffer size in basic machine units, a
usage parameter, an access parameter, a mapped boolean, two integers for the offset
and size of the mapped region, a pointer to the mapped buffer (NULL if unmapped),
and the sized array of basic machine units for the buffer data.

OpenGL ES 3.2 (November 3, 2016)

Chapter 7

Programs and Shaders

This chapter specifies commands to create, manage, and destroy program and
shader objects. Commands and functionality applicable only to specific shader
stages (for example, vertex attributes used as inputs by vertex shaders) are de-
scribed together with those stages in chapters 10 and 14.

A shader specifies operations that are meant to occur on data as it moves
through different programmable stages of the OpenGL ES processing pipeline,
starting with vertices specified by the application and ending with fragments prior
to being written to the framebuffer. The programming language used for shaders is
described in the OpenGL ES Shading Language Specification.

To use a shader, shader source code is first loaded into a shader object and then
compiled. A shader object corresponds to a stage in the rendering pipeline referred
to as its shader stage or shader type.

Alternatively, pre-compiled shader binary code may be directly loaded into a
shader object. An implementation must support shader compilation (the boolean
value SHADER_COMPILER must be TRUE). If the integer value of NUM_SHADER_-
BINARY_FORMATS is greater than zero, then shader binary loading is supported.

One or more shader objects are attached to a program object. The program
object is then linked, which generates executable code from all the compiled shader
objects attached to the program. Alternatively, pre-compiled program binary code
may be directly loaded into a program object (see section 7.5).

When program objects are bound to a shader stage, they become the current
program object for that stage. When the current program object for a shader stage
includes a shader of that type, it is considered the active program object for that
stage.

The current program object for all stages may be set at once using a single
unified program object, or the current program object may be set for each stage

66

7.1. SHADER OBJECTS 67

individually using a separable program object where different separable program
objects may be current for other stages. The set of separable program objects
current for all stages are collected in a program pipeline object that must be bound
for use. When a linked program object is made active for one of the stages, the
corresponding executable code is used to perform processing for that stage.

Shader stages including vertex shaders, tessellation control shaders, tessella-
tion evaluation shaders, geometry shaders, fragment shaders, and compute shaders
can be created, compiled, and linked into program objects.

Vertex shaders describe the operations that occur on vertex attributes. Tes-
sellation control and evaluation shaders are used to control the operation of the
tessellator (see section 11.2). Geometry shaders affect the processing of primitives
assembled from vertices (see section 11.3). Fragment shaders affect the processing
of fragments during rasterization (see section 14). A single program object can
contain all of these shaders, or any subset thereof.

Compute shaders perform general-purpose computation for dispatched arrays
of shader invocations (see section 17), but do not operate on primitives processed
by the other shader types.

Shaders can reference several types of variables as they execute. Uniforms are
per-program variables that are constant during program execution (see section 7.6).
Buffer variables (see section 7.8) are similar to uniforms, but are stored in buffer
object memory which may be written to, and is persistent across multiple shader
invocations. Samplers (see section 7.9) are a special form of uniform used for
texturing (see chapter 8). Images (see section 7.10) are a special form of uniform
identifying a level of a texture to be accessed using built-in shader functions as
described in section 8.23. Output variables hold the results of shader execution
that are used later in the pipeline. Each of these variable types is described in more
detail below.

7.1 Shader Objects

The name space for shader objects is the unsigned integers, with zero reserved for
the GL. This name space is shared with program objects. The following sections
define commands that operate on shader and program objects.

To create a shader object, use the command

uint CreateShader(enum type);

The shader object is empty when it is created. The type argument specifies the type
of shader object to be created and must be one of the values in table 7.1 indicating

OpenGL ES 3.2 (November 3, 2016)

7.1. SHADER OBJECTS 68

type Shader Stage
VERTEX_SHADER Vertex shader

TESS_CONTROL_SHADER Tessellation control shader
TESS_EVALUATION_SHADER Tessellation evaluation shader

GEOMETRY_SHADER Geometry shader
FRAGMENT_SHADER Fragment shader
COMPUTE_SHADER Compute shader

Table 7.1: CreateShader type values and the corresponding shader stages.

the corresponding shader stage. A non-zero name that can be used to reference the
shader object is returned.

Errors

An INVALID_ENUM error is generated and zero is returned if type is not
one of the values in table 7.1,

The command

void ShaderSource(uint shader, sizei count, const
char * const *string, const int *length);

loads source code into the shader object named shader. string is an array of count
pointers to optionally null-terminated character strings that make up the source
code. The length argument is an array with the number of chars in each string (the
string length). If an element in length is negative, its accompanying string is null-
terminated. If length is NULL, all strings in the string argument are considered null-
terminated. The ShaderSource command sets the source code for the shader to
the text strings in the string array. If shader previously had source code loaded into
it, the existing source code is completely replaced. Any length passed in excludes
the null terminator in its count.

The strings that are loaded into a shader object are expected to form the source
code for a valid shader as defined in the OpenGL ES Shading Language Specifica-
tion.

Errors

An INVALID_VALUE error is generated if shader is not the name of either

OpenGL ES 3.2 (November 3, 2016)

7.1. SHADER OBJECTS 69

a program or shader object.
An INVALID_OPERATION error is generated if shader is the name of a

program object.
An INVALID_VALUE error is generated if count is negative.

Once the source code for a shader has been loaded, a shader object can be
compiled with the command

void CompileShader(uint shader);

Each shader object has a boolean status, COMPILE_STATUS, that is modified as
a result of compilation. This status can be queried with GetShaderiv (see sec-
tion 7.12). This status will be set to TRUE if shader was compiled without errors
and is ready for use, and FALSE otherwise. Compilation can fail for a variety of
reasons as listed in the OpenGL ES Shading Language Specification. If Compile-
Shader failed, any information about a previous compile is lost. Thus a failed
compile does not restore the old state of shader.

Changing the source code of a shader object with ShaderSource does not
change its compile status or the compiled shader code.

Each shader object has an information log, which is a text string that is over-
written as a result of compilation. This information log can be queried with Get-
ShaderInfoLog to obtain more information about the compilation attempt (see
section 7.12).

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

Resources allocated by the shader compiler may be released with the command

void ReleaseShaderCompiler(void);

This is a hint from the application, and does not prevent later use of the shader
compiler. If shader source is loaded and compiled after ReleaseShaderCompiler
has been called, CompileShader must succeed provided there are no errors in the
shader source.

The range and precision for different numeric formats supported by the shader
compiler may be determined with the command GetShaderPrecisionFormat (see
section 7.12).

Shader objects can be deleted with the command

OpenGL ES 3.2 (November 3, 2016)

7.2. SHADER BINARIES 70

void DeleteShader(uint shader);

If shader is not attached to any program object, it is deleted immediately. Oth-
erwise, shader is flagged for deletion and will be deleted when it is no longer
attached to any program object. If an object is flagged for deletion, its boolean
status bit DELETE_STATUS is set to true. The value of DELETE_STATUS can be
queried with GetShaderiv (see section 7.12). DeleteShader will silently ignore
the value zero.

Errors

An INVALID_VALUE error is generated if shader is neither zero nor the
name of either a program or shader object.

An INVALID_OPERATION error is generated if shader is not zero and is
the name of a program object.

The command

boolean IsShader(uint shader);

returns TRUE if shader is the name of a shader object. If shader is zero, or a non-
zero value that is not the name of a shader object, IsShader returns FALSE. No
error is generated if shader is not a valid shader object name.

7.2 Shader Binaries

Precompiled shader binaries may be loaded with the command

void ShaderBinary(sizei count, const uint *shaders,
enum binaryformat, const void *binary, sizei length);

shaders contains a list of count shader object handles. Each handle refers to a
unique shader type, and may correspond to any of the shader stages in table 7.1.
binary points to length bytes of pre-compiled binary shader code in client memory,
and binaryformat denotes the format of the pre-compiled code.

The binary image will be decoded according to the extension specification
defining the specified binaryformat. OpenGL ES defines no specific binary for-
mats, but does provide a mechanism to obtain token values for such formats pro-
vided by extensions. The number of shader binary formats supported can be ob-
tained by querying the value of NUM_SHADER_BINARY_FORMATS. The list of spe-
cific binary formats supported can be obtained by querying the value of SHADER_-
BINARY_FORMATS.

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 71

Depending on the types of the shader objects in shaders, ShaderBinary will
individually load binary shaders, or load an executable binary that contains an op-
timized set of shaders stored in the same binary.

Errors

An INVALID_VALUE error is generated if count or length is negative.
An INVALID_ENUM error is generated if binaryformat is not a supported

format returned in SHADER_BINARY_FORMATS.
An INVALID_VALUE error is generated if the data pointed to by binary

does not match the specified binaryformat.
An INVALID_VALUE error is generated if any of the handles in shaders is

not the name of either a program or shader object.
An INVALID_OPERATION error is generated if any of the handles in

shader is the name of a program object.
An INVALID_OPERATION error is generated if more than one of the han-

dles in shaders refers to the same type of shader object.
Additional errors corresponding to specific binary formats may be gener-

ated as specified by the extensions defining those formats.

If ShaderBinary succeeds, the COMPILE_STATUS of the shader is set to TRUE.
If ShaderBinary fails, the old state of shader objects for which the binary was

being loaded will not be restored.
Note that if shader binary interfaces are supported, then a GL implementation

may require that an optimized set of shader binaries that were compiled together be
specified to LinkProgram. Not specifying an optimized set may cause LinkPro-
gram to fail.

7.3 Program Objects

A program object is created with the command

uint CreateProgram(void);

Program objects are empty when they are created. A non-zero name that can be
used to reference the program object is returned. If an error occurs, zero will be
returned.

To attach a shader object to a program object, use the command

void AttachShader(uint program, uint shader);

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 72

Shader objects may be attached to program objects before source code has
been loaded into the shader object, or before the shader object has been compiled.
Multiple shader objects of the same type may not be attached to a single program
object. However, a single shader object may be attached to more than one program
object.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_OPERATION error is generated if shader is already attached
to program, or if another shader object of the same type as shader is already
attached to program.

To detach a shader object from a program object, use the command

void DetachShader(uint program, uint shader);

If shader has been flagged for deletion and is not attached to any other program
object, it is deleted.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_OPERATION error is generated if shader is not attached to
program.

In order to use the shader objects contained in a program object, the program
object must be linked. The command

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 73

void LinkProgram(uint program);

will link the program object named program. Each program object has a boolean
status, LINK_STATUS, that is modified as a result of linking. This status can be
queried with GetProgramiv (see section 7.12). This status will be set to TRUE if a
valid executable is created, and FALSE otherwise.

Linking can fail for a variety of reasons as specified in the OpenGL ES Shading
Language Specification, as well as any of the following reasons:

• No shader objects are attached to program.

• One or more of the shader objects attached to program are not compiled
successfully.

• More active uniform or active sampler variables are used in program than
allowed (see sections 7.6, 7.9, and 11.3.3).

• program contains objects to form either a vertex shader or fragment shader,
and

– program is not separable, and does not contain objects to form both a
vertex shader and fragment shader.

• program contains an object to form a tessellation control shader (see sec-
tion 11.2.1), and

– the program is not separable and contains no object to form a vertex
shader; or

– the program is not separable and contains no object to form a tessella-
tion evaluation shader; or

– the output patch vertex count is not specified in the compiled tessella-
tion control shader object.

• program contains an object to form a tessellation evaluation shader (see sec-
tion 11.2.3), and

– the program is not separable and contains no object to form a vertex
shader; or

– the program is not separable and contains no object to form a tessella-
tion control shader; or

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 74

– the tessellation primitive mode is not specified in the compiled tessel-
lation evaluation shader object.

• program contains objects to form a geometry shader (see section 11.3), and

– program is not separable and contains no objects to form a vertex
shader; or

– the input primitive type, output primitive type, or maximum output ver-
tex count is not specified in the compiled geometry shader object.

• program contains objects to form a compute shader (see section 17) and

– program also contains objects to form any other type of shader.

• The shaders do not use the same shader language version.

If LinkProgram failed, any information about a previous link of that program
object is lost. Thus, a failed link does not restore the old state of program.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

When program objects which have been linked successfully are used for ren-
dering operations, they may access GL state and interface with other stages of the
GL pipeline through active variables and active interface blocks. The GL provides
various commands allowing applications to enumerate and query properties of ac-
tive variables and interface blocks for a specified program. If one of these com-
mands is called with a program for which LinkProgram succeeded, the informa-
tion recorded when the program was linked is returned. If one of these commands is
called with a program for which LinkProgram failed, no error is generated unless
otherwise noted. Implementations may return information on variables and inter-
face blocks that would have been active had the program been linked successfully.
In cases where the link failed because the program required too many resources,
these commands may help applications determine why limits were exceeded. How-
ever, the information returned in this case is implementation-dependent and may be
incomplete. If one of these commands is called with a program for which LinkPro-
gram had never been called, no error is generated unless otherwise noted, and the
program object is considered to have no active variables or interface blocks.

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 75

Each program object has an information log that is overwritten as a result of a
link operation. This information log can be queried with GetProgramInfoLog to
obtain more information about the link operation or the validation information (see
section 7.12).

If a program has been linked successfully by LinkProgram or loaded by Pro-
gramBinary (see section 7.5), it can be made part of the current rendering state
for all shader stages with the command

void UseProgram(uint program);

If program is non-zero, this command will make program the current program ob-
ject. This will install executable code as part of the current rendering state for each
shader stage present when the program was last linked successfully. If UsePro-
gram is called with program set to zero, then there is no current program object.

The executable code for an individual shader stage is taken from the current
program for that stage. If there is a current program object established by UsePro-
gram, that program is considered current for all stages. Otherwise, if there is a
bound program pipeline object (see section 7.4), the program bound to the appro-
priate stage of the pipeline object is considered current. If there is no current pro-
gram object or bound program pipeline object, no program is current for any stage.
The current program for a stage is considered active if it contains executable code
for that stage; otherwise, no program is considered active for that stage. If there
is no active program for the vertex or fragment shader stages, the results of vertex
and fragment shader execution will respectively be undefined. However, this is not
an error. If there is no active program for the tessellation control, tessellation eval-
uation, or geometry shader stages, those stages are ignored. If there is no active
program for the compute shader stage, compute dispatches will generate an error.
The active program for the compute shader stage has no effect on the processing of
vertices, geometric primitives, and fragments, and the active program for all other
shader stages has no effect on compute dispatches1.

Errors

An INVALID_VALUE error is generated if program is neither zero nor the
name of either a program or shader object.

An INVALID_OPERATION error is generated if program is not zero and is
the name of a shader object.

1 It is possible for a single program pipeline object to contain active programs for all shader
stages, even though not all of them will be used while executing drawing commands or compute
dispatch.

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 76

An INVALID_OPERATION error is generated if program has not been
linked successfully. The current rendering state is not modified.

While a program object is in use, applications are free to modify attached
shader objects, compile attached shader objects, attach additional shader objects,
and detach shader objects. These operations do not affect the link status or exe-
cutable code of the program object.

If LinkProgram or ProgramBinary successfully re-links a program object
that is active for any shader stage, then the newly generated executable code will
be installed as part of the current rendering state for all shader stages where the
program is active. Additionally, the newly generated executable code is made part
of the state of any program pipeline for all stages where the program is attached.

If a program object that is active for any shader stage is re-linked unsuccess-
fully, the link status will be set to FALSE, but any existing executables and associ-
ated state will remain part of the current rendering state until a subsequent call to
UseProgram, UseProgramStages, or BindProgramPipeline removes them from
use. If such a program is attached to any program pipeline object, the existing exe-
cutables and associated state will remain part of the program pipeline object until a
subsequent call to UseProgramStages removes them from use. A program which
has not been linked successfully may not be made part of the current rendering state
by UseProgram or added to program pipeline objects by UseProgramStages until
it is re-linked successfully. If such a program was attached to a program pipeline
at the time of a failed link, its existing executable may still be made part of the
current rendering state indirectly by BindProgramPipeline.

To set a program object parameter, call

void ProgramParameteri(uint program, enum pname,
int value);

pname identifies which parameter to set for program. value holds the value
being set.

If pname is PROGRAM_SEPARABLE, value must be TRUE or FALSE, and indi-
cates whether program can be bound for individual pipeline stages using UsePro-
gramStages after it is next linked.

If pname is PROGRAM_BINARY_RETRIEVABLE_HINT, value must be TRUE or
FALSE, and indicates whether a program binary is likely to be retrieved later, as
described for ProgramBinary in section 7.5.

State set with this command does not take effect until after the next time
LinkProgram or ProgramBinary is called successfully.

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 77

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if pname is not PROGRAM_-

SEPARABLE or PROGRAM_BINARY_RETRIEVABLE_HINT.
An INVALID_VALUE error is generated if value is not TRUE or FALSE.

Program objects can be deleted with the command

void DeleteProgram(uint program);

If program is not current for any GL context, is not the active program for any pro-
gram pipeline object, and is not the current program for any stage of any program
pipeline object, it is deleted immediately. Otherwise, program is flagged for dele-
tion and will be deleted after all of these conditions become true. When a program
object is deleted, all shader objects attached to it are detached. DeleteProgram
will silently ignore the value zero.

Errors

An INVALID_VALUE error is generated if program is neither zero nor the
name of either a program or shader object.

An INVALID_OPERATION error is generated if program is not zero and is
the name of a shader object.

The command

boolean IsProgram(uint program);

returns TRUE if program is the name of a program object. If program is zero, or a
non-zero value that is not the name of a program object, IsProgram returns FALSE.
No error is generated if program is not a valid program object name.

The command

uint CreateShaderProgramv(enum type, sizei count,
const char * const *strings);

creates a stand-alone program from an array of null-terminated source code strings
for a single shader type. CreateShaderProgramv is equivalent to (assuming no
errors are generated):

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 78

const uint shader = CreateShader(type);
if (shader) {

ShaderSource(shader, count, strings, NULL);
CompileShader(shader);
const uint program = CreateProgram();
if (program) {

int compiled = FALSE;
GetShaderiv(shader, COMPILE_STATUS, &compiled);
ProgramParameteri(program, PROGRAM_SEPARABLE, TRUE);
if (compiled) {

AttachShader(program, shader);
LinkProgram(program);
DetachShader(program, shader);

}
append-shader-info-log-to-program-info-log

}
DeleteShader(shader);
return program;

} else {
return 0;

}

Because no shader is returned by CreateShaderProgramv and the shader that
is created is deleted in the course of the command sequence, the info log of the
shader object is copied to the program so the shader’s failed info log for the failed
compilation is accessible to the application.

If an error is generated, zero is returned.

Errors

An INVALID_ENUM error is generated if type is not one of the values in
table 7.1.

An INVALID_VALUE error is generated if count is negative.
Other errors are generated if the supplied shader code fails to compile

and link, as described for the commands in the pseudocode sequence above,
but all such errors are generated without any side effects of executing those
commands.

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 79

7.3.1 Program Interfaces

When a program object is made part of the current rendering state, its executable
code may communicate with other GL pipeline stages or application code through
a variety of interfaces. When a program is linked, the GL builds a list of active
resources for each interface. Examples of active resources include variables and
interface blocks used by shader code. Resources referenced in shader code are
considered active unless the compiler and linker can conclusively determine that
they have no observable effect on the results produced by the executable code of
the program. For example, variables might be considered inactive if they are de-
clared but not used in executable code, used only in a clause of an if statement
that would never be executed, used only in functions that are never called, or used
only in computations of temporary variables having no effect on any shader out-
put. In cases where the compiler or linker cannot make a conclusive determination,
any resource referenced by shader code will be considered active. The set of ac-
tive resources for any interface is implementation-dependent because it depends on
various analysis and optimizations performed by the compiler and linker.

If a program is linked successfully, the GL will generate lists of active resources
based on the executable code produced by the link. If a program is not linked suc-
cessfully, the link may have failed for a number of reasons, including cases where
the program required more resources than supported by the implementation. Imple-
mentations are permitted, but not required, to record lists of resources that would
have been considered active had the program linked successfully. If an implemen-
tation does not record information for any given interface, the corresponding list of
active resources is considered empty. If a program has never been linked, all lists
of active resources are considered empty.

The GL provides a number of commands to query properties of the interfaces of
a program object. Each such command accepts a programInterface token, identify-
ing a specific interface. The supported values for programInterface are as follows:

• UNIFORM corresponds to the set of active uniform variables (see section 7.6)
used by program.

• UNIFORM_BLOCK corresponds to the set of active uniform blocks (see sec-
tion 7.6) used by program.

• ATOMIC_COUNTER_BUFFER corresponds to the set of active atomic counter
buffer binding points (see section 7.6) used by program.

• PROGRAM_INPUT corresponds to the set of active input variables used by the
first shader stage of program. If program includes multiple shader stages,

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 80

input variables from any shader stage other than the first will not be enumer-
ated.

• PROGRAM_OUTPUT corresponds to the set of active output variables (see sec-
tion 11.1.2.1) used by the last shader stage of program. If program includes
multiple shader stages, output variables from any shader stage other than the
last will not be enumerated.

• TRANSFORM_FEEDBACK_VARYING corresponds to the set of output vari-
ables in the last non-fragment stage of program that would be captured when
transform feedback is active (see section 11.1.2.1). The resources enumer-
ated by this query are listed as specified by the most recent call to Trans-
formFeedbackVaryings before the last call to LinkProgram. When the
resource names an output array variable either a single element of the array
or the whole array is captured. If the variable name is specified with an array
index syntax "name[x]", name is the name of the array resource and x is
the constant-integer index of the element captured. If the resource name is
an array and has no array index and square bracket, then the whole array is
captured.

• BUFFER_VARIABLE corresponds to the set of active buffer variables used by
program (see section 7.8).

• SHADER_STORAGE_BLOCK corresponds to the set of active shader storage
blocks used by program (see section 7.8)

7.3.1.1 Naming Active Resources

When building a list of active variable or interface blocks, resources with aggre-
gate types (such as arrays or structures) may produce multiple entries in the active
resource list for the corresponding interface. Additionally, each active variable, in-
terface block, or subroutine in the list is assigned an associated name string that can
be used by applications to refer to the resource. For interfaces involving variables,
interface blocks, or subroutines, the entries of active resource lists are generated as
follows:

• For an active variable declared as a single instance of a basic type, a single
entry will be generated, using the variable name from the shader source.

• For an active variable declared as an array of basic types (e.g. not an array
of stuctures or an array of arrays), a single entry will be generated, with its
name string formed by concatenating the name of the array and the string
"[0]".

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 81

• For an active variable declared as a structure, a separate entry will be gener-
ated for each active structure member. The name of each entry is formed by
concatenating the name of the structure, the "." character, and the name of
the structure member. If a structure member to enumerate is itself a structure
or array, these enumeration rules are applied recursively.

• For an active variable declared as an array of an aggregate data type (struc-
tures or arrays), a separate entry will be generated for each active array el-
ement, unless noted immediately below. The name of each entry is formed
by concatenating the name of the array, the "[" character, an integer identi-
fying the element number, and the "]" character. These enumeration rules
are applied recursively, treating each enumerated array element as a separate
active variable.

• For an active shader storage block member declared as an array of an aggre-
gate type, an entry will be generated only for the first array element, regard-
less of its type. Such block members are referred to as top-level arrays. If the
block member is an aggregate type, the enumeration rules are then applied
recursively.

• For an active interface block not declared as an array of block instances, a
single entry will be generated, using the block name from the shader source.

• For an active interface block declared as an array of instances, separate en-
tries will be generated for each active instance. The name of the instance
is formed by concatenating the block name, the "[" character, an integer
identifying the instance number, and the "]" character.

When an integer array element or block instance number is part of the name
string, it will be specified in decimal form without a "+" or "-" sign or any
extra leading zeroes. Additionally, the name string will not include white space
anywhere in the string.

The order of the active resource list is implementation-dependent for all
interfaces except for TRANSFORM_FEEDBACK_VARYING. For TRANSFORM_-

FEEDBACK_VARYING, the active resource list will use the variable order speci-
fied in the most recent call to TransformFeedbackVaryings before the last call to
LinkProgram.

For the ATOMIC_COUNTER_BUFFER interface, the list of active buffer binding
points is built by identifying each unique binding point associated with one or more
active atomic counter uniform variables. Active atomic counter buffers do not have
an associated name string.

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 82

For the UNIFORM, PROGRAM_INPUT, PROGRAM_OUTPUT, and TRANSFORM_-

FEEDBACK_VARYING interfaces, the active resource list will include all active vari-
ables for the interface, including any active built-in variables.

When a program is linked successfully, active variables in the UNIFORM,
PROGRAM_INPUT, or PROGRAM_OUTPUT interfaces are assigned one or more
signed integer locations. These locations can be used by commands to assign val-
ues to uniforms, to identify generic vertex attributes associated with vertex shader
inputs, or to identify fragment color output numbers associated with fragment
shader outputs. For such variables declared as arrays, separate locations will be
assigned to each active array element and are not required to be sequential. The
location for "a[1]" may or may not be equal to the location for "a[0]" +1.
Furthermore, since unused elements at the end of uniform arrays may be trimmed,
the location of the i + 1’th array element may not be valid even if the location
of the i’th element is valid. As a direct consequence, the value of the location of
"a[0]"+1 may refer to a different uniform entirely. Applications that wish to set
individual array elements should query the locations of each element separately.

Not all active variables are assigned valid locations; the following variables
will have an effective location of -1:

• uniforms declared as atomic counters

• members of a uniform block

• built-in inputs, outputs, and uniforms (starting with gl_)

• inputs (except for vertex shader inputs) not declared with a location

layout qualifier

• outputs (except for fragment shader outputs) not declared with a location
layout qualifier

If a program has not been linked successfully, no locations will be assigned.
The command

void GetProgramInterfaceiv(uint program,
enum programInterface, enum pname, int *params);

queries a property of the interface programInterface in program program, returning
its value in params. The property to return is specified by pname.

If pname is ACTIVE_RESOURCES, the value returned is the number of re-
sources in the active resource list for programInterface. If the list of active re-
sources for programInterface is empty, zero is returned.

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 83

If pname is MAX_NAME_LENGTH, the value returned is the length of the longest
active name string for an active resource in programInterface. This length includes
an extra character for the null terminator. If the list of active resources for pro-
gramInterface is empty, zero is returned.

If pname is MAX_NUM_ACTIVE_VARIABLES, the value returned is the num-
ber of active variables belonging to the interface block or atomic counter buffer
resource in programInterface with the most active variables. If the list of active
resources for programInterface is empty, zero is returned.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programInterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_ENUM error is generated if pname is not ACTIVE_-

RESOURCES, MAX_NAME_LENGTH, or MAX_NUM_ACTIVE_VARIABLES.
An INVALID_OPERATION error is generated if pname is MAX_NAME_-

LENGTH and programInterface is ATOMIC_COUNTER_BUFFER, since active
atomic counter resources are not assigned name strings.

An INVALID_OPERATION error is generated if pname is MAX_NUM_-

ACTIVE_VARIABLES and programInterface is not ATOMIC_COUNTER_-

BUFFER, SHADER_STORAGE_BLOCK, or UNIFORM_BLOCK.

Each entry in the active resource list for an interface is assigned a unique un-
signed integer index in the range zero to N − 1, where N is the number of entries
in the active resource list. The command

uint GetProgramResourceIndex(uint program,
enum programInterface, const char *name);

returns the unsigned integer index assigned to a resource named name in the inter-
face type programInterface of program object program.

If name exactly matches the name string of one of the active resources for
programInterface, the index of the matched resource is returned.

• For TRANSFORM_FEEDBACK_VARYING resources, name must match one of
the variables to be captured as specified by a previous call to Transform-
FeedbackVaryings. Otherwise,

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 84

• For all other resource types, if name would exactly match the name string
of an active resource if "[0]" were appended to name, the index of the
matched resource is returned. Otherwise, name is considered not to be the
name of an active resource, and INVALID_INDEX is returned. Note that if an
interface enumerates a single active resource list entry for an array variable
(e.g., "a[0]"), a name identifying any array element other than the first
(e.g., "a[1]") is not considered to match.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

If name does not match a resource as described above, the value
INVALID_INDEX is returned, but no GL error is generated.

An INVALID_ENUM error is generated if programInterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_ENUM error is generated if programInterface is ATOMIC_-
COUNTER_BUFFER, since active atomic counter resources are not assigned
name strings.

The command

void GetProgramResourceName(uint program,
enum programInterface, uint index, sizei bufSize,
sizei *length, char *name);

returns the name string assigned to the single active resource with an index of index
in the interface programInterface of program object program.

The name string assigned to the active resource identified by index is returned
as a null-terminated string in name. The actual number of characters written into
name, excluding the null terminator, is returned in length. If length is NULL,
no length is returned. The maximum number of characters that may be written
into name, including the null terminator, is specified by bufSize. If the length of
the name string (including the null terminator) is greater than bufSize, the first
bufSize − 1 characters of the name string will be written to name, followed by a
null terminator. If bufSize is zero, no error is generated but no characters will be
written to name. The length of the longest name string for programInterface, in-
cluding a null terminator, can be queried by calling GetProgramInterfaceiv with
a pname of MAX_NAME_LENGTH.

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 85

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programInterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_ENUM error is generated if programInterface is ATOMIC_-
COUNTER_BUFFER, since active atomic counter resources are not assigned
name strings.

An INVALID_VALUE error is generated if index is greater than or equal to
the number of entries in the active resource list for programInterface.

An INVALID_VALUE error is generated if bufSize is negative.

The command

void GetProgramResourceiv(uint program,
enum programInterface, uint index, sizei propCount,
const enum *props, sizei bufSize, sizei *length,
int *params);

returns values for multiple properties of a single active resource with an index of
index in the interface programInterface of program object program. Values for
propCount properties specified by the array props are returned.

The values associated with the properties of the active resource are written to
consecutive entries in params, in increasing order according to position in props. If
no error is generated, only the first bufSize integer values will be written to params;
any extra values will not be written. If length is not NULL, the actual number of
values written to params will be written to length.

Property Supported Interfaces
ACTIVE_VARIABLES, BUFFER_-

BINDING, NUM_ACTIVE_VARIABLES
ATOMIC_COUNTER_BUFFER, SHADER_-
STORAGE_BLOCK, UNIFORM_BLOCK

ARRAY_SIZE BUFFER_VARIABLE, PROGRAM_INPUT,
PROGRAM_OUTPUT, TRANSFORM_-

FEEDBACK_VARYING, UNIFORM
ARRAY_STRIDE, BLOCK_INDEX, IS_-

ROW_MAJOR, MATRIX_STRIDE
BUFFER_VARIABLE, UNIFORM

GetProgramResourceiv properties continued on next page

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 86

GetProgramResourceiv properties continued from previous page
Property Supported Interfaces
ATOMIC_COUNTER_BUFFER_INDEX UNIFORM

BUFFER_DATA_SIZE ATOMIC_COUNTER_BUFFER, SHADER_-
STORAGE_BLOCK, UNIFORM_BLOCK

IS_PER_PATCH PROGRAM_INPUT, PROGRAM_OUTPUT
LOCATION PROGRAM_INPUT, PROGRAM_OUTPUT,

UNIFORM

NAME_LENGTH all but ATOMIC_COUNTER_BUFFER
OFFSET BUFFER_VARIABLE, UNIFORM
REFERENCED_BY_VERTEX_-

SHADER, REFERENCED_BY_TESS_-

CONTROL_SHADER, REFERENCED_-

BY_TESS_EVALUATION_SHADER,
REFERENCED_BY_GEOMETRY_SHADER,
REFERENCED_BY_FRAGMENT_SHADER,
REFERENCED_BY_COMPUTE_SHADER

ATOMIC_COUNTER_BUFFER, BUFFER_-
VARIABLE, PROGRAM_INPUT,
PROGRAM_OUTPUT, SHADER_-

STORAGE_BLOCK, UNIFORM,
UNIFORM_BLOCK

TOP_LEVEL_ARRAY_SIZE, TOP_-

LEVEL_ARRAY_STRIDE

BUFFER_VARIABLE

TYPE BUFFER_VARIABLE, PROGRAM_INPUT,
PROGRAM_OUTPUT, TRANSFORM_-

FEEDBACK_VARYING, UNIFORM
Table 7.2: GetProgramResourceiv properties and supported in-
terfaces

For the property ACTIVE_VARIABLES, an array of active variable indices as-
sociated with an atomic counter buffer, active uniform block, or shader storage
block is written to params. The number of values written to params for an active
resource is given by the value of the property NUM_ACTIVE_VARIABLES for the
resource.

For the property ARRAY_SIZE, a single integer identifying the number of active
array elements of an active variable is written to params. The array size returned
is in units of the type associated with the property TYPE. For active variables not
corresponding to an array of basic types, the value one is written to params. If the
variable is an array whose size is not declared or determined when the program is
linked, the value zero is written to params.

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 87

For the property ARRAY_STRIDE, a single integer identifying the stride be-
tween array elements in an active variable is written to params. For active variables
declared as an array of basic types, the value written is the difference, in basic ma-
chine units, between the offsets of consecutive elements in an array. For active
variables not declared as an array of basic types, zero is written to params. For
active variables not backed by a buffer object, -1 is written to params, regardless
of the variable type.

For the property ATOMIC_COUNTER_BUFFER_INDEX, a single integer identi-
fying the index of the active atomic counter buffer containing an active variable is
written to params. If the variable is not an atomic counter uniform, the value -1 is
written to params.

For the property BLOCK_INDEX, a single integer identifying the index of the
active interface block containing an active variable is written to params. The
index written for a member of an interface block declared as an array of block
instances is the index of the first block of the array. If the variable is not a member
of an interface block, the value -1 is written to params.

For the property BUFFER_BINDING, the index of the buffer binding point as-
sociated with the active uniform block, atomic counter buffer, or shader storage
block is written to params.

For the property BUFFER_DATA_SIZE, the implementation-dependent mini-
mum total buffer object size is written to params. This value is the size, in basic
machine units, required to hold all active variables associated with an active uni-
form block, atomic counter buffer, or shader storage block. If the final member of
an active shader storage block is an array with no declared size, the minimum buffer
size is computed assuming the array was declared as an array with one element.

For the property IS_PER_PATCH, a single integer identifying whether the input
or output is a per-patch attribute is written to params. If the active variable is a
per-patch attribute (declared with the patch qualifier), the value one is written to
params; otherwise, the value zero is written to params.

For the property IS_ROW_MAJOR, a single integer identifying whether an active
variable is a row-major matrix is written to params. For active variables backed by
a buffer object, declared as a single matrix or array of matrices, and stored in row-
major order, one is written to params. For all other active variables, zero is written
to params.

For the property LOCATION, a single integer identifying the assigned location
for an active uniform, input, or output variable is written to params. For input,
output, or uniform variables with locations specified by a layout qualifier, the
specified location is used. For vertex shader input, fragment shader output, or uni-
form variables without a layout qualifier, the location assigned when a program
is linked is written to params. For all other input and output variables, the value -1

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 88

is written to params. For atomic counter uniforms and uniforms in uniform blocks,
the value -1 is written to params.

For the property MATRIX_STRIDE, a single integer identifying the stride be-
tween columns of a column-major matrix or rows of a row-major matrix is written
to params. For active variables declared a single matrix or array of matrices, the
value written is the difference, in basic machine units, between the offsets of con-
secutive columns or rows in each matrix. For active variables not declared as a
matrix or array of matrices, zero is written to params. For active variables not
backed by a buffer object, -1 is written to params, regardless of the variable type.

For the property NAME_LENGTH, a single integer identifying the length of the
name string associated with an active variable or interface block is written to
params. The name length includes a terminating null character.

For the property NUM_ACTIVE_VARIABLES, the number of active variables
associated with an active uniform block, atomic counter buffer, or shader storage
block is written to params.

For the property OFFSET, a single integer identifying the offset of an ac-
tive variable is written to params. For variables in the BUFFER_VARIABLE and
UNIFORM interfaces that are backed by a buffer object, the value written is the off-
set of that variable relative to the base of the buffer range holding its value. For
active variables not backed by a buffer object, an offset of -1 is written to params.

For the properties REFERENCED_BY_VERTEX_SHADER, REFERENCED_-

BY_TESS_CONTROL_SHADER, REFERENCED_BY_TESS_EVALUATION_SHADER,
REFERENCED_BY_GEOMETRY_SHADER, REFERENCED_BY_FRAGMENT_SHADER,
and REFERENCED_BY_COMPUTE_SHADER, a single integer is written to params,
identifying whether the active resource is referenced by the vertex, tessellation con-
trol, tessellation evaluation, geometry, fragment, or compute shaders, respectively,
in the program object. The value one is written to params if an active variable is
referenced by the corresponding shader, or if an active uniform block, shader stor-
age block, or atomic counter buffer contains at least one variable referenced by the
corresponding shader. Otherwise, the value zero is written to params.

For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying the
number of active array elements of the top-level shader storage block member con-
taining to the active variable is written to params. If the top-level block member is
not declared as an array of an aggregate type, the value one is written to params.
If the top-level block member is an array of an aggregate type whose size is not
declared or determined when the program is linked, the value zero is written to
params.

For the property TOP_LEVEL_ARRAY_STRIDE, a single integer identifying the
stride between array elements of the top-level shader storage block member con-
taining the active variable is written to params. For top-level block members de-

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 89

clared as arrays of an aggregate type, the value written is the difference, in basic
machine units, between the offsets of the active variable for consecutive elements
in the top-level array. For top-level block members not declared as an array of an
aggregate type, zero is written to params.

For the property TYPE, a single integer identifying the type of an active variable
is written to params. The integer returned is one of the values found in table 7.3.

Type Name Token Keyword Attrib Xfb Buffer
FLOAT float � � �
FLOAT_VEC2 vec2 � � �
FLOAT_VEC3 vec3 � � �
FLOAT_VEC4 vec4 � � �
INT int � � �
INT_VEC2 ivec2 � � �
INT_VEC3 ivec3 � � �
INT_VEC4 ivec4 � � �
UNSIGNED_INT uint � � �
UNSIGNED_INT_VEC2 uvec2 � � �
UNSIGNED_INT_VEC3 uvec3 � � �
UNSIGNED_INT_VEC4 uvec4 � � �
BOOL bool �
BOOL_VEC2 bvec2 �
BOOL_VEC3 bvec3 �
BOOL_VEC4 bvec4 �
FLOAT_MAT2 mat2 � � �
FLOAT_MAT3 mat3 � � �
FLOAT_MAT4 mat4 � � �
FLOAT_MAT2x3 mat2x3 � � �
FLOAT_MAT2x4 mat2x4 � � �
FLOAT_MAT3x2 mat3x2 � � �
FLOAT_MAT3x4 mat3x4 � � �
FLOAT_MAT4x2 mat4x2 � � �
FLOAT_MAT4x3 mat4x3 � � �
SAMPLER_2D sampler2D

SAMPLER_3D sampler3D

SAMPLER_CUBE samplerCube

SAMPLER_2D_SHADOW sampler2DShadow

(Continued on next page)

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 90

OpenGL ES Shading Language Type Tokens (continued)
Type Name Token Keyword Attrib Xfb Buffer
SAMPLER_2D_ARRAY sampler2DArray

SAMPLER_CUBE_MAP_ARRAY samplerCubeArray

SAMPLER_2D_ARRAY_SHADOW sampler2DArrayShadow

SAMPLER_2D_MULTISAMPLE sampler2DMS

SAMPLER_2D_MULTISAMPLE_-

ARRAY

sampler2DMSArray

SAMPLER_CUBE_SHADOW samplerCubeShadow

SAMPLER_CUBE_MAP_ARRAY_-

SHADOW

samplerCube-

ArrayShadow

SAMPLER_BUFFER samplerBuffer

INT_SAMPLER_2D isampler2D

INT_SAMPLER_3D isampler3D

INT_SAMPLER_CUBE isamplerCube

INT_SAMPLER_2D_ARRAY isampler2DArray

INT_SAMPLER_CUBE_MAP_-

ARRAY

isamplerCubeArray

INT_SAMPLER_2D_-

MULTISAMPLE

isampler2DMS

INT_SAMPLER_2D_-

MULTISAMPLE_ARRAY

isampler2DMSArray

INT_SAMPLER_BUFFER isamplerBuffer

UNSIGNED_INT_SAMPLER_2D usampler2D

UNSIGNED_INT_SAMPLER_3D usampler3D

UNSIGNED_INT_SAMPLER_-

CUBE

usamplerCube

UNSIGNED_INT_SAMPLER_-

2D_ARRAY

usampler2DArray

UNSIGNED_INT_SAMPLER_-

CUBE_MAP_ARRAY

usamplerCubeArray

UNSIGNED_INT_SAMPLER_-

2D_MULTISAMPLE

usampler2DMS

UNSIGNED_INT_SAMPLER_-

2D_MULTISAMPLE_ARRAY

usampler2DMSArray

UNSIGNED_INT_SAMPLER_-

BUFFER

usamplerBuffer

(Continued on next page)

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 91

OpenGL ES Shading Language Type Tokens (continued)
Type Name Token Keyword Attrib Xfb Buffer
IMAGE_2D image2D

IMAGE_3D image3D

IMAGE_CUBE imageCube

IMAGE_BUFFER imageBuffer

IMAGE_2D_ARRAY image2DArray

IMAGE_CUBE_MAP_ARRAY imageCubeArray

INT_IMAGE_2D iimage2D

INT_IMAGE_3D iimage3D

INT_IMAGE_CUBE iimageCube

INT_IMAGE_BUFFER iimageBuffer

INT_IMAGE_2D_ARRAY iimage2DArray

INT_IMAGE_CUBE_MAP_ARRAY iimageCubeArray

UNSIGNED_INT_IMAGE_2D uimage2D

UNSIGNED_INT_IMAGE_3D uimage3D

UNSIGNED_INT_IMAGE_CUBE uimageCube

UNSIGNED_INT_IMAGE_-

BUFFER

uimageBuffer

UNSIGNED_INT_IMAGE_2D_-

ARRAY

uimage2DArray

UNSIGNED_INT_IMAGE_-

CUBE_MAP_ARRAY

uimageCubeArray

UNSIGNED_INT_ATOMIC_-

COUNTER

atomic_uint

Table 7.3: OpenGL ES Shading Language type tokens, and cor-
responding shading language keywords declaring each such type.
Types whose “Attrib” column is marked may be declared as ver-
tex attributes (see section 11.1.1). Types whose “Xfb” column
is marked may be the types of variables returned by transform
feedback (see section 11.1.2.1). Types whose “Buffer” column is
marked may be declared as buffer variables (see section 7.8).

Errors

OpenGL ES 3.2 (November 3, 2016)

7.3. PROGRAM OBJECTS 92

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if programInterface is not one of
the interfaces described in the introduction to section 7.3.1.

An INVALID_VALUE error is generated if propCount is less than or equal
to zero, or if bufSize is negative.

An INVALID_ENUM error is generated if any value in props is not one of
the properties described above.

An INVALID_OPERATION error is generated if any value in props is not
allowed for programInterface. The set of allowed programInterface values for
each property can be found in table 7.2.

The command

int GetProgramResourceLocation(uint program,
enum programInterface, const char *name);

returns the location assigned to the variable named name in interface program-
Interface of program object program. programInterface must be one of UNIFORM,
PROGRAM_INPUT, or PROGRAM_OUTPUT. The value -1 will be returned if an er-
ror occurs, if name does not identify an active variable on programInterface, or if
name identifies an active variable that does not have a valid location assigned, as
described above. The locations returned by these commands are the same locations
returned when querying the LOCATION resource properties.

A string provided to GetProgramResourceLocation is considered to match
an active variable if

• the string exactly matches the name of the active variable;

• if the string identifies the base name of an active array, where the string
would exactly match the name of the variable if the suffix "[0]" were ap-
pended to the string; or

• if the string identifies an active element of the array, where the string ends
with the concatenation of the "[" character, an integer (with no "+" sign,
extra leading zeroes, or whitespace) identifying an array element, and the
"]" character, the integer is less than the number of active elements of the
array variable, and where the string would exactly match the enumerated
name of the array if the decimal integer were replaced with zero.

OpenGL ES 3.2 (November 3, 2016)

7.4. PROGRAM PIPELINE OBJECTS 93

Any other string is considered not to identify an active variable. If the string
specifies an element of an array variable, GetProgramResourceLocation returns
the location assigned to that element. If it specifies the base name of an array, it
identifies the resources associated with the first element of the array.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully.

An INVALID_ENUM error is generated if programInterface is not one of
the interfaces named above.

7.4 Program Pipeline Objects

Instead of packaging all shader stages into a single program object, shader types
might be contained in multiple program objects each consisting of part of the com-
plete pipeline. A program object may even contain only a single shader stage.
This facilitates greater flexibility when combining different shaders in various ways
without requiring a program object for each combination.

A program pipeline object contains bindings for each shader type associating
that shader type with a program object.

The command

void GenProgramPipelines(sizei n, uint *pipelines);

returns n previously unused program pipeline object names in pipelines. These
names are marked as used, for the purposes of GenProgramPipelines only, but
they acquire state only when they are first bound.

Errors

An INVALID_VALUE error is generated if n is negative.

Program pipeline objects are deleted by calling

void DeleteProgramPipelines(sizei n, const
uint *pipelines);

OpenGL ES 3.2 (November 3, 2016)

7.4. PROGRAM PIPELINE OBJECTS 94

pipelines contains n names of program pipeline objects to be deleted. Once a
program pipeline object is deleted, it has no contents and its name becomes un-
used. If an object that is currently bound is deleted, the binding for that object
reverts to zero and no program pipeline object becomes current. Unused names in
pipelines that have been marked as used for the purposes of GenProgramPipelines
are marked as unused again. Unused names in pipelines are silently ignored, as is
the value zero.

Errors

An INVALID_VALUE error is generated if n is negative.

The command

boolean IsProgramPipeline(uint pipeline);

returns TRUE if pipeline is the name of a program pipeline object. If pipeline
is zero, or a non-zero value that is not the name of a program pipeline object,
IsProgramPipeline returns FALSE. No error is generated if pipeline is not a valid
program pipeline object name.

A program pipeline object is created by binding a name returned by GenPro-
gramPipelines with the command

void BindProgramPipeline(uint pipeline);

pipeline is the program pipeline object name. The resulting program pipeline ob-
ject is a new state vector, comprising all the state and with the same initial values
listed in table 21.20.

BindProgramPipeline may also be used to bind an existing program pipeline
object. If the bind is successful, no change is made to the state of the bound
program pipeline object, and any previous binding is broken. If BindPro-
gramPipeline is called with pipeline set to zero, then there is no current program
pipeline object.

If no current program object has been established by UseProgram, the pro-
gram objects used for each shader stage and for uniform updates are taken from
the bound program pipeline object, if any. If there is a current program object
established by UseProgram, the bound program pipeline object has no effect on
rendering or uniform updates. When a bound program pipeline object is used for
rendering, individual shader executables are taken from its program objects as de-
scribed in the discussion of UseProgram in section 7.3).

OpenGL ES 3.2 (November 3, 2016)

7.4. PROGRAM PIPELINE OBJECTS 95

Errors

An INVALID_OPERATION error is generated if pipeline is not zero or a
name returned from a previous call to GenProgramPipelines, or if such a
name has since been deleted with DeleteProgramPipelines.

The executables in a program object associated with one or more shader stages
can be made part of the program pipeline state for those shader stages with the
command

void UseProgramStages(uint pipeline, bitfield stages,
uint program);

where pipeline is the program pipeline object to be updated, stages is the bitwise
OR of accepted constants representing shader stages, and program is the program
object from which the executables are taken. The bits set in stages indicate the
program stages for which the program object named by program becomes current.
These stages may include compute, vertex, tessellation control, tessellation evalu-
ation, geometry, or fragment, indicated respectively by COMPUTE_SHADER_BIT,
VERTEX_SHADER_BIT, TESS_CONTROL_SHADER_BIT, TESS_EVALUATION_-

SHADER_BIT, GEOMETRY_SHADER_BIT, or FRAGMENT_SHADER_BIT. The con-
stant ALL_SHADER_BITS indicates program is to be made current for all shader
stages.

If program refers to a program object with a valid shader attached for an indi-
cated shader stage, this call installs the executable code for that stage in the indi-
cated program pipeline object state. If UseProgramStages is called with program
set to zero or with a program object that contains no executable code for any stage
in stages, it is as if the pipeline object has no programmable stage configured for
that stage.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

Errors

An INVALID_VALUE error is generated if stages is not the special value
ALL_SHADER_BITS, and has any bits set other than COMPUTE_SHADER_-

BIT, VERTEX_SHADER_BIT, TESS_CONTROL_SHADER_BIT, TESS_-

EVALUATION_SHADER_BIT, GEOMETRY_SHADER_BIT, and FRAGMENT_-

OpenGL ES 3.2 (November 3, 2016)

7.4. PROGRAM PIPELINE OBJECTS 96

SHADER_BIT.
An INVALID_VALUE error is generated if program is not zero and is not

the name of either a program or shader object.
An INVALID_OPERATION error is generated if program is the name of a

shader object.
An INVALID_OPERATION error is generated if program is not zero and

was linked without the PROGRAM_SEPARABLE parameter set, or has not been
linked successfully. The corresponding shader stages in pipeline are not mod-
ified.

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

The command

void ActiveShaderProgram(uint pipeline, uint program);

sets the linked program named by program to be the active program (see sec-
tion 7.6.1) used for uniform updates for the program pipeline object pipeline. If
program is zero, then it is as if there is no active program for pipeline.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

Errors

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

An INVALID_VALUE error is generated if program is not zero and is not
the name of either a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program is not zero and
has not been linked successfully. The active program is not modified.

7.4.1 Shader Interface Matching

When multiple shader stages are active, the outputs of one stage form an interface
with the inputs of the next stage. At each such interface, shader inputs are matched
up against outputs from the previous stage:

OpenGL ES 3.2 (November 3, 2016)

7.4. PROGRAM PIPELINE OBJECTS 97

• An output block is considered to match an input block in the subsequent
shader if the two blocks have the same block name, and the members of the
block match exactly in name, type, qualification, and declaration order.

• An output variable is considered to match an input variable in the subsequent
shader if:

– the two variables match in name, type, and qualification, and neither
has a location qualifier; or

– the two variables are declared with the same location qualifier and
match in type and qualification.

Variables or block members declared as structures are considered to match
in type if and only if structure members match in name, type, qualification, and
declaration order. Variables or block members declared as arrays are considered
to match in type only if both declarations specify the same element type and array
size. The rules for determining if variables or block members match in qualification
are found in the OpenGL ES Shading Language Specification.

Tessellation control shader per-vertex output variables and blocks and tessella-
tion control, tessellation evaluation, and geometry shader per-vertex input variables
and blocks are required to be declared as arrays, with each element representing
input or output values for a single vertex of a multi-vertex primitive. For the pur-
poses of interface matching, such variables and blocks are treated as though they
were not declared as arrays.

For program objects containing multiple shaders, LinkProgram will check for
mismatches on interfaces between shader stages in the program being linked and
generate a link error if a mismatch is detected. A link error is generated if any
statically referenced input variable or block does not have a matching output.

With separable program objects, interfaces between shader stages may involve
the outputs from one program object and the inputs from a second program object.
For such interfaces, it is not possible to detect mismatches at link time, because
the programs are linked separately. When each such program is linked, all inputs
or outputs interfacing with another program stage are treated as active. The linker
will generate an executable that assumes the presence of a compatible program
on the other side of the interface. If a mismatch between programs occurs, using
the programs together in a program pipeline will result in a validation failure (see
section 11.1.3.11).

At an interface between program objects, the set of inputs and outputs are con-
sidered to match exactly if and only if:

OpenGL ES 3.2 (November 3, 2016)

7.5. PROGRAM BINARIES 98

• Every declared input block or variable has a matching output, as described
above.

• There are no output blocks or user-defined output variables declared without
a matching input block or variable declaration.

• All matched input and output variables (in a block or otherwise) have iden-
tical precision qualification.

When the set of inputs and outputs on an interface between programs matches
exactly, all inputs are well-defined except when the corresponding outputs were not
written in the previous shader. However, any mismatch between inputs and outputs
will result in a validation failure.

As described above, an exact interface match requires matching built-in input
and output blocks. At an interface between two non-fragment shader stages, the
gl_PerVertex input and output blocks are considered to match if and only if the
block members match exactly in name, type, qualification, and declaration order.
At an interface involving the fragment shader stage, the presence or absence of any
built-in output does not affect interface matching.

7.4.2 Program Pipeline Object State

The state required to support program pipeline objects consists of a single binding
name of the current program pipeline object. This binding is initially zero indicat-
ing no program pipeline object is bound.

The state of each program pipeline object consists of:

• Unsigned integers holding the names of the active program and each of the
current vertex, tessellation control, tessellation evaluation, geometry, frag-
ment, and compute stage programs. Each integer is initially zero.

• A boolean holding the status of the last validation attempt, initially false.

• An array of type char containing the information log (see section 7.12),
initially empty.

• An integer holding the length of the information log.

7.5 Program Binaries

The command

OpenGL ES 3.2 (November 3, 2016)

7.5. PROGRAM BINARIES 99

void GetProgramBinary(uint program, sizei bufSize,
sizei *length, enum *binaryFormat, void *binary);

returns a binary representation of the program object’s compiled and linked exe-
cutable source, henceforth referred to as its program binary. The maximum num-
ber of bytes that may be written into binary is specified by bufSize. The actual
number of bytes written into binary is returned in length and its format is returned
in binaryFormat. If length is NULL, then no length is returned.

The number of bytes in the program binary can be queried by calling GetPro-
gramiv with pname PROGRAM_BINARY_LENGTH.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully. In this case its program binary length is zero.

An INVALID_VALUE error is generated if bufSize is negative.
An INVALID_OPERATION error is generated if bufSize is less than the

number of bytes in the program binary.

The command

void ProgramBinary(uint program, enum binaryFormat,
const void *binary, sizei length);

loads a program object with a program binary previously returned from GetPro-
gramBinary. This is useful to avoid online compilation, while still using OpenGL
ES Shading Language source shaders as a portable initial format. binaryFormat
and binary must be those returned by a previous call to GetProgramBinary, and
length must be the length of the program binary as returned by GetProgramBinary
or GetProgramiv with pname PROGRAM_BINARY_LENGTH. Loading the program
binary will fail, setting the LINK_STATUS of program to FALSE, if these conditions
are not met.

Loading a program binary may also fail if the implementation determines that
there has been a change in hardware or software configuration from when the pro-
gram binary was produced such as having been compiled with an incompatible or
outdated version of the compiler. In this case the application should fall back to

OpenGL ES 3.2 (November 3, 2016)

7.5. PROGRAM BINARIES 100

providing the original OpenGL ES Shading Language source shaders, and perhaps
again retrieve the program binary for future use.

A program object’s program binary is replaced by calls to LinkProgram or
ProgramBinary. Where linking success or failure is concerned, ProgramBinary
can be considered to perform an implicit linking operation. LinkProgram and
ProgramBinary both set the program object’s LINK_STATUS to TRUE or FALSE,
as queried with GetProgramiv, to reflect success or failure and update the infor-
mation log, queried with GetProgramInfoLog, to provide details about warnings
or errors.

A successful call to ProgramBinary will reset all uniform variables in the
default uniform block, all uniform block buffer bindings, and all shader storage
block buffer bindings to their initial values. The initial value is either the value
of the variable’s initializer as specified in the original shader source, or zero if no
initializer was present.

Additionally, all vertex shader input and fragment shader output assignments
and atomic counter binding, offset and stride assignments that were in effect when
the program was linked before saving are restored when ProgramBinary is called
successfully.

If ProgramBinary fails to load a binary, no error is generated, but any infor-
mation about a previous link or load of that program object is lost. Thus, a failed
load does not restore the old state of program. The failure does not alter other
program state not affected by linking such as the attached shaders, and the vertex
attribute bindings as set by BindAttribLocation.

OpenGL ES defines no specific binary formats. Queries of values NUM_-

PROGRAM_BINARY_FORMATS and PROGRAM_BINARY_FORMATS return the num-
ber of program binary formats and the list of program binary format values sup-
ported by an implementation. The binaryFormat returned by GetProgramBinary
must be present in this list.

Any program binary retrieved using GetProgramBinary and submitted using
ProgramBinary under the same configuration must be successful. Any programs
loaded successfully by ProgramBinary must be run properly with any legal GL
state vector.

If an implementation needs to recompile or otherwise modify program exe-
cutables based on GL state outside the program, GetProgramBinary is required
to save enough information to allow such recompilation.

To indicate that a program binary is likely to be retrieved, ProgramParameteri
should be called with pname set to PROGRAM_BINARY_RETRIEVABLE_HINT and
value set to TRUE. This setting will not be in effect until the next time LinkPro-
gram or ProgramBinary has been called successfully. Additionally, the appli-
cation may defer GetProgramBinary calls until after using the program with all

OpenGL ES 3.2 (November 3, 2016)

7.6. UNIFORM VARIABLES 101

non-program state vectors that it is likely to encounter. Such deferral may allow
implementations to save additional information in the program binary that would
minimize recompilation in future uses of the program binary.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if binaryFormat is not a binary for-
mat present in the list of specific binary formats supported.

An INVALID_VALUE error is generated if length is negative.

7.6 Uniform Variables

Shaders can declare named uniform variables, as described in the OpenGL ES
Shading Language Specification. A uniform is considered an active uniform if the
compiler and linker determine that the uniform will actually be accessed when the
executable code is executed. In cases where the compiler and linker cannot make
a conclusive determination, the uniform will be considered active.

Sets of uniforms, except for atomic counters, images, samplers, and subroutine
uniforms, can be grouped into uniform blocks.

Named uniform blocks, as described in the OpenGL ES Shading Language
Specification, store uniform values in the data store of a buffer object correspond-
ing to the uniform block. Such blocks are assigned a uniform block index.

Uniforms that are declared outside of a named uniform block are part of the
default uniform block. The default uniform block has no name or uniform block
index. Uniforms in the default uniform block are program object-specific state.
They retain their values once loaded, and their values are restored whenever a pro-
gram object is used, as long as the program object has not been re-linked.

Like uniforms, uniform blocks can be active or inactive. Active uniform blocks
are those that contain active uniforms after a program has been compiled and
linked. Uniform blocks declared in an array are considered active if any member
of the array would otherwise be considered active.

All members of a named uniform block declared with a shared or std140
layout qualifier are considered active, even if they are not referenced in any shader
in the program. Note that this means that the uniform block itself is also considered
active, even if no member of the block is referenced.

OpenGL ES 3.2 (November 3, 2016)

7.6. UNIFORM VARIABLES 102

Shader Stage pname for querying default uniform
block storage, in components

Vertex (see section 11.1.2) MAX_VERTEX_UNIFORM_COMPONENTS

Tessellation control (see section 11.2.1.1) MAX_TESS_CONTROL_UNIFORM_COMPONENTS

Tessellation evaluation (see section 11.2.3.1) MAX_TESS_EVALUATION_UNIFORM_COMPONENTS

Geometry (see section 11.3.3) MAX_GEOMETRY_UNIFORM_COMPONENTS

Fragment (see section 14.1) MAX_FRAGMENT_UNIFORM_COMPONENTS

Compute (see section 17.1) MAX_COMPUTE_UNIFORM_COMPONENTS

Table 7.4: Query targets for default uniform block storage, in components.

Shader Stage pname for querying combined uniform
block storage, in components

Vertex MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS

Tessellation control MAX_COMBINED_TESS_CONTROL_UNIFORM_COMPONENTS

Tessellation evaluation MAX_COMBINED_TESS_EVALUATION_UNIFORM_COMPONENTS

Geometry MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS

Fragment MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS

Compute MAX_COMBINED_COMPUTE_UNIFORM_COMPONENTS

Table 7.5: Query targets for combined uniform block storage, in components.

The implementation-dependent amount of storage available for uniform vari-
ables, except for atomic counters, in the default uniform block accessed by a shader
for a particular shader stage can be queried by calling GetIntegerv with pname as
specified in table 7.4 for that stage.

The implementation-dependent constants MAX_VERTEX_UNIFORM_VECTORS

and MAX_FRAGMENT_UNIFORM_VECTORS have values respectively equal to
the values of MAX_VERTEX_UNIFORM_COMPONENTS and MAX_FRAGMENT_-

UNIFORM_COMPONENTS divided by four.
The total amount of combined storage available for uniform variables in all

uniform blocks accessed by a shader for a particular shader stage can be queried
by calling GetIntegerv with pname as specified in table 7.5 for that stage.

These values represent the numbers of individual floating-point, integer, or
boolean values that can be held in uniform variable storage for a shader. For uni-
forms with boolean, integer, or floating-point components,

• A scalar uniform will consume no more than 1 component

OpenGL ES 3.2 (November 3, 2016)

7.6. UNIFORM VARIABLES 103

• A vector uniform will consume no more than n components, where n is the
vector component count

• A matrix uniform will consume no more than 4 × min(r, c) components,
where r and c are the number of rows and columns in the matrix.

Scalar, vector, and matrix uniforms with double-precision components will
consume no more than twice the number of components of equivalent uniforms
with floating-point components.

Errors

A link error is generated if an attempt is made to utilize more than the
space available for uniform variables in a shader stage.

When a program is linked successfully, all active uniforms, except for atomic
counters, belonging to the program object’s default uniform block are initialized as
defined by the version of the OpenGL ES Shading Language used to compile the
program. A successful link will also generate a location for each active uniform in
the default uniform block which doesn’t already have an explicit location defined
in the shader. The generated locations will never take the location of a uniform
with an explicit location defined in the shader, even if that uniform is determined
to be inactive. The values of active uniforms in the default uniform block can be
changed using this location and the appropriate Uniform* or ProgramUniform*
command (see section 7.6.1). These generated locations are invalidated and new
ones assigned after each successful re-link. The explicitly defined locations and
the generated locations must be in the range of 0 to the value of MAX_UNIFORM_-
LOCATIONS minus one.

Similarly, when a program is linked successfully, all active atomic counters
are assigned bindings, offsets (and strides for arrays of atomic counters) according
to layout rules described in section 7.6.2.2. Atomic counter uniform buffer objects
provide the storage for atomic counters, so the values of atomic counters may be
changed by modifying the contents of the buffer object using the commands in
sections 6.2, 6.3, and 6.5. Atomic counters are not assigned a location and may
not be modified using the Uniform* commands. The bindings, offsets, and strides
belonging to atomic counters of a program object are invalidated and new ones
assigned after each successful re-link.

Similarly, when a program is linked successfully, all active uniforms belong-
ing to the program’s named uniform blocks are assigned offsets (and strides for
array and matrix type uniforms) within the uniform block according to layout rules
described below. Uniform buffer objects provide the storage for named uniform

OpenGL ES 3.2 (November 3, 2016)

7.6. UNIFORM VARIABLES 104

blocks, so the values of active uniforms in named uniform blocks may be changed
by modifying the contents of the buffer object. Uniforms in a named uniform
block are not assigned a location and may not be modified using the Uniform*
commands. The offsets and strides of all active uniforms belonging to named uni-
form blocks of a program object are invalidated and new ones assigned after each
successful re-link.

To determine the set of active uniform variables used by a program, applica-
tions can query the properties and active resources of the UNIFORM interface of a
program.

Additionally, several dedicated commands are provided to query properties of
active uniforms. The command

int GetUniformLocation(uint program, const
char *name);

is equivalent to

GetProgramResourceLocation(program, UNIFORM, name);

The command

void GetUniformIndices(uint program,
sizei uniformCount, const char * const
*uniformNames, uint *uniformIndices);

is equivalent to

for (int i = 0; i < uniformCount; i++) {
uniformIndices[i] = GetProgramResourceIndex(program,

UNIFORM, uniformNames[i];
}

The command

void GetActiveUniform(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

is equivalent to

OpenGL ES 3.2 (November 3, 2016)

7.6. UNIFORM VARIABLES 105

pname prop

UNIFORM_TYPE TYPE

UNIFORM_SIZE ARRAY_SIZE

UNIFORM_NAME_LENGTH NAME_LENGTH

UNIFORM_BLOCK_INDEX BLOCK_INDEX

UNIFORM_OFFSET OFFSET

UNIFORM_ARRAY_STRIDE ARRAY_STRIDE

UNIFORM_MATRIX_STRIDE MATRIX_STRIDE

UNIFORM_IS_ROW_MAJOR IS_ROW_MAJOR

Table 7.6: GetProgramResourceiv properties used by GetActiveUniformsiv.

const enum props[] = { ARRAY_SIZE, TYPE };
GetProgramResourceName(program, UNIFORM, index,

bufSize, length, name);
GetProgramResourceiv(program, UNIFORM, index,

1, &props[0], 1, NULL, size);
GetProgramResourceiv(program, UNIFORM, index,

1, &props[1], 1, NULL, (int *)type);

The command

void GetActiveUniformsiv(uint program,
sizei uniformCount, const uint *uniformIndices,
enum pname, int *params);

is equivalent to

GLenum prop;
for (int i = 0; i < uniformCount; i++) {

GetProgramResourceiv(program, UNIFORM, uniformIndices[i],
1, &prop, 1, NULL, ¶ms[i]);

}

where the value of prop is taken from table 7.6, based on the value of pname.
To determine the set of active uniform blocks used by a program, applications

can query the properties and active resources of the UNIFORM_BLOCK interface.
Additionally, several commands are provided to query properties of active uni-

form blocks. The command

OpenGL ES 3.2 (November 3, 2016)

7.6. UNIFORM VARIABLES 106

uint GetUniformBlockIndex(uint program, const
char *uniformBlockName);

is equivalent to

GetProgramResourceIndex(program, UNIFORM_BLOCK, uniformBlockName);

The command

void GetActiveUniformBlockName(uint program,
uint uniformBlockIndex, sizei bufSize, sizei length,
char *uniformBlockName);

is equivalent to

GetProgramResourceName(program, UNIFORM_BLOCK,
uniformBlockIndex, bufSize, length, uniformBlockName);

The command

void GetActiveUniformBlockiv(uint program,
uint uniformBlockIndex, enum pname, int *params);

is equivalent to

GLenum prop;
GetProgramResourceiv(program, UNIFORM_BLOCK,

uniformBlockIndex, 1, &prop, maxSize, NULL, params);

where the value of prop is taken from table 7.7, based on the value of pname,
and maxSize is taken to specify a sufficiently large buffer to receive all values that
would be written to params.

To determine the set of active atomic counter buffer binding points used
by a program, applications can query the properties and active resources of the
ATOMIC_COUNTER_BUFFER interface of a program.

7.6.1 Loading Uniform Variables In The Default Uniform Block

To load values into the uniform variables, except for atomic counters, of the default
uniform block of the active program object, use the commands

void Uniform{1234}{if ui}(int location, T value);

OpenGL ES 3.2 (November 3, 2016)

7.6. UNIFORM VARIABLES 107

pname prop

UNIFORM_BLOCK_BINDING BUFFER_BINDING

UNIFORM_BLOCK_DATA_SIZE BUFFER_DATA_SIZE

UNIFORM_BLOCK_NAME_LENGTH NAME_LENGTH

UNIFORM_BLOCK_ACTIVE_UNIFORMS NUM_ACTIVE_VARIABLES

UNIFORM_BLOCK_ACTIVE_UNIFORM_-

INDICES

ACTIVE_VARIABLES

UNIFORM_BLOCK_REFERENCED_BY_-

VERTEX_SHADER

REFERENCED_BY_VERTEX_SHADER

UNIFORM_BLOCK_REFERENCED_BY_-

TESS_CONTROL_SHADER

REFERENCED_BY_TESS_CONTROL_-

SHADER

UNIFORM_BLOCK_REFERENCED_BY_-

TESS_EVALUATION_SHADER

REFERENCED_BY_TESS_-

EVALUATION_SHADER

UNIFORM_BLOCK_REFERENCED_BY_-

GEOMETRY_SHADER

REFERENCED_BY_GEOMETRY_SHADER

UNIFORM_BLOCK_REFERENCED_BY_-

FRAGMENT_SHADER

REFERENCED_BY_FRAGMENT_SHADER

Table 7.7: GetProgramResourceiv properties used by GetActiveUniform-
Blockiv.

OpenGL ES 3.2 (November 3, 2016)

7.6. UNIFORM VARIABLES 108

void Uniform{1234}{if ui}v(int location, sizei count,
const T *value);

void UniformMatrix{234}fv(int location, sizei count,
boolean transpose, const float *value);

void UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv(
int location, sizei count, boolean transpose, const
float *value);

If a non-zero program object is bound by UseProgram, it is the active pro-
gram object whose uniforms are updated by these commands. If no program ob-
ject is bound using UseProgram, the active program object of the current program
pipeline object set by ActiveShaderProgram is the active program object. If the
current program pipeline object has no active program or there is no current pro-
gram pipeline object, then there is no active program.

The given values are loaded into the default uniform block uniform variable
location identified by location and associated with a uniform variable.

The Uniform*f{v} commands will load count sets of one to four floating-point
values into a uniform defined as a float, a floating-point vector, or an array of either
of these types.

The Uniform*i{v} commands will load count sets of one to four integer val-
ues into a uniform defined as a sampler, an integer, an integer vector, or an array
of either of these types. Only the Uniform1i{v} commands can be used to load
sampler values (see section 7.9).

The Uniform*ui{v} commands will load count sets of one to four unsigned
integer values into a uniform defined as a unsigned integer, an unsigned integer
vector, or an array of either of these types.

The UniformMatrix{234}fv commands will load count 2× 2, 3× 3, or 4× 4
matrices (corresponding to 2, 3, or 4 in the command name) of floating-point values
into a uniform defined as a matrix or an array of matrices. If transpose is FALSE,
the matrix is specified in column major order, otherwise in row major order.

The UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv commands will load count
2× 3, 3× 2, 2× 4, 4× 2, 3× 4, or 4× 3 matrices (corresponding to the numbers
in the command name) of floating-point values into a uniform defined as a matrix
or an array of matrices. The first number in the command name is the number of
columns; the second is the number of rows. For example, UniformMatrix2x4fv
is used to load a matrix consisting of two columns and four rows. If transpose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

When loading values for a uniform declared as a boolean, a boolean vector,
or an array of either of these types, any of the Uniform*i{v}, Uniform*ui{v},

OpenGL ES 3.2 (November 3, 2016)

7.6. UNIFORM VARIABLES 109

and Uniform*f{v} commands can be used. Type conversion is done by the GL.
Boolean values are set to FALSE if the corresponding input value is 0 or 0.0f, and
set to TRUE otherwise. The Uniform* command used must match the size of the
uniform, as declared in the shader. For example, to load a uniform declared as a
bvec2, any of the Uniform2{if ui}* commands may be used.

For all other uniform types loadable with Uniform* commands, the command
used must match the size and type of the uniform, as declared in the shader, and
no type conversions are done. For example, to load a uniform declared as a vec4,
Uniform4f{v} must be used, and to load a uniform declared as a mat3, Uniform-
Matrix3fv must be used.

When loading N elements starting at an arbitrary position k in a uniform de-
clared as an array, elements k through k + N − 1 in the array will be replaced
with the new values. Values for any array element that exceeds the highest array
element index used, as reported by GetActiveUniform, will be ignored by the GL.

If the value of location is -1, the Uniform* commands will silently ignore the
data passed in, and the current uniform values will not be changed.

Errors

An INVALID_VALUE error is generated if count is negative.
An INVALID_VALUE error is generated if Uniform1i{v} is used to set a

sampler uniform to a value less than zero or greater than or equal to the value
of MAX_COMBINED_TEXTURE_IMAGE_UNITS.

An INVALID_OPERATION error is generated if any of the following con-
ditions occur:

• the size indicated in the name of the Uniform* command used does not
match the size of the uniform declared in the shader,

• the component type and count indicated in the name of the Uniform*
command used does not match the type of the uniform declared in
the shader, where a boolean uniform component type is considered
to match any of the Uniform*i{v}, Uniform*ui{v}, or Uniform*f{v}
commands.

• count is greater than one, and the uniform declared in the shader is not
an array variable,

• no variable with a location of location exists in the program object cur-
rently in use and location is not -1, or

OpenGL ES 3.2 (November 3, 2016)

7.6. UNIFORM VARIABLES 110

• a sampler uniform is loaded with any of the Uniform* commands other
than Uniform1i{v}.

• an image uniform is loaded with any of the Uniform* commands.

• there is no active program object in use.

To load values into the uniform variables of the default uniform block of a
program which may not necessarily be bound, use the commands

void ProgramUniform{1234}{if}(uint program,
int location, T value);

void ProgramUniform{1234}{if}v(uint program,
int location, sizei count, const T *value);

void ProgramUniform{1234}ui(uint program, int location,
T value);

void ProgramUniform{1234}uiv(uint program,
int location, sizei count, const T *value);

void ProgramUniformMatrix{234}{f}v(uint program,
int location, sizei count, boolean transpose, const
T *value);

void ProgramUniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}{f}v(
uint program, int location, sizei count,
boolean transpose, const T *value);

These commands operate identically to the corresponding commands above
without Program in the command name except, rather than updating the cur-
rently active program object, these Program commands update the program ob-
ject named by the initial program parameter.The remaining parameters following
the initial program parameter match the parameters for the corresponding non-
Program uniform command.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully.

In addition, all errors described for the corresponding Uniform* com-

OpenGL ES 3.2 (November 3, 2016)

7.6. UNIFORM VARIABLES 111

mands apply.

7.6.2 Uniform Blocks

The values of uniforms arranged in named uniform blocks are extracted from buffer
object storage. The mechanisms for placing individual uniforms in a buffer object
and connecting a uniform block to an individual buffer object are described below.

There is a set of implementation-dependent maximums for the number of active
uniform blocks used by each shader stage. If the number of uniform blocks used
by any shader stage in the program exceeds its corresponding limit, the program
will fail to link. The limits for vertex, tessellation control, tessellation evaluation,
geometry, fragment, and compute shaders can be obtained by calling GetIntegerv
with pname values of MAX_VERTEX_UNIFORM_BLOCKS, MAX_TESS_CONTROL_-
UNIFORM_BLOCKS, MAX_TESS_EVALUATION_UNIFORM_BLOCKS, MAX_-

GEOMETRY_UNIFORM_BLOCKS, MAX_FRAGMENT_UNIFORM_BLOCKS, and MAX_-

COMPUTE_UNIFORM_BLOCKS respectively.
Additionally, there is an implementation-dependent limit on the sum of the

number of active uniform blocks used by each shader stage of a program. If a
uniform block is used by multiple shader stages, each such use counts separately
against this combined limit. The combined uniform block use limit can be obtained
by calling GetIntegerv with a pname of MAX_COMBINED_UNIFORM_BLOCKS.

Finally, the total amount of buffer object storage available for any given uni-
form block is subject to an implementation-dependent limit. The maximum amount
of available space, in basic machine units, can be queried by calling GetIntegerv
with a pname of MAX_UNIFORM_BLOCK_SIZE. If the amount of storage required
for a uniform block exceeds this limit, a program will fail to link.

When a named uniform block is declared by multiple shaders in a program, it
must be declared identically in each shader. The uniforms within the block must be
declared with the same names, types, and layout qualifiers, in the same order. If a
program contains multiple shaders with different declarations for the same named
uniform block, the program will fail to link.

7.6.2.1 Uniform Buffer Object Storage

When stored in buffer objects associated with uniform blocks, uniforms are repre-
sented in memory as follows:

• Members of type bool, int, uint, and float are respectively extracted
from a buffer object by reading a single uint, int, uint, or float value
at the specified offset.

OpenGL ES 3.2 (November 3, 2016)

7.6. UNIFORM VARIABLES 112

• Vectors with N elements with basic data types of bool, int, uint, or
float are extracted as N values in consecutive memory locations begin-
ning at the specified offset, with components stored in order with the first
(X) component at the lowest offset. The GL data type used for component
extraction is derived according to the rules for scalar members above.

• Column-major matrices with C columns and R rows (using the type
matCxR or simply matC if C = R) are treated as an array of C column
vectors, each consisting of R floating-point components. The column vec-
tors will be stored in order, with column zero at the lowest offset. The differ-
ence in offsets between consecutive columns of the matrix will be referred to
as the column stride, and is constant across the matrix. The column stride is
an implementation-dependent function of the matrix type, and may be deter-
mined after a program is linked by querying the MATRIX_STRIDE interface
using GetProgramResourceiv (see section 7.3.1).

• Row-major matrices with C columns and R rows (using the type matCxR,
or simply matC if C = R) are treated as an array of R row vectors, each
consisting of C floating-point components. The row vectors will be stored in
order, with row zero at the lowest offset. The difference in offsets between
consecutive rows of the matrix will be referred to as the row stride, and is
constant across the matrix. The row stride is an implementation-dependent
function of the matrix type, and may be determined after a program is linked
by querying the MATRIX_STRIDE interface using GetProgramResourceiv
(see section 7.3.1).

• Arrays of scalars, vectors, and matrices are stored in memory by element
order, with array member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array
stride is an implementation-dependent function of the array type, and may
be determined after a program is linked by querying the ARRAY_STRIDE

interface using GetProgramResourceiv (see section 7.3.1).

7.6.2.2 Standard Uniform Block Layout

By default, uniforms contained within a uniform block are extracted from buffer
storage in an implementation-dependent manner. Applications may query the off-
sets assigned to uniforms inside uniform blocks with query functions provided by
the GL.

OpenGL ES 3.2 (November 3, 2016)

7.6. UNIFORM VARIABLES 113

The layout qualifier provides shaders with control of the layout of uniforms
within a uniform block. When the std140 layout is specified, the offset of each
uniform in a uniform block can be derived from the definition of the uniform block
by applying the set of rules described below.

When using the std140 storage layout, structures will be laid out in buffer
storage with its members stored in monotonically increasing order based on their
location in the declaration. A structure and each structure member have a base
offset and a base alignment, from which an aligned offset is computed by rounding
the base offset up to a multiple of the base alignment. The base offset of the first
member of a structure is taken from the aligned offset of the structure itself. The
base offset of all other structure members is derived by taking the offset of the
last basic machine unit consumed by the previous member and adding one. Each
structure member is stored in memory at its aligned offset. The members of a top-
level uniform block are laid out in buffer storage by treating the uniform block as
a structure with a base offset of zero.

1. If the member is a scalar consuming N basic machine units, the base align-
ment is N .

2. If the member is a two- or four-component vector with components consum-
ing N basic machine units, the base alignment is 2N or 4N , respectively.

3. If the member is a three-component vector with components consuming N
basic machine units, the base alignment is 4N .

4. If the member is an array of scalars or vectors, the base alignment and array
stride are set to match the base alignment of a single array element, according
to rules (1), (2), and (3), and rounded up to the base alignment of a vec4. The
array may have padding at the end; the base offset of the member following
the array is rounded up to the next multiple of the base alignment.

5. If the member is a column-major matrix with C columns and R rows, the
matrix is stored identically to an array of C column vectors with R compo-
nents each, according to rule (4).

6. If the member is an array of S column-major matrices with C columns and
R rows, the matrix is stored identically to a row of S × C column vectors
with R components each, according to rule (4).

7. If the member is a row-major matrix with C columns andR rows, the matrix
is stored identically to an array of R row vectors with C components each,
according to rule (4).

OpenGL ES 3.2 (November 3, 2016)

7.6. UNIFORM VARIABLES 114

8. If the member is an array of S row-major matrices with C columns and R
rows, the matrix is stored identically to a row of S × R row vectors with C
components each, according to rule (4).

9. If the member is a structure, the base alignment of the structure is N , where
N is the largest base alignment value of any of its members, and rounded
up to the base alignment of a vec4. The individual members of this sub-
structure are then assigned offsets by applying this set of rules recursively,
where the base offset of the first member of the sub-structure is equal to the
aligned offset of the structure. The structure may have padding at the end;
the base offset of the member following the sub-structure is rounded up to
the next multiple of the base alignment of the structure.

10. If the member is an array of S structures, the S elements of the array are laid
out in order, according to rule (9).

Shader storage blocks (see section 7.8) also support the std140 layout quali-
fier, as well as a std430 layout qualifier not supported for uniform blocks. When
using the std430 storage layout, shader storage blocks will be laid out in buffer
storage identically to uniform and shader storage blocks using the std140 layout,
except that the base alignment and stride of arrays of scalars and vectors in rule 4
and of structures in rule 9 are not rounded up a multiple of the base alignment of a
vec4.

7.6.3 Uniform Buffer Object Bindings

The value an active uniform inside a named uniform block is extracted from the
data store of a buffer object bound to one of an array of uniform buffer binding
points. The number of binding points can be queried by calling GetIntegerv with
a pname of MAX_COMBINED_UNIFORM_BLOCKS.

Regions of buffer objects are bound as storage for uniform blocks by calling
BindBuffer* commands (see section 6) with target set to UNIFORM_BUFFER.

Each of a program’s active uniform blocks has a corresponding uniform buffer
object binding point. This binding point can be assigned by calling:

void UniformBlockBinding(uint program,
uint uniformBlockIndex, uint uniformBlockBinding);

program is a name of a program object for which the command LinkProgram has
been issued in the past.

OpenGL ES 3.2 (November 3, 2016)

7.7. ATOMIC COUNTER BUFFERS 115

If successful, UniformBlockBinding specifies that program will use the data
store of the buffer object bound to the binding point uniformBlockBinding to extract
the values of the uniforms in the uniform block identified by uniformBlockIndex.

When executing shaders that access uniform blocks, the binding point corre-
sponding to each active uniform block must be populated with a buffer object with
a size no smaller than the minimum required size of the uniform block (the value
of UNIFORM_BLOCK_DATA_SIZE). For binding points populated by BindBuffer-
Range, the size in question is the value of the size parameter. If any active uniform
block is not backed by a sufficiently large buffer object, the results of shader ex-
ecution may be undefined or modified, as described in section 6.4. Shaders may
be executed to process the primitives and vertices specified by any command that
transfers vertices to the GL.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if uniformBlockIndex is not an
active uniform block index of program, or if uniformBlockBinding is greater
than or equal to the value of MAX_UNIFORM_BUFFER_BINDINGS.

When a program object is linked or re-linked, the uniform buffer object binding
point assigned to each of its active uniform blocks is reset to zero.

7.7 Atomic Counter Buffers

The values of atomic counters are backed by buffer object storage. The mecha-
nisms for accessing individual atomic counters in a buffer object and connecting to
an atomic counter are described in this section.

There is a set of implementation-dependent maximums for the number of active
atomic counter buffers referenced by each shader. If the number of atomic counter
buffer bindings referenced by any shader in the program exceeds the corresponding
limit, the program will fail to link. The limits for vertex, tessellation control, tes-
sellation evaluation, geometry, fragment, and compute shaders can be obtained by
calling GetIntegerv with pname values of MAX_VERTEX_ATOMIC_COUNTER_-
BUFFERS, MAX_TESS_CONTROL_ATOMIC_COUNTER_BUFFERS, MAX_-

TESS_EVALUATION_ATOMIC_COUNTER_BUFFERS, MAX_GEOMETRY_ATOMIC_-

OpenGL ES 3.2 (November 3, 2016)

7.7. ATOMIC COUNTER BUFFERS 116

COUNTER_BUFFERS, MAX_FRAGMENT_ATOMIC_COUNTER_BUFFERS, and MAX_-

COMPUTE_ATOMIC_COUNTER_BUFFERS, respectively.
Additionally, there is an implementation-dependent limit on the sum of the

number of active atomic counter buffers used by each shader stage of a program.
If an atomic counter buffer is used by multiple shader stages, each such use counts
separately against this combined limit. The combined atomic counter buffer use
limit can be obtained by calling GetIntegerv with a pname of MAX_COMBINED_-
ATOMIC_COUNTER_BUFFERS.

7.7.1 Atomic Counter Buffer Object Storage

Atomic counters stored in buffer objects are represented in memory as follows:

• Members of type atomic_uint are extracted from a buffer object by read-
ing a single uint-typed value at the specified offset.

• Arrays of type atomic_uint are stored in memory by element order, with
array element member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array stride
(the value of UNIFORM_ARRAY_STRIDE), is an implementation-dependent
value and may be queried after a program is linked.

7.7.2 Atomic Counter Buffer Bindings

The value of an active atomic counter is extracted from or written to the data store
of a buffer object bound to one of an array of atomic counter buffer binding points.
The number of binding points can be queried by calling GetIntegerv with a pname
of MAX_ATOMIC_COUNTER_BUFFER_BINDINGS.

Regions of buffer objects are bound as storage for atomic counters by calling
one of the BindBuffer* commands (see section 6) with target set to ATOMIC_-

COUNTER_BUFFER.
Each of a program’s active atomic counter buffer bindings has a corresponding

atomic counter buffer binding point. This binding point is established with the
layout qualifier in the shader text, either explicitly or implicitly, as described in
the OpenGL ES Shading Language Specification.

When executing shaders that access atomic counters, each active atomic
counter buffer must be populated with a buffer object with a size no smaller than the
minimum required size for that buffer (the value of BUFFER_DATA_SIZE returned
by GetProgramResourceiv). For binding points populated by BindBufferRange,
the size in question is the value of the size parameter. If any active atomic counter

OpenGL ES 3.2 (November 3, 2016)

7.8. SHADER BUFFER VARIABLES AND SHADER STORAGE BLOCKS117

buffer is not backed by a sufficiently large buffer object, the results of shader exe-
cution may be undefined or modified, as described in section 6.4.

7.8 Shader Buffer Variables and Shader Storage Blocks

Shaders can declare named buffer variables, as described in the OpenGL ES Shad-
ing Language Specification. Sets of buffer variables are grouped into interface
blocks called shader storage blocks. The values of each buffer variable in a shader
storage block are read from or written to the data store of a buffer object bound
to the binding point associated with the block. The values of active buffer vari-
ables may be changed by executing shaders that assign values to them or perform
atomic memory operations on them; by modifying the contents of the bound buffer
object’s data store with the commands in sections 6.2, 6.3, and 6.5; by binding a
new buffer object to the binding point associated with the block; or by changing
the binding point associated with the block.

Buffer variables in shader storage blocks are represented in memory in the
same way as uniforms stored in uniform blocks, as described in section 7.6.2.1.
When a program is linked successfully, each active buffer variable is assigned an
offset relative to the base of the buffer object binding associated with its shader
storage block. For buffer variables declared as arrays and matrices, strides between
array elements or matrix columns or rows will also be assigned. Offsets and strides
of buffer variables will be assigned in an implementation-dependent manner unless
the shader storage block is declared using the std140 or std430 storage layout
qualifiers. For std140 and std430 shader storage blocks, offsets will be assigned
using the method described in section 7.6.2.2. If a program is re-linked, existing
buffer variable offsets and strides are invalidated, and a new set of active variables,
offsets, and strides will be generated.

The total amount of buffer object storage that can be accessed in any shader
storage block is subject to an implementation-dependent limit. The maximum
amount of available space, in basic machine units, can be queried by calling Get-
Integerv with pname MAX_SHADER_STORAGE_BLOCK_SIZE. If the amount of
storage required for any shader storage block exceeds this limit, a program will
fail to link.

If the number of active shader storage blocks referenced by the
shaders in a program exceeds implementation-dependent limits, the pro-
gram will fail to link. The limits for vertex, tessellation control, tes-
sellation evaluation, geometry, fragment, and compute shaders can be ob-
tained by calling GetIntegerv with pname values of MAX_VERTEX_SHADER_-

STORAGE_BLOCKS, MAX_TESS_CONTROL_SHADER_STORAGE_BLOCKS, MAX_-

OpenGL ES 3.2 (November 3, 2016)

7.9. SAMPLERS 118

TESS_EVALUATION_SHADER_STORAGE_BLOCKS, MAX_GEOMETRY_SHADER_-

STORAGE_BLOCKS, MAX_FRAGMENT_SHADER_STORAGE_BLOCKS, and MAX_-

COMPUTE_SHADER_STORAGE_BLOCKS, respectively. Additionally, a program will
fail to link if the sum of the number of active shader storage blocks referenced by
each shader stage in a program exceeds the value of the implementation-dependent
limit MAX_COMBINED_SHADER_STORAGE_BLOCKS. If a shader storage block in a
program is referenced by multiple shaders, each such reference counts separately
against this combined limit.

When a named shader storage block is declared by multiple shaders in a pro-
gram, it must be declared identically in each shader. The buffer variables within
the block must be declared with the same names, types, qualification, and decla-
ration order. If a program contains multiple shaders with different declarations for
the same named shader storage block, the program will fail to link.

Regions of buffer objects are bound as storage for shader storage blocks by
calling one of the BindBuffer* commands (see section 6) with target SHADER_-
STORAGE_BUFFER.

Each of a program’s active shader storage blocks has a corresponding shader
storage buffer object binding point. When a program object is linked, the shader
storage buffer object binding point assigned to each of its active shader storage
blocks is reset to the value specified by the corresponding binding layout qual-
ifier, if present, or zero otherwise. It is not possible to change the binding point
associated with a shader storage block after a program is linked.

When executing shaders that access shader storage blocks, the binding point
corresponding to each active shader storage block must be populated with a buffer
object with a size no smaller than the minimum required size of the shader storage
block (the value of BUFFER_SIZE for the appropriate SHADER_STORAGE_BUFFER
resource). For binding points populated by BindBufferRange, the size in question
is the value of the size parameter or the size of the buffer minus the value of the
offset parameter, whichever is smaller. If any active shader storage block is not
backed by a sufficiently large buffer object, the results of shader execution may be
undefined or modified, as described in section 6.4.

7.9 Samplers

Samplers are special uniforms used in the OpenGL ES Shading Language to iden-
tify the texture object used for each texture lookup. The value of a sampler in-
dicates the texture image unit being accessed. Setting a sampler’s value to i
selects texture image unit number i. The values of i ranges from zero to the
implementation-dependent maximum supported number of texture image units mi-

OpenGL ES 3.2 (November 3, 2016)

7.10. IMAGES 119

nus one.
The type of the sampler identifies the target on the texture image unit, as shown

in table 7.3 for sampler* types. The texture object bound to that texture image
unit’s target is then used for the texture lookup. For example, a variable of type
sampler2D selects target TEXTURE_2D on its texture image unit. Binding of tex-
ture objects to targets is done as usual with BindTexture. Selecting the texture
image unit to bind to is done as usual with ActiveTexture.

The location of a sampler is queried with GetUniformLocation, just like any
uniform variable. Sampler values must be set by calling Uniform1i{v}.

Errors

It is not allowed to have variables of different sampler types pointing to
the same texture image unit within a program object. This situation can only
be detected at the next rendering command issued which triggers shader invo-
cations, and an INVALID_OPERATION error will then be generated.

Active samplers are samplers actually being used in a program object. The
LinkProgram command determines if a sampler is active or not. The LinkPro-
gram command will attempt to determine if the active samplers in the shader(s)
contained in the program object exceed the maximum allowable limits. If it deter-
mines that the count of active samplers exceeds the allowable limits, then the link
fails (these limits can be different for different types of shaders). Each active sam-
pler variable counts against the limit, even if multiple samplers refer to the same
texture image unit.

7.10 Images

Images are special uniforms used in the OpenGL ES Shading Language to identify
a level of a texture to be read or written using built-in image load, store or atomic
functions in the manner described in section 8.23. The value of an image uniform is
an integer specifying the image unit accessed. Image units are numbered beginning
at zero, and there is an implementation-dependent number of available image units
(the value of MAX_IMAGE_UNITS).

Note that image units used for image variables are independent of the texture
image units used for sampler variables; the number of units provided by the imple-
mentation may differ. Textures are bound independently and separately to image
and texture image units.

The type of an image variable must match the texture target of the image cur-
rently bound to the image unit, otherwise the result of a load, store or atomic op-

OpenGL ES 3.2 (November 3, 2016)

7.11. SHADER MEMORY ACCESS 120

eration is undefined (see section 4.1.7.2 of the OpenGL ES Shading Language
Specification for more details).

The location of an image variable is queried with GetUniformLocation, just
like any uniform variable.

There is a limit on the number of active image variables that may be used by a
program or by any particular shader.

7.11 Shader Memory Access

As described in the OpenGL ES Shading Language Specification, shaders may
perform random-access reads and writes to buffer object memory by reading from,
assigning to, or performing atomic memory operation on shader buffer variables,
or to texture or buffer object memory by using built-in image load, store or
atomic functions operating on shader image variables. The ability to perform such
random-access reads and writes in systems that may be highly pipelined results in
ordering and synchronization issues discussed in the sections below.

7.11.1 Shader Memory Access Ordering

The order in which texture or buffer object memory is read or written by shaders
is largely undefined. For some shader types (vertex, and in some cases, fragment),
even the number of shader invocations that might perform loads and stores is un-
defined.

In particular, the following rules apply:

• While a vertex or tessellation evaluation shader will be executed at least once
for each unique vertex specified by the application, (vertex shaders) or gener-
ated by the tessellation primitive generator (tessellation evaluation shaders),
it may be executed more than once for implementation-dependent reasons.
Additionally, if the same vertex is specified multiple times in a collection
of primitives (e.g., repeating an index in DrawElements), the vertex shader
might be run only once.

• For each fragment generated by the GL, the number of fragment shader in-
vocations depends on a number of factors. If the fragment fails the pixel
ownership test (see section 13.8.1), scissor test (see section 13.8.2), or is dis-
carded by any of the multisample fragment operations (see section 13.8.3),
the fragment shader will not be executed

OpenGL ES 3.2 (November 3, 2016)

7.11. SHADER MEMORY ACCESS 121

In addition, if early per-fragment tests are enabled (see section 13.8), the
fragment shader will not be executed if the fragment is discarded during the
early per-fragment tests, and a fragment may not be executed if the fragment
will never contribute to the framebuffer.

For example, if a fragment A written to a pixel or sample from primitive A
will be replaced by a fragment B written to a pixel or sample from primitive
B, then fragment A may not be executed even if primitive A is specified prior
to primitive B.

When fragment shaders are executed, the number of invocations per frag-
ment is exactly one when the framebuffer has no multisample buffer (the
value of SAMPLE_BUFFERS is zero). Otherwise, the number of invocations
is in the range [1, N] where N is the number of samples covered by the frag-
ment; if the fragment shader specifies per-sample shading, it will be invoked
exactly N times.

• If a fragment shader is invoked to process fragments or samples not covered
by a primitive being rasterized to facilitate the approximation of derivatives
for texture lookups, stores have no effect.

• The relative order of invocations of the same shader type are undefined. A
store issued by a shader when working on primitive B might complete prior
to a store for primitive A, even if primitive A is specified prior to primitive
B. This applies even to fragment shaders; while fragment shader outputs are
written to the framebuffer in primitive order, stores executed by fragment
shader invocations are not.

• The relative order of invocations of different shader types is undefined.

The above limitations on shader invocation order also make some forms of
synchronization between shader invocations within a single set of primitives unim-
plementable. For example, having one invocation poll memory written by another
invocation assumes that the other invocation has been launched and can complete
its writes.

Stores issued to different memory locations within a single shader invocation
may not be visible to other invocations in the order they were performed. The built-
in function memoryBarrier may be used to provide stronger ordering of reads
and writes performed by a single invocation. Calling memoryBarrier guarantees
that any memory transactions issued by the shader invocation prior to the call com-
plete prior to the memory transactions issued after the call. Memory barriers may
be needed for algorithms that require multiple invocations to access the same mem-
ory and require the operations need to be performed in a partially-defined relative

OpenGL ES 3.2 (November 3, 2016)

7.11. SHADER MEMORY ACCESS 122

order. For example, if one shader invocation does a series of writes, followed by a
memoryBarrier call, followed by another write, then another invocation that sees
the results of the final write will also see the previous writes. Without the memory
barrier, the final write may be visible before the previous writes.

The built-in atomic memory transaction functions may be used to read and
write a given memory address atomically. While built-in atomic functions issued
by multiple shader invocations are executed in undefined order relative to each
other, these functions perform both a read and a write of a memory address and
guarantee that no other memory transaction will write to the underlying memory
between the read and write. Atomics allow shaders to use shared global addresses
for mutual exclusion or as counters, among other uses.

7.11.2 Shader Memory Access Synchronization

Data written to textures or buffer objects by a shader invocation may eventually be
read by other shader invocations, sourced by other fixed pipeline stages, or read
back by the application. When data is written using API commands such as Tex-
SubImage* or BufferSubData, the GL implementation knows when and where
writes occur and can perform implicit synchronization to ensure that operations re-
quested before the update see the original data and that subsequent operations see
the modified data. Without logic to track the target address of each shader instruc-
tion performing a store, automatic synchronization of stores performed by a shader
invocation would require the GL implementation to make worst-case assumptions
at significant performance cost. To permit cases where textures or buffers may
be read or written in different pipeline stages without the overhead of automatic
synchronization, buffer object and texture stores performed by shaders are not au-
tomatically synchronized with other GL operations using the same memory.

Explicit synchronization is required to ensure that the effects of buffer and tex-
ture data stores performed by shaders will be visible to subsequent operations using
the same objects and will not overwrite data still to be read by previously requested
operations. Without manual synchronization, shader stores for a “new” primitive
may complete before processing of an “old” primitive completes. Additionally,
stores for an “old” primitive might not be completed before processing of a “new”
primitive starts. The command

void MemoryBarrier(bitfield barriers);

defines a barrier ordering the memory transactions issued prior to the command
relative to those issued after the barrier. For the purposes of this ordering, memory
transactions performed by shaders are considered to be issued by the rendering

OpenGL ES 3.2 (November 3, 2016)

7.11. SHADER MEMORY ACCESS 123

command that triggered the execution of the shader. barriers is a bitfield indicating
the set of operations that are synchronized with shader stores; the bits used in
barriers are as follows:

• VERTEX_ATTRIB_ARRAY_BARRIER_BIT: If set, vertex data sourced from
buffer objects after the barrier will reflect data written by shaders prior to
the barrier. The set of buffer objects affected by this bit is derived from the
buffer object bindings used for arrays of generic vertex attributes (VERTEX_-
ATTRIB_ARRAY_BUFFER bindings).

• ELEMENT_ARRAY_BARRIER_BIT: If set, vertex array indices sourced from
buffer objects after the barrier will reflect data written by shaders prior to
the barrier. The buffer objects affected by this bit are derived from the
ELEMENT_ARRAY_BUFFER binding.

• UNIFORM_BARRIER_BIT: Shader uniforms sourced from buffer objects af-
ter the barrier will reflect data written by shaders prior to the barrier.

• TEXTURE_FETCH_BARRIER_BIT: Texture fetches from shaders, including
fetches from buffer object memory via buffer textures, after the barrier will
reflect data written by shaders prior to the barrier.

• SHADER_IMAGE_ACCESS_BARRIER_BIT: Memory accesses using shader
built-in image load and store functions issued after the barrier will reflect
data written by shaders prior to the barrier. Additionally, image stores is-
sued after the barrier will not execute until all memory accesses (e.g., loads,
stores, texture fetches, vertex fetches) initiated prior to the barrier complete.

• COMMAND_BARRIER_BIT: Command data sourced from buffer objects by
Draw*Indirect and DispatchComputeIndirect commands after the bar-
rier will reflect data written by shaders prior to the barrier. The buffer ob-
jects affected by this bit are derived from the DRAW_INDIRECT_BUFFER and
DISPATCH_INDIRECT_BUFFER bindings.

• PIXEL_BUFFER_BARRIER_BIT: Reads/writes of buffer objects via the
PIXEL_PACK_BUFFER and PIXEL_UNPACK_BUFFER bindings (ReadPix-
els, TexSubImage, etc.) after the barrier will reflect data written by shaders
prior to the barrier. Additionally, buffer object writes issued after the barrier
will wait on the completion of all shader writes initiated prior to the barrier.

• TEXTURE_UPDATE_BARRIER_BIT: Writes to
a texture via Tex(Sub)Image*, CopyTex*, or CompressedTex* after the

OpenGL ES 3.2 (November 3, 2016)

7.11. SHADER MEMORY ACCESS 124

barrier will reflect data written by shaders prior to the barrier. Additionally,
texture writes from these commands issued after the barrier will not execute
until all shader writes initiated prior to the barrier complete.

• BUFFER_UPDATE_BARRIER_BIT: Reads and writes to buffer object mem-
ory after the barrier using the commands in sections 6.2, 6.3, and 6.5 will
reflect data written by shaders prior to the barrier. Additionally, writes via
these commands issued after the barrier will wait on the completion of any
shader writes to the same memory initiated prior to the barrier.

• FRAMEBUFFER_BARRIER_BIT: Reads and writes via framebuffer object at-
tachments after the barrier will reflect data written by shaders prior to the
barrier. Additionally, framebuffer writes issued after the barrier will wait on
the completion of all shader writes issued prior to the barrier.

• TRANSFORM_FEEDBACK_BARRIER_BIT: Writes via transform feedback
bindings after the barrier will reflect data written by shaders prior to the
barrier. Additionally, transform feedback writes issued after the barrier will
wait on the completion of all shader writes issued prior to the barrier.

• ATOMIC_COUNTER_BARRIER_BIT: Accesses to atomic counters after the
barrier will reflect writes prior to the barrier.

• SHADER_STORAGE_BARRIER_BIT: Memory accesses using shader buffer
variables issued after the barrier will reflect data written by shaders prior to
the barrier. Additionally, assignments to and atomic operations performed
on shader buffer variables after the barrier will not execute until all memory
accesses (e.g., loads, stores, texture fetches, vertex fetches) initiated prior to
the barrier complete.

If barriers is ALL_BARRIER_BITS, shader memory accesses will be synchro-
nized relative to all the operations described above.

Errors

An INVALID_VALUE error is generated if barriers is not the special value
ALL_BARRIER_BITS, and has any bits set other than those described above.

Implementations may cache buffer object or texture image memory that could
be written by shaders in multiple caches; for example, there may be separate caches
for texture, vertex fetching, and one or more caches for shader memory accesses.
Implementations are not required to keep these caches coherent with shader mem-
ory writes. Stores issued by one invocation may not be immediately observable

OpenGL ES 3.2 (November 3, 2016)

7.11. SHADER MEMORY ACCESS 125

by other pipeline stages or other shader invocations because the value stored may
remain in a cache local to the processor executing the store, or because data over-
written by the store is still in a cache elsewhere in the system. When Memo-
ryBarrier is called, the GL flushes and/or invalidates any caches relevant to the
operations specified by the barriers parameter to ensure consistent ordering of op-
erations across the barrier.

To allow for independent shader invocations to communicate by reads and
writes to a common memory address, image variables in the OpenGL ES Shading
Language may be declared as coherent. Buffer object or texture image memory
accessed through such variables may be cached only if caches are automatically
updated due to stores issued by any other shader invocation. If the same address
is accessed using both coherent and non-coherent variables, the accesses using
variables declared as coherent will observe the results stored using coherent vari-
ables in other invocations. Using variables declared as coherent guarantees only
that the results of stores will be immediately visible to shader invocations using
similarly-declared variables; calling MemoryBarrier is required to ensure that the
stores are visible to other operations.

The following guidelines may be helpful in choosing when to use coherent
memory accesses and when to use barriers.

• Data that are read-only or constant may be accessed without using coher-
ent variables or calling MemoryBarrier. Updates to the read-only data via
commands such as BufferSubData will invalidate shader caches implicitly
as required.

• Data that are shared between shader invocations at a fine granularity (e.g.,
written by one invocation, consumed by another invocation) should use co-
herent variables to read and write the shared data.

• Data written to image variables in one rendering pass and read by the shader
in a later pass need not use coherent variables or memoryBarrier. Calling
MemoryBarrier with the SHADER_IMAGE_ACCESS_BARRIER_BIT set in
barriers between passes is necessary.

• Data written by the shader in one rendering pass and read by another mech-
anism (e.g., vertex or index buffer pulling) in a later pass need not use co-
herent variables or memoryBarrier. Calling MemoryBarrier with the ap-
propriate bits set in barriers between passes is necessary.

The command

void MemoryBarrierByRegion(bitfield barriers);

OpenGL ES 3.2 (November 3, 2016)

7.12. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 126

behave as described above for MemoryBarrier, with two differences:
First, it narrows the region under consideration so that only reads/writes of

prior fragment shaders that are invoked for a smaller region of the framebuffer
will be completed/reflected prior to subsequent reads/write of following fragment
shaders. The size of the region is implementation dependent and may be as small
as one framebuffer pixel.

Second, it only applies to memory transactions that may be read by or written
by a fragment shader. Therefore, only the barrier bits

• ATOMIC_COUNTER_BARRIER_BIT

• FRAMEBUFFER_BARRIER_BIT

• SHADER_IMAGE_ACCESS_BARRIER_BIT

• SHADER_STORAGE_BARRIER_BIT

• TEXTURE_FETCH_BARRIER_BIT

• UNIFORM_BARRIER_BIT

are supported.
When barriers is ALL_BARRIER_BITS, shader memory accesses will be syn-

chronized relative to all these barrier bits, but not to other barrier bits specific to
MemoryBarrier.

This implies that reads/writes for scatter/gather-like algorithms may or may not
be completed/reflected after a MemoryBarrierByRegion command. However, for
uses such as deferred shading, where a linked list of visible surfaces with the head
at a framebuffer address may be constructed, and the entirety of the list is only
dependent on previous executions at that framebuffer address, MemoryBarrier-
ByRegion may be significantly more efficient than MemoryBarrier.

Errors

An INVALID_VALUE error is generated if barriers is not the special value
ALL_BARRIER_BITS, and has any bits set other than those described above.

7.12 Shader, Program, and Program Pipeline Queries

The command

void GetShaderiv(uint shader, enum pname, int *params);

OpenGL ES 3.2 (November 3, 2016)

7.12. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 127

returns properties of the shader object named shader in params. The parameter
value to return is specified by pname.

If pname is SHADER_TYPE, one of the values from table 7.1 corresponding to
the type of shader is returned.

If pname is DELETE_STATUS, TRUE is returned if the shader has been flagged
for deletion and FALSE is returned otherwise.

If pname is COMPILE_STATUS, TRUE is returned if the shader was last com-
piled successfully, and FALSE is returned otherwise.

If pname is INFO_LOG_LENGTH, the length of the info log, including a null
terminator, is returned. If there is no info log, zero is returned.

If pname is SHADER_SOURCE_LENGTH, the length of the concatenation of the
source strings making up the shader source, including a null terminator, is returned.
If no source has been defined, zero is returned.

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_ENUM error is generated if pname is not SHADER_TYPE,
DELETE_STATUS, COMPILE_STATUS, INFO_LOG_LENGTH, or SHADER_-

SOURCE_LENGTH.

The command

void GetProgramiv(uint program, enum pname,
int *params);

returns properties of the program object named program in params. The parameter
value to return is specified by pname.

Most properties set within program objects are specified not to take effect until
the next call to LinkProgram or ProgramBinary. Some properties further require
a successful call to either of these commands before taking effect. GetProgramiv
returns the properties currently in effect for program, which may differ from the
properties set within program since the most recent call to LinkProgram or Pro-
gramBinary, which have not yet taken effect. If there has been no such call putting
changes to pname into effect, initial values are returned.

If pname is DELETE_STATUS, TRUE is returned if the program has been flagged
for deletion, and FALSE is returned otherwise.

OpenGL ES 3.2 (November 3, 2016)

7.12. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 128

If pname is LINK_STATUS, TRUE is returned if the program was last linked
successfully, and FALSE is returned otherwise.

If pname is VALIDATE_STATUS, TRUE is returned if the last call to Vali-
dateProgram (see section 11.1.3.11) with program was successful, and FALSE

is returned otherwise.
If pname is INFO_LOG_LENGTH, the length of the info log, including a null

terminator, is returned. If there is no info log, zero is returned.
If pname is ATTACHED_SHADERS, the number of objects attached is returned.
If pname is ACTIVE_ATTRIBUTES, the number of active attributes (see sec-

tion 7.3.1) in program is returned. If no active attributes exist, zero is returned.
If pname is ACTIVE_ATTRIBUTE_MAX_LENGTH, the length of the longest ac-

tive attribute name, including a null terminator, is returned. If no active attributes
exist, zero is returned.

If pname is ACTIVE_UNIFORMS, the number of active uniforms is returned. If
no active uniforms exist, zero is returned.

If pname is ACTIVE_UNIFORM_MAX_LENGTH, the length of the longest active
uniform name, including a null terminator, is returned. If no active uniforms exist,
zero is returned.

If pname is TRANSFORM_FEEDBACK_BUFFER_MODE, the buffer mode used
when transform feedback (see section 11.1.2.1) is active is returned. It can be
one of SEPARATE_ATTRIBS or INTERLEAVED_ATTRIBS.

If pname is TRANSFORM_FEEDBACK_VARYINGS, the number of output vari-
ables to capture in transform feedback mode for the program is returned.

If pname is TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH, the length of
the longest output variable name specified to be used for transform feedback, in-
cluding a null terminator, is returned. If no outputs are used for transform feedback,
zero is returned.

If pname is ACTIVE_UNIFORM_BLOCKS, the number of uniform blocks for
program containing active uniforms is returned.

If pname is ACTIVE_UNIFORM_BLOCK_MAX_NAME_LENGTH, the length of the
longest active uniform block name, including the null terminator, is returned.

If pname is GEOMETRY_VERTICES_OUT, the maximum number of vertices the
geometry shader (see section 11.3) will output is returned.

If pname is GEOMETRY_INPUT_TYPE, the geometry shader input type,
which must be one of POINTS, LINES, LINES_ADJACENCY, TRIANGLES or
TRIANGLES_ADJACENCY, is returned.

If pname is GEOMETRY_OUTPUT_TYPE, the geometry shader output type,
which must be one of POINTS, LINE_STRIP or TRIANGLE_STRIP, is returned.

If pname is GEOMETRY_SHADER_INVOCATIONS, the number of geometry
shader invocations per primitive will be returned.

OpenGL ES 3.2 (November 3, 2016)

7.12. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 129

If pname is TESS_CONTROL_OUTPUT_VERTICES, the number of vertices in
the tessellation control shader (see section 11.2.1) output patch is returned.

If pname is TESS_GEN_MODE, QUADS, TRIANGLES, or ISOLINES is returned,
depending on the primitive mode declaration in the tessellation evaluation shader
(see section 11.2.3).

If pname is TESS_GEN_SPACING, EQUAL, FRACTIONAL_EVEN, or
FRACTIONAL_ODD is returned, depending on the spacing declaration in the
tessellation evaluation shader.

If pname is TESS_GEN_VERTEX_ORDER, CCW or CW is returned, depending on
the vertex order declaration in the tessellation evaluation shader.

If pname is TESS_GEN_POINT_MODE, TRUE is returned if point mode is en-
abled in a tessellation evaluation shader declaration; FALSE is returned otherwise.

If pname is COMPUTE_WORK_GROUP_SIZE, an array of three integers contain-
ing the local work group size of the compute program (see chapter 17), as specified
by its input layout qualifier(s), is returned

If pname is PROGRAM_SEPARABLE, TRUE is returned if the program has been
flagged for use as a separable program object that can be bound to individual shader
stages with UseProgramStages.

If pname is PROGRAM_BINARY_RETRIEVABLE_HINT, the value of whether
the binary retrieval hint is enabled for program is returned.

If pname is ACTIVE_ATOMIC_COUNTER_BUFFERS, the number of active
atomic counter buffers used by program is returned.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_ENUM error is generated if pname is not one of the values
listed above.

An INVALID_OPERATION error is generated if GEOMETRY_VERTICES_-
OUT, GEOMETRY_INPUT_TYPE, GEOMETRY_OUTPUT_TYPE, or GEOMETRY_-
SHADER_INVOCATIONS are queried for a program which has not been linked
successfully, or which does not contain objects to form a geometry shader.

An INVALID_OPERATION error is generated if TESS_CONTROL_-

OUTPUT_VERTICES is queried for a program which has not been linked suc-
cessfully, or which does not contain objects to form a tessellation control
shader.

OpenGL ES 3.2 (November 3, 2016)

7.12. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 130

An INVALID_OPERATION error is generated if TESS_GEN_MODE,
TESS_GEN_SPACING, TESS_GEN_VERTEX_ORDER, or TESS_GEN_POINT_-
MODE are queried for a program which has not been linked successfully, or
which does not contain objects to form a tessellation evaluation shader,

An INVALID_OPERATION error is generated if COMPUTE_WORK_-

GROUP_SIZE is queried for a program which has not been linked successfully,
or which does not contain objects to form a compute shader,

The command

void GetProgramPipelineiv(uint pipeline, enum pname,
int *params);

returns properties of the program pipeline object named pipeline in params. The
parameter value to return is specified by pname.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

If pname is ACTIVE_PROGRAM, the name of the active program object (used
for uniform updates) of pipeline is returned.

If pname is one of the shader stage type arguments in table 7.1, the name of the
program object current for the corresponding shader stage of pipeline returned.

If pname is VALIDATE_STATUS, the validation status of pipeline, as deter-
mined by ValidateProgramPipeline (see section 11.1.3.11) is returned.

If pname is INFO_LOG_LENGTH, the length of the info log for pipeline, includ-
ing a null terminator, is returned. If there is no info log, zero is returned.

Errors

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines.

An INVALID_ENUM error is generated if pname is not ACTIVE_PROGRAM,
INFO_LOG_LENGTH, VALIDATE_STATUS, or one of the type arguments in
table 7.1.

The command

void GetAttachedShaders(uint program, sizei maxCount,
sizei *count, uint *shaders);

OpenGL ES 3.2 (November 3, 2016)

7.12. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 131

returns the names of shader objects attached to program in shaders. The actual
number of shader names written into shaders is returned in count. If no shaders are
attached, count is set to zero. If count is NULL then it is ignored. The maximum
number of shader names that may be written into shaders is specified by maxCount.
The number of objects attached to program is given by can be queried by calling
GetProgramiv with ATTACHED_SHADERS.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if maxCount is negative.

A string that contains information about the last compilation attempt on a
shader object, last link or validation attempt on a program object, or last valida-
tion attempt on a program pipeline object, called the info log, can be obtained with
the commands

void GetShaderInfoLog(uint shader, sizei bufSize,
sizei *length, char *infoLog);

void GetProgramInfoLog(uint program, sizei bufSize,
sizei *length, char *infoLog);

void GetProgramPipelineInfoLog(uint pipeline,
sizei bufSize, sizei *length, char *infoLog);

These commands return an info log string for the corresponding type of object
in infoLog. This string will be null-terminated. The actual number of characters
written into infoLog, excluding the null terminator, is returned in length. If length
is NULL, then no length is returned. The maximum number of characters that may
be written into infoLog, including the null terminator, is specified by bufSize. The
number of characters in the info log for a shader object, program object, or program
pipeline object can be queried respectively with GetShaderiv, GetProgramiv, or
GetProgramPipelineiv with pname INFO_LOG_LENGTH.

If shader is a shader object, GetShaderInfoLog will return either an empty
string or information about the last compilation attempt for that object.

If program is a program object, GetProgramInfoLog will return either an
empty string or information about the last link attempt or last validation attempt
(see section 11.1.3.11) for that object.

OpenGL ES 3.2 (November 3, 2016)

7.12. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 132

If pipeline is a program pipeline object, GetProgramPipelineInfoLog will
return either an empty string or information about the last validation attempt for
that object.

The info log is typically only useful during application development and an
application should not expect different GL implementations to produce identical
info logs.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

An INVALID_VALUE error is generated if pipeline is not the name of an
existing program pipeline object.

An INVALID_VALUE error is generated if bufSize is negative.

The command

void GetShaderSource(uint shader, sizei bufSize,
sizei *length, char *source);

returns in source the string making up the source code for the shader object shader.
The string source will be null-terminated. The actual number of characters written
into source, excluding the null terminator, is returned in length. If length is NULL,
no length is returned. The maximum number of characters that may be written into
source, including the null terminator, is specified by bufSize. The string source is
a concatenation of the strings passed to the GL using ShaderSource. The length
of this concatenation is given by SHADER_SOURCE_LENGTH, which can be queried
with GetShaderiv.

Errors

An INVALID_VALUE error is generated if shader is not the name of either
a program or shader object.

An INVALID_OPERATION error is generated if shader is the name of a
program object.

OpenGL ES 3.2 (November 3, 2016)

7.12. SHADER, PROGRAM, AND PROGRAM PIPELINE QUERIES 133

An INVALID_VALUE error is generated if bufSize is negative.

The command

void GetShaderPrecisionFormat(enum shadertype,
enum precisiontype, int *range, int *precision);

returns the range and precision for different numeric formats supported by the
shader compiler. shadertype must be VERTEX_SHADER or FRAGMENT_SHADER.
precisiontype must be one of LOW_FLOAT, MEDIUM_FLOAT, HIGH_FLOAT, LOW_-
INT, MEDIUM_INT or HIGH_INT. range points to an array of two integers in which
encodings of the format’s numeric range are returned. If min and max are the
smallest and largest values representable in the format, then the values returned are
defined to be

range[0] = blog2(|min|)c

range[1] = blog2(|max|)c

precision points to an integer in which the log2 value of the number of bits of
precision of the format is returned. If the smallest representable value greater than
1 is 1 + ε, then *precision will contain b−log2(ε)c, and every value in the range

[−2range[0], 2range[1]]

can be represented to at least one part in 2∗precision. For example, an IEEE single-
precision floating-point format would return range[0] = 127, range[1] = 127,
and ∗precision = 23, while a 32-bit two’s-complement integer format would re-
turn range[0] = 31, range[1] = 30, and ∗precision = 0.

The minimum required precision and range for formats corresponding to the
different values of precisiontype are described in section 4.5 (“Precision and Pre-
cision Qualifiers”) of the OpenGL ES Shading Language Specification.

Errors

An INVALID_ENUM error is generated if shadertype is not VERTEX_-
SHADER or FRAGMENT_SHADER.

The commands

void GetUniformfv(uint program, int location,
float *params);

OpenGL ES 3.2 (November 3, 2016)

7.13. REQUIRED STATE 134

void GetUniformiv(uint program, int location,
int *params);

void GetUniformuiv(uint program, int location,
uint *params);

void GetnUniformfv(uint program, int location,
sizei bufSize, float *params);

void GetnUniformiv(uint program, int location,
sizei bufSize, int *params);

void GetnUniformuiv(uint program, int location,
sizei bufSize, uint *params);

return the value or values of the uniform at location location of the default uniform
block for program object program in the array params. The type of the uniform at
location determines the number of values returned.

In order to query the values of an array of uniforms, a GetUniform* command
needs to be issued for each array element. If the uniform queried is a matrix, the
values of the matrix are returned in column major order.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated if program has not been
linked successfully, or if location is not a valid location for program.

An INVALID_OPERATION error is generated by GetnUniform* if the
buffer size required to store the requested data is greater than bufSize.

7.13 Required State

The GL maintains state to indicate which shader and program object names are in
use. Initially, no shader or program objects exist, and no names are in use.

The state required per shader object consists of:

• An unsigned integer specifying the shader object name.

• An integer holding the value of SHADER_TYPE.

• A boolean holding the delete status, initially FALSE.

OpenGL ES 3.2 (November 3, 2016)

7.13. REQUIRED STATE 135

• A boolean holding the status of the last compile, initially FALSE.

• An array of type char containing the information log, initially empty.

• An integer holding the length of the information log.

• An array of type char containing the concatenated shader string, initially
empty.

• An integer holding the length of the concatenated shader string.

The state required per program object consists of:

• An unsigned integer indicating the program object name.

• A boolean holding the delete status, initially FALSE.

• A boolean holding the status of the last link attempt, initially FALSE.

• A boolean holding the status of the last validation attempt, initially FALSE.

• An integer holding the number of attached shader objects.

• A list of unsigned integers to keep track of the names of the shader objects
attached.

• An array of type char containing the information log, initially empty.

• An integer holding the length of the information log.

• An integer holding the number of active uniforms.

• For each active uniform, three integers, holding its location, size, and type,
and an array of type char holding its name.

• An array holding the values of each active uniform.

• An integer holding the number of active attributes.

• For each active attribute, three integers holding its location, size, and type,
and an array of type char holding its name.

• A boolean holding the hint to the retrievability of the program binary, ini-
tially FALSE.

Additional state required to support transform feedback consists of:

OpenGL ES 3.2 (November 3, 2016)

7.13. REQUIRED STATE 136

• An integer holding the transform feedback mode, initially INTERLEAVED_-
ATTRIBS.

• An integer holding the number of outputs to be captured, initially zero.

• An integer holding the length of the longest output name being captured,
initially zero.

• For each output being captured, two integers holding its size and type, and
an array of type char holding its name.

Additionally, one unsigned integer is required to hold the name of the current pro-
gram object, if any.

This list of program object state is not complete. Tables 21.21-21.29 describe
additional program object state specific to program binaries, geometry shaders,
tessellation control and evaluation shaders, and uniform blocks.

Table 21.30 describes state related to vertex and geometry shaders that is not
program object state.

OpenGL ES 3.2 (November 3, 2016)

Chapter 8

Textures and Samplers

Texturing maps a portion of one or more specified images onto a fragment or ver-
tex. This mapping is accomplished in shaders by sampling the color of an image
at the location indicated by specified (s, t, r) texture coordinates. Texture lookups
are typically used to modify a fragment’s RGBA color but may be used for any
purpose in a shader.

This chapter first describes how pixel rectangles, texture images, and texture
and sampler object parameters are specified and queried, in sections 8.1-8.11. The
remainder of the chapter in sections 8.12-8.23 describe how texture sampling is
performed in shaders.

The internal data type of a texture may be signed or unsigned normalized fixed-
point, signed or unsigned integer, or floating-point, depending on the internal for-
mat of the texture. The correspondence between the internal format and the internal
data type is given in tables 8.10-8.11. Fixed-point and floating-point textures return
a floating-point value and integer textures return signed or unsigned integer values.
The fragment shader is responsible for interpreting the result of a texture lookup as
the correct data type, otherwise the result is undefined.

Each of the supported types of texture is a collection of texture images built
from two-or three-dimensional arrays of texels (see section 2.6.6). Two- and three-
dimensional textures consist respectively of two-or three-dimensional texture im-
ages. Two-dimensional array textures are arrays of two-dimensional images. Each
image consists of one or more layers. Two-dimensional multisample textures are
special two-dimensional textures containing multiple samples in each texel. Cube
maps are special two-dimensional array textures with six layers that represent the
faces of a cube. When accessing a cube map, the texture coordinates are projected
onto one of the six faces of the cube. A cube map array is a collection of cube
map layers stored as a two-dimensional array texture. When accessing a cube map

137

8.1. TEXTURE OBJECTS 138

array, the texture coordinates s, t, and r are applied similarly as cube maps while
the last texture coordinate q is used as the index of one of the cube map slices.
Buffer textures are special one-dimensional textures whose texel arrays are stored
in separate buffer objects.

Implementations must support texturing using multiple images.
The following subsections (up to and including section 8.14) specify the GL

operation with a single texture. Multiple texture images may be sampled and com-
bined by shaders as described in section 11.1.3.5.

The coordinates used for texturing in a fragment shader are defined by the
OpenGL ES Shading Language Specification.

The command

void ActiveTexture(enum texture);

specifies the active texture unit selector. The selector may be queried by calling
GetIntegerv with pname set to ACTIVE_TEXTURE.

Each texture image unit consists of all the texture state defined in chapter 8.
The active texture unit selector selects the texture image unit accessed by com-

mands involving texture image processing. Such commands include TexParame-
ter, TexImage, BindTexture, and queries of all such state.

Errors

An INVALID_ENUM error is generated if an invalid texture is specified.
texture is a symbolic constant of the form TEXTUREi, indicating that texture
unit i is to be modified. Each TEXTUREi adheres to TEXTUREi = TEXTURE0 +
i, where i is in the range zero to k−1, and k is the value of MAX_COMBINED_-
TEXTURE_IMAGE_UNITS)a.

a The OpenGL ES header file only defines symbolic constants TEXTURE0 through
TEXTURE31. Applications accessing more than 32 texture image units must use the
TEXTURE0 + i approach rather than an explicit symbolic constant.

The state required for the active texture image unit selector is a single integer.
The initial value is TEXTURE0.

8.1 Texture Objects

Textures in GL are represented by named objects. The name space for texture ob-
jects is the unsigned integers, with zero reserved by the GL to represent the default
texture object. The default texture object is bound to each of the TEXTURE_2D,

OpenGL ES 3.2 (November 3, 2016)

8.1. TEXTURE OBJECTS 139

TEXTURE_3D, TEXTURE_2D_ARRAY, TEXTURE_BUFFER, TEXTURE_CUBE_MAP,
TEXTURE_CUBE_MAP_ARRAY, TEXTURE_2D_MULTISAMPLE, and TEXTURE_-

2D_MULTISAMPLE_ARRAY targets during context initialization.
A new texture object is created by binding an unused name to one of these

texture targets. The command

void GenTextures(sizei n, uint *textures);;

returns n previously unused texture names in textures. These names are marked as
used, for the purposes of GenTextures only, but they acquire texture state and a
dimensionality only when they are first bound, just as if they were unused.

Errors

An INVALID_VALUE error is generated if n is negative.

The binding is effected by calling

void BindTexture(enum target, uint texture);

with target set to the desired texture target and texture set to the unused name. The
resulting texture object is a new state vector, comprising all the state and with the
same initial values listed in section 8.19 The new texture object bound to target is,
and remains a texture of the dimensionality and type specified by target until it is
deleted.

BindTexture may also be used to bind an existing texture object to any of these
targets. If the bind is successful no change is made to the state of the bound texture
object, and any previous binding to target is broken.

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return
state from the bound object. If texture mapping of the dimensionality of the target
to which a texture object is bound is enabled, the state of the bound texture object
directs the texturing operation.

Errors

An INVALID_ENUM error is generated if target is not one of the texture
targets described in the introduction to section 8.1.

An INVALID_OPERATION error is generated if an attempt is made to bind
a texture object of different dimensionality than the specified target.

Texture objects are deleted by calling

OpenGL ES 3.2 (November 3, 2016)

8.2. SAMPLER OBJECTS 140

void DeleteTextures(sizei n, const uint *textures);

textures contains n names of texture objects to be deleted. After a texture object
is deleted, it has no contents or dimensionality, and its name is again unused. If
a texture that is currently bound to any of the target bindings of BindTexture is
deleted, it is as though BindTexture had been executed with the same target and
texture zero. Additionally, special care must be taken when deleting a texture if any
of the images of the texture are attached to a framebuffer object. See section 9.2.8
for details.

Unused names in textures that have been marked as used for the purposes of
GenTextures are marked as unused again. Unused names in textures are silently
ignored, as is the name zero.

Errors

An INVALID_VALUE error is generated if n is negative.

The command

boolean IsTexture(uint texture);

returns TRUE if texture is the name of a texture object. If texture is zero, or is a non-
zero value that is not the name of a texture object, or if an error condition occurs,
IsTexture returns FALSE.

The texture object name space, including the initial two- and three- dimen-
sional, two-dimensional array, buffer, cube map, cube map array, two-dimensional
multisample, and two-dimensional multisample array texture objects, is shared
among all texture units. A texture object may be bound to more than one tex-
ture unit simultaneously. After a texture object is bound, any GL operations on
that target object affect any other texture units to which the same texture object is
bound.

Texture binding is affected by the setting of the state ACTIVE_TEXTURE. If a
texture object is deleted, it as if all texture units which are bound to that texture
object are rebound to texture object zero.

8.2 Sampler Objects

The state necessary for texturing can be divided into two categories as described
in section 8.19. A GL texture object includes both categories. The first category
represents dimensionality and other image parameters, and the second category

OpenGL ES 3.2 (November 3, 2016)

8.2. SAMPLER OBJECTS 141

represents sampling state. Additionally, a sampler object may be created to encap-
sulate only the second category - the sampling state – of a texture object.

A new sampler object is created by binding an unused name to a texture unit.
The command

void GenSamplers(sizei count, uint *samplers);

returns count previously unused sampler object names in samplers. The name zero
is reserved by the GL to represent no sampler being bound to a sampler unit. The
names are marked as used, for the purposes of GenSamplers only, but they acquire
state only when they are first used as a parameter to BindSampler, SamplerPa-
rameter*, GetSamplerParameter*, or IsSampler. When a sampler object is first
used in one of these functions, the resulting sampler object is initialized with a
new state vector, comprising all the state and with the same initial values listed in
table 21.121.

Errors

An INVALID_VALUE error is generated if count is negative.

When a sampler object is bound to a texture unit, its state supersedes that of
the texture object bound to that texture unit. If the sampler name zero is bound to
a texture unit, the currently bound texture’s sampler state becomes active. A single
sampler object may be bound to multiple texture units simultaneously.

A sampler object binding is effected with the command

void BindSampler(uint unit, uint sampler);

with unit set to the zero-based index of the texture unit to which to bind the sampler
and sampler set to the name of a sampler object returned from a previous call to
GenSamplers.

If the bind is successful no change is made to the state of the bound sampler
object, and any previous binding to unit is broken.

The currently bound sampler may be queried by calling GetIntegerv with
pname set to SAMPLER_BINDING. When a sampler object is unbound from the
texture unit (by binding another sampler object, or the sampler object named zero,
to that texture unit) the modified state is again replaced with the sampler state as-
sociated with the texture object bound to that texture unit.

1 Note that unlike texture objects, the initial sampler object state for TEXTURE_MIN_-
FILTER and TEXTURE_WRAP_* are fixed, rather than dependent on the type of texture image.

OpenGL ES 3.2 (November 3, 2016)

8.2. SAMPLER OBJECTS 142

Errors

An INVALID_VALUE error is generated if unit is greater than or equal to
the value of MAX_COMBINED_TEXTURE_IMAGE_UNITS.

An INVALID_OPERATION error is generated if sampler is not zero or a
name returned from a previous call to GenSamplers, or if such a name has
since been deleted with DeleteSamplers.

The parameters represented by a sampler object are a subset of those described
in section 8.10. Each parameter of a sampler object is set by calling

void SamplerParameter{if}(uint sampler, enum pname,
T param);

void SamplerParameter{if}v(uint sampler, enum pname,
const T *params);

void SamplerParameterI{i ui}v(uint sampler, enum pname,
const T *params);

sampler is the name of a sampler object previously reserved by a call to GenSam-
plers. pname is the name of a parameter to modify, and must be one of the sampler
state names in table 21.12. In the scalar forms of the command, param is a value
to which to set a single-valued parameter; in the vector forms, params is an array
of parameters whose type depends on the parameter being set.

Texture state listed in table 21.11 but not listed here and in the sampler state in
table 21.12 is not part of the sampler state, and remains in the texture object.

Data conversions are performed as specified in section 2.2.1, with these excep-
tions:

• If the values for TEXTURE_BORDER_COLOR are specified with SamplerPa-
rameterIiv or SamplerParameterIuiv, they are unmodified and stored with
an internal data type of integer. If specified with SamplerParameteriv, they
are converted to floating-point using equation 2.2. Otherwise, the values are
unmodified and stored as floating-point.

Modifying a parameter of a sampler object affects all texture units to which
that sampler object is bound. Calling TexParameter has no effect on the sampler
object bound to the active texture unit. It will modify the parameters of the texture
object bound to that unit.

OpenGL ES 3.2 (November 3, 2016)

8.3. SAMPLER OBJECT QUERIES 143

Errors

An INVALID_OPERATION error is generated if sampler is not the name of
a sampler object previously returned from a call to GenSamplers.

An INVALID_ENUM error is generated if pname is not one of the sampler
state names in table 21.12.

An INVALID_ENUM error is generated if SamplerParameter{if} is called
for a non-scalar parameter (pname TEXTURE_BORDER_COLOR).

If the value of param is not an acceptable value for the parameter specified
in pname, an error is generated as specified in the description of TexParame-
ter*.

Sampler objects are deleted by calling

void DeleteSamplers(sizei count, const uint *samplers);

samplers contains count names of sampler objects to be deleted. After a sampler
object is deleted, its name is again unused. If a sampler object that is currently
bound to one or more texture units is deleted, it is as though BindSampler is called
once for each texture unit to which the sampler is bound, with unit set to the texture
unit and sampler set to zero. Unused names in samplers that have been marked as
used for the purposes of GenSamplers are marked as unused again. Unused names
in samplers are silently ignored, as is the reserved name zero.

Errors

An INVALID_VALUE error is generated if count is negative.

The command

boolean IsSampler(uint sampler);

may be called to determine whether sampler is the name of a sampler object. Is-
Sampler will return TRUE if sampler is the name of a sampler object previously
returned from a call to GenSamplers and FALSE otherwise. Zero is not the name
of a sampler object.

8.3 Sampler Object Queries

The current values of the parameters of a sampler object may be queried by calling

OpenGL ES 3.2 (November 3, 2016)

8.4. PIXEL RECTANGLES 144

void GetSamplerParameter{if}v(uint sampler,
enum pname, T *params);

void GetSamplerParameterI{i ui}v(uint sampler,
enum pname, T *params);

sampler is the name of the sampler object from which to retrieve parameters.
pname is the name of the parameter to be queried, and must be one of the sam-
pler state names in table 21.12. params is the address of an array into which the
current value of the parameter will be placed.

Querying TEXTURE_BORDER_COLOR with GetSamplerParameterIiv or Get-
SamplerParameterIuiv returns the border color values as signed integers or un-
signed integers, respectively; otherwise the values are returned as described in sec-
tion 2.2.2. If the border color is queried with a type that does not match the original
type with which it was specified, the result is undefined.

Errors

An INVALID_OPERATION error is generated if sampler is not the name of
a sampler object previously returned from a call to GenSamplers.

An INVALID_ENUM error is generated if pname is not one of the sampler
state names in table 21.12.

8.4 Pixel Rectangles

Rectangles of color, depth, and certain other values may be specified to the GL
using TexImage*D (see section 8.5). Some of the parameters and operations gov-
erning the operation of these commands are shared by ReadPixels (used to ob-
tain pixel values from the framebuffer); the discussion of ReadPixels, however, is
deferred until chapter 9 after the framebuffer has been discussed in detail. Nev-
ertheless, we note in this section when parameters and state pertaining to these
commands also pertain to ReadPixels.

A number of parameters control the encoding of pixels in buffer object or client
memory (for reading and writing) and how pixels are processed before being placed
in or after being read from the framebuffer (for reading, writing, and copying).
These parameters are set with PixelStorei.

8.4.1 Pixel Storage Modes and Pixel Buffer Objects

Pixel storage modes affect the operation of TexImage*D, TexSubImage*D, and
ReadPixels when one of these commands is issued. Pixel storage modes are set

OpenGL ES 3.2 (November 3, 2016)

8.4. PIXEL RECTANGLES 145

Parameter Name Type Initial Value Valid Range
UNPACK_ROW_LENGTH integer 0 [0,∞)

UNPACK_SKIP_ROWS integer 0 [0,∞)

UNPACK_SKIP_PIXELS integer 0 [0,∞)

UNPACK_ALIGNMENT integer 4 1,2,4,8
UNPACK_IMAGE_HEIGHT integer 0 [0,∞)

UNPACK_SKIP_IMAGES integer 0 [0,∞)

Table 8.1: PixelStorei parameters pertaining to one or more of TexImage2D, Tex-
Image3D, TexSubImage2D, and TexSubImage3D.

with

void PixelStorei(enum pname, int param);

pname is a symbolic constant indicating a parameter to be set, and param is the
value to set it to. Tables 8.1 and 16.1 summarize the pixel storage parameters, their
types, their initial values, and their allowable ranges.

Errors

An INVALID_ENUM error is generated if pname is not one of the paramater
names in table 8.1 or 16.1.

An INVALID_VALUE error is generated if param is outside the given range
for the corresponding pname in table 8.1 or 16.1.

Data conversions are performed as specified in section 2.2.1.
In addition to storing pixel data in client memory, pixel data may also be

stored in buffer objects (described in section 6). The current pixel unpack and
pack buffer objects are designated by the PIXEL_UNPACK_BUFFER and PIXEL_-

PACK_BUFFER targets respectively.
Initially, zero is bound for the PIXEL_UNPACK_BUFFER, indicating that im-

age specification commands such as TexImage*D source their pixels from client
memory pointer parameters. However, if a non-zero buffer object is bound as the
current pixel unpack buffer, then the pointer parameter is treated as an offset into
the designated buffer object.

OpenGL ES 3.2 (November 3, 2016)

8.4. PIXEL RECTANGLES 146

Unpack

byte, short, or packed
pixel component data stream

Convert to Float

Convert L to RGB

Clamp to [0,1]

RGBA pixel data out

Pixel Storage
Operations

Final
Conversion

Figure 8.1. Transfer of pixel rectangles to the GL. Output is RGBA pixels. Depth
and stencil pixel paths are not shown.

8.4.2 Transfer of Pixel Rectangles

The process of transferring pixels encoded in buffer object or client memory is
diagrammed in figure 8.1. We describe the stages of this process in the order in
which they occur.

Commands accepting or returning pixel rectangles take the following argu-
ments (as well as additional arguments specific to their function):

format is a symbolic constant indicating what the values in memory represent.
internalformat is a symbolic constant indicating with what format and mini-

mum precision the values should be stored by the GL.
width and height are the width and height, respectively, of the pixel rectangle

to be transferred.
data refers to the data to be drawn. These data are represented with one of

several GL data types, specified by type. The correspondence between the type
token values and the GL data types they indicate is given in table 8.4.

Not all combinations of format, type, and internalformat are valid. The com-
binations accepted by the GL are defined in tables 8.2 and 8.3. Some additional
constraints on the combinations of format and type values that are accepted are

OpenGL ES 3.2 (November 3, 2016)

8.4. PIXEL RECTANGLES 147

discussed below. Additional restrictions may be imposed by specific commands.

External
Bytes Internal

Format Type per Pixel Format
RGBA UNSIGNED_BYTE 4 RGBA8, RGB5_A1,

RGBA4,
SRGB8_ALPHA8

RGBA BYTE 4 RGBA8_SNORM

RGBA UNSIGNED_SHORT_4_4_4_4 2 RGBA4

RGBA UNSIGNED_SHORT_5_5_5_1 2 RGB5_A1

RGBA UNSIGNED_INT_2_10_10_10_REV 4 RGB10_A2, RGB5_A1
RGBA HALF_FLOAT 8 RGBA16F

RGBA FLOAT 16 RGBA32F, RGBA16F
RGBA_INTEGER UNSIGNED_BYTE 4 RGBA8UI

RGBA_INTEGER BYTE 4 RGBA8I

RGBA_INTEGER UNSIGNED_SHORT 8 RGBA16UI

RGBA_INTEGER SHORT 8 RGBA16I

RGBA_INTEGER UNSIGNED_INT 16 RGBA32UI

RGBA_INTEGER INT 16 RGBA32I

RGBA_INTEGER UNSIGNED_INT_2_10_10_10_REV 4 RGB10_A2UI

RGB UNSIGNED_BYTE 3 RGB8, RGB565,
SRGB8

RGB BYTE 3 RGB8_SNORM

RGB UNSIGNED_SHORT_5_6_5 2 RGB565

RGB UNSIGNED_INT_10F_11F_11F_REV 4 R11F_G11F_B10F

RGB UNSIGNED_INT_5_9_9_9_REV 4 RGB9_E5

RGB HALF_FLOAT 6 RGB16F,
R11F_G11F_B10F,
RGB9_E5

RGB FLOAT 12 RGB32F, RGB16F,
R11F_G11F_B10F,
RGB9_E5

RGB_INTEGER UNSIGNED_BYTE 3 RGB8UI

RGB_INTEGER BYTE 3 RGB8I

RGB_INTEGER UNSIGNED_SHORT 6 RGB16UI

RGB_INTEGER SHORT 6 RGB16I

Valid combinations of format, type, and sized internalformat continued on next page

OpenGL ES 3.2 (November 3, 2016)

8.4. PIXEL RECTANGLES 148

Valid combinations of format, type, and sized internalformat continued from previous page
External

Bytes Internal
Format Type per Pixel Format
RGB_INTEGER UNSIGNED_INT 12 RGB32UI

RGB_INTEGER INT 12 RGB32I

RG UNSIGNED_BYTE 2 RG8

RG BYTE 2 RG8_SNORM

RG HALF_FLOAT 4 RG16F

RG FLOAT 8 RG32F, RG16F
RG_INTEGER UNSIGNED_BYTE 2 RG8UI

RG_INTEGER BYTE 2 RG8I

RG_INTEGER UNSIGNED_SHORT 4 RG16UI

RG_INTEGER SHORT 4 RG16I

RG_INTEGER UNSIGNED_INT 8 RG32UI

RG_INTEGER INT 8 RG32I

RED UNSIGNED_BYTE 1 R8

RED BYTE 1 R8_SNORM

RED HALF_FLOAT 2 R16F

RED FLOAT 4 R32F, R16F
RED_INTEGER UNSIGNED_BYTE 1 R8UI

RED_INTEGER BYTE 1 R8I

RED_INTEGER UNSIGNED_SHORT 2 R16UI

RED_INTEGER SHORT 2 R16I

RED_INTEGER UNSIGNED_INT 4 R32UI

RED_INTEGER INT 4 R32I

DEPTH_COMPONENT UNSIGNED_SHORT 2 DEPTH_COMPONENT16

DEPTH_COMPONENT UNSIGNED_INT 4 DEPTH_COMPONENT24,
DEPTH_COMPONENT16

DEPTH_COMPONENT FLOAT 4 DEPTH_COMPONENT32F

DEPTH_STENCIL UNSIGNED_INT_24_8 4 DEPTH24_STENCIL8

DEPTH_STENCIL FLOAT_32_UNSIGNED_INT_24_8_REV 8 DEPTH32F_STENCIL8

STENCIL_INDEX UNSIGNED_BYTE 1 STENCIL_INDEX8

Table 8.2: Valid combinations of format, type, and sized internal-
format.

OpenGL ES 3.2 (November 3, 2016)

8.4. PIXEL RECTANGLES 149

External
Bytes Internal

Format Type per Pixel Format
RGBA UNSIGNED_BYTE 4 RGBA

RGBA UNSIGNED_SHORT_4_4_4_4 2 RGBA

RGBA UNSIGNED_SHORT_5_5_5_1 2 RGBA

RGB UNSIGNED_BYTE 3 RGB

RGB UNSIGNED_SHORT_5_6_5 2 RGB

LUMINANCE_ALPHA UNSIGNED_BYTE 2 LUMINANCE_ALPHA

LUMINANCE UNSIGNED_BYTE 1 LUMINANCE

ALPHA UNSIGNED_BYTE 1 ALPHA

Table 8.3: Valid combinations of format, type, and unsized inter-
nalformat.

8.4.2.1 Unpacking

Data are taken from the currently bound pixel unpack buffer or client memory as a
sequence of signed or unsigned bytes (GL data types byte and ubyte), signed or
unsigned short integers (GL data types short and ushort), signed or unsigned
integers (GL data types int and uint), or floating-point values (GL data types
half and float). These elements are grouped into sets of one, two, three, or
four values, depending on the format, to form a group. Table 8.5 summarizes the
format of groups obtained from memory; it also indicates those formats that yield
indices and those that yield floating-point or integer components.

If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_-
UNPACK_BUFFER_BINDING), data is an offset into the pixel unpack buffer and
the pixels are unpacked from the buffer relative to this offset; otherwise, data is a
pointer to client memory and the pixels are unpacked from client memory relative
to the pointer.

Errors

An INVALID_OPERATION error is generated if a pixel unpack buffer ob-
ject is bound and unpacking the pixel data according to the process described
below would access memory beyond the size of the pixel unpack buffer’s

OpenGL ES 3.2 (November 3, 2016)

8.4. PIXEL RECTANGLES 150

type Parameter Corresponding Special
Token Name GL Data Type Interpretation
UNSIGNED_BYTE ubyte No
BYTE byte No
UNSIGNED_SHORT ushort No
SHORT short No
UNSIGNED_INT uint No
INT int No
HALF_FLOAT half No
FLOAT float No
UNSIGNED_SHORT_5_6_5 ushort Yes
UNSIGNED_SHORT_4_4_4_4 ushort Yes
UNSIGNED_SHORT_5_5_5_1 ushort Yes
UNSIGNED_INT_2_10_10_10_REV uint Yes
UNSIGNED_INT_24_8 uint Yes
UNSIGNED_INT_10F_11F_11F_REV uint Yes
UNSIGNED_INT_5_9_9_9_REV uint Yes
FLOAT_32_UNSIGNED_INT_24_8_REV n/a Yes

Table 8.4: Pixel data type parameter values and the corresponding GL data types.
Refer to table 2.2 for definitions of GL data types. Special interpretations are
described in section 8.4.2.2.

OpenGL ES 3.2 (November 3, 2016)

8.4. PIXEL RECTANGLES 151

Format Name Element Meaning and Order Target Buffer
DEPTH_COMPONENT Depth Depth
DEPTH_STENCIL Depth and Stencil Depth and Stencil
STENCIL_INDEX Stencil Index Stencil
RED R Color
RG R, G Color
RGB R, G, B Color
RGBA R, G, B, A Color
LUMINANCE Luminance Color
ALPHA A Color
LUMINANCE_ALPHA Luminance, A Color
RED_INTEGER iR Color
RG_INTEGER iR, iG Color
RGB_INTEGER iR, iG, iB Color
RGBA_INTEGER iR, iG, iB, iA Color

Table 8.5: Pixel data formats. The second column gives a description of and the
number and order of elements in a group. Except for stencil, formats yield com-
ponents. Components are floating-point unless prefixed with the letter ’i’, which
indicates they are integer.

OpenGL ES 3.2 (November 3, 2016)

8.4. PIXEL RECTANGLES 152

memory size.
An INVALID_OPERATION error is generated if a pixel unpack buffer ob-

ject is bound and data is not evenly divisible by the number of basic machine
units needed to store in memory the corresponding GL data type from table 8.4
for the type parameter (or not evenly divisible by 4 for type FLOAT_32_-

UNSIGNED_INT_24_8_REV, which does not have a corresponding GL data
type).

The values of each GL data type are interpreted as they would be specified in
the language of the client’s GL binding.

The groups in memory are treated as being arranged in a rectangle. This rect-
angle consists of a series of rows, with the first element of the first group of the
first row pointed to by data. If the value of UNPACK_ROW_LENGTH is zero, then the
number of groups in a row is width; otherwise the number of groups is the value of
UNPACK_ROW_LENGTH. If p indicates the location in memory of the first element
of the first row, then the first element of the N th row is indicated by

p+Nk (8.1)

where N is the row number (counting from zero) and k is defined as

k =

{
nl s ≥ a,
a
s

⌈
snl
a

⌉
s < a

(8.2)

where n is the number of elements in a group, l is the number of groups in the row,
a is the value of UNPACK_ALIGNMENT, and s is the size, in units of GL ubytes, of
an element. If the number of bits per element is not 1, 2, 4, or 8 times the number
of bits in a GL ubyte, then k = nl for all values of a.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer parameters:
UNPACK_ROW_LENGTH, UNPACK_SKIP_ROWS, and UNPACK_SKIP_PIXELS. Be-
fore obtaining the first group from memory, the data pointer is advanced by
(UNPACK_SKIP_PIXELS)n + (UNPACK_SKIP_ROWS)k elements. Then width
groups are obtained from contiguous elements in memory (without advancing the
pointer), after which the pointer is advanced by k elements. height sets of width
groups of values are obtained this way. See figure 8.2.

8.4.2.2 Special Interpretations

A type matching one of the types in table 8.6 is a special case in which all the
components of each group are packed into a single unsigned byte, unsigned short,

OpenGL ES 3.2 (November 3, 2016)

8.4. PIXEL RECTANGLES 153

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

SKIP_ROWS

SKIP_PIXELS

ROW_LENGTH

subimage

Figure 8.2. Selecting a subimage from an image. The indicated parameter names
are prefixed by UNPACK_ TexImage* and by PACK_ for ReadPixels.

or unsigned int, depending on the type. If type is FLOAT_32_UNSIGNED_INT_-
24_8_REV, the components of each group are contained within two 32-bit words;
the first word contains the float component, and the second word contains a packed
24-bit unused field, followed by an 8-bit component. The number of components
per packed pixel is fixed by the type, and must match the number of components
per group indicated by the format parameter, as listed in table 8.6.

An INVALID_OPERATION error is generated by any command processing
pixel rectangles if a mismatch occurs.

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in figures 8.3- 8.5. Each bitfield is interpreted as
an unsigned integer value. If the base GL type is supported with more than the
minimum precision (e.g. a 9-bit byte) the packed components are right-justified in
the pixel.

Components are normally packed with the first component in the most signif-
icant bits of the bitfield, and successive component occupying progressively less
significant locations. Types whose token names end with _REV reverse the compo-
nent packing order from least to most significant locations. In all cases, the most
significant bit of each component is packed in the most significant bit location of
its location in the bitfield.

OpenGL ES 3.2 (November 3, 2016)

8.4. PIXEL RECTANGLES 154

type Parameter GL Data Number of Matching
Token Name Type Components Pixel Formats
UNSIGNED_SHORT_5_6_5 ushort 3 RGB

UNSIGNED_SHORT_4_4_4_4 ushort 4 RGBA

UNSIGNED_SHORT_5_5_5_1 ushort 4 RGBA

UNSIGNED_INT_2_10_10_10_REV uint 4 RGBA, RGBA_INTEGER
UNSIGNED_INT_24_8 uint 2 DEPTH_STENCIL

UNSIGNED_INT_10F_11F_11F_REV uint 3 RGB

UNSIGNED_INT_5_9_9_9_REV uint 4 RGB

FLOAT_32_UNSIGNED_INT_24_8_REV n/a 2 DEPTH_STENCIL

Table 8.6: Packed pixel formats.

0123456789101112131415

1st Component 2nd 3rd

UNSIGNED_SHORT_5_6_5

0123456789101112131415

1st Component 2nd 3rd 4th

UNSIGNED_SHORT_4_4_4_4

0123456789101112131415

1st Component 2nd 3rd 4th

UNSIGNED_SHORT_5_5_5_1

Figure 8.3: UNSIGNED_SHORT formats

OpenGL ES 3.2 (November 3, 2016)

8.4. PIXEL RECTANGLES 155

012345678910111213141516171819202122232425262728293031

4th 3rd 2nd 1st Component

UNSIGNED_INT_2_10_10_10_REV

012345678910111213141516171819202122232425262728293031

1st Component 2nd

UNSIGNED_INT_24_8

012345678910111213141516171819202122232425262728293031

3rd 2nd 1st Component

UNSIGNED_INT_10F_11F_11F_REV

012345678910111213141516171819202122232425262728293031

4th 3rd 2nd 1st Component

UNSIGNED_INT_5_9_9_9_REV

Figure 8.4: UNSIGNED_INT formats

012345678910111213141516171819202122232425262728293031

1st Component

2nd

FLOAT_32_UNSIGNED_INT_24_8_REV

Figure 8.5: FLOAT_UNSIGNED_INT formats

OpenGL ES 3.2 (November 3, 2016)

8.4. PIXEL RECTANGLES 156

Format First Second Third Fourth
Component Component Component Component

RGB red green blue
RGBA red green blue alpha
DEPTH_STENCIL depth stencil

Table 8.7: Packed pixel field assignments.

The assignment of component to fields in the packed pixel is as described in
table 8.7.

The above discussions of row length and image extraction are valid for packed
pixels, if “group” is substituted for “component” and the number of components
per group is understood to be one.

A type of UNSIGNED_INT_10F_11F_11F_REV and format of RGB is a special
case in which the data are a series of GL uint values. Each uint value specifies
3 packed components as shown in figure 8.4. The 1st, 2nd, and 3rd components
are called fred (11 bits), fgreen (11 bits), and fblue (10 bits) respectively.

fred and fgreen are treated as unsigned 11-bit floating-point values and con-
verted to floating-point red and green components respectively as described in sec-
tion 2.3.4.3. fblue is treated as an unsigned 10-bit floating-point value and con-
verted to a floating-point blue component as described in section 2.3.4.4.

A type of UNSIGNED_INT_5_9_9_9_REV and format of RGB is a special case
in which the data are a series of GL uint values. Each uint value specifies 4
packed components as shown in figure 8.4. The 1st, 2nd, 3rd, and 4th components
are called pred, pgreen, pblue, and pexp respectively and are treated as unsigned
integers. These are then used to compute floating-point RGB components (ignoring
the “Conversion to floating-point” section below in this case) as follows:

red = pred2pexp−B−N

green = pgreen2pexp−B−N

blue = pblue2
pexp−B−N

where B = 15 (the exponent bias) and N = 9 (the number of mantissa bits).

8.4.2.3 Conversion to floating-point

This step applies only to groups of floating-point components. It is not performed
on indices or integer components. For groups containing both components and

OpenGL ES 3.2 (November 3, 2016)

8.5. TEXTURE IMAGE SPECIFICATION 157

indices, such as DEPTH_STENCIL, the indices are not converted.
Each element in a group is converted to a floating-point value. For unsigned

or signed normalized fixed-point elements, equations 2.1 or 2.2, respectively, are
used.

8.4.2.4 Conversion to RGB

This step is applied only if the format is LUMINANCE or LUMINANCE_ALPHA. If
the format is LUMINANCE, then each group of one element is converted to a group
of R, G, and B (three) elements by copying the original single element into each of
the three new elements. If the format is LUMINANCE_ALPHA, then each group of
two elements is converted to a group of R, G, B, and A (four) elements by copying
the first original element into each of the first three new elements and copying the
second original element to the A (fourth) new element.

8.4.2.5 Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group is con-
verted to a group of 4 elements as follows: if a group does not contain an A element,
then A is added and set to one for integer components or 1.0 for floating-point com-
ponents. If any of R, G, or B is missing from the group, each missing element is
added and assigned a value of 0 for integer components or 0.0 for floating-point
components.

8.5 Texture Image Specification

The command

void TexImage3D(enum target, int level, int internalformat,
sizei width, sizei height, sizei depth, int border,
enum format, enum type, const void *data);

is used to specify a three-dimensional texture image. target must be one of
TEXTURE_3D for a three-dimensional texture, TEXTURE_2D_ARRAY for a two-
dimensional array texture, or TEXTURE_CUBE_MAP_ARRAY for a cube map array
texture. format, type, and data specify the format of the image data, the type of
those data, and a reference to the image data in the currently bound pixel unpack
buffer or client memory, as described in section 8.4.2.

OpenGL ES 3.2 (November 3, 2016)

8.5. TEXTURE IMAGE SPECIFICATION 158

The groups in memory are treated as being arranged in a sequence of adjacent
rectangles. Each rectangle is a two-dimensional image, whose size and organiza-
tion are specified by the width and height parameters to TexImage3D. The val-
ues of UNPACK_ROW_LENGTH and UNPACK_ALIGNMENT control the row-to-row
spacing in these images as described in section 8.4.2. If the value of the integer
parameter UNPACK_IMAGE_HEIGHT is not positive, then the number of rows in
each two-dimensional image is height; otherwise the number of rows is UNPACK_-
IMAGE_HEIGHT. Each two-dimensional image comprises an integral number of
rows, and is exactly adjacent to its neighbor images.

The mechanism for selecting a sub-volume of a three-dimensional image relies
on the integer parameter UNPACK_SKIP_IMAGES. If UNPACK_SKIP_IMAGES is
positive, the pointer is advanced by UNPACK_SKIP_IMAGES times the number of
elements in one two-dimensional image before obtaining the first group from mem-
ory. Then depth two-dimensional images are processed, each having a subimage
extracted as described in section 8.4.2.

The selected groups are transferred to the GL as described in section 8.4.2 and
then clamped to the representable range of the internal format. If the internal-
format of the texture is signed or unsigned integer, components are clamped to
[−2n−1, 2n−1 − 1] or [0, 2n − 1], respectively, where n is the number of bits per
component. For color component groups, if the internalformat of the texture is
signed or unsigned normalized fixed-point, components are clamped to [−1, 1] or
[0, 1], respectively. For depth component groups, the depth value is clamped to
[0, 1]. Otherwise, values are not modified.

Components are then selected from the resulting R, G, B, A, depth, or stencil
values to obtain a texture with the base internal format specified by (or derived
from) internalformat. Table 8.8 summarizes the mapping of R, G, B, A, depth, or
stencil values to texture components, as a function of the base internal format of
the texture image.

An INVALID_OPERATION error is generated if a combination of values for
format, type, and internalformat is specified that is not listed as a valid combination
in tables 8.2 or 8.3.

Textures with a base internal format of DEPTH_COMPONENT, DEPTH_-

STENCIL or STENCIL_INDEX are supported by texture image specifica-
tion commands only if target is TEXTURE_2D, TEXTURE_2D_MULTISAMPLE,
TEXTURE_2D_ARRAY, TEXTURE_2D_MULTISAMPLE_ARRAY, TEXTURE_CUBE_-
MAP or TEXTURE_CUBE_MAP_ARRAY. Using these formats in conjunction with any
other target will result in an INVALID_OPERATION error.

The internal component resolution is the number of bits allocated to each value
in a texture image. If internalformat is specified as a base internal format, the GL
stores the resulting texture with internal component resolutions of its own choos-

OpenGL ES 3.2 (November 3, 2016)

8.5. TEXTURE IMAGE SPECIFICATION 159

Base Internal Format RGBA, Depth, and Stencil Values Internal Components
DEPTH_COMPONENT Depth D

DEPTH_STENCIL Depth,Stencil D,S
LUMINANCE R L

ALPHA A A

LUMINANCE_ALPHA R,A L,A
RED R R

RG R,G R,G
RGB R,G,B R,G,B
RGBA R,G,B,A R,G,B,A
STENCIL_INDEX Stencil S

Table 8.8: Conversion from RGBA, depth, and stencil pixel components to internal
texture components. Texture components L, R, G, B, and A are converted back to
RGBA colors during filtering as shown in table 14.1.

ing.
If internalformat is a sized internal format, the effective internal format is the

specified sized internal format. Otherwise, if internalformat is a base internal for-
mat, the effective internal format is a sized internal format that is derived from the
format and type for internal use by the GL. Table 8.9 specifies the mapping of for-
mat and type to effective internal formats. The effective internal format is used by
the GL for purposes such as texture completeness or type checks for CopyTex*
and TexSubImage* commands. In these cases, the GL is required to operate as
if the effective internal format was used as the internalformat when specifying the
texture data. Note that unless specified elsewhere, the effective internal format val-
ues described in table 8.9 are not legal for an application to pass directly to the
GL.

If a sized internal format is specified, the mapping of the R, G, B, A, depth,
and stencil values to texture components is equivalent to the mapping of the cor-
responding base internal format’s components, as specified in table 8.8; the type
(unsigned int, float, etc.) is assigned the same type specified by internalformat;
and the memory allocation per texture component is assigned by the GL to match
or exceed the allocations listed in tables 8.10- 8.11.

OpenGL ES 3.2 (November 3, 2016)

8.5. TEXTURE IMAGE SPECIFICATION 160

Format Type Effective
Internal
Format

RGBA UNSIGNED_BYTE RGBA8

RGBA UNSIGNED_SHORT_4_4_4_4 RGBA4

RGBA UNSIGNED_SHORT_5_5_5_1 RGB5_A1

RGB UNSIGNED_BYTE RGB8

RGB UNSIGNED_SHORT_5_6_5 RGB565

LUMINANCE_ALPHA UNSIGNED_BYTE Luminance8Alpha8
LUMINANCE UNSIGNED_BYTE Luminance8
ALPHA UNSIGNED_BYTE Alpha8

Table 8.9: Effective internal format corresponding to external format and type.
Formats in italics do not correspond to GL constants.

8.5.1 Required Texture Formats

Implementations are required to support the following sized internal formats. Re-
questing one of these sized internal formats for any texture type will allocate at
least the internal component sizes, and exactly the component types shown for that
format in tables 8.10- 8.11:

• Color formats which are checked in the “Req. tex.” column of table 8.10.

• All of the specific compressed texture formats in table 8.17.

• Depth, depth+stencil, and stencil formats which are checked in the “Req.
format” column of table 8.11.

8.5.2 Encoding of Special Internal Formats

If internalformat is R11F_G11F_B10F, the red, green, and blue bits are converted
to unsigned 11-bit, unsigned 11-bit, and unsigned 10-bit floating-point values as
described in sections 2.3.4.3 and 2.3.4.4.

If internalformat is RGB9_E5, the red, green, and blue bits are converted to a
shared exponent format according to the following procedure:

Components red, green, and blue are first clamped (in the process, mapping
NaN to zero) as follows:

OpenGL ES 3.2 (November 3, 2016)

8.5. TEXTURE IMAGE SPECIFICATION 161

redc = max(0,min(sharedexpmax, red))

greenc = max(0,min(sharedexpmax, green))

bluec = max(0,min(sharedexpmax, blue))

where

sharedexpmax =
(2N − 1)

2N
2Emax−B.

N is the number of mantissa bits per component (9), B is the exponent bias (15),
and Emax is the maximum allowed biased exponent value (31).

The largest clamped component, maxc, is determined:

maxc = max(redc, greenc, bluec)

A preliminary shared exponent expp is computed:

expp = max(−B − 1, blog2(maxc)c) + 1 +B

A refined shared exponent exps is computed:

maxs =
⌊ maxc

2expp−B−N
+ 0.5

⌋

exps =

{
expp, 0 ≤ maxs < 2N

expp + 1, maxs = 2N

Finally, three integer values in the range 0 to 2N − 1 are computed:

reds =

⌊
redc

2exps−B−N
+ 0.5

⌋
greens =

⌊ greenc
2exps−B−N

+ 0.5
⌋

blues =

⌊
bluec

2exps−B−N
+ 0.5

⌋
The resulting reds, greens, blues, and exps are stored in the red, green, blue,

and shared bits respectively of the texture image.
An implementation accepting pixel data of type UNSIGNED_INT_5_9_9_9_-

REV with format RGB is allowed to store the components “as is”.

OpenGL ES 3.2 (November 3, 2016)

8.5. TEXTURE IMAGE SPECIFICATION 162

Sized Base Bits/component CR TF Req. Req.
Internal Internal S are shared bits rend. tex.
Format Format R G B A S
R8 RED 8 � � � �
R8_SNORM RED s8 � �
RG8 RG 8 8 � � � �
RG8_SNORM RG s8 s8 � �
RGB8 RGB 8 8 8 � � � �
RGB8_SNORM RGB s8 s8 s8 � �
RGB565 RGB 5 6 5 � � � �
RGBA4 RGBA 4 4 4 4 � � � �
RGB5_A1 RGBA 5 5 5 1 � � � �
RGBA8 RGBA 8 8 8 8 � � � �
RGBA8_SNORM RGBA s8 s8 s8 s8 � �
RGB10_A2 RGBA 10 10 10 2 � � � �
RGB10_A2UI RGBA ui10 ui10 ui10 ui2 � � �
SRGB8 RGB 8 8 8 � �
SRGB8_ALPHA8 RGBA 8 8 8 8 � � � �
R16F RED f16 � � � �
RG16F RG f16 f16 � � � �
RGB16F RGB f16 f16 f16 � �
RGBA16F RGBA f16 f16 f16 f16 � � � �
R32F RED f32 � � �
RG32F RG f32 f32 � � �
RGB32F RGB f32 f32 f32 �
RGBA32F RGBA f32 f32 f32 f32 � � �
R11F_G11F_B10F RGB f11 f11 f10 � � � �
RGB9_E5 RGB 9 9 9 5 � �
R8I RED i8 � � �
R8UI RED ui8 � � �
R16I RED i16 � � �
R16UI RED ui16 � � �
R32I RED i32 � � �
R32UI RED ui32 � � �
RG8I RG i8 i8 � � �
RG8UI RG ui8 ui8 � � �
RG16I RG i16 i16 � � �

Sized internal color formats continued on next page

OpenGL ES 3.2 (November 3, 2016)

8.5. TEXTURE IMAGE SPECIFICATION 163

Sized internal color formats continued from previous page
Sized Base Bits/component CR TF Req. Req.
Internal Internal S are shared bits rend. tex.
Format Format R G B A S
RG16UI RG ui16 ui16 � � �
RG32I RG i32 i32 � � �
RG32UI RG ui32 ui32 � � �
RGB8I RGB i8 i8 i8 �
RGB8UI RGB ui8 ui8 ui8 �
RGB16I RGB i16 i16 i16 �
RGB16UI RGB ui16 ui16 ui16 �
RGB32I RGB i32 i32 i32 �
RGB32UI RGB ui32 ui32 ui32 �
RGBA8I RGBA i8 i8 i8 i8 � � �
RGBA8UI RGBA ui8 ui8 ui8 ui8 � � �
RGBA16I RGBA i16 i16 i16 i16 � � �
RGBA16UI RGBA ui16 ui16 ui16 ui16 � � �
RGBA32I RGBA i32 i32 i32 i32 � � �
RGBA32UI RGBA ui32 ui32 ui32 ui32 � � �

Table 8.10: Correspondence of sized internal color formats to base
internal formats, internal data type, minimum component resolu-
tions, and use cases for each sized internal format. The component
resolution prefix indicates the internal data type: f is floating point,
i is signed integer, ui is unsigned integer, s is signed normalized
fixed-point, and no prefix is unsigned normalized fixed-point. The
“CR” (color-renderable), “TF” (texture-filterable), “Req. rend.”
and “Req. tex.” columns are described in sections 9.4, 8.17, 9.2.5,
and 8.5.1, respectively.

A GL implementation may vary its allocation of internal component resolution
based on any TexImage3D or TexImage2D (see below) parameter (except target),
but the allocation must not be a function of any other state and cannot be changed
once they are established. Allocations must be invariant; the same allocation must
be chosen each time a texture image is specified with the same parameter values.

OpenGL ES 3.2 (November 3, 2016)

8.5. TEXTURE IMAGE SPECIFICATION 164

Sized Base D S Req.
Internal Format Internal Format bits bits format
DEPTH_COMPONENT16 DEPTH_COMPONENT 16 �
DEPTH_COMPONENT24 DEPTH_COMPONENT 24 �
DEPTH_COMPONENT32F DEPTH_COMPONENT f32 �
DEPTH24_STENCIL8 DEPTH_STENCIL 24 ui8 �
DEPTH32F_STENCIL8 DEPTH_STENCIL f32 ui8 �
STENCIL_INDEX8 STENCIL_INDEX ui8 �

Table 8.11: Correspondence of sized internal depth and stencil formats to base
internal formats, internal data type, and minimum component resolutions for each
sized internal format. The component resolution prefix indicates the internal data
type: f is floating point, ui is unsigned integer, and no prefix is fixed-point.
The “Req. format” column is described in section 8.5.1.

8.5.3 Texture Image Structure

The image itself (referred to by data) is a sequence of groups of values. The first
group is the lower left back corner of the texture image. Subsequent groups fill out
rows of width width from left to right; height rows are stacked from bottom to top
forming a single two-dimensional image slice; and depth slices are stacked from
back to front. When the final R, G, B, and A components have been computed for a
group, they are assigned to components of a texel as described by table 8.8. Count-
ing from zero, each resulting N th texel is assigned internal integer coordinates
(i, j, k), where

i = (N mod width)

j = (

⌊
N

width

⌋
mod height)

k = (

⌊
N

width× height

⌋
mod depth)

Thus the last two-dimensional image slice of the three-dimensional image is in-
dexed with the highest value of k.

When target is TEXTURE_CUBE_MAP_ARRAY. specifying a cube map array tex-
ture, k refers to a layer-face. The layer is given by

layer =

⌊
k

6

⌋
,

OpenGL ES 3.2 (November 3, 2016)

8.5. TEXTURE IMAGE SPECIFICATION 165

and the face is given by

face = k mod 6.

The face number corresponds to the cube map faces as shown in table 8.24.
If the internal data type of the texture image is signed or unsigned normalized

fixed-point, each color component is converted using equation 2.4 or 2.3, respec-
tively. If the internal type is floating-point or integer, components are clamped
to the representable range of the corresponding internal component, but are not
converted.

The level argument to TexImage3D is an integer level-of-detail number. Levels
of detail are discussed in section 8.14.3. The main texture image has a level of
detail number of zero.

Errors

An INVALID_VALUE error is generated if level is negative.
An INVALID_VALUE error is generated if width, height, or depth are neg-

ative.
An INVALID_VALUE error is generated is border is not zero.
An INVALID_VALUE error is generated by TexImage3D if target is

TEXTURE_CUBE_MAP_ARRAY and width and height are not equal, or if depth
is not a multiple of six, indicating 6N layer-faces in the cube map array.

The maximum allowable width, height, or depth of a texure image for a three-
dimensional texture is an implementation-dependent function of the level-of-detail
and internal format of the resulting image. It must be at least 2k−lod for images of
level-of-detail 0 through k, where k is log2 of the value of MAX_3D_TEXTURE_-
SIZE and lod is the level-of-detail of the texture image. It may be zero for images
of any level-of-detail greater than k.

An INVALID_VALUE error is generated if width, height, or depth exceed the
corresponding maximum size.

As described in section 8.17, these implementation-dependent limits may be
configured to reject textures at level one or greater unless a mipmap complete set
of texture images consistent with the specified sizes can be supported.

Errors

An INVALID_OPERATION error is generated if a pixel unpack buffer ob-
ject is bound and storing texture data would access memory beyond the end of

OpenGL ES 3.2 (November 3, 2016)

8.5. TEXTURE IMAGE SPECIFICATION 166

the pixel unpack buffer.

In a similar fashion, the maximum allowable width and height of a texture im-
age for a two-dimensional, two-dimensional array, two-dimensional multisample,
or two-dimensional multisample array texture must each be at least 2k−lod for im-
ages of level 0 through k, where k is log2 of the value of MAX_TEXTURE_SIZE.

The maximum allowable width and height of a cube map or cube map array
texture must be the same, and must be at least 2k−lod for texture images of level
0 through k, where k is log2 of the value of MAX_CUBE_MAP_TEXTURE_SIZE.
The maximum number of layers (depth) for two-dimensional array textures and
the maximum number of layer-faces for cube map array textures must be at least
the value of MAX_ARRAY_TEXTURE_LAYERS for all levels.

The command

void TexImage2D(enum target, int level, int internalformat,
sizei width, sizei height, int border, enum format,
enum type, const void *data);

is used to specify a two-dimensional texture image. target must be one of
TEXTURE_2D for a two-dimensional texture, or one of the cube map face targets
from table 8.20 for a cube map texture. The other parameters match the corre-
sponding parameters of TexImage3D.

For the purposes of decoding the texture image, TexImage2D is equivalent to
calling TexImage3D with corresponding arguments and depth of 1, except that
UNPACK_SKIP_IMAGES is ignored.

A two-dimensional texture consists of a single two-dimensional texture image.
A cube map texture is a set of six two-dimensional texture images. The six cube
map texture face targets from table 8.20 form a single cube map texture. These
targets each update the corresponding cube map face two-dimensional texture im-
age. Note that the cube map face targets are used when specifying, updating, or
querying one of a cube map’s six two-dimensional images, but when binding to
a cube map texture object (that is, when the cube map is accessed as a whole as
opposed to a particular two-dimensional image), the TEXTURE_CUBE_MAP target
is specified.

Errors

An INVALID_ENUM error is generated if target is not one of the valid tar-
gets listed above.

An INVALID_VALUE error is generated if target is one of the cube map

OpenGL ES 3.2 (November 3, 2016)

8.5. TEXTURE IMAGE SPECIFICATION 167

Figure 8.6. A texture image and the coordinates used to access it. This is a two-
dimensional texture with width 8 and height 4. α and β, values used in blending
adjacent texels to obtain a texture value are also shown.

face targets from table 8.20, and width and height are not equal.
An INVALID_VALUE error is generated if border is non-zero.

The image indicated to the GL by the image pointer is decoded and copied into
the GL’s internal memory.

We shall refer to the decoded image as the texture image. A three-dimensional
texture image has width, height, and depth wt, ht, and dt. A two-dimensional
texture image has depth dt = 1, with height ht and width wt as above.

An element (i, j, k) of the texture image is called a texel (for a two-dimensional
texture, k is irrelevant). The texture value used in texturing a fragment is deter-
mined by sampling the texture in a shader, but may not correspond to any actual
texel. See figure 8.6.

If target is TEXTURE_CUBE_MAP_ARRAY, the texture value is determined
by (s, t, r, q) coordinates where s, t, and r are defined to be the same as for
TEXTURE_CUBE_MAP and q is defined as the index of a specific cube map in the
cube map array.

If the data argument of TexImage2D or TexImage3D is NULL, and the pixel
unpack buffer object is zero, a two-or three-dimensional texture image is created

OpenGL ES 3.2 (November 3, 2016)

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 168

Read Buffer Format format type

Normalized Fixed-point RGBA UNSIGNED_BYTE

10-bit Normalized Fixed-point RGBA UNSIGNED_INT_2_10_10_10_REV

Signed Integer RGBA_INTEGER INT

Unsigned Integer RGBA_INTEGER UNSIGNED_INT

Table 8.12: ReadPixels format and type used during CopyTex*.

with the specified target, level, internalformat, border, width, height, and depth, but
with unspecified image contents. In this case no pixel values are accessed in client
memory, and no pixel processing is performed. Errors are generated, however,
exactly as though the data pointer were valid. Otherwise if the pixel unpack buffer
object is non-zero, the data argument is treatedly normally to refer to the beginning
of the pixel unpack buffer object’s data.

8.6 Alternate Texture Image Specification Commands

Two-dimensional texture images may also be specified using image data taken di-
rectly from the framebuffer, and rectangular subregions of existing texture images
may be respecified.

The command

void CopyTexImage2D(enum target, int level,
enum internalformat, int x, int y, sizei width,
sizei height, int border);

defines a two-dimensional texture image in exactly the manner of TexImage2D,
except that the image data are taken from the framebuffer rather than from client
memory. target must be one of TEXTURE_2D or one of the cube map face targets
from table 8.20. x, y, width, and height correspond precisely to the corresponding
arguments to ReadPixels (refer to section 16.1); they specify the image’s width and
height, and the lower left (x, y) coordinates of the framebuffer region to be copied.
The image is taken from the current color buffer exactly as if these arguments were
passed to ReadPixels with arguments format and type set according to table 8.12,
stopping after conversion of RGBA values.

Subsequent processing is identical to that described for TexImage2D, begin-
ning with clamping of the R, G, B, and A values from the resulting pixel groups.
Parameters level, internalformat, and border are specified using the same values,

OpenGL ES 3.2 (November 3, 2016)

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 169

Texture Format
Framebuffer A L LA R RG RGB RGBA D DS S
R � �
RG � � �
RGB � � � �
RGBA � � � � � � �
D
DS
S

Table 8.13: Valid CopyTexImage source framebuffer/destination texture base in-
ternal format combinations.

with the same meanings, as the equivalent arguments of TexImage2D. internalfor-
mat is further constrained such that color buffer components can be dropped during
the conversion to internalformat, but new components cannot be added. For exam-
ple, an RGB color buffer can be used to create LUMINANCE or RGB textures, but not
ALPHA, LUMINANCE_ALPHA, or RGBA textures. Table 8.13 summarizes the valid
framebuffer and texture base internal format combinations.

The constraints on width, height, and border are exactly those for the corre-
sponding arguments of TexImage2D.

If internalformat is sized, the internal format of the new texture image is inter-
nalformat, and this is also the new image’s effective internal format.

If internalformat is unsized, the internal format of the new image is determined
by the following rules, applied in order. If an effective internal format exists that
has

1. the same component sizes as,

2. component sizes greater than or equal to, or

3. component sizes smaller than or equal to

those of the source buffer’s effective internal format (for all matching components
in internalformat), that format is chosen for the new texture image, and this is also
the new image’s effective internal format. When matching formats that involve a
luminance component, a luminance component is considered to match with a red
component. If multiple possible matches exist in the same rule, the one with the
closest component sizes is chosen. Note that the above rules disallow matches

OpenGL ES 3.2 (November 3, 2016)

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 170

where some components sizes are smaller and others are larger (such as RGB10_-
A2).

The effective internal format of the source buffer is determined with the fol-
lowing rules applied in order:

• If the source buffer is a texture or renderbuffer that was created with a sized
internal format then the effective internal format is the source buffer’s sized
internal format.

• If the source buffer is a texture that was created with an unsized base internal
format, then the effective internal format is the source image’s effective in-
ternal format, as specified by table 8.9, which is determined from the format
and type that were used when the source image was specified by TexImage*.

• If the source buffer contains any floating point components, then the ef-
fective internal format is taken from the first (highest) row in table 8.14
for which the source buffer’s red, green, blue, and alpha component
sizes (the values of FRAMEBUFFER_RED_SIZE, FRAMEBUFFER_GREEN_-
SIZE, FRAMEBUFFER_BLUE_SIZE, and FRAMEBUFFER_ALPHA_SIZE re-
spectively) are consistent with the rules in that row for R, G, B, and A
respectively.

• Otherwise the effective internal format is determined by the first (highest)
row in table 8.15 or table 8.16 for which the Destination Internal Format
column matches internalformat, and for which the source buffer’s red, green,
blue, and alpha component sizes are consistent with the rules in that row for
R, G, B, and A respectively.

Table 8.15 is used if the framebuffer encoding (the value of
FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING) is LINEAR and ta-
ble 8.16 is used if the framebuffer encoding is SRGB.

In tables 8.14, 8.15, and 8.16, ”any sized” matches any specified sized internal
format. ”N/A” means the source buffer’s component size is ignored.

Errors

An INVALID_ENUM error is generated if target is not TEXTURE_2D or one
of the cube map face targets from table 8.20.

An INVALID_ENUM error is generated if an invalid value is specified for
internalformat.

An INVALID_VALUE error is generated if target is one of the six cube map

OpenGL ES 3.2 (November 3, 2016)

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 171

Destination Source Source Source Source Effective
Internal Format Red Size Green Size Blue Size Alpha Size Internal Format
any sized 1 ≤ R ≤ 16 G = 0 B = 0 A = 0 R16F

any sized 1 ≤ R ≤ 16 1 ≤ G ≤ 16 B = 0 A = 0 RG16F

any sized 16 < R G = 0 B = 0 A = 0 R32F

any sized 16 < R 16 < G B = 0 A = 0 RG32F

any sized 1 ≤ R ≤ 16 1 ≤ G ≤ 16 1 ≤ B ≤ 16 A = 0 RGB16F

any sized 1 ≤ R ≤ 16 1 ≤ G ≤ 16 1 ≤ B ≤ 16 1 ≤ A ≤ 16 RGBA16F

any sized 16 < R 16 < G 16 < B A = 0 RGB32F

any sized 16 < R 16 < G 16 < B 16 < A RGBA32F

Table 8.14: Effective internal format corresponding to floating-point framebuffers.

Destination Source Source Source Source Effective
Internal Format Red Size Green Size Blue Size Alpha Size Internal Format
any sized R = 0 G = 0 B = 0 1 ≤ A ≤ 8 Alpha8
any sized 1 ≤ R ≤ 8 G = 0 B = 0 A = 0 R8

any sized 1 ≤ R ≤ 8 1 ≤ G ≤ 8 B = 0 A = 0 RG8

any sized 1 ≤ R ≤ 5 1 ≤ G ≤ 6 1 ≤ B ≤ 5 A = 0 RGB565

any sized 5 < R ≤ 8 6 < G ≤ 8 5 < B ≤ 8 A = 0 RGB8

any sized 1 ≤ R ≤ 4 1 ≤ G ≤ 4 1 ≤ B ≤ 4 1 ≤ A ≤ 4 RGBA4

any sized 4 < R ≤ 5 4 < G ≤ 5 4 < B ≤ 5 A = 1 RGB5_A1

any sized 4 < R ≤ 8 4 < G ≤ 8 4 < B ≤ 8 1 < A ≤ 8 RGBA8

any sized 8 < R ≤ 10 8 < G ≤ 10 8 < B ≤ 10 1 < A ≤ 2 RGBA10_A2

ALPHA N/A N/A N/A 1 ≤ A ≤ 8 Alpha8
LUMINANCE 1 ≤ R ≤ 8 N/A N/A N/A Luminance8
LUMINANCE_-

ALPHA

1 ≤ R ≤ 8 N/A N/A 1 ≤ A ≤ 8 Luminance8Alpha8

RGB 1 ≤ R ≤ 5 1 ≤ G ≤ 6 1 ≤ B ≤ 5 N/A RGB565

RGB 5 < R ≤ 8 6 < G ≤ 8 5 < B ≤ 8 N/A RGB8

RGBA 1 ≤ R ≤ 4 1 ≤ G ≤ 4 1 ≤ B ≤ 4 1 ≤ A ≤ 4 RGBA4

RGBA 4 < R ≤ 5 4 < G ≤ 5 4 < B ≤ 5 A = 1 RGB5_A1

RGBA 4 < R ≤ 8 4 < G ≤ 8 4 < B ≤ 8 1 < A ≤ 8 RGBA8

Table 8.15: Effective internal format corresponding to destination internalformat
and linear source buffer component sizes. Effective internal formats in italics do
not correspond to GL constants.

OpenGL ES 3.2 (November 3, 2016)

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 172

Destination Source Source Source Source Effective
Internal Format Red Size Green Size Blue Size Alpha Size Internal Format
any sized 1 ≤ R ≤ 8 1 ≤ G ≤ 8 1 ≤ B ≤ 8 1 ≤ A ≤ 8 SRGB_ALPHA8

Table 8.16: Effective internal format corresponding to destination internalformat
and sRGB source buffer component sizes.

two-dimensional image targets, and width and height are not equal.
An INVALID_OPERATION error is generated under any of the following

conditions:

• if floating-point, signed integer, unsigned integer, or fixed-point RGBA
data is required and the format of the current color buffer does not match
the required format.

• if the value of FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING for
the framebuffer attachment corresponding to the read buffer (see sec-
tion 16.1.1) is LINEAR (see section 9.2.3) and internalformat is one of
the sRGB formats in table 8.23

• if the value of FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING for
the framebuffer attachment corresponding to the read buffer is SRGB

and internalformat is not one of the sRGB formats in table 8.23.

An INVALID_VALUE error is generated if width or height is negative.
An INVALID_VALUE error is generated if border is non-zero.
An INVALID_OPERATION error is generated if the framebuffer and tex-

ture base internal format are not compatible, as defined in table 8.13.
An INVALID_OPERATION error is generated if internalformat is unsized

and no effective internal format exists which matches the rules described
above.

An INVALID_OPERATION error is generated if the component sizes of
internalformat do not exactly match the corresponding component sizes of the
source buffer’s effective internal format.

An INVALID_OPERATION error is generated if there are no rows in ta-
bles 8.14, 8.15 or 8.16 which match internalformat and the source buffer
component types and sizes. In this case, the source buffer does not have an
effective internal format.

To respecify only a rectangular subregion of the texture image of a texture

OpenGL ES 3.2 (November 3, 2016)

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 173

object, use the commands

void TexSubImage3D(enum target, int level, int xoffset,
int yoffset, int zoffset, sizei width, sizei height,
sizei depth, enum format, enum type, const
void *data);

void TexSubImage2D(enum target, int level, int xoffset,
int yoffset, sizei width, sizei height, enum format,
enum type, const void *data);

void CopyTexSubImage3D(enum target, int level,
int xoffset, int yoffset, int zoffset, int x, int y,
sizei width, sizei height);

void CopyTexSubImage2D(enum target, int level,
int xoffset, int yoffset, int x, int y, sizei width,
sizei height);

No change is made to the internalformat, width, height, depth, or border pa-
rameters of the specified texture image, nor is any change made to texel values
outside the specified subregion.

The target arguments of TexSubImage2D and CopyTexSubImage2D must
be one of TEXTURE_2D or one of the cube map face targets from table 8.20,
and the target arguments of TexSubImage3D and CopyTexSubImage3D must
be TEXTURE_3D, TEXTURE_2D_ARRAY or TEXTURE_CUBE_MAP_ARRAY.

The level parameter of each command specifies the level of the texture image
that is modified.

Errors

An INVALID_VALUE error is generated if level is negative or greater than
the log2 of the maximum texture width, height, or depth.

TexSubImage3D arguments width, height, depth, format, and type match the
corresponding arguments to TexImage3D, meaning that they accept the same val-
ues, and have the same meanings. Likewise, TexSubImage2D arguments width,
height, format, and type match the corresponding arguments to TexImage2D. The
data argument of TexSubImage3D and TexSubImage2D matches the correspond-
ing argument of TexImage3D and TexImage2D, respectively, except that a NULL
pointer does not represent unspecified image contents.

CopyTexSubImage3D and CopyTexSubImage2D arguments x, y, width, and

OpenGL ES 3.2 (November 3, 2016)

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 174

height match the corresponding arguments to CopyTexImage2D2. Each of the
TexSubImage commands interprets and processes pixel groups in exactly the man-
ner of its TexImage counterpart, except that the assignment of R, G, B, A, depth,
and stencil index pixel group values to the texture components is controlled by the
internalformat of the texture image, not by an argument to the command. The same
constraints and errors apply to the TexSubImage commands’ argument format and
the internalformat of the texture image being respecified as apply to the format
and internalformat arguments of its TexImage counterparts. It is implementation-
dependent whether the internal format used for error checking is the internalformat
given when the texture was created, or the effective internal format of the texture.
If it is the former, then texels will be converted to the effective internal format on
upload.

Arguments xoffset, yoffset, and zoffset of TexSubImage3D and CopyTex-
SubImage3D specify the lower left texel coordinates of a width-wide by height-
high by depth-deep rectangular subregion of the texture image. For cube map array
textures, zoffset is the first layer-face to update, and depth is the number of layer-
faces to update. The depth argument associated with CopyTexSubImage3D is
always 1, because framebuffer memory is two-dimensional - only a portion of a
single (s, t) slice of a three-dimensional texture is replaced by CopyTexSubIm-
age3D.

Taking wt, ht, and dt to be the specified width, height, and depth of the texture
image, and taking x, y, z, w, h, and d to be the xoffset, yoffset, zoffset, width,
height, and depth argument values, any of the following relationships generates an
INVALID_VALUE error:

x < 0

x+ w > wt

y < 0

y + h > ht

z < 0

z + d > dt

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j, k], where

i = x+ (n mod w)

2 Because the framebuffer is inherently two-dimensional, there is no CopyTexImage3D com-
mand.

OpenGL ES 3.2 (November 3, 2016)

8.6. ALTERNATE TEXTURE IMAGE SPECIFICATION COMMANDS 175

j = y + (b n
w
c mod h)

k = z + (b n

width ∗ height
c mod d

Arguments xoffset and yoffset of TexSubImage2D and CopyTexSubImage2D
specify the lower left texel coordinates of a width-wide by height-high rectangu-
lar subregion of the texture image. Taking wt and ht to be the specified width
and height of the image, and taking x, y, w, and h to be the xoffset, yoffset,
width, and height argument values, any of the following relationships generates
an INVALID_VALUE error:

x < 0

x+ w > wt

y < 0

y + h > ht

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j], where

i = x+ (n mod w)

j = y + (b n
w
c mod h)

Errors

An INVALID_FRAMEBUFFER_OPERATION error is generated by Copy-
TexSubImage3D, CopyTexImage2D, or CopyTexSubImage2D if the object
bound to READ_FRAMEBUFFER_BINDING is not framebuffer complete (see
section 9.4.2)

An INVALID_OPERATION error is generated by CopyTexSubImage3D,
CopyTexImage2D, or CopyTexSubImage2D if

• the read buffer is NONE, or

• the internalformat of the texture image being (re)specified is RGB9_E5,
or

• the value of READ_FRAMEBUFFER_BINDING is non-zero, and

OpenGL ES 3.2 (November 3, 2016)

8.7. COMPRESSED TEXTURE IMAGES 176

– the read buffer selects an attachment that has no image attached,
or

– the effective value of SAMPLE_BUFFERS for the read framebuffer
(see section 9.2.3.1) is one.

8.6.1 Texture Copying Feedback Loops

Calling CopyTexSubImage3D, CopyTexImage2D, or CopyTexSubImage2D
will result in undefined behavior if the destination texture image level is also bound
to to the selected read buffer (see section 16.1.1) of the read framebuffer. This situa-
tion is discussed in more detail in the description of feedback loops in section 9.3.2.

8.7 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format, including the formats defined in appendix C
as well as any additional formats defined by extensions.

The GL provides a mechanism to obtain token values for all compressed for-
mats supported by the implementation. The number of specific compressed in-
ternal formats supported by the renderer can be obtained by querying the value
of NUM_COMPRESSED_TEXTURE_FORMATS. The set of specific compressed inter-
nal formats supported by the renderer can be obtained by querying the value of
COMPRESSED_TEXTURE_FORMATS. All implementations support at least the for-
mats listed in table 8.17.

The commands

void CompressedTexImage2D(enum target, int level,
enum internalformat, sizei width, sizei height,
int border, sizei imageSize, const void *data);

void CompressedTexImage3D(enum target, int level,
enum internalformat, sizei width, sizei height,
sizei depth, int border, sizei imageSize, const
void *data);

define two-and three-dimensional texture images, respectively, with incoming data
stored in a compressed image format. The target, level, internalformat, width,
height, depth, and border parameters have the same meaning as in TexImage2D
and TexImage3D. data refers to compressed image data stored in the specific com-
pressed image format corresponding to internalformat. If a pixel unpack buffer is
bound (as indicated by a non-zero value of PIXEL_UNPACK_BUFFER_BINDING),

OpenGL ES 3.2 (November 3, 2016)

8.7. COMPRESSED TEXTURE IMAGES 177

data is an offset into the pixel unpack buffer and the compressed data is read from
the buffer relative to this offset; otherwise, data is a pointer to client memory and
the compressed data is read from client memory relative to the pointer.

The compressed image will be decoded according to the specification defining
the internalformat token. Compressed texture images are treated as an array of
imageSize ubytes relative to data.

If the compressed image is not encoded according to the defined image format,
the results of the call are undefined.

All pixel storage modes are ignored when decoding a compressed texture im-
age.

Compressed Internal Format Base Block Border 3D Cube Map
Internal Width x Type Tex. Array
Format Height Tex.

COMPRESSED_R11_EAC RED 4× 4 unorm �
COMPRESSED_SIGNED_R11_EAC RED 4× 4 snorm �
COMPRESSED_RG11_EAC RG 4× 4 unorm �
COMPRESSED_SIGNED_RG11_EAC RG 4× 4 snorm �
COMPRESSED_RGB8_ETC2 RGB 4× 4 unorm �
COMPRESSED_SRGB8_ETC2 RGB 4× 4 unorm �
COMPRESSED_RGB8_-

PUNCHTHROUGH_ALPHA1_ETC2

RGBA 4× 4 unorm �

COMPRESSED_SRGB8_-

PUNCHTHROUGH_ALPHA1_ETC2

RGBA 4× 4 unorm �

COMPRESSED_RGBA8_ETC2_EAC RGBA 4× 4 unorm �
COMPRESSED_SRGB8_ALPHA8_-

ETC2_EAC

RGBA 4× 4 unorm �

COMPRESSED_RGBA_ASTC_4x4 RGBA 4× 4 unorm �
COMPRESSED_RGBA_ASTC_5x4 RGBA 5× 4 unorm �
COMPRESSED_RGBA_ASTC_5x5 RGBA 5× 5 unorm �
COMPRESSED_RGBA_ASTC_6x5 RGBA 6× 5 unorm �
COMPRESSED_RGBA_ASTC_6x6 RGBA 6× 6 unorm �
COMPRESSED_RGBA_ASTC_8x5 RGBA 8× 5 unorm �
COMPRESSED_RGBA_ASTC_8x6 RGBA 8× 6 unorm �
COMPRESSED_RGBA_ASTC_8x8 RGBA 8× 8 unorm �
COMPRESSED_RGBA_ASTC_10x5 RGBA 10× 5 unorm �
COMPRESSED_RGBA_ASTC_10x6 RGBA 10× 6 unorm �

(Continued on next page)

OpenGL ES 3.2 (November 3, 2016)

8.7. COMPRESSED TEXTURE IMAGES 178

Commpressed internal formats (continued)
Compressed Internal Format Base Block Border 3D Cube Map

Internal Width x Type Tex. Array
Format Height Tex.

COMPRESSED_RGBA_ASTC_10x8 RGBA 10× 8 unorm �
COMPRESSED_RGBA_ASTC_10x10 RGBA 10× 10 unorm �
COMPRESSED_RGBA_ASTC_12x10 RGBA 12× 10 unorm �
COMPRESSED_RGBA_ASTC_12x12 RGBA 12× 12 unorm �
COMPRESSED_SRGB8_ALPHA8_-

ASTC_4x4

RGBA 4× 4 unorm �

COMPRESSED_SRGB8_ALPHA8_-

ASTC_5x4

RGBA 5× 4 unorm �

COMPRESSED_SRGB8_ALPHA8_-

ASTC_5x5

RGBA 5× 5 unorm �

COMPRESSED_SRGB8_ALPHA8_-

ASTC_6x5

RGBA 6× 5 unorm �

COMPRESSED_SRGB8_ALPHA8_-

ASTC_6x6

RGBA 6× 6 unorm �

COMPRESSED_SRGB8_ALPHA8_-

ASTC_8x5

RGBA 8× 5 unorm �

COMPRESSED_SRGB8_ALPHA8_-

ASTC_8x6

RGBA 8× 6 unorm �

COMPRESSED_SRGB8_ALPHA8_-

ASTC_8x8

RGBA 8× 8 unorm �

COMPRESSED_SRGB8_ALPHA8_-

ASTC_10x5

RGBA 10× 5 unorm �

COMPRESSED_SRGB8_ALPHA8_-

ASTC_10x6

RGBA 10× 6 unorm �

COMPRESSED_SRGB8_ALPHA8_-

ASTC_10x8

RGBA 10× 8 unorm �

COMPRESSED_SRGB8_ALPHA8_-

ASTC_10x10

RGBA 10× 10 unorm �

COMPRESSED_SRGB8_ALPHA8_-

ASTC_12x10

RGBA 12× 10 unorm �

COMPRESSED_SRGB8_ALPHA8_-

ASTC_12x12

RGBA 12× 12 unorm �

Table 8.17: Compressed internal formats. The formats are de-
scribed in appendix C. The “Block Size” column specifies the
compressed block size of the format. Modifying compressed im-
ages along aligned block boundaries is possible, as described in
this section. The “Border Type” column determines how border
colors are clamped, as described in section 8.14.2. The “3D Tex.”
and “Cube Map Array Tex.” columns determine if 3D images
composed of compressed 2D slices and cube map array textures,
respectively, can be specified using CompressedTexImage3D.

OpenGL ES 3.2 (November 3, 2016)

8.7. COMPRESSED TEXTURE IMAGES 179

Compressed internal formats may impose format-specific restrictions on the
use of the compressed image specification calls or parameters. For example, the
compressed image format might be supported only for 2D textures. Any such
restrictions will be documented in the extension specification defining the com-
pressed internal format, and will be invariant with respect to image contents. This
means that if the GL accepts and stores a texture image in compressed form, Com-
pressedTexImage2D or CompressedTexImage3D will accept any properly en-
coded compressed texture image of the same width, height, depth, compressed
image size, and compressed internal format for storage at the same texture level.

If internalformat is one of the specific compressed formats described in ta-
ble 8.17, the compressed image data is stored using the corresponding texture
image encoding (see appendix C). The corresponding texture compression algo-
rithms supports only two-dimensional images. However, if the “3D Tex” column
of table 8.17 is checked, CompressedTexImage3D will accept a three-dimensional
image specified as an array of compressed data consisting of multiple rows of com-
pressed blocks laid out as described in section 8.5. The width and height of each
sub-image must be a multiple of the block size for the format, shown in the same
table.

Errors

An INVALID_ENUM error is generated by CompressedTexImage2D if
target is not TEXTURE_2D or one of the cube map face targets from table 8.20.

An INVALID_VALUE error is generated by

• CompressedTexImage2D if target is one of the cube map face targets
from table 8.20, and

• CompressedTexImage3D if target is TEXTURE_CUBE_MAP_ARRAY,

and width and height are not equal.
An INVALID_OPERATION error is generated by CompressedTexIm-

age3D if internalformat is one of the the formats in table 8.17 and target is
not TEXTURE_2D_ARRAY, TEXTURE_CUBE_MAP_ARRAY or TEXTURE_3D.

An INVALID_OPERATION error is generated by CompressedTexIm-
age3D if internalformat is TEXTURE_CUBE_MAP_ARRAY and the “Cube Map
Array” column of table 8.17 is not checked, or if internalformat is TEXTURE_-
3D and the “3D Tex.” column of table 8.17 is not checked.

An INVALID_VALUE error is generated if border is non-zero.

OpenGL ES 3.2 (November 3, 2016)

8.7. COMPRESSED TEXTURE IMAGES 180

An INVALID_ENUM error is generated if internalformat is not a supported
specific compressed internal format from table 8.17 or one of the additional
formats defined by OpenGL ES extensions.

An INVALID_VALUE error is generated if width, height, depth, or image-
Size is negative.

An INVALID_OPERATION error is generated if a pixel unpack buffer ob-
ject is bound and data+imageSize is greater than the size of the pixel buffer.

An INVALID_VALUE error is generated if the imageSize parameter is not
consistent with the format, dimensions, and contents of the compressed image.

An INVALID_OPERATION error is generated if any format-specific re-
strictions imposed by specific compressed internal formats are violated by the
compressed image specification calls or parameters.

If the data argument of CompressedTexImage2D or CompressedTexIm-
age3D is NULL, and the pixel unpack buffer object is zero, a texture image with
unspecified image contents is created, just as when a NULL pointer is passed to
TexImage2D or TexImage3D.

To respecify only a rectangular subregion of the texture image of a texture
object, with incoming data stored in a specific compressed image format, use the
commands

void CompressedTexSubImage2D(enum target, int level,
int xoffset, int yoffset, sizei width, sizei height,
enum format, sizei imageSize, const void *data);

void CompressedTexSubImage3D(enum target, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format,
sizei imageSize, const void *data);

The target, level, xoffset, yoffset, zoffset, width, height, and depth parameters
have the same meaning as in TexSubImage2D, and TexSubImage3D. data points
to compressed image data stored in the compressed image format corresponding to
format.

The image pointed to by data and the imageSize parameter are interpreted as
though they were provided to CompressedTexImage2D and CompressedTexIm-
age3D.

Any restrictions imposed by specific compressed internal formats will be in-
variant with respect to image contents, meaning that if the GL accepts and stores
a texture image in compressed form, CompressedTexSubImage2D or Com-
pressedTexSubImage3D will accept any properly encoded compressed texture

OpenGL ES 3.2 (November 3, 2016)

8.7. COMPRESSED TEXTURE IMAGES 181

image of the same width, height, compressed image size, and compressed inter-
nal format for storage at the same texture level.

If the internal format of the image being modified is one of the specific com-
pressed formats described in table 8.17, the texture is stored using the correspond-
ing texture image encoding (see appendix C).

Since these specific compressed formats are easily edited along texel block
boundaries, the limitations on subimage location and size are relaxed for Com-
pressedTexSubImage2D and CompressedTexSubImage3D.

The block width and height varies for different formats, as described in ta-
ble 8.17. The contents of any block of texels of a compressed texture image in
these specific compressed formats that does not intersect the area being modified
are preserved during CompressedTexSubImage* calls.

Errors

An INVALID_ENUM error is generated by CompressedTexSubImage2D
if target is not TEXTURE_2D or one of the cube map face targets from ta-
ble 8.20.

An INVALID_OPERATION error is generated by CompressedTexSubIm-
age3D if format is one of the formats in table 8.17 and target is not
TEXTURE_2D_ARRAY, TEXTURE_CUBE_MAP_ARRAY or TEXTURE_3D.

An INVALID_OPERATION error is generated by CompressedTexIm-
age3D if format is TEXTURE_CUBE_MAP_ARRAY and the “Cube Map Array”
column of table 8.17 is not checked, or if format is TEXTURE_3D and the “3D
Tex.” column of table 8.17 is not checked.

An INVALID_OPERATION error is generated if format does not match the
internal format of the texture image being modified, since these commands do
not provide for image format conversion.

An INVALID_VALUE error is generated if width, height, depth, or image-
Size is negative.

An INVALID_VALUE error is generated if imageSize is not consistent with
the format, dimensions, and contents of the compressed image (too little or
too much data),

An INVALID_OPERATION error is generated if any format-specific restric-
tions are violated, as with CompressedTexImage calls. Any such restrictions
will be documented in the specification defining the compressed internal for-
mat.

An INVALID_OPERATION error is generated if xoffset, yoffset, or zoffset
are not equal to zero, or if width, height, and depth do not match the corre-

OpenGL ES 3.2 (November 3, 2016)

8.8. MULTISAMPLE TEXTURES 182

sponding dimensions of the texture level. The contents of any texel outside the
region modified by the call are undefined. These restrictions may be relaxed
for specific compressed internal formats whose images are easily modified.

An INVALID_OPERATION error is generated if format is one of the for-
mats in table 8.17 and any of the following conditions occurs. The block width
and height refer to the values in the corresponding column of the table.

• width is not a multiple of the format’s block width, and width + xoffset
is not equal to the value of TEXTURE_WIDTH.

• height is not a multiple of the format’s block height, and height+yoffset
is not equal to the value of TEXTURE_HEIGHT.

• xoffset or yoffset is not a multiple of the block width or height, respec-
tively.

8.8 Multisample Textures

In addition to the texture types described in previous sections, two additional types
of texture are supported. Multisample textures are similar to two-dimensional or
two-dimensional array textures, except that they contain multiple samples per texel.
Multisample textures do not have multiple image levels, and are immutable.

The commands

void TexStorage2DMultisample(enum target, sizei samples,
int sizedinternalformat, sizei width, sizei height,
boolean fixedsamplelocations);

void TexStorage3DMultisample(enum target, sizei samples,
int sizedinternalformat, sizei width, sizei height,
sizei depth, boolean fixedsamplelocations);

establishes the data storage, format, dimensions, and number of samples of
a multisample texture’s image. For TexImage2DMultisample target must be
TEXTURE_2D_MULTISAMPLE, and for TexStorage3DMultisample target must be
TEXTURE_2D_MULTISAMPLE_ARRAY. width and height are the dimensions in tex-
els of the texture, and depth is the number of array layers.

samples represents a request for a desired minimum number of samples.
Since different implementations may support different sample counts for multi-
sampled textures, the actual number of samples allocated for the texture image is
implementation-dependent. However, the resulting value for TEXTURE_SAMPLES

OpenGL ES 3.2 (November 3, 2016)

8.8. MULTISAMPLE TEXTURES 183

is guaranteed to be greater than or equal to samples and no more than the next
larger sample count supported by the implementation.

If fixedsamplelocations is TRUE, the image will use identical sample locations
and the same number of samples for all texels in the image, and the sample loca-
tions will not depend on the sizedinternalformat or size of the image.

Upon success, TexStorage*DMultisample delete any existing image for
target and the contents of texels are undefined. The values of TEXTURE_-

WIDTH, TEXTURE_HEIGHT, TEXTURE_SAMPLES, TEXTURE_INTERNAL_FORMAT
and TEXTURE_FIXED_SAMPLE_LOCATIONS are set to width, height, the actual
number of samples allocated, sizedinternalformat, and fixedsamplelocations re-
spectively.

When a multisample texture is accessed in a shader, the access takes one vector
of integers describing which texel to fetch and an integer corresponding to the
sample numbers described in section 13.4 describing which sample within the texel
to fetch. No standard sampling instructions are allowed on the multisample texture
targets, and no filtering is performed by the fetch. Fetching a sample number less
than zero, or greater than or equal to the number of samples in the texture, produces
undefined results.

Errors

An INVALID_ENUM error is generated if target is not an accepted multi-
sample target as described above.

An INVALID_OPERATION error is generated if zero is bound to target.
An INVALID_VALUE error is generated if width, height or depth is less

than 1.
An INVALID_VALUE error is generated if samples is zero.
An INVALID_VALUE error is generated if width or height is greater than

the value of MAX_TEXTURE_SIZE.
An INVALID_VALUE error is generated by TexStorage3DMultisample if

depth is greater than the value of MAX_ARRAY_TEXTURE_LAYERS.
An INVALID_ENUM error is generated if sizedinternalformat is not color-

renderable, depth-renderable, or stencil-renderable (as defined in section 9.4).
An INVALID_ENUM error is generated if internalformat is one of the un-

sized base internal formats listed in table 8.8.
An INVALID_OPERATION error is generated if samples is greater than the

maximum number of samples supported for this target and internalformat.
The maximum number of samples supported can be determined by calling
GetInternalformativ with a pname of SAMPLES (see section 20.3).

OpenGL ES 3.2 (November 3, 2016)

8.9. BUFFER TEXTURES 184

An INVALID_OPERATION error is generated if the value of TEXTURE_-
IMMUTABLE_FORMAT for the texture currently bound to target on the active
texture unit is TRUE.

8.9 Buffer Textures

In addition to the types of textures described in previous sections, one additional
type of texture is supported. A buffer texture is similar to a one-dimensional tex-
ture. However, unlike other texture types, the texture image is not stored as part of
the texture. Instead, a buffer object is attached to a buffer texture and the texture
image is taken from that buffer object’s data store. When the contents of a buffer
object’s data store are modified, those changes are reflected in the contents of any
buffer texture to which the buffer object is attached. Buffer textures do not have
multiple image levels; only a single data store is available.

The command

void TexBufferRange(enum target, enum internalformat,
uint buffer, intptr offset, sizeiptr size);

attaches the range of the storage for the buffer object named buffer for size basic
machine units, starting at offset (also in basic machine units) to the buffer texture
currently bound to target. target must be TEXTURE_BUFFER.

If buffer is zero, then any buffer object attached to the buffer texture is detached,
the values offset and size are ignored and the state for offset and size for the buffer
texture are reset to zero. internalformat specifies the storage format for the texture
image found in the range of the attached buffer object, and must be one of the sized
internal formats found in table 8.18.

Errors

An INVALID_ENUM error is generated if target is not TEXTURE_BUFFER.
An INVALID_ENUM error is generated if internalformat is not one of the

sized internal formats in table 8.18.
An INVALID_OPERATION error is generated if buffer is non-zero and is

not the name of a buffer object.
An INVALID_VALUE error is generated if offset is negative, if size is less

than or equal to zero, or if offset + size is greater than the value of BUFFER_-
SIZE for the buffer bound to target.

An INVALID_VALUE error is generated if offset is not an integer multiple
of the value of TEXTURE_BUFFER_OFFSET_ALIGNMENT.

OpenGL ES 3.2 (November 3, 2016)

8.9. BUFFER TEXTURES 185

The command

void TexBuffer(enum target, enum internalformat,
uint buffer);

is equivalent to

TexBufferRange(target, internalformat, buffer, 0, size);

where size is the value of BUFFER_SIZE for buffer.
When a range of the storage of a buffer object is attached to a buffer texture, the

range of the buffer’s data store is taken as the texture’s texture image. The number
of texels in the buffer texture’s texel array is given by⌊

size

components× sizeof (base type)

⌋
.

where components and base type are the element count and base type for ele-
ments, as specified in table 8.18.

The number of texels in the texel array is then clamped to an implementation-
dependent limit, the value of MAX_TEXTURE_BUFFER_SIZE. When a buffer tex-
ture is accessed in a shader, the results of a texel fetch are undefined if the specified
texel coordinate is negative, or greater than or equal to the clamped number of
texels in the texture image.

When a buffer texture is accessed in a shader, an integer is provided to indicate
the texel coordinate being accessed. If no buffer object is bound to the buffer tex-
ture, the results of the texel access are undefined. Otherwise, the attached buffer
object’s data store is interpreted as an array of elements of the GL data type cor-
responding to internalformat. Each texel consists of one to four elements that are
mapped to texture components (R, G, B, and A). Element m of the texel numbered
n is taken from element n× components+m of the attached buffer object’s data
store. Elements and texels are both numbered starting with zero. For texture for-
mats with signed or unsigned normalized fixed-point components, the extracted
values are converted to floating-point using equations 2.2 or 2.1, respectively. The
components of the texture are then converted to a (R,G,B,A) vector according
to table 8.18, and returned to the shader as a four-component result vector with
components of the appropriate data type for the texture’s internal format. The base
data type, component count, normalized component information, and mapping of
data store elements to texture components is specified in table 8.18.

OpenGL ES 3.2 (November 3, 2016)

8.9. BUFFER TEXTURES 186

Sized Internal Format Base Type Components Norm Component
0 1 2 3

R8 ubyte 1 Yes R 0 0 1
R16F half 1 No R 0 0 1
R32F float 1 No R 0 0 1
R8I byte 1 No R 0 0 1
R16I short 1 No R 0 0 1
R32I int 1 No R 0 0 1
R8UI ubyte 1 No R 0 0 1
R16UI ushort 1 No R 0 0 1
R32UI uint 1 No R 0 0 1
RG8 ubyte 2 Yes R G 0 1
RG16F half 2 No R G 0 1
RG32F float 2 No R G 0 1
RG8I byte 2 No R G 0 1
RG16I short 2 No R G 0 1
RG32I int 2 No R G 0 1
RG8UI ubyte 2 No R G 0 1
RG16UI ushort 2 No R G 0 1
RG32UI uint 2 No R G 0 1
RGB32F float 3 No R G B 1
RGB32I int 3 No R G B 1
RGB32UI uint 3 No R G B 1
RGBA8 ubyte 4 Yes R G B A
RGBA16F half 4 No R G B A
RGBA32F float 4 No R G B A
RGBA8I byte 4 No R G B A
RGBA16I short 4 No R G B A
RGBA32I int 4 No R G B A
RGBA8UI ubyte 4 No R G B A
RGBA16UI ushort 4 No R G B A
RGBA32UI uint 4 No R G B A

Table 8.18: Internal formats for buffer textures. For each format,
the data type of each element is indicated in the “Base Type” col-
umn and the element count is in the “Components” column. The
“Norm” column indicates whether components should be treated
as normalized floating-point values. The “Component 0, 1, 2, and
3” columns indicate the mapping of each element of a texel to tex-
ture components.

OpenGL ES 3.2 (November 3, 2016)

8.10. TEXTURE PARAMETERS 187

In addition to attaching buffer objects to textures, buffer objects can be bound
to the buffer object target named TEXTURE_BUFFER, in order to specify, modify, or
read the buffer object’s data store. The buffer object bound to TEXTURE_BUFFER

has no effect on rendering. A buffer object is bound to TEXTURE_BUFFER by
calling BindBuffer with target set to TEXTURE_BUFFER, as described in section 6.

8.10 Texture Parameters

Texture parameters control how the texture image of a texture object is treated
when specified or changed, and when applied to a fragment. Each parameter is set
with the commands

void TexParameter{if}(enum target, enum pname, T param);
void TexParameter{if}v(enum target, enum pname, const

T *params);
void TexParameterI{i ui}v(uint texture, enum pname const T

*params);

target is the target, and must be one of TEXTURE_2D, TEXTURE_3D, TEXTURE_-
2D_ARRAY, TEXTURE_CUBE_MAP, TEXTURE_CUBE_MAP_ARRAY, TEXTURE_-

2D_MULTISAMPLE, or TEXTURE_2D_MULTISAMPLE_ARRAY.
pname is a symbolic constant indicating the parameter to be set; the possible

constants and corresponding parameters are summarized in table 8.19. In the scalar
forms of the command, param is a value to which to set a single-valued parameter;
in the vector forms, params is an array of parameters whose type depends on the
parameter being set.

Data conversions are performed as specified in section 2.2.1, with these excep-
tions:

• If the values for TEXTURE_BORDER_COLOR are specified with TexParame-
terIiv or TexParameterIuiv, they are unmodified and stored with an internal
data type of integer. If specified with TexParameteriv, they are converted to
floating-point using equation 2.2. Otherwise, the values are unmodified and
stored as floating-point.

OpenGL ES 3.2 (November 3, 2016)

8.10. TEXTURE PARAMETERS 188

Name Type Legal Values
DEPTH_STENCIL_TEXTURE_MODE enum DEPTH_COMPONENT, STENCIL_-

INDEX

TEXTURE_BASE_LEVEL int any non-negative integer
TEXTURE_BORDER_COLOR 4 floats, any 4 values

ints, or uints
TEXTURE_COMPARE_MODE enum NONE, COMPARE_REF_TO_-

TEXTURE

TEXTURE_COMPARE_FUNC enum LEQUAL, GEQUAL, LESS,
GREATER, EQUAL, NOTEQUAL,
ALWAYS, NEVER

TEXTURE_MAG_FILTER enum NEAREST, LINEAR
TEXTURE_MAX_LEVEL int any non-negative integer
TEXTURE_MAX_LOD float any value
TEXTURE_MIN_FILTER enum NEAREST, LINEAR,

NEAREST_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR,
LINEAR_MIPMAP_NEAREST,
LINEAR_MIPMAP_LINEAR,

TEXTURE_MIN_LOD float any value
TEXTURE_SWIZZLE_R enum RED, GREEN, BLUE, ALPHA, ZERO,

ONE

TEXTURE_SWIZZLE_G enum RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_SWIZZLE_B enum RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_SWIZZLE_A enum RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_WRAP_S enum CLAMP_TO_EDGE, REPEAT,
MIRRORED_REPEAT, CLAMP_-

TO_BORDER

TEXTURE_WRAP_T enum CLAMP_TO_EDGE, REPEAT,
MIRRORED_REPEAT, CLAMP_-

TO_BORDER

TEXTURE_WRAP_R enum CLAMP_TO_EDGE, REPEAT,
MIRRORED_REPEAT, CLAMP_-

TO_BORDER

Table 8.19: Texture parameters and their values.

OpenGL ES 3.2 (November 3, 2016)

8.10. TEXTURE PARAMETERS 189

In the remainder of chapter 8, denote by lodmin, lodmax, level
′
base, and

level
′
max the values of the texture parameters TEXTURE_MIN_LOD, TEXTURE_-

MAX_LOD, TEXTURE_BASE_LEVEL, and TEXTURE_MAX_LEVEL respectively. Let

levelbase =

{
min(level

′
base, levelimmut − 1), for immutable-format textures

level
′
base, otherwise

(8.3)
and

levelmax =

{
min(max(levelbase, level

′
max), levelimmut − 1), for immutable-format textures

level
′
max, otherwise

(8.4)
levelimmut is the levels parameter passed to TexStorage* for the texture object

(the value of TEXTURE_IMMUTABLE_LEVELS; see section 8.18).
Texture parameters for a cube map texture apply to the cube map as a whole;

the six distinct two-dimensional texture images use the texture parameters of the
cube map itself.

Errors

An INVALID_ENUM error is generated if target is not one of the valid tar-
gets listed above.

An INVALID_ENUM error is generated if pname is not one of the parameter
names in table 8.19.

An INVALID_ENUM error is generated if the type of the parameter speci-
fied by pname is enum, and the value(s) specified by param or params are not
among the legal values shown in table 8.19.

An INVALID_VALUE error is generated if pname is TEXTURE_BASE_-

LEVEL or TEXTURE_MAX_LEVEL, and param or params is negative.
An INVALID_VALUE error is generated if pname is TEXTURE_BASE_-

LEVEL or TEXTURE_MAX_LEVEL, and param or params is negative.
An INVALID_ENUM error is generated if Tex*Parameter{if} is called for

a non-scalar parameter (pname TEXTURE_BORDER_COLOR).
An INVALID_ENUM error is generated if target is TEXTURE_2D_-

MULTISAMPLE or TEXTURE_2D_MULTISAMPLE_ARRAY, and pname is any
sampler state from table 21.12.

An INVALID_OPERATION error is generated if target is TEXTURE_-

OpenGL ES 3.2 (November 3, 2016)

8.11. TEXTURE QUERIES 190

2D_MULTISAMPLE or TEXTURE_2D_MULTISAMPLE_ARRAY, and pname
TEXTURE_BASE_LEVEL is set to a value other than zero.

8.11 Texture Queries

8.11.1 Active Texture

As discussed in section 2.2.2, queries of most texture state variables are qualified
by the value of ACTIVE_TEXTURE to determine which server texture state vector
is queried.

8.11.2 Texture Parameter Queries

Parameters of a texture object may be queried with the commands

void GetTexParameter{if}v(enum target, enum pname,
T *params);

void GetTexParameterI{i ui}v(enum target, enum pname,
T *params);

The texture object is that which is bound to target.
The value of texture parameter pname for the texture is returned in params.
target must be one of TEXTURE_2D, TEXTURE_3D, TEXTURE_2D_-

ARRAY, TEXTURE_CUBE_MAP, TEXTURE_CUBE_MAP_ARRAY, TEXTURE_2D_-

MULTISAMPLE, or TEXTURE_2D_MULTISAMPLE_ARRAY, indicating the currently
bound two-dimensional, three-dimensional, two-dimensional array, cube map,
cube map array, two-dimensional multisample, or two-dimensional multisample
array texture object, respectively.

pname must be one of IMAGE_FORMAT_COMPATIBILITY_TYPE, TEXTURE_-
IMMUTABLE_FORMAT, TEXTURE_IMMUTABLE_LEVELS, or one of the symbolic
values in table 8.19.

Querying pname TEXTURE_BORDER_COLOR with GetTexParameterIiv or
GetTexParameterIuiv returns the border color values as signed integers or un-
signed integers, respectively; otherwise the values are returned as described in sec-
tion 2.2.2. If the border color is queried with a type that does not match the original
type with which it was specified, the result is undefined.

Errors

An INVALID_ENUM error is generated if target is not one of the texture

OpenGL ES 3.2 (November 3, 2016)

8.11. TEXTURE QUERIES 191

targets described above.
An INVALID_ENUM error is generated if pname is not one of the texture

parameters described above.

8.11.3 Texture Level Parameter Queries

The commands

void GetTexLevelParameter{if}v(enum target, int level,
enum pname, T *params);

place information about texture image parameter pname for level-of-detail level of
the specified target into params. pname must be one of the symbolic values in
table 21.11.

target may be one of TEXTURE_2D, TEXTURE_3D, TEXTURE_2D_ARRAY,
one of the cube map face targets from table 8.20, TEXTURE_CUBE_MAP_-

ARRAY, TEXTURE_BUFFER, TEXTURE_2D_MULTISAMPLE, or TEXTURE_2D_-

MULTISAMPLE_ARRAY, indicating the two-or three-dimensional texture, two-
dimensional array texture, one of the six distinct 2D images making up the cube
map texture object, cube map array texture, buffer texture, two-dimensional multi-
sample texture, or two-dimensional multisample array texture.

level determines which level-of-detail’s state is returned. The maximum value
of level depends on the texture target:

• For cube map face targets, the maximum value is log2 of the value of MAX_-
CUBE_MAP_TEXTURE_SIZE.

• For target TEXTURE_3D, the maximum value is log2 of the value of MAX_-
3D_TEXTURE_SIZE.

• For targets TEXTURE_BUFFER, TEXTURE_2D_MULTISAMPLE,
and TEXTURE_2D_MULTISAMPLE_ARRAY, which do not support mipmaps,
the maximum value is zero.

• For all other texture targets supported by GetTexLevelParameter*, the
maximum value is log2 of the value of MAX_TEXTURE_SIZE.

Note that TEXTURE_CUBE_MAP is not a valid target parameter for Get-
TexLevelParameter, because it does not specify a particular cube map face.

For texture images with uncompressed internal formats, queries of
pname TEXTURE_RED_TYPE, TEXTURE_GREEN_TYPE, TEXTURE_BLUE_TYPE,
TEXTURE_ALPHA_TYPE, and TEXTURE_DEPTH_TYPE return the data type used

OpenGL ES 3.2 (November 3, 2016)

8.12. DEPTH COMPONENT TEXTURES 192

to store the component. Types NONE, SIGNED_NORMALIZED, UNSIGNED_-

NORMALIZED, FLOAT, INT, and UNSIGNED_INT respectively indicate missing,
signed normalized fixed-point, unsigned normalized fixed-point, floating-point,
signed unnormalized integer, and unsigned unnormalized integer components.
Queries of pname TEXTURE_RED_SIZE, TEXTURE_GREEN_SIZE, TEXTURE_-
BLUE_SIZE, TEXTURE_ALPHA_SIZE, TEXTURE_DEPTH_SIZE, TEXTURE_-

STENCIL_SIZE, and TEXTURE_SHARED_SIZE return the actual resolutions of the
stored image components, not the resolutions specified when the image was de-
fined.

For texture images with compressed internal formats, the types returned spec-
ify how components are interpreted after decompression, while the resolutions re-
turned specify the component resolution of an uncompressed internal format that
produces an image of roughly the same quality as the compressed image in ques-
tion. Since the quality of the implementation’s compression algorithm is likely
data-dependent, the returned component sizes should be treated only as rough ap-
proximations.

Queries of pname TEXTURE_INTERNAL_FORMAT,
TEXTURE_WIDTH, TEXTURE_HEIGHT, and TEXTURE_DEPTH return the internal
format, width, height, and depth, respectively, as specified when the texture image
was created.

Queries of pname TEXTURE_SAMPLES, and TEXTURE_FIXED_SAMPLE_-

LOCATIONS on multisample textures return the number of samples and whether
texture sample fixed locations are enabled, respectively. For non-multisample tex-
tures, the default values in table 21.11 are returned.

Errors

An INVALID_ENUM error is generated if target is not one of the texture
targets described above.

An INVALID_ENUM error is generated if pname is not one of the symbolic
values in tables 21.11.

An INVALID_VALUE error is generated if level is negative or larger than
the maximum allowable level-of-detail for target as described above.

8.12 Depth Component Textures

Depth textures and the depth components of depth/stencil textures can be treated
as RED textures during texture filtering and application (see section 8.20).

OpenGL ES 3.2 (November 3, 2016)

8.13. CUBE MAP TEXTURE SELECTION 193

Major Axis Direction Target sc tc ma

+rx TEXTURE_CUBE_MAP_POSITIVE_X −rz −ry rx
−rx TEXTURE_CUBE_MAP_NEGATIVE_X rz −ry rx
+ry TEXTURE_CUBE_MAP_POSITIVE_Y rx rz ry
−ry TEXTURE_CUBE_MAP_NEGATIVE_Y rx −rz ry
+rz TEXTURE_CUBE_MAP_POSITIVE_Z rx −ry rz
−rz TEXTURE_CUBE_MAP_NEGATIVE_Z −rx −ry rz

Table 8.20: Selection of cube map images based on major axis direction of texture
coordinates.

8.13 Cube Map Texture Selection

When cube map texturing is enabled, the
(
s t r

)
texture coordinates are treated

as a direction vector
(
rx ry rz

)
emanating from the center of a cube. At tex-

ture application time, the interpolated per-fragment direction vector selects one of
the cube map face’s two-dimensional images based on the largest magnitude co-
ordinate direction (the major axis direction). If two or more coordinates have the
identical magnitude, the implementation may define the rule to disambiguate this
situation. The rule must be deterministic and depend only on

(
rx ry rz

)
. The

target column in table 8.20 explains how the major axis direction maps to the two-
dimensional image of a particular cube map target.

Using the sc, tc, and ma determined by the major axis direction as specified in
table 8.20, an updated

(
s t

)
is calculated as follows:

s =
1

2

(
sc
|ma|

+ 1

)
t =

1

2

(
tc
|ma|

+ 1

)

8.13.1 Seamless Cube Map Filtering

The rules for texel selection in sections 8.14 through 8.15 are modified for cube
maps so that texture wrap modes are ignored3. Instead,

• If NEAREST filtering is done within a miplevel, always apply apply wrap
mode CLAMP_TO_EDGE.

3 This is a behavior change in OpenGL ES 3.0. In previous versions, texture wrap modes were
respected and neighboring cube map faces were not used for border texels.

OpenGL ES 3.2 (November 3, 2016)

8.14. TEXTURE MINIFICATION 194

• If LINEAR filtering is done within a miplevel, always apply wrap mode
CLAMP_TO_BORDER. Then,

– If a texture sample location would lie in the texture border in either u
or v, instead select the corresponding texel from the appropriate neigh-
boring face.

– If a texture sample location would lie in the texture border in both u
and v (in one of the corners of the cube), there is no unique neighbor-
ing face from which to extract one texel. The recommended method to
generate this texel is to average the values of the three available sam-
ples. However, implementations are free to construct this fourth texel
in another way, so long as, when the three available samples have the
same value, this texel also has that value.

8.14 Texture Minification

Applying a texture to a primitive implies a mapping from texture image space to
framebuffer image space. In general, this mapping involves a reconstruction of
the sampled texture image, followed by a homogeneous warping implied by the
mapping to framebuffer space, then a filtering, followed finally by a resampling
of the filtered, warped, reconstructed image before applying it to a fragment. In
the GL this mapping is approximated by one of two simple filtering schemes. One
of these schemes is selected based on whether the mapping from texture space to
framebuffer space is deemed to magnify or minify the texture image.

8.14.1 Scale Factor and Level of Detail

The choice is governed by a scale factor ρ(x, y) and the level-of-detail parameter
λ(x, y), defined as

λbase(x, y) = log2[ρ(x, y)] (8.5)

λ′(x, y) = λbase(x, y) + clamp(biasshader) (8.6)

λ =


lodmax, λ′ > lodmax

λ′, lodmin ≤ λ′ ≤ lodmax

lodmin, λ′ < lodmin

undefined, lodmin > lodmax

(8.7)

OpenGL ES 3.2 (November 3, 2016)

8.14. TEXTURE MINIFICATION 195

biasshader is the value of the optional bias parameter in the texture lookup func-
tions available to fragment shaders. If the texture access is performed in a fragment
shader without a provided bias, or outside a fragment shader, then biasshader is
zero. The sum of these values is clamped to the range [−biasmax, biasmax] where
biasmax is the value of the implementation defined constant MAX_TEXTURE_-
LOD_BIAS.

If λ(x, y) is less than or equal to zero the texture is said to be magnified; if
it is greater, the texture is minified. Sampling of minified textures is described in
the remainder of this section, while sampling of magnified textures is described in
section 8.15.

The initial values of lodmin and lodmax are chosen so as to never clamp the
normal range of λ.

Let s(x, y) be the function that associates an s texture coordinate with each set
of window coordinates (x, y) that lie within a primitive; define t(x, y) and r(x, y)
analogously. Let

u(x, y) = wt × s(x, y) + δu

v(x, y) = ht × t(x, y) + δv

w(x, y) = dt × r(x, y) + δw

(8.8)

where wt, ht, and dt are the width, height, and depth of the texture image whose
level is levelbase. For a two-dimensional, two-dimensional array, cube map, or
cube map array texture, define w(x, y) = 0.

(δu, δv, δw) are the texel offsets specified in the OpenGL ES Shading Language
texture lookup functions that support offsets. If the texture function used does not
support offsets, all three shader offsets are taken to be zero.

If the value of any non-ignored component of the offset vector operand is
outside implementation-dependent limits, the results of the texture lookup are
undefined. For all instructions except textureGather, the limits are the val-
ues of MIN_PROGRAM_TEXEL_OFFSET and MAX_PROGRAM_TEXEL_OFFSET. For
the textureGather instruction, the limits are the values of MIN_PROGRAM_-
TEXTURE_GATHER_OFFSET and MAX_PROGRAM_TEXTURE_GATHER_OFFSET.
The value of MIN_PROGRAM_TEXTURE_GATHER_OFFSET must be less than or
equal to the value of MIN_PROGRAM_TEXEL_OFFSET. The value of MAX_-

PROGRAM_TEXTURE_GATHER_OFFSET must be greater than or equal to the value
of MAX_PROGRAM_TEXEL_OFFSET.

For a polygon or point, ρ is given at a fragment with window coordinates (x, y)

OpenGL ES 3.2 (November 3, 2016)

8.14. TEXTURE MINIFICATION 196

by

ρ = max


√(

∂u

∂x

)2

+

(
∂v

∂x

)2

+

(
∂w

∂x

)2

,

√(
∂u

∂y

)2

+

(
∂v

∂y

)2

+

(
∂w

∂y

)2


(8.9)
where ∂u/∂x indicates the derivative of u with respect to window x, and similarly
for the other derivatives.

For a line, the formula is

ρ =

√(
∂u

∂x
∆x+

∂u

∂y
∆y

)2

+

(
∂v

∂x
∆x+

∂v

∂y
∆y

)2

+

(
∂w

∂x
∆x+

∂w

∂y
∆y

)2/
l,

(8.10)
where ∆x = x2 − x1 and ∆y = y2 − y1 with (x1, y1) and (x2, y2) being the
segment’s window coordinate endpoints and l =

√
∆x2 + ∆y2.

While it is generally agreed that equations 8.9 and 8.10 give the best results
when texturing, they are often impractical to implement. Therefore, an imple-
mentation may approximate the ideal ρ with a function f(x, y) subject to these
conditions:

1. f(x, y) is continuous and monotonically increasing in each of |∂u/∂x|,
|∂u/∂y|, |∂v/∂x|, |∂v/∂y|, |∂w/∂x|, and |∂w/∂y|

2. Let

mu = max

{∣∣∣∣∂u∂x
∣∣∣∣ , ∣∣∣∣∂u∂y

∣∣∣∣}

mv = max

{∣∣∣∣∂v∂x
∣∣∣∣ , ∣∣∣∣∂v∂y

∣∣∣∣}

mw = max

{∣∣∣∣∂w∂x
∣∣∣∣ , ∣∣∣∣∂w∂y

∣∣∣∣} .
Then max{mu,mv,mw} ≤ f(x, y) ≤ mu +mv +mw.

OpenGL ES 3.2 (November 3, 2016)

8.14. TEXTURE MINIFICATION 197

8.14.2 Coordinate Wrapping and Texel Selection

After generating u(x, y), v(x, y), and w(x, y), they may be clamped and wrapped
before sampling the texture, depending on the corresponding texture wrap modes.

Let u′(x, y) = u(x, y), v′(x, y) = v(x, y), and w′(x, y) = w(x, y).
The value assigned to TEXTURE_MIN_FILTER is used to determine how the

texture value for a fragment is selected.
When the value of TEXTURE_MIN_FILTER is NEAREST, the texel in the texture

image of level levelbase that is nearest (in Manhattan distance) to (u′, v′, w′) is
obtained. Let (i, j, k) be integers such that

i = wrap(bu′(x, y)c)
j = wrap(bv′(x, y)c)
k = wrap(bw′(x, y)c)

and the value returned by wrap() is defined in table 8.21. For a three-dimensional
texture, the texel at location (i, j, k) becomes the texture value. For two-
dimensional, two-dimensional array, or cube map textures, k is irrelevant, and the
texel at location (i, j) becomes the texture value.

For two-dimensional array textures, the texel is obtained from image layer l,
where

l = clamp(RNE(r), 0, dt − 1)4

and RNE() is the round-to-nearest-even operation defined by IEEE arithmetic.

Wrap mode Result of wrap(coord)

CLAMP_TO_EDGE clamp(coord, 0, size− 1)

CLAMP_TO_BORDER clamp(coord,−1, size)

REPEAT fmod(coord, size)

MIRRORED_REPEAT (size− 1)−mirror(fmod(coord, 2× size)− size)

Table 8.21: Texel location wrap mode application. fmod(a, b) returns a−b×bab c.
mirror(a) returns a if a ≥ 0, and −(1 + a) otherwise. The values of mode and
size are TEXTURE_WRAP_S and wt, TEXTURE_WRAP_T and ht, and TEXTURE_-

WRAP_R and dt when wrapping i, j, or k coordinates, respectively.

4 Implementations may instead round the texture layer using the nearly equivalent computation
br + 1

2
c.

OpenGL ES 3.2 (November 3, 2016)

8.14. TEXTURE MINIFICATION 198

If the selected (i, j, k), (i, j), or i location refers to a border texel that satisfies
any of the conditions

i < 0 i ≥ wt

j < 0 j ≥ ht
k < 0 k ≥ dt

then the border values defined by TEXTURE_BORDER_COLOR are used in place
of the non-existent texel. If the texture contains color components, the values of
TEXTURE_BORDER_COLOR are interpreted as an RGBA color to match the texture’s
internal format in a manner consistent with table 8.8. The internal data type of the
border values must be consistent with the type returned by the texture as described
in chapter 8, or the result is undefined. Border values are clamped before they are
used, according to the format in which texture components are stored. For signed
and unsigned normalized fixed-point formats, border values are clamped to [−1, 1]
and [0, 1], respectively. For floating-point and integer formats, border values are
clamped to the representable range of the format. For compressed formats, border
values are clamped as signed normalized (“snorm”), unsigned normalized (“un-
orm”), or floating-point as described in table 8.17 for each format. If the texture
contains depth components, the first component of TEXTURE_BORDER_COLOR is
interpreted as a depth value.

When the value of TEXTURE_MIN_FILTER is LINEAR, a 2 × 2 × 2 cube of
texels in the texture image of level levelbase is selected. Let

i0 = wrap(bu′ − 0.5c)
j0 = wrap(bv′ − 0.5c)
k0 = wrap(bw′ − 0.5c)
i1 = wrap(bu′ − 0.5c+ 1)

j1 = wrap(bv′ − 0.5c+ 1)

k1 = wrap(bw′ − 0.5c+ 1)

α = frac(u′ − 0.5)

β = frac(v′ − 0.5)

γ = frac(w′ − 0.5)

where frac(x) denotes the fractional part of x.

OpenGL ES 3.2 (November 3, 2016)

8.14. TEXTURE MINIFICATION 199

For a three-dimensional texture, the texture value τ is found as

τ = (1− α)(1− β)(1− γ)τi0j0k0 + α(1− β)(1− γ)τi1j0k0

+ (1− α)β(1− γ)τi0j1k0 + αβ(1− γ)τi1j1k0

+ (1− α)(1− β)γτi0j0k1 + α(1− β)γτi1j0k1

+ (1− α)βγτi0j1k1 + αβγτi1j1k1

(8.11)

where τijk is the texel at location (i, j, k) in the three-dimensional texture image.
For a two-dimensional, two-dimensional array, or cube map texture,

τ =(1− α)(1− β)τi0j0 + α(1− β)τi1j0

+ (1− α)βτi0j1 + αβτi1j1

where τij is the texel at location (i, j) in the two-dimensional texture image. For
two-dimensional array textures, all texels are obtained from layer l, where

l = clamp(br + 0.5c, 0, dt − 1).

The textureGather and textureGatherOffset built-in shader functions
return a vector derived from sampling a 2 × 2 block of texels in the texture im-
age of level levelbase. The rules for the LINEAR minification filter are applied to
identify the four selected texels. Each texel is then converted to a texture source
color (Rs, Gs, Bs, As) according to table 14.1 and then swizzled as described in
section 14.2.1. A four-component vector is then assembled by taking a single com-
ponent from the swizzled texture source colors of the four texels, in the order τi0j1 ,
τi1j1 , τi1j0 , and τi0j0 (see figure 8.7). The selected component is identified by the
by the optional comp argument, where the values zero, one, two, and three identify
the Rs, Gs, Bs, or As component, respectively. If comp is omitted, it is treated as
identifying the Rs component. Incomplete textures (see section 8.17) are consid-
ered to return a texture source color of (0.0, 0.0, 0.0, 1.0) in floating-point format
for all four source texels.

For any texel in the equation above that refers to a border texel outside the
defined range of the image, the texel value is taken from the texture border color as
with NEAREST filtering.

The textureGatherOffsets functions operate identically to
textureGather, except that the array of two-component integer vectors offsets is
used to determine the location of the four texels to sample. Each of the four texels is
obtained by applying the corresponding offset in the four-element array offsets as a
(u, v) coordinate offset to the coordinates coord, identifying the four-texel LINEAR

OpenGL ES 3.2 (November 3, 2016)

8.14. TEXTURE MINIFICATION 200

Figure 8.7. An example of an 8× 8 texture image and the components returned for
textureGather. The vector (X,Y, Z,W) is returned, where each component
is taken from the post-swizzle component selected by comp of the corresponding
texel.

OpenGL ES 3.2 (November 3, 2016)

8.14. TEXTURE MINIFICATION 201

footprint, and then selecting the texel τi0j0 of that footprint. The specified values
in offsets must be constant. A limited range of offset values are supported; the
minimum and maximum offset values are implementation-dependent and given by
the values of MIN_PROGRAM_TEXTURE_GATHER_OFFSET and MAX_PROGRAM_-

TEXTURE_GATHER_OFFSET, respectively. Note that offset does not apply to the
layer coordinate for array textures.

8.14.2.1 Rendering Feedback Loops

If all of the following conditions are satisfied, then the value of the selected τijk or
τij in the above equations is undefined instead of referring to the value of the texel
at location (i, j, k) or (i, j), respectively. This situation is discussed in more detail
in the description of feedback loops in section 9.3.1.

• The current DRAW_FRAMEBUFFER_BINDING names a framebuffer object F.

• The texture is attached to one of the attachment points, A, of framebuffer
object F.

• The value of TEXTURE_MIN_FILTER is NEAREST or LINEAR, and the value
of FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL for attachment point A
is equal to levelbase

-or-

The value of TEXTURE_MIN_FILTER is NEAREST_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR, LINEAR_MIPMAP_NEAREST, or LINEAR_-

MIPMAP_LINEAR, and the value of FRAMEBUFFER_ATTACHMENT_-

TEXTURE_LEVEL for attachment point A is within the inclusive range from
levelbase to q.

8.14.3 Mipmapping

TEXTURE_MIN_FILTER values NEAREST_MIPMAP_NEAREST, NEAREST_-

MIPMAP_LINEAR, LINEAR_MIPMAP_NEAREST, and LINEAR_MIPMAP_LINEAR

each require the use of a mipmap. A mipmap is an ordered set of arrays represent-
ing the same image; each array has a resolution lower than the previous one. If
the texture image of level levelbase has dimensions wt × ht × dt, then there are
blog2(maxsize)c+ 1 levels in the mipmap. where

OpenGL ES 3.2 (November 3, 2016)

8.14. TEXTURE MINIFICATION 202

maxsize =

{
max(wt, ht), for 2D, 2D array, cube map, and cube map array textures
max(wt, ht, dt), for 3D textures

Numbering the levels such that level levelbase is the 0th level, the ith array has
dimensions

max(1,

⌊
wt

wd

⌋
)×max(1,

⌊
ht
hd

⌋
)×max(1,

⌊
dt
dd

⌋
)

where

wd = 2i

hd = 2i

dd =

{
2i, for 3D textures
1, otherwise

until the last array is reached with dimension 1× 1× 1.
Each array in a mipmap is defined using TexImage3D, TexImage2D, Copy-

TexImage2D, or by functions that are defined in terms of these functions. The
array being set is indicated with the level-of-detail argument level. Level-of-
detail numbers proceed from levelbase for the original texture image through
the maximum level p, with each unit increase indicating an array of half the
dimensions of the previous one (rounded down to the next integer if frac-
tional) as already described. For immutable-format textures, levelbase is
clamped to the range [0, levelimmut − 1], levelmax is then clamped to the
range [levelbase, levelimmut − 1], and p is one less than levelimmut. where
levelimmut is the levels parameter passed to TexStorage* for the texture object
(the value of TEXTURE IMMUTABLE LEVELS; see section 8.18). Otherwise,
p = blog2(maxsize)c + levelbase, and all arrays from levelbase through q =
min{p, levelmax} must be defined, as discussed in section 8.17.

The mipmap is used in conjunction with the level of detail to approximate the
application of an appropriately filtered texture to a fragment. Since this discussion
pertains to minification, we are concerned only with values of λ where λ > 0.

For mipmap filters NEAREST_MIPMAP_NEAREST and LINEAR_MIPMAP_-

OpenGL ES 3.2 (November 3, 2016)

8.14. TEXTURE MINIFICATION 203

NEAREST, the dth mipmap array is selected, where

d =


levelbase, λ ≤ 1

2

dlevelbase + λ+ 1
2e − 1, λ > 1

2 , levelbase + λ ≤ q + 1
2

5

q, λ > 1
2 , levelbase + λ > q + 1

2

(8.12)

The rules for NEAREST or LINEAR filtering are then applied to the selected
array. Specifically, the coordinate (u, v, w) is computed as in equation 8.8, with
ws, hs, and ds equal to the width, height, and depth of the texture image whose
level is d.

For mipmap filters NEAREST_MIPMAP_LINEAR and LINEAR_MIPMAP_-

LINEAR, the level d1 and d2 mipmap arrays are selected, where

d1 =

{
q, levelbase + λ ≥ q
blevelbase + λc, otherwise

(8.13)

d2 =

{
q, levelbase + λ ≥ q
d1 + 1, otherwise

(8.14)

The rules for NEAREST or LINEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture values τ1 and τ2. Specifically,
for level d1, the coordinate (u, v, w) is computed as in equation 8.8, with ws, hs,
and ds equal to the width, height, and depth of the texture image whose level is d1.
For level d2 the coordinate (u′, v′, w′) is computed as in equation 8.8, with ws, hs,
and ds equal to the width, height, and depth of the texture image whose level is d2.

The final texture value is then found as

τ = [1− frac(λ)]τ1 + frac(λ)τ2.

8.14.4 Manual Mipmap Generation

Mipmaps can be generated manually with the command

void GenerateMipmap(enum target);

where target is one of TEXTURE_2D, TEXTURE_3D, TEXTURE_2D_ARRAY,
TEXTURE_CUBE_MAP or TEXTURE_CUBE_MAP_ARRAY.

5 Implementations may instead use the nearly equivalent computation d = blevelbase + λ+ 1
2
c

in this case.

OpenGL ES 3.2 (November 3, 2016)

8.15. TEXTURE MAGNIFICATION 204

Mipmap generation affects the texture image attached to target.
If target is TEXTURE_CUBE_MAP or TEXTURE_CUBE_MAP_ARRAY, the texture

bound to target must be cube complete or cube array complete, respectively, as
defined in section 8.17.

Mipmap generation replaces texture image levels levelbase + 1 through q with
images derived from the levelbase image, regardless of their previous contents. All
other mipmap levels, including levelbase, are left unchanged by this computation.

The internal formats and effective internal formats of the derived mipmap im-
ages all match those of the levelbase image, and the dimensions of the derived
images follow the requirements described in section 8.17.

The contents of the derived images are computed by repeated, filtered reduc-
tion of the levelbase image. For two-dimensional array and cube map array tex-
tures, each layer is filtered independently. No particular filter algorithm is required,
though a box filter is recommended.

Errors

An INVALID_ENUM error is generated if target is not TEXTURE_2D,
TEXTURE_3D, TEXTURE_2D_ARRAY, TEXTURE_CUBE_MAP or TEXTURE_-

CUBE_MAP_ARRAY.
An INVALID_OPERATION error is generated if target is TEXTURE_-

CUBE_MAP or TEXTURE_CUBE_MAP_ARRAY, and the texture bound to target
is not cube complete or cube array complete, respectively.

An INVALID_OPERATION error is generated if the levelbase array was not
specified with an unsized internal format from table 8.3 or a sized internal for-
mat that is both color-renderable and texture-filterable according to table 8.10.

8.15 Texture Magnification

When λ indicates magnification, the value assigned to TEXTURE_MAG_FILTER

determines how the texture value is obtained. There are two possible values
for TEXTURE_MAG_FILTER: NEAREST and LINEAR. NEAREST behaves exactly as
NEAREST for TEXTURE_MIN_FILTER and LINEAR behaves exactly as LINEAR for
TEXTURE_MIN_FILTER as described in section 8.14, including the texture coordi-
nate wrap modes specified in table 8.21. The level-of-detail levelbase texture image
is always used for magnification.

OpenGL ES 3.2 (November 3, 2016)

8.16. COMBINED DEPTH/STENCIL TEXTURES 205

8.16 Combined Depth/Stencil Textures

If the texture image has a base internal format of DEPTH_STENCIL, then the stencil
index texture component is ignored by default. The texture value τ does not include
a stencil index component, but includes only the depth component.

In order to access the stencil index texture component, the DEPTH_STENCIL_-
TEXTURE_MODE texture parameter should be set to STENCIL_INDEX. When this
mode is set the depth component is ignored and the texture value includes only the
stencil index component. The stencil index value is treated as an unsigned inte-
ger texture and returns an unsigned integer value when sampled. When sampling
the stencil index only NEAREST filtering is supported. The DEPTH_STENCIL_-

TEXTURE_MODE is ignored for non depth/stencil textures.

8.17 Texture Completeness

A texture is said to be complete if all the texture images and texture parameters
required to utilize the texture for texture application are consistently defined. The
definition of completeness varies depending on texture dimensionality and type.

For two-, and three-dimensional and two-dimensional array textures, a texture
is mipmap complete if all of the following conditions hold true:

• The set of mipmap arrays levelbase through q (where q is defined in sec-
tion 8.14.3) were each specified with the same effective internal format.

• The dimensions of the arrays follow the sequence described in section 8.14.3.

• levelbase ≤ levelmax

Array levels k where k < levelbase or k > q are insignificant to the definition of
completeness.

A cube map texture is mipmap complete if each of the six texture images,
considered individually, is mipmap complete. Additionally, a cube map texture is
cube complete if the following conditions all hold true:

• The levelbase arrays of each of the six texture images making up the cube
map have identical, positive, and square dimensions.

• The levelbase arrays were each specified with the same effective internal
format.

OpenGL ES 3.2 (November 3, 2016)

8.17. TEXTURE COMPLETENESS 206

A cube map array texture is cube array complete if it is complete when treated
as a two-dimensional array and cube complete for every cube map slice within the
array texture.

Using the preceding definitions, a texture is complete unless any of the follow-
ing conditions hold true:

• Any dimension of the levelbase array is not positive. For a multisample
texture, levelbase is always zero.

• The texture is a cube map texture, and is not cube complete.

• The texture is a cube map array texture, and is not cube array complete.

• The minification filter requires a mipmap (is neither NEAREST nor LINEAR),
and the texture is not mipmap complete.

• Any of

– The effective internal format specified for the texture arrays is a sized
internal color format that is not texture-filterable (see table 8.10).

– The effective internal format specified for the texture arrays is a sized
internal depth or depth and stencil format (see table 8.11), and the value
of TEXTURE_COMPARE_MODE is NONE.

– The internal format of the texture is DEPTH_STENCIL, and the value
of DEPTH_STENCIL_TEXTURE_MODE for the texture is STENCIL_-

INDEX.

– The internal format is STENCIL_INDEX.

and either the magnification filter is not NEAREST, or the minification filter
is neither NEAREST nor NEAREST_MIPMAP_NEAREST.

8.17.1 Effects of Sampler Objects on Texture Completeness

If a sampler object and a texture object are simultaneously bound to the same tex-
ture unit, then the sampling state for that unit is taken from the sampler object (see
section 8.2). This can have an effect on the effective completeness of the texture. In
particular, if the texture is not mipmap complete and the sampler object specifies a
TEXTURE_MIN_FILTER requiring mipmaps, the texture will be considered incom-
plete for the purposes of that texture unit. However, if the sampler object does not
require mipmaps, the texture object will be considered complete. This means that
a texture can be considered both complete and incomplete simultaneously if it is
bound to two or more texture units along with sampler objects with different states.

OpenGL ES 3.2 (November 3, 2016)

8.18. IMMUTABLE-FORMAT TEXTURE IMAGES 207

8.17.2 Effects of Completeness on Texture Application

Texture lookup and texture fetch operations performed in shaders are affected
by completeness of the texture being sampled as described in sections 11.1.3.5
and 14.2.1.

8.17.3 Effects of Completeness on Texture Image Specification

The implementation-dependent maximum sizes for texture images depend on the
texture level. In particular, an implementation may allow a texture texture image
of level one or greater to be created only if a mipmap complete set of images con-
sistent with the requested array can be supported where the values of TEXTURE_-
BASE_LEVEL and TEXTURE_MAX_LEVEL are 0 and 1000 respectively. As a re-
sult, implementations may permit a texture image at level zero that will never be
mipmap complete and can only be used with non-mipmapped minification filters.

8.18 Immutable-Format Texture Images

An alternative set of commands is provided for specifying the properties of all
levels of a texture at once. Once a texture is specified with such a command,
the format and dimensions of all levels becomes immutable. The contents of the
images and the parameters can still be modified. Such a texture is referred to as an
immutable-format texture. The immutability status of a texture can be determined
by calling GetTexParameter with pname TEXTURE_IMMUTABLE_FORMAT.

Each of the commands below is described by pseudocode which indicates the
effect on the dimensions and format of the texture. For each command the follow-
ing apply in addition to the pseudocode:

• If executing the pseudocode would result in any other error, the error is gen-
erated and the command will have no effect.

• Any existing levels that are not replaced are reset to their initial state.

• The pixel unpack buffer should be considered to be zero; i.e., the image
contents are unspecified.

• Since no pixel data are provided, the format and type values used in the
pseudocode are irrelevant; they can be considered to be any values that are
legal to use with internalformat.

• If the command is successful, TEXTURE_IMMUTABLE_FORMAT becomes
TRUE and TEXTURE_IMMUTABLE_LEVELS becomes levels.

OpenGL ES 3.2 (November 3, 2016)

8.18. IMMUTABLE-FORMAT TEXTURE IMAGES 208

• If internalformat is a compressed texture format, then references to TexIm-
age* should be replaced by CompressedTexImage*, with format, type and
data replaced by any valid imageSize and data.

For each command, the following errors are generated in addition to the errors
described specific to that command:

Errors

An INVALID_OPERATION error is generated if zero is bound to target.
If executing the pseudo-code would result in a OUT_OF_MEMORY error, the

error is generated and the results of executing the command are undefined.
An INVALID_VALUE error is generated if width, height, depth or levels

are less than 1, for commands with the corresponding parameters.
An INVALID_OPERATION error is generated if internalformat is a com-

pressed texture format and there is no imageSize for which the corresponding
CompressedTexImage* command would have been valid.

An INVALID_ENUM error is generated if internalformat is one of the un-
sized base internal formats listed in table 8.8.

The command

void TexStorage2D(enum target, sizei levels,
enum internalformat, sizei width, sizei height);

specifies all the levels of a two-dimensional or cube map, texture at the same time.
The pseudocode depends on target:

target TEXTURE_2D:

for (i = 0; i < levels; i++) {
TexImage2D(target, i, internalformat, width, height, 0,

format, type, NULL);
width = max(1,

⌊
width

2

⌋
);

height = max(1,
⌊
height

2

⌋
);

}

target TEXTURE_CUBE_MAP:

for (i = 0; i < levels; i++) {
for face in (+X, -X, +Y, -Y, +Z, -Z) {

OpenGL ES 3.2 (November 3, 2016)

8.18. IMMUTABLE-FORMAT TEXTURE IMAGES 209

TexImage2D(face, i, internalformat, width, height, 0,
format, type, NULL);

}
width = max(1,

⌊
width

2

⌋
);

height = max(1,
⌊
height

2

⌋
);

}

Errors

An INVALID_ENUM error is generated if target is not TEXTURE_2D or
TEXTURE_CUBE_MAP.

An INVALID_OPERATION error is generated if levels is greater than
blog2(max(width, height))c+ 1

The command

void TexStorage3D(enum target, sizei levels,
enum internalformat, sizei width, sizei height,
sizei depth);

specifies all the levels of a three-dimensional, two-dimensional array or cube map
array texture. The pseudocode depends on target:

target TEXTURE_3D:

for (i = 0; i < levels; i++) {
TexImage3D(target, i, internalformat, width, height, depth, 0,

format, type, NULL);
width = max(1,

⌊
width

2

⌋
);

height = max(1,
⌊
height

2

⌋
);

depth = max(1,
⌊
depth

2

⌋
);

}

target TEXTURE_2D_ARRAY or TEXTURE_CUBE_MAP_ARRAY:

for (i = 0; i < levels; i++) {
TexImage3D(target, i, internalformat, width, height, depth, 0,

format, type, NULL);
width = max(1,

⌊
width

2

⌋
);

OpenGL ES 3.2 (November 3, 2016)

8.19. TEXTURE STATE 210

height = max(1,
⌊
height

2

⌋
);

}

Errors

An INVALID_ENUM error is generated if target is not TEXTURE_3D,
TEXTURE_2D_ARRAY or TEXTURE_CUBE_MAP_ARRAY.

An INVALID_OPERATION error is generated if any of the following con-
ditions hold:

• target is TEXTURE_3D and levels is greater than
blog2(max(width, height, depth)))c+ 1

• target is TEXTURE_2D_ARRAY or TEXTURE_CUBE_MAP_ARRAY and
levels is greater than blog2(max(width, height))c+ 1

After a successful call to any TexStorage* command, no further changes to
the dimensions or format of the texture object may be made. Other commands
may only alter the texel values and texture parameters.

Errors

An INVALID_OPERATION error is generated by any of the following com-
mands with the same texture, even if it does not affect the dimensions or for-
mat:

• TexImage*

• CompressedTexImage*

• CopyTexImage*

• TexStorage*

8.19 Texture State

The state necessary for texture can be divided into two categories. First, there are
the multiple sets of texture images (one set of mipmap images each for the two-and
three-dimensional texture and two-dimensional array texture targets; and six sets
of mipmap images each for the cube map and cube map array texture targets) and

OpenGL ES 3.2 (November 3, 2016)

8.19. TEXTURE STATE 211

their number. Each image has associated with it a width, height (except for buffer
textures) and depth (three-dimensional, two-dimensional array and cube map ar-
ray only), an integer describing the internal format of the image, integer values
describing the resolutions of each of the red, green, blue, alpha, depth, and stencil
components of the image, integer values describing the type (unsigned normal-
ized, integer, floating-point, etc.) of each of the components, a boolean describing
whether the image is compressed or not, an integer size of a compressed image,
and an integer containing the name of a buffer object bound as the data store of the
image.

Each initial texture image is null. It has zero width, height, and depth, internal
format RGBA, component sizes set to zero and component types set to NONE, the
compressed flag set to FALSE, a zero compressed size, and the bound buffer object
name is zero.

Multisample textures also contain an integer identifying the number of sam-
ples in each texel, and a boolean indicating whether identical sample locations and
number of samples will be used for all texels in the image.

Buffer textures also contain two pointer sized integers containing the offset and
range of the buffer object’s data store.

Next, there are the five sets of texture properties, corresponding to the two-
dimensional, two-dimensional array, three-dimensional, cube map, and cube map
array texture targets. Each set consists of the selected minification and magnifi-
cation filters, the wrap modes for s, t, and r (three-dimensional only), the texture
border color, two floating-point numbers describing the minimum and maximum
level of detail, two integers describing the base and maximum mipmap array, a
boolean flag indicating whether the format and dimensions of the texture are im-
mutable, two integers describing the compare mode and compare function (see
section 8.20), an integer describing the depth stencil texture mode, and four inte-
gers describing the red, green, blue, and alpha swizzle modes (see section 14.2.1).

In the initial state, the value assigned to TEXTURE_MIN_FILTER is
NEAREST_MIPMAP_LINEAR and the value for TEXTURE_MAG_FILTER is
LINEAR. s, t, and r wrap modes are all set to REPEAT. The values of TEXTURE_-
MIN_LOD and TEXTURE_MAX_LOD are -1000 and 1000 respectively. The values of
TEXTURE_BASE_LEVEL and TEXTURE_MAX_LEVEL are 0 and 1000 respectively.
The value of TEXTURE_BORDER_COLOR is (0, 0, 0, 0). The value of TEXTURE_-
IMMUTABLE_FORMAT is FALSE. The value of TEXTURE_IMMUTABLE_LEVELS

is 0. The values of TEXTURE_COMPARE_MODE and TEXTURE_COMPARE_FUNC

are NONE and LEQUAL respectively. The value of DEPTH_STENCIL_TEXTURE_-
MODE is DEPTH_COMPONENT. The values of TEXTURE_SWIZZLE_R, TEXTURE_-
SWIZZLE_G, TEXTURE_SWIZZLE_B, and TEXTURE_SWIZZLE_A are RED, GREEN,
BLUE, and ALPHA, respectively.

OpenGL ES 3.2 (November 3, 2016)

8.20. TEXTURE COMPARISON MODES 212

8.20 Texture Comparison Modes

Texture values can also be computed according to a specified comparison function.
Texture parameter TEXTURE_COMPARE_MODE specifies the comparison operands,
and parameter TEXTURE_COMPARE_FUNC specifies the comparison function.

8.20.1 Depth Texture Comparison Mode

If the currently bound texture’s base internal format is DEPTH_COMPONENT or
DEPTH_STENCIL, then TEXTURE_COMPARE_MODE and TEXTURE_COMPARE_-

FUNC control the output of the texture unit as described below. Otherwise, the
texture unit operates in the normal manner and texture comparison is bypassed.

Let Dt be the depth texture value and St be the stencil index component of a
depth/stencil texture. If there is no stencil component, the value of St is undefined.
Let Dref be the reference value, provided by the shader’s texture lookup function.

If the texture’s internal format indicates a fixed-point depth texture, then Dt

and Dref are clamped to the range [0, 1]; otherwise no clamping is performed.
Then the effective texture value is computed as follows:

• If the base internal format is STENCIL_INDEX, then r = St.

• If the base internal format is DEPTH_STENCIL and the value of DEPTH_-
STENCIL_TEXTURE_MODE is STENCIL_INDEX, then r = St

• Otherwise, if the value of TEXTURE_COMPARE_MODE is NONE, then r = Dt

• Otherwise, if the value of TEXTURE_COMPARE_MODE is COMPARE_REF_-
TO_TEXTURE, then r depends on the texture comparison function as shown
in table 8.22

The resulting r is assigned to Rt.
If the value of TEXTURE_MAG_FILTER is not NEAREST, or the value of

TEXTURE_MIN_FILTER is not NEAREST or NEAREST_MIPMAP_NEAREST, then r
may be computed by comparing more than one depth texture value to the texture
reference value. The details of this are implementation-dependent, but r should
be a value in the range [0, 1] which is proportional to the number of comparison
passes or failures.

8.21 sRGB Texture Color Conversion

If the currently bound texture’s internal format is one of the sRGB formats in ta-
ble 8.23, the red, green, and blue components are converted from an sRGB color

OpenGL ES 3.2 (November 3, 2016)

8.22. SHARED EXPONENT TEXTURE COLOR CONVERSION 213

Texture Comparison Function Computed result r

LEQUAL r =

{
1.0, Dref ≤ Dt

0.0, Dref > Dt

GEQUAL r =

{
1.0, Dref ≥ Dt

0.0, Dref < Dt

LESS r =

{
1.0, Dref < Dt

0.0, Dref ≥ Dt

GREATER r =

{
1.0, Dref > Dt

0.0, Dref ≤ Dt

EQUAL r =

{
1.0, Dref = Dt

0.0, Dref 6= Dt

NOTEQUAL r =

{
1.0, Dref 6= Dt

0.0, Dref = Dt

ALWAYS r = 1.0

NEVER r = 0.0

Table 8.22: Depth texture comparison functions.

space to a linear color space as part of filtering described in sections 8.14 and 8.15.
Any alpha component is left unchanged. Ideally, implementations should perform
this color conversion on each sample prior to filtering but implementations are al-
lowed to perform this conversion after filtering (though this post-filtering approach
is inferior to converting from sRGB prior to filtering).

The conversion from an sRGB encoded component cs, to a linear component
cl is as follows.

cl =

{
cs

12.92 , cs ≤ 0.04045(
cs+0.055
1.055

)2.4
, cs > 0.04045

(8.15)

Assume cs is the sRGB component in the range [0, 1].

8.22 Shared Exponent Texture Color Conversion

If the currently bound texture’s internal format is RGB9_E5, the red, green, blue,
and shared bits are converted to color components (prior to filtering) using shared
exponent decoding. The component reds, greens, blues, and exps values (see

OpenGL ES 3.2 (November 3, 2016)

8.22. SHARED EXPONENT TEXTURE COLOR CONVERSION 214

Internal Format
SRGB8

SRGB8_ALPHA8

COMPRESSED_SRGB8_ETC2

COMPRESSED_SRGB8_ALPHA8_ETC2_EAC

COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2

COMPRESSED_SRGB8_ALPHA8_ASTC_4x4

COMPRESSED_SRGB8_ALPHA8_ASTC_5x4

COMPRESSED_SRGB8_ALPHA8_ASTC_5x5

COMPRESSED_SRGB8_ALPHA8_ASTC_6x5

COMPRESSED_SRGB8_ALPHA8_ASTC_6x6

COMPRESSED_SRGB8_ALPHA8_ASTC_8x5

COMPRESSED_SRGB8_ALPHA8_ASTC_8x6

COMPRESSED_SRGB8_ALPHA8_ASTC_8x8

COMPRESSED_SRGB8_ALPHA8_ASTC_10x5

COMPRESSED_SRGB8_ALPHA8_ASTC_10x6

COMPRESSED_SRGB8_ALPHA8_ASTC_10x8

COMPRESSED_SRGB8_ALPHA8_ASTC_10x10

COMPRESSED_SRGB8_ALPHA8_ASTC_12x10

COMPRESSED_SRGB8_ALPHA8_ASTC_12x12

Table 8.23: sRGB texture internal formats.

OpenGL ES 3.2 (November 3, 2016)

8.23. TEXTURE IMAGE LOADS AND STORES 215

section 8.5.2) are treated as unsigned integers and are converted to floating-point
red, green, and blue as follows:

red = reds2
exps−B−N

green = greens2
exps−B−N

blue = blues2
exps−B−N

8.23 Texture Image Loads and Stores

The contents of a texture may be made available for shaders to read and write by
binding the texture to one of a collection of image units. The GL implementation
provides an array of image units numbered beginning with zero, with the total num-
ber of image units provided determined by the implementation-dependent value of
MAX_IMAGE_UNITS. Unlike texture image units, image units do not have a sepa-
rate attachment for each texture target texture; each image unit may have only one
texture bound at a time.

An immutable texture may be bound to an image unit for use by image loads
and stores by calling:

void BindImageTexture(uint unit, uint texture, int level,
boolean layered, int layer, enum access, enum format);

where unit identifies the image unit, texture is the name of the texture, and level
selects a single level of the texture. If texture is zero, any texture currently bound
to image unit unit is unbound.

If the texture identified by texture is a two-dimensional array, three-
dimensional, cube map or cube map array texture, it is possible to bind either the
entire texture level or a single layer or face of the texture level.

If layered is TRUE, the entire level is bound.
If layered is FALSE, only the single layer identified by layer will be bound, and

the layer is treated as a different texture target for image accesses; two-dimensional
array, three-dimensional, cube map, and cube map array texture layers are treated
as two-dimensional textures.

• two-dimensional multisample array textures are treated as two-dimensional
multisample textures.

OpenGL ES 3.2 (November 3, 2016)

8.23. TEXTURE IMAGE LOADS AND STORES 216

Layer Number Cube Map Face
0 TEXTURE_CUBE_MAP_POSITIVE_X

1 TEXTURE_CUBE_MAP_NEGATIVE_X

2 TEXTURE_CUBE_MAP_POSITIVE_Y

3 TEXTURE_CUBE_MAP_NEGATIVE_Y

4 TEXTURE_CUBE_MAP_POSITIVE_Z

5 TEXTURE_CUBE_MAP_NEGATIVE_Z

Table 8.24: Layer numbers for cube map texture faces. The layers are numbered
in the same sequence as the cube map face token values.

For cube map textures where layered is FALSE, the face is taken by mapping
the layer number to a face according to table 8.24.

For cube map array textures where layered is FALSE, the selected layer num-
ber is mapped to a texture layer and cube face using the following equations and
mapping face to a face according to table 8.24.

layer =

⌊
layerorig

6

⌋
face = layerorig − (layer × 6)

If the texture identified by texture does not have multiple layers or faces, the
entire texture level is bound, regardless of the values specified by layered and layer.

format specifies the format that the elements of the image will be treated as
when doing formatted stores, as described later in this section. This is referred to
as the image unit format.

access specifies whether the texture bound to the image will be treated as
READ_ONLY, WRITE_ONLY, or READ_WRITE. If a shader reads from an image unit
with a texture bound as WRITE_ONLY, or writes to an image unit with a texture
bound as READ_ONLY, the results of that shader operation are undefined and may
lead to application termination.

If a texture object bound to one or more image units is deleted by DeleteTex-
tures, it is detached from each such image unit, as though BindImageTexture
were called with unit identifying the image unit and texture set to zero.

Errors

An INVALID_VALUE error is generated if unit is greater than or equal to

OpenGL ES 3.2 (November 3, 2016)

8.23. TEXTURE IMAGE LOADS AND STORES 217

Texture target i j k Face / layer
TEXTURE_2D x y - -
TEXTURE_3D x y z -
TEXTURE_CUBE_MAP x y - z
TEXTURE_BUFFER x - - -
TEXTURE_2D_ARRAY x y - z
TEXTURE_CUBE_MAP_ARRAY x y - z
TEXTURE 2D MULTISAMPLE x y - -
TEXTURE 2D MULTISAMPLE ARRAY x y - z

Table 8.25: Mapping of image load, store and atomic texel coordinate components
to texel numbers.

the value of MAX_IMAGE_UNITS, if level or layer is negative, or if texture is
not the name of an existing texture object.

An INVALID_VALUE error is generated if format is not one of the formats
listed in table 8.26.

An INVALID_ENUM error is generated if the texture identified by texture is
a two-dimensional multisample or two-dimensional multisample array texture.

An INVALID_OPERATION error is generated if texture is neither the name
of a buffer texture, nor the name of an immutable texture object.

When a shader accesses the texture bound to an image unit using a built-in
image load, store or atomic function, it identifies a single texel by providing a two-
or three-dimensional coordinate. A coordinate vector is mapped to an individual
texel τij or τijk according to the target of the texture bound to the image unit using
table 8.25. As noted above, single-layer bindings of array or cube map textures are
considered to use a texture target corresponding to the bound layer, rather than that
of the full texture.

If the texture target has layers or cube map faces, the layer or face number is
taken from the layer argument of BindImageTexture if the texture is bound with
layered set to FALSE, or from the coordinate identified by table 8.25 otherwise.
For cube map and cube map array textures with layered set to TRUE, the coordi-
nate is mapped to a layer and face in the same manner as the layer argument of
BindImageTexture.

If the individual texel identified for an image load, store or atomic operation
doesn’t exist, the access is treated as invalid. Invalid image loads will return a
vector where the value of R, G, and B components is 0 and the value of the A

OpenGL ES 3.2 (November 3, 2016)

8.23. TEXTURE IMAGE LOADS AND STORES 218

component is undefined. Invalid image stores will have no effect. Invalid image
atomics will not update any texture bound to the image unit and will return zero.
An access is considered invalid if:

• no texture is bound to the selected image unit;

• the texture bound to the selected image unit is incomplete;

• the texture level bound to the image unit is less than the base level or greater
than the maximum level of the texture;

• the internal format of the texture bound to the image unit is not found in
table 8.26;

• the internal format of the texture bound to the image unit is incompatible
with the specified format according to table 8.27;

• the texture bound to the image unit has layers, and the selected layer or cube
map face doesn’t exist;

• the selected texel τij or τijk doesn’t exist;

Additionally, there are a number of cases where image load, store, size or
atomic operations are considered to involve a format mismatch. In such cases,
undefined values will be returned by image load, size and atomic operations and
undefined values will be written by image store and atomic operations. A format
mismatch will occur if:

• the type of image variable used to access the image unit does not match the
target of a texture bound to the image unit with layered set to TRUE;

• the type of image variable used to access the image unit does not match the
target corresponding to a single layer of a multi-layer texture target bound to
the image unit with layered set to FALSE;

• the type of image variable used to access the image unit has a component data
type (floating-point, signed integer, unsigned integer) incompatible with the
format of the image unit;

• the format layout qualifier for an image variable used for an image load or
atomic operation does not match the format of the image unit, according to
table 8.26; or

OpenGL ES 3.2 (November 3, 2016)

8.23. TEXTURE IMAGE LOADS AND STORES 219

• the image variable used for an image store has a format layout qualifier,
and that qualifier does not match the format of the image unit, according to
table 8.26.

Accesses to textures bound to image units do format conversions based on the
format argument specified when the image is bound. Loads always return a value
as a vec4, ivec4, or uvec4, and stores always take the source data as a vec4,
ivec4, or uvec4. Data are converted to/from the specified format according to
the process described for a TexImage2D or ReadPixels command with format and
type as RGBA and FLOAT for vec4 data, as RGBA_INTEGER and INT for ivec4
data, or as RGBA_INTEGER and UNSIGNED_INT for uvec4 data, respectively. Un-
used components are filled in with (0, 0, 0, 1) (where 0 and 1 are either floating-
point or integer values, depending on the format).

Any image variable used for shader loads or atomic operations must be de-
clared with a format layout qualifier matching the format of its associated image
unit, as enumerated in table 8.26. Otherwise, the access is considered to involve a
format mismatch, as described above6.

Image Unit Format Format Qualifer
RGBA32F rgba32f

RGBA16F rgba16f

R32F r32f

RGBA32UI rgba32ui

RGBA16UI rgba16ui

RGBA8UI rgba8ui

R32UI r32ui

RGBA32I rgba32i

RGBA16I rgba16i

RGBA8I rgba8i

R32I r32i

RGBA8 rgba8

RGBA8_SNORM rgba8_snorm

Table 8.26: Supported image unit formats, with equivalent format
layout qualifiers.

6 The OpenGL Specification does not require that format qualifiers be declared for image vari-
ables used exclusively for image stores, unlike this Specification. This is an intentional behavior
difference.

OpenGL ES 3.2 (November 3, 2016)

8.23. TEXTURE IMAGE LOADS AND STORES 220

When a texture is bound to an image unit, the format parameter for the image
unit need not exactly match the texture internal format as long as the formats are
considered compatible. A pair of formats is considered to match in size if the cor-
responding entries in the Size column of table 8.27 are identical. A pair of formats
is considered to match by class if the corresponding entries in the Class column
of table 8.27 are identical. For textures allocated by the GL, an image unit format
is compatible with a texture internal format if they match by size. For textures
allocated outside the GL, format compatibility is determined by matching by size
or by class, in an implementation dependent manner. The matching criterion used
for a given texture may be determined by calling GetTexParameter with pname
set to IMAGE_FORMAT_COMPATIBILITY_TYPE, with return values of IMAGE_-
FORMAT_COMPATIBILITY_BY_SIZE and IMAGE_FORMAT_COMPATIBILITY_-

BY_CLASS, specifying matches by size and class, respectively.
When the format associated with an image unit does not exactly match the

internal format of the texture bound to the image unit, image loads, stores and
atomic operations re-interpret the memory holding the components of an accessed
texel according to the format of the image unit. The re-interpretation for image
loads and the read portion of atomic operations is performed as though data were
copied from the texel of the bound texture to a similar texel represented in the
format of the image unit. Similarly, the re-interpretation for image stores and the
write portion of atomic operations is performed as though data were copied from a
texel represented in the format of the image unit to the texel in the bound texture.
In both cases, this copy operation would be performed by:

• reading the texel from the source format to scratch memory according to
the process described for ReadPixels (see section 16), using default pixel
storage modes and format and type parameters corresponding to the source
format in table 8.27; and

• writing the texel from scratch memory to the destination format according to
the process described for TexSubImage3D (see section 8.6), using default
pixel storage modes and format and type parameters corresponding to the
destination format in table 8.27.

Image Format Size Class Pixel format Pixel type

RGBA32F 128 4x32 RGBA FLOAT

(Continued on next page)

OpenGL ES 3.2 (November 3, 2016)

8.23. TEXTURE IMAGE LOADS AND STORES 221

Texel sizes, compatibility classes ... (continued)
Image Format Size Class Pixel format Pixel type

RGBA16F 64 4x16 RGBA HALF_FLOAT

R32F 32 1x32 RED FLOAT

RGBA32UI 128 4x32 RGBA_INTEGER UNSIGNED_INT

RGBA16UI 64 4x16 RGBA_INTEGER UNSIGNED_SHORT

RGBA8UI 32 4x8 RGBA_INTEGER UNSIGNED_BYTE

R32UI 32 1x32 RED_INTEGER UNSIGNED_INT

RGBA32I 128 4x32 RGBA_INTEGER INT

RGBA16I 64 4x16 RGBA_INTEGER SHORT

RGBA8I 32 4x8 RGBA_INTEGER BYTE

R32I 32 1x32 RED_INTEGER INT

RGBA8 32 4x8 RGBA UNSIGNED_BYTE

RGBA8_SNORM 32 4x8 RGBA BYTE

Table 8.27: Texel sizes, compatibility classes, and pixel for-
mat/type combinations for each image format.

Implementations may support a limited combined number of image units,
shader storage blocks, and active fragment shader outputs (see section 14). A
link error will be generated if the sum of the number of active image uniforms
used in all shaders, the number of active shader storage blocks, and the number
of active fragment shader outputs exceeds the implementation-dependent value of
MAX_COMBINED_SHADER_OUTPUT_RESOURCES.

8.23.1 Image Unit Queries

The state required for each image unit is summarized in table 21.33 and may be
queried using the indexed query commands in that table. The initial values of
image unit state are described above for BindImageTexture.

OpenGL ES 3.2 (November 3, 2016)

Chapter 9

Framebuffers and Framebuffer
Objects

As described in chapter 1 and section 2.1, the GL renders into (and reads values
from) a framebuffer.

Initially, the GL uses the window-system provided default framebuffer. The
storage, dimensions, allocation, and format of the images attached to this frame-
buffer are managed entirely by the window system. Consequently, the state of the
default framebuffer, including its images, can not be changed by the GL, nor can
the default framebuffer be deleted by the GL.

This chapter begins with an overview of the structure and contents of the frame-
buffer in section 9.1, followed by describing the commands used to create, destroy,
and modify the state and attachments of application-created framebuffer objects
which may be used instead of the default framebuffer.

9.1 Framebuffer Overview

The framebuffer consists of a set of pixels arranged as a two-dimensional array.
For purposes of this discussion, each pixel in the framebuffer is simply a set of
some number of bits. The number of bits per pixel may vary depending on the GL
implementation, the type of framebuffer selected, and parameters specified when
the framebuffer was created. Creation and management of the default framebuffer
is outside the scope of this specification, while creation and management of frame-
buffer objects is described in detail in section 9.2.

Corresponding bits from each pixel in the framebuffer are grouped together
into a bitplane; each bitplane contains a single bit from each pixel. These bitplanes
are grouped into several logical buffers. These are the color, depth, and stencil

222

9.1. FRAMEBUFFER OVERVIEW 223

buffers. The color buffer actually consists of a number of buffers, and these color
buffers serve related but slightly different purposes depending on whether the GL
is bound to the default framebuffer or a framebuffer object.

For the default framebuffer, the color buffers are the front and the back buffers.
Typically the contents of the front buffer are displayed on a color monitor while
the contents of the back buffers are invisible; the GL draws to and reads from the
back buffer. All color buffers must have the same number of bitplanes, although
an implementation or context may choose not to provide back buffers. Further,
an implementation or context may choose not to provide depth or stencil buffers.
If no default framebuffer is associated with the GL context, the framebuffer is
incomplete except when a framebuffer object is bound (see sections 9.2 and 9.4).

Framebuffer objects are not visible, and do not have any of the color buffers
present in the default framebuffer. Instead, the buffers of an framebuffer object are
specified by attaching individual textures or renderbuffers (see section 9) to a set
of attachment points. A framebuffer object has an array of color buffer attachment
points, numbered zero through n, a depth buffer attachment point, and a stencil
buffer attachment point. In order to be used for rendering, a framebuffer object
must be complete, as described in section 9.4. Not all attachments of a framebuffer
object need to be populated.

Each pixel in a color buffer consists of up to four color components. The four
color components are named R, G, B, and A, in that order; color buffers are not
required to have all four color components. R, G, B, and A components may be
represented as signed or unsigned normalized fixed-point, floating-point, or signed
or unsigned integer values; all components must have the same representation.
Each pixel in a depth buffer consists of a single unsigned integer value in the format
described in section 12.5.1 or a floating-point value. Each pixel in a stencil buffer
consists of a single unsigned integer value.

The number of bitplanes in the color, depth, and stencil buffers is dependent
on the currently bound framebuffer. For the default framebuffer, the number of
bitplanes is fixed. For framebuffer objects, the number of bitplanes in a given
logical buffer may change if the image attached to the corresponding attachment
point changes.

The GL has two active framebuffers; the draw framebuffer is the destination
for rendering operations, and the read framebuffer is the source for readback op-
erations. The same framebuffer may be used for both drawing and reading. Sec-
tion 9.2 describes the mechanism for controlling framebuffer usage.

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 224

The default framebuffer is initially used as the draw and read framebuffer 1,
and the initial state of all provided bitplanes is undefined. The format and encod-
ing of buffers in the draw and read framebuffers can be queried as described in
section 9.2.3.

9.2 Binding and Managing Framebuffer Objects

Framebuffer objects encapsulate the state of a framebuffer in a similar manner to
the way texture objects encapsulate the state of a texture. In particular, a frame-
buffer object encapsulates state necessary to describe a collection of color, depth,
and stencil logical buffers (other types of buffers are not allowed). For each logical
buffer, a framebuffer-attachable image can be attached to the framebuffer to store
the rendered output for that logical buffer. Examples of framebuffer-attachable im-
ages include texture images and renderbuffer images. Renderbuffers are described
further in section 9.2.4

By allowing the images of a renderbuffer to be attached to a framebuffer, the
GL provides a mechanism to support off-screen rendering. Further, by allowing the
images of a texture to be attached to a framebuffer, the GL provides a mechanism
to support render to texture.

The default framebuffer for rendering and readback operations is provided by
the window system. In addition, named framebuffer objects can be created and
operated upon. The name space for framebuffer objects is the unsigned integers,
with zero reserved by the GL for the default framebuffer.

A framebuffer object is created by binding an unused name (which may be
created by GenFramebuffers (see below)) to DRAW_FRAMEBUFFER or READ_-
FRAMEBUFFER. The binding is effected by calling

void BindFramebuffer(enum target, uint framebuffer);

with target set to the desired framebuffer target and framebuffer set to the frame-
buffer object name. The resulting framebuffer object is a new state vector, com-
prising all the state and with the same initial values listed in table 21.15, as well
as one set of the state values listed in table 21.16 for each attachment point of the
framebuffer, with the same initial values. There are the value of MAX_COLOR_-
ATTACHMENTS color attachment points, plus one each for the depth and stencil
attachment points.

1The window system binding API may allow associating a GL context with two separate “default
framebuffers” provided by the window system as the draw and read framebuffers, but if so, both
default framebuffers are referred to by the name zero at their respective binding points.

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 225

BindFramebuffer may also be used to bind an existing framebuffer object
to DRAW_FRAMEBUFFER and/or READ_FRAMEBUFFER. If the bind is successful no
change is made to the state of the newly bound framebuffer object, and any previous
binding to target is broken.

If a framebuffer object is bound to DRAW_FRAMEBUFFER or READ_-

FRAMEBUFFER, it becomes the target for rendering or readback operations, respec-
tively, until it is deleted or another framebuffer object is bound to the correspond-
ing bind point. Calling BindFramebuffer with target set to FRAMEBUFFER binds
framebuffer to both the draw and read targets.

Errors

An INVALID_ENUM error is generated if target is not DRAW_-

FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.

While a framebuffer object is bound, GL operations on the target to which it is
bound affect the images attached to the bound framebuffer object, and queries of
the target to which it is bound return state from the bound object. Queries of the
values specified in tables 21.56 and 21.15 are derived from the framebuffer object
bound to DRAW_FRAMEBUFFER, with the exception of those marked as properties
of the read framebuffer, which are derived from the framebuffer object bound to
READ_FRAMEBUFFER.

The initial state of DRAW_FRAMEBUFFER and READ_FRAMEBUFFER refers to
the default framebuffer. In order that access to the default framebuffer is not lost,
it is treated as a framebuffer object with the name of zero. The default framebuffer
is therefore rendered to and read from while zero is bound to the corresponding
targets. On some implementations, the properties of the default framebuffer can
change over time (e.g., in response to window system events such as attaching the
context to a new window system drawable.)

Framebuffer objects (those with a non-zero name) differ from the default
framebuffer in a few important ways. First and foremost, unlike the default frame-
buffer, framebuffer objects have modifiable attachment points for each logical
buffer in the framebuffer. Framebuffer-attachable images can be attached to and de-
tached from these attachment points, which are described further in section 9.2.2.
Also, the size and format of the images attached to framebuffer objects are con-
trolled entirely within the GL interface, and are not affected by window system
events, such as pixel format selection, window resizes, and display mode changes.

Additionally, when rendering to or reading from an application created-
framebuffer object,

• The pixel ownership test always succeeds. In other words, framebuffer ob-

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 226

jects own all of their pixels.

• There are no visible color buffer bitplanes. This means there is no color
buffer corresponding to the back, front, left, or right color bitplanes.

• The only color buffer bitplanes are the ones defined by the frame-
buffer attachment points named COLOR_ATTACHMENT0 through COLOR_-

ATTACHMENTn. Each COLOR_ATTACHMENTi adheres to COLOR_-

ATTACHMENTi = COLOR_ATTACHMENT0 + i2.

• The only depth buffer bitplanes are the ones defined by the framebuffer at-
tachment point DEPTH_ATTACHMENT.

• The only stencil buffer bitplanes are the ones defined by the framebuffer
attachment point STENCIL_ATTACHMENT.

• If the attachment sizes are not all identical, the results of rendering are de-
fined only within the largest area that can fit in all of the attachments. This
area is defined as the intersection of rectangles having a lower left of (0, 0)
and an upper right of (width, height) for each attachment. Contents of at-
tachments outside this area are undefined after execution of a rendering com-
mand (as defined in section 2.4).

If there are no attachments, rendering will be limited to a rectangle having a
lower left of (0, 0) and an upper right of (width, height), where width and
height are the framebuffer object’s default width and height.

• If the number of layers of each attachment are not all identical, rendering
will be limited to the smallest number of layers of any attachment. If there
are no attachments, the number of layers will be taken from the framebuffer
object’s default layer count.

The command

void GenFramebuffers(sizei n, uint *framebuffers);

returns n previously unused framebuffer object names in framebuffers. These
names are marked as used, for the purposes of GenFramebuffers only, but they
acquire state and type only when they are first bound.

2 The header files define tokens COLOR_ATTACHMENTi for i in the range [0, 31]. Most
implementations support fewer than 32 color attachments, and it is an INVALID_OPERATION
error to pass an unsupported attachment name to a command accepting color attachment names.

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 227

Errors

An INVALID_VALUE error is generated if n is negative.

Framebuffer objects are deleted by calling

void DeleteFramebuffers(sizei n, const
uint *framebuffers);

framebuffers contains n names of framebuffer objects to be deleted. After a frame-
buffer object is deleted, it has no attachments, and its name is again unused.
If a framebuffer that is currently bound to one or more of the targets DRAW_-

FRAMEBUFFER or READ_FRAMEBUFFER is deleted, it is as though BindFrame-
buffer had been executed with the corresponding target and framebuffer zero. Un-
used names in framebuffers that have been marked as used for the purposes of
GenFramebuffers are marked as unused again. Unused names in framebuffers are
silently ignored, as is the value zero.

Errors

An INVALID_VALUE error is generated if n is negative.

The command

boolean IsFramebuffer(uint framebuffer);

returns TRUE if framebuffer is the name of an framebuffer object. If framebuffer is
zero, or if framebuffer is a non-zero value that is not the name of an framebuffer
object, IsFramebuffer returns FALSE.

The names bound to the draw and read framebuffer bindings can be queried by
calling GetIntegerv with the symbolic constants DRAW_FRAMEBUFFER_BINDING
and READ_FRAMEBUFFER_BINDING, respectively. FRAMEBUFFER_BINDING is
equivalent to DRAW_FRAMEBUFFER_BINDING.

9.2.1 Framebuffer Object Parameters

Parameters of a framebuffer object are set using the command

void FramebufferParameteri(enum target, enum pname,
int param);

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 228

The framebuffer object is that which is bound to target.
target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or

FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.
pname specifies the parameter of the framebuffer object bound to target to set.
When a framebuffer has one or more attachments, the width, height, layer count

(see section 9.8), sample count, and sample location pattern of the framebuffer
are derived from the properties of the framebuffer attachments. When the frame-
buffer has no attachments, these properties are taken from framebuffer parameters.
When pname is FRAMEBUFFER_DEFAULT_WIDTH, FRAMEBUFFER_DEFAULT_-
HEIGHT, FRAMEBUFFER_DEFAULT_SAMPLES, or FRAMEBUFFER_DEFAULT_-

LAYERS, FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_LOCATIONS, param speci-
fies the width, height, layer count, sample count, or sample location pattern, re-
spectively, used when the framebuffer has no attachments.

When a framebuffer has no attachments, it is considered layered (see sec-
tion 9.8) if and only if the value of FRAMEBUFFER_DEFAULT_LAYERS is non-zero.
It is considered to have sample buffers if and only if the value of FRAMEBUFFER_-
DEFAULT_SAMPLES is non-zero. The number of samples in the framebuffer is de-
rived from the value of FRAMEBUFFER_DEFAULT_SAMPLES in an implementation-
dependent manner similar to that described for the command RenderbufferStor-
ageMultisample (see section 9.2.4). If the framebuffer has sample buffers and
the value of FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_LOCATIONS is non-zero,
it is considered to have a fixed sample location pattern as described for TexStor-
age2DMultisample (see section 8.8).

Errors

An INVALID_ENUM error is generated if target is not DRAW_-

FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.
An INVALID_ENUM error is generated if pname is not FRAMEBUFFER_-

DEFAULT_WIDTH, FRAMEBUFFER_DEFAULT_HEIGHT,
FRAMEBUFFER_DEFAULT_LAYERS, FRAMEBUFFER_DEFAULT_SAMPLES, or
FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_LOCATIONS.

An INVALID_VALUE error is generated if pname is FRAMEBUFFER_-

DEFAULT_WIDTH, FRAMEBUFFER_DEFAULT_HEIGHT, FRAMEBUFFER_-

DEFAULT_LAYERS, or FRAMEBUFFER_DEFAULT_SAMPLES, and param is ei-
ther negative or greater than the value of the corresponding implementation-
dependent limit MAX_FRAMEBUFFER_WIDTH, MAX_FRAMEBUFFER_HEIGHT,
MAX_FRAMEBUFFER_LAYERS, or MAX_FRAMEBUFFER_SAMPLES, respec-
tively.

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 229

An INVALID_OPERATION error is generated if the default framebuffer is
bound to target.

9.2.2 Attaching Images to Framebuffer Objects

Framebuffer-attachable images may be attached to, and detached from, framebuffer
objects. In contrast, the image attachments of the default framebuffer may not be
changed by the GL.

A single framebuffer-attachable image may be attached to multiple framebuffer
objects, potentially avoiding some data copies, and possibly decreasing memory
consumption.

For each logical buffer, a framebuffer object stores a set of state which defines
the logical buffer’s attachment point. The attachment point state contains enough
information to identify the single image attached to the attachment point, or to
indicate that no image is attached. The per-logical buffer attachment point state is
listed in table 21.16.

There are several types of framebuffer-attachable images:

• The image of a renderbuffer object, which is always two-dimensional.

• A single level of a two-dimensional or two-dimensional multisample texture.

• A single face of a cube map texture level, which is treated as a two-
dimensional image.

• A single layer of a two-dimensional array texture, two-dimensional mul-
tisample array texture, or three-dimensional texture, which is treated as a
two-dimensional image.

• A single layer-face of a cube map array texture, which is treated as a two-
dimensional image.

9.2.2.1 Layered Images

Additionally, an entire level of a three-dimensional, cube map, cube map array,
two-dimensional array, or two-dimensional multisample array texture can be at-
tached to an attachment point. Such attachments are treated as an array of two-
dimensional images, arranged in layers, and the corresponding attachment point is
considered to be layered (also see section 9.8).

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 230

9.2.3 Framebuffer Object Queries

Parameters of a framebuffer object may be queried with the command

void GetFramebufferParameteriv(enum target, enum pname,
int *params);

The framebuffer object is that which is bound to target.
target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or

FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.
pname specifies the parameter of the framebuffer object bound to target to get.
pname may be one of FRAMEBUFFER_DEFAULT_WIDTH, FRAMEBUFFER_-

DEFAULT_HEIGHT, FRAMEBUFFER_DEFAULT_LAYERS, FRAMEBUFFER_-

DEFAULT_SAMPLES, or FRAMEBUFFER_DEFAULT_FIXED_SAMPLE_-

LOCATIONS, indicating one of the corresponding parameters set with Frame-
bufferParameteri (see section 9.2.1). These values may only be queried from a
framebuffer object, not from a default framebuffer.

The value of parameter pname for the framebuffer object is returned in params.

Errors

An INVALID_ENUM error is generated if target is not DRAW_-

FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.
An INVALID_ENUM error is generated if pname is not one of the valid

values listed above.
An INVALID_OPERATION error is generated if the default framebuffer is

bound to target.

Attachments of a framebuffer object or buffers of a default framebuffer may be
queried with the commands

void GetFramebufferAttachmentParameteriv(enum target,
enum attachment, enum pname, int *params);

The framebuffer object is that which is bound to target.
target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or

FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.
If the default framebuffer is bound to target, then attachment must be BACK,

identifying the color buffer; DEPTH, identifying the depth buffer; or STENCIL,
identifying the stencil buffer.

Otherwise, attachment must be one of the attachment points of the framebuffer
listed in table 9.1.

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 231

If attachment is DEPTH_STENCIL_ATTACHMENT, the same object must be
bound to both the depth and stencil attachment points of the framebuffer object,
and information about that object is returned.

Upon successful return from GetFramebufferAttachmentParameteriv, if
pname is FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE, then params will contain
one of NONE, FRAMEBUFFER_DEFAULT, TEXTURE, or RENDERBUFFER, identify-
ing the type of object which contains the attached image. Other values accepted
for pname depend on the type of object, as described below.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is NONE, then ei-
ther no framebuffer is bound to target, or the default framebuffer is bound, attach-
ment is DEPTH or STENCIL, and the number of depth or stencil bits, respectively, is
zero. In this case querying pname FRAMEBUFFER_ATTACHMENT_OBJECT_NAME

will return zero, and all other queries will generate an INVALID_OPERATION error.
If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is not NONE,

these queries apply to all other framebuffer types:

• If pname is FRAMEBUFFER_ATTACHMENT_RED_SIZE, FRAMEBUFFER_-

ATTACHMENT_GREEN_SIZE, FRAMEBUFFER_ATTACHMENT_BLUE_-

SIZE, FRAMEBUFFER_ATTACHMENT_ALPHA_SIZE, FRAMEBUFFER_-

ATTACHMENT_DEPTH_SIZE, or FRAMEBUFFER_ATTACHMENT_-

STENCIL_SIZE, then params will contain the number of bits in the
corresponding red, green, blue, alpha, depth, or stencil component of
the specified attachment. If the requested component is not present in
attachment, or if no data storage or texture image has been specified for the
attachment, params will contain the value zero.

• If pname is FRAMEBUFFER_ATTACHMENT_COMPONENT_TYPE, params will
contain the format of components of the specified attachment, one of FLOAT,
INT, UNSIGNED_INT, SIGNED_NORMALIZED, or UNSIGNED_NORMALIZED
for floating-point, signed integer, unsigned integer, signed normalized fixed-
point, or unsigned normalized fixed-point components respectively. If
no data storage or texture image has been specified for the attachment,
params will contain NONE. This query cannot be performed for a combined
depth+stencil attachment, since it does not have a single format.

• If pname is FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING, params will
contain the encoding of components of the specified attachment, one of
LINEAR or SRGB for linear or sRGB-encoded components, respectively.
Only color buffer components may be sRGB-encoded; such components are
treated as described in sections 15.1.5 and 15.1.6. For the default frame-
buffer, color encoding is determined by the implementation. For frame-

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 232

buffer objects, components are sRGB-encoded if the internal format of a
color attachment is one of the color-renderable SRGB formats described in
section 8.21. If attachment is not a color attachment, or no data storage or
texture image has been specified for the attachment, params will contain the
value LINEAR.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is
RENDERBUFFER, then

• If pname is FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, params will con-
tain the name of the renderbuffer object which contains the attached image.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is TEXTURE, then

• If pname is FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, then params will
contain the name of the texture object which contains the attached image.

• If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL, then params
will contain the mipmap level of the texture object which contains the at-
tached image.

• If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE and
the texture object named FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is a
cube map texture, then params will contain the cube map face of the cube-
map texture object which contains the attached image. Otherwise params
will contain the value zero.

• If pname is FRAMEBUFFER_ATTACHMENT_LAYERED, then params will con-
tain TRUE if the attachment point is layered (see section 9.2.2.1). Otherwise,
params will contain FALSE.

• If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER and the value
of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is the name of a three-
dimensional texture or a two-dimensional array texture, and the value of
FRAMEBUFFER_ATTACHMENT_LAYERED is FALSE, then params will con-
tain the texture layer which contains the attached image. Otherwise params
will contain zero.

Errors

An INVALID_ENUM error is generated if target is not DRAW_-

FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 233

An INVALID_OPERATION error is generated if the default framebuffer is
bound to target and attachment is not BACK, DEPTH, or STENCIL.

An INVALID_OPERATION error is generated if a framebuffer object is
bound to target and attachment is COLOR_ATTACHMENTm where m is greater
than or equal to the value of MAX_COLOR_ATTACHMENTS.

An INVALID_ENUM error is generated if a framebuffer object is bound to
target, attachment is not one of the attachments in table 9.1, and attachment
is not COLOR_ATTACHMENTm where m is greater than or equal to the value of
MAX_COLOR_ATTACHMENTS.

An INVALID_ENUM error is generated by any combinations of framebuffer
type and pname not described above.

An INVALID_OPERATION er-
ror is generated if the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE
is NONE and pname is not FRAMEBUFFER_ATTACHMENT_OBJECT_NAME or
FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE.

An INVALID_OPERATION error is generated if attachment is DEPTH_-

STENCIL_ATTACHMENT and pname is FRAMEBUFFER_ATTACHMENT_-

COMPONENT_TYPE.
An INVALID_OPERATION error is generated if attachment is DEPTH_-

STENCIL_ATTACHMENT and different objects are bound to the depth and sten-
cil attachment points of target.

9.2.3.1 Multisample Queries

The values of SAMPLE_BUFFERS and SAMPLES control whether and how multi-
sampling is performed (see section 13.4). They are framebuffer-dependent con-
stants derived from the attachments of a framebuffer object or the buffers of a
default framebuffer, but may only be queried directly for the currently bound
draw framebuffer, by calling GetIntegerv with pname set to SAMPLE_BUFFERS

or SAMPLES.
While there is no API for querying the values of SAMPLE_BUFFERS and

SAMPLES for a framebuffer object or default framebuffer which is not bound as
the draw framebuffer, the effective values of these parameters exist, and are deter-
mined as defined in this section. These effective values are referred to in a number
of places in the Specification.

If a framebuffer object or default framebuffer is not framebuffer complete,
as defined in section 9.4.2, then the effective values of SAMPLE_BUFFERS and
SAMPLES are undefined.

Otherwise, the effective value of SAMPLES is equal to the value of
RENDERBUFFER_SAMPLES or TEXTURE_SAMPLES (depending on the type of the

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 234

attached images), which must all have the same value. The effective value of
SAMPLE_BUFFERS is one if SAMPLES is non-zero, and zero otherwise.

9.2.4 Renderbuffer Objects

A renderbuffer is a data storage object containing a single image of a renderable in-
ternal format. The commands described below allocate and delete a renderbuffer’s
image, and attach a renderbuffer’s image to a framebuffer object.

The name space for renderbuffer objects is the unsigned integers, with zero
reserved by the GL.

A renderbuffer object is created by binding a name (which may be created by
GenRenderbuffers (see below)) to RENDERBUFFER. The binding is effected by
calling

void BindRenderbuffer(enum target, uint renderbuffer);

with target set to RENDERBUFFER and renderbuffer set to the renderbuffer object
name. If renderbuffer is not zero, then the resulting renderbuffer object is a new
state vector, initialized with a zero-sized memory buffer, and comprising all the
state and with the same initial values listed in table 21.17. Any previous binding to
target is broken.

BindRenderbuffer may also be used to bind an existing renderbuffer object.
If the bind is successful, no change is made to the state of the newly bound render-
buffer object, and any previous binding to target is broken.

While a renderbuffer object is bound, GL operations on the target to which it
is bound affect the bound renderbuffer object, and queries of the target to which a
renderbuffer object is bound return state from the bound object.

The name zero is reserved. A renderbuffer object cannot be created with the
name zero. If renderbuffer is zero, then any previous binding to target is broken
and the target binding is restored to the initial state.

In the initial state, the reserved name zero is bound to RENDERBUFFER. There is
no renderbuffer object corresponding to the name zero, so client attempts to modify
or query renderbuffer state for the target RENDERBUFFER while zero is bound will
generate GL errors, as described in section 9.2.6.

The current RENDERBUFFER binding can be determined by calling GetInte-
gerv with the symbolic constant RENDERBUFFER_BINDING.

Errors

An INVALID_ENUM error is generated if target is not RENDERBUFFER.

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 235

The command

void GenRenderbuffers(sizei n, uint *renderbuffers);

returns n previously unused renderbuffer object names in renderbuffers. These
names are marked as used, for the purposes of GenRenderbuffers only, but they
acquire renderbuffer state only when they are first bound.

Errors

An INVALID_VALUE error is generated if n is negative.

Renderbuffer objects are deleted by calling

void DeleteRenderbuffers(sizei n, const
uint *renderbuffers);

where renderbuffers contains n names of renderbuffer objects to be deleted. After
a renderbuffer object is deleted, it has no contents, and its name is again unused. If
a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though
BindRenderbuffer had been executed with the target RENDERBUFFER and name
of zero. Additionally, special care must be taken when deleting a renderbuffer if
the image of the renderbuffer is attached to a framebuffer object (see section 9.2.7).
Unused names in renderbuffers that have been marked as used for the purposes of
GenRenderbuffers are marked as unused again. Unused names in renderbuffers
are silently ignored, as is the value zero.

Errors

An INVALID_VALUE error is generated if n is negative.

The command

boolean IsRenderbuffer(uint renderbuffer);

returns TRUE if renderbuffer is the name of a renderbuffer object. If renderbuffer
is zero, or if renderbuffer is a non-zero value that is not the name of a renderbuffer
object, IsRenderbuffer returns FALSE.

The command

void RenderbufferStorageMultisample(enum target,
sizei samples, enum internalformat, sizei width,
sizei height);

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 236

establishes the data storage, format, dimensions, and number of samples of a ren-
derbuffer object’s image. target must be RENDERBUFFER. internalformat must be
a sized internal format that is color-, depth-, or stencil-renderable, as defined in
section 9.4. width and height are the dimensions in pixels of the renderbuffer.

Upon success, RenderbufferStorageMultisample deletes any existing data
store for the renderbuffer image and the contents of the data store after call-
ing RenderbufferStorageMultisample are undefined. RENDERBUFFER_WIDTH

is set to width, RENDERBUFFER_HEIGHT is set to height, and RENDERBUFFER_-

INTERNAL_FORMAT is set to internalformat.
If samples is zero, then RENDERBUFFER_SAMPLES is set to zero. Otherwise

samples represents a request for a desired minimum number of samples. Since
different implementations may support different sample counts for multisampled
rendering, the actual number of samples allocated for the renderbuffer image is
implementation-dependent. However, the resulting value for RENDERBUFFER_-
SAMPLES is guaranteed to be greater than or equal to samples and no more than the
next larger sample count supported by the implementation.

A GL implementation may vary its allocation of internal component resolution
based on any RenderbufferStorage parameter (except target), but the allocation
and chosen internal format must not be a function of any other state and cannot be
changed once they are established.

Errors

An INVALID_ENUM error is generated if target is not RENDERBUFFER.
An INVALID_VALUE error is generated if samples, width, or height is neg-

ative.
An INVALID_OPERATION error is generated if samples is greater than the

maximum number of samples supported for internalformat (see GetInternal-
formativ in section 20.3).

An INVALID_ENUM error is generated if internalformat is not a sized
internal format that is color-, depth-, or stencil-renderable, as defined in sec-
tion 9.4.

An INVALID_VALUE error is generated if either width or height is greater
than the value of MAX_RENDERBUFFER_SIZE.

The command

void RenderbufferStorage(enum target, enum internalformat,
sizei width, sizei height);

is equivalent to calling RenderbufferStorageMultisample with samples equal to

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 237

zero.

9.2.5 Required Renderbuffer Formats

Implementations are required to support the following sized and compressed in-
ternal formats. Requesting one of these sized internal formats for a renderbuffer
will allocate at least the internal component sizes, and exactly the component types
shown for that format in the corresponding table:

• Color formats which are checked in the “Req. rend.” column of table 8.10.

• Depth, depth+stencil, and stencil formats which are checked in the “Req.
format” column of table 8.11.

The required color formats for renderbuffers are a subset of the required for-
mats for textures (see section 8.5.1).

Implementations must support creation of renderbuffers in these required for-
mats with the following numbers of multisamples:

• For signed and unsigned integer formats, up to the value of MAX_INTEGER_-
SAMPLES, which must be at least one.

• For formats RGBA16F, R32F, RG32F and RGBA32F, one sample.

• For all other formats, up to the value of MAX_SAMPLES samples.

9.2.6 Renderbuffer Object Queries

The command

void GetRenderbufferParameteriv(enum target, enum pname,
int *params);

returns information about a bound renderbuffer object. target must be
RENDERBUFFER and pname must be one of the symbolic values in table 21.17.

If pname is RENDERBUFFER_WIDTH, RENDERBUFFER_HEIGHT,
RENDERBUFFER_INTERNAL_FORMAT, or RENDERBUFFER_SAMPLES, then
params will contain the width in pixels, height in pixels, internal format, or
number of samples, respectively, of the image of the renderbuffer currently bound
to target.

If pname is RENDERBUFFER_RED_SIZE, RENDERBUFFER_GREEN_-

SIZE, RENDERBUFFER_BLUE_SIZE, RENDERBUFFER_ALPHA_SIZE,

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 238

RENDERBUFFER_DEPTH_SIZE, or RENDERBUFFER_STENCIL_SIZE, then
params will contain the actual resolutions (not the resolutions specified when the
image was defined) for the red, green, blue, alpha, depth, or stencil components,
respectively, of the image of the renderbuffer currently bound to target.

Errors

An INVALID_ENUM error is generated if target is not RENDERBUFFER.
An INVALID_ENUM error is generated if pname is not one of the render-

buffer state names in table 21.17.
An INVALID_OPERATION error is generated if the renderbuffer currently

bound to target is zero.

9.2.7 Attaching Renderbuffer Images to a Framebuffer

A renderbuffer can be attached as one of the logical buffers of a currently bound
framebuffer object by calling

void FramebufferRenderbuffer(enum target,
enum attachment, enum renderbuffertarget,
uint renderbuffer);

target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.
FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.

attachment must be set to one of the attachment points of the framebuffer listed
in table 9.1.

renderbuffertarget must be RENDERBUFFER and renderbuffer is zero or the
name of a renderbuffer object of type renderbuffertarget to be attached to
the framebuffer. If renderbuffer is zero, then the value of renderbuffertarget is
ignored.

If renderbuffer is not zero and if FramebufferRenderbuffer is successful, then
the renderbuffer named renderbuffer will be used as the logical buffer identified
by attachment of the framebuffer object currently bound to target. The value of
FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for the specified attachment point is
set to RENDERBUFFER and the value of FRAMEBUFFER_ATTACHMENT_OBJECT_-
NAME is set to renderbuffer. All other state values of the attachment point specified
by attachment are set to their default values listed in table 21.16. No change is
made to the state of the renderbuffer object and any previous attachment to the
attachment logical buffer of the framebuffer object bound to framebuffer target is
broken. If the attachment is not successful, then no change is made to the state of
either the renderbuffer object or the framebuffer object.

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 239

Calling FramebufferRenderbuffer with the renderbuffer name zero will de-
tach the image, if any, identified by attachment, in the framebuffer object currently
bound to target. All state values of the attachment point specified by attachment in
the object bound to target are set to their default values listed in table 21.16.

Setting attachment to the value DEPTH_STENCIL_ATTACHMENT is a special
case causing both the depth and stencil attachments of the framebuffer object to be
set to renderbuffer, which should have base internal format DEPTH_STENCIL.

If a renderbuffer object is deleted while its image is attached to one or more at-
tachment points in a currently bound framebuffer object, then it is as if Framebuf-
ferRenderbuffer had been called, with a renderbuffer of zero, for each attachment
point to which this image was attached in that framebuffer object. In other words,
the renderbuffer image is first detached from all attachment points in that frame-
buffer object. Note that the renderbuffer image is specifically not detached from
any non-bound framebuffers. Detaching the image from any non-bound frame-
buffers is the responsibility of the application.

Name of attachment
COLOR_ATTACHMENTi (see caption)
DEPTH_ATTACHMENT

STENCIL_ATTACHMENT

DEPTH_STENCIL_ATTACHMENT

Table 9.1: Framebuffer attachment points. i in COLOR_ATTACHMENTi may range
from zero to the value of MAX_COLOR_ATTACHMENTS minus one.

Errors

An INVALID_ENUM error is generated if target is not DRAW_-

FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.
An INVALID_OPERATION error is generated if attachment is COLOR_-

ATTACHMENTmwherem is greater than or equal to the value of MAX_COLOR_-
ATTACHMENTS.

An INVALID_ENUM error is generated if attachment is not one of the at-
tachments in table 9.1, and attachment is not COLOR_ATTACHMENTm where
m is greater than or equal to the value of MAX_COLOR_ATTACHMENTS.

An INVALID_ENUM error is generated if renderbuffertarget is not
RENDERBUFFER.

An INVALID_OPERATION error is generated if renderbuffer is not zero or

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 240

the name of an existing renderbuffer object of type renderbuffertarget.
An INVALID_OPERATION error is generated if zero is bound to target.

9.2.8 Attaching Texture Images to a Framebuffer

The GL supports copying the rendered contents of the framebuffer into the images
of a texture object through the use of the routines CopyTexImage* and CopyTex-
SubImage*. Additionally, the GL supports rendering directly into the images of a
texture object.

To render directly into a texture image, a specified level of a texture object can
be attached as one of the logical buffers of a framebuffer object with the command

void FramebufferTexture(enum target, enum attachment,
uint texture, int level);

The framebuffer object is that which is bound to target.
target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or

FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.
attachment must be one of the attachment points of the framebuffer listed in

table 9.1.
If texture is non-zero, the specified mipmap level of the texture object named

texture is attached to the framebuffer attachment point named by attachment.
If texture is the name of one of the types of textures described in the definition

of layered textures in section 9.2.2.1, the texture level attached to the framebuffer
attachment point is an array of images, and the framebuffer attachment is consid-
ered layered.

Errors

An INVALID_ENUM error is generated if target is not DRAW_-

FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.
An INVALID_OPERATION error is generated if zero is bound to target.
An INVALID_OPERATION error is generated if attachment is COLOR_-

ATTACHMENTmwherem is greater than or equal to the value of MAX_COLOR_-
ATTACHMENTS.

An INVALID_ENUM error is generated if attachment is not one of the at-
tachments in table 9.1, and attachment is not COLOR_ATTACHMENTm where
m is greater than or equal to the value of MAX_COLOR_ATTACHMENTS.

An INVALID_VALUE error is generated if texture is not zero and is not the
name of a texture object, or if level is not a supported texture level for texture.

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 241

An INVALID_OPERATION error is generated if texture is the name of a
buffer texture.

Additionally, a specified image from a texture object can be attached as one of
the logical buffers of a framebuffer object with the command

void FramebufferTexture2D(enum target, enum attachment,
enum textarget, uint texture, int level);

The framebuffer object is that which is bound to target.
target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or

FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.
attachment must be one of the attachment points of the framebuffer listed in

table 9.1.
If texture is not zero, then texture must either name an existing two-dimensional

texture object and textarget must be TEXTURE_2D, texture must name an existing
cube map texture and textarget must be one of the cube map face targets from
table 8.20, or texture must name an existing multisample texture and textarget must
be TEXTURE_2D_MULTISAMPLE.

level specifies the mipmap level of the texture image to be attached to the
framebuffer, and must satisfy the following conditions:

• If texture refers to an immutable-format texture, level must be greater than or
equal to zero and smaller than the value of TEXTURE_IMMUTABLE_LEVELS
for texture.

• If textarget is TEXTURE_2D_MULTISAMPLE, then level must be zero.

• If textarget is one of the cube map face targets from table 8.20, then level
must be greater than or equal to zero and less than or equal to log2 of the
value of MAX_CUBE_MAP_TEXTURE_SIZE.

• If textarget is TEXTURE_2D, level must be greater than or equal to zero and
no larger than log2 of the value of MAX_TEXTURE_SIZE.

Errors

An INVALID_ENUM error is generated if target is not DRAW_-

FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.
An INVALID_OPERATION error is generated if attachment is COLOR_-

ATTACHMENTmwherem is greater than or equal to the value of MAX_COLOR_-
ATTACHMENTS.

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 242

An INVALID_ENUM error is generated if attachment is not one of the at-
tachments in table 9.1, and attachment is not COLOR_ATTACHMENTm where
m is greater than or equal to the value of MAX_COLOR_ATTACHMENTS.

An INVALID_OPERATION error is generated if zero is bound to target.
An INVALID_VALUE error is generated if texture is not zero and level is

not a supported texture level for textarget, as described above.
An INVALID_VALUE error is generated if texture is not zero and layer is

larger than the value of MAX_3D_TEXTURE_SIZE minus one.
An INVALID_OPERATION error is generated if texture is not zero and tex-

target is not one of TEXTURE_2D, TEXTURE_2D_MULTISAMPLE, or one of the
cube map face targets from table 8.20.

An INVALID_OPERATION error is generated if texture is not zero, and
does not name an existing texture object of type matching textarget, as de-
scribed above.

An INVALID_OPERATION error is generated if texture is the name of a
buffer texture.

A single layer of a three-dimensional or array texture object can be attached as
one of the logical buffers of a framebuffer object with the command

void FramebufferTextureLayer(enum target,
enum attachment, uint texture, int level, int layer);

This command operates similarly to FramebufferTexture2D, except for the addi-
tional layer argument which selects a layer of the texture object to attach.

layer specifies the layer of a two-dimensional image within texture, except for
cube map and cube map array textures. For cube map textures, layer is translated
into a cube map face as described in table 8.24. For cube map array textures, layer
is translated into an array layer and a cube map face as described for layer-face
numbers in section 8.5.3.

level specifies the mipmap level of the texture image to be attached to the
framebuffer, and must satisfy the following conditions:

• If texture refers to an immutable-format texture, level must be greater than or
equal to zero and smaller than the value of TEXTURE_IMMUTABLE_LEVELS
for texture.

• If texture is a three-dimensional texture, then level must be greater than
or equal to zero and less than or equal to log2 of the value of MAX_3D_-
TEXTURE_SIZE.

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 243

• If texture is a two-dimensional array texture, then level must be greater
than or equal to zero and less than or equal to log2 of the value of MAX_-
TEXTURE_SIZE.

• If texture is a two-dimensional multisample array texture, then level must be
zero.

Errors

In addition to the corresponding errors for FramebufferTexture when
called with the same parameters (other than layer):

An INVALID_VALUE error is generated if texture is a three-dimensional
texture, and layer is larger than the value of MAX_3D_TEXTURE_SIZE minus
one.

An INVALID_VALUE error is generated if texture is a two-dimensional ar-
ray, two-dimensional multisample array or cube map array texture, and layer
is larger than the value of MAX_ARRAY_TEXTURE_LAYERS minus one (see
section 9.8).

An INVALID_VALUE error is generated if texture is non-zero and layer is
negative.

An INVALID_OPERATION error is generated if texture is non-zero and is
not the name of a three-dimensional, two-dimensional array, two-dimensional
multisample array or cube map array texture.

An INVALID_VALUE error is generated if texture is not zero and level is
not a supported texture level for texture, as described above.

Unlike FramebufferTexture2D, no textarget parameter is accepted.
If texture is non-zero and the command does not result in an error, the frame-

buffer attachment state corresponding to attachment is updated as in Framebuffer-
Texture2D commands, except that the value of FRAMEBUFFER_ATTACHMENT_-
TEXTURE_LAYER is set to layer.

9.2.8.1 Effects of Attaching a Texture Image

The remaining comments in this section apply to all forms of FramebufferTex-
ture*.

If texture is zero, any image or array of images attached to the attachment point
named by attachment is detached. Any additional parameters (level, textarget,
and/or layer) are ignored when texture is zero. All state values of the attachment
point specified by attachment are set to their default values listed in table 21.16.

OpenGL ES 3.2 (November 3, 2016)

9.2. BINDING AND MANAGING FRAMEBUFFER OBJECTS 244

If texture is not zero, and if FramebufferTexture* is successful, then the spec-
ified texture image will be used as the logical buffer identified by attachment of the
framebuffer object currently bound to target. State values of the specified attach-
ment point are set as follows:

• The value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is set to
TEXTURE.

• The value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is set to texture.

• The value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL is set to level.

• If FramebufferTexture2D is called and texture is a cube map texture, then
the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE is
set to textarget; otherwise it is set to the default value (NONE).

• If FramebufferTextureLayer is called, then the value of FRAMEBUFFER_-
ATTACHMENT_TEXTURE_LAYER is set to layer; otherwise it is set to zero.

• If FramebufferTexture is called and texture is the name of one of the types
of textures described in the definition of layered textures in section 9.2.2.1,
the value of FRAMEBUFFER_ATTACHMENT_LAYERED is set to TRUE; other-
wise it is set to FALSE.

All other state values of the attachment point specified by attachment are set
to their default values listed in table 21.16. No change is made to the state of the
texture object, and any previous attachment to the attachment logical buffer of the
framebuffer object bound to framebuffer target is broken. If the attachment is not
successful, then no change is made to the state of either the texture object or the
framebuffer object.

Setting attachment to the value DEPTH_STENCIL_ATTACHMENT is a special
case causing both the depth and stencil attachments of the framebuffer object to
be set to texture. texture must have base internal format DEPTH_STENCIL, or the
depth and stencil framebuffer attachments will be incomplete (see section 9.4.1).

If a texture object is deleted while its image is attached to one or more at-
tachment points in a currently bound framebuffer object, then it is as if Frame-
bufferTexture* had been called, with a texture of zero, for each attachment point
to which this image was attached in that framebuffer object. In other words, the
texture image is first detached from all attachment points in that framebuffer ob-
ject. Note that the texture image is specifically not detached from any non-bound
framebuffer objects. Detaching the texture image from any non-bound framebuffer
objects is the responsibility of the application.

OpenGL ES 3.2 (November 3, 2016)

9.3. FEEDBACK LOOPS BETWEEN TEXTURES AND THE FRAMEBUFFER245

9.3 Feedback Loops Between Textures and the Frame-
buffer

A feedback loop may exist when a texture object is used as both the source and
destination of a GL operation. When a feedback loop exists, undefined behavior
results. This section describes rendering feedback loops (see section 8.14.2.1) and
texture copying feedback loops (see section 8.6.1) in more detail.

9.3.1 Rendering Feedback Loops

The mechanisms for attaching textures to a framebuffer object do not prevent a two-
dimensional texture level, a face of a cube map texture level, or a layer of a three-
dimensional texture from being attached to the draw framebuffer while the same
texture is bound to a texture unit. While this condition holds, texturing operations
accessing that image will produce undefined results, as described at the end of
section 8.14. Conditions resulting in such undefined behavior are defined in more
detail below. Such undefined texturing operations are likely to leave the final results
of fragment processing operations undefined, and should be avoided.

Special precautions need to be taken to avoid attaching a texture image to the
currently bound draw framebuffer object while the texture object is currently bound
and enabled for texturing. Doing so could lead to the creation of a rendering feed-
back loop between the writing of pixels by GL rendering operations and the simul-
taneous reading of those same pixels when used as texels in the currently bound
texture. In this scenario, the framebuffer will be considered framebuffer complete
(see section 9.4), but the values of fragments rendered while in this state will be
undefined. The values of texture samples may be undefined as well, as described
under “Rendering Feedback Loops” in section 8.14.2.1

Specifically, the values of rendered fragments are undefined if all of the fol-
lowing conditions are true:

• an image from texture object T is attached to the currently bound draw frame-
buffer object at attachment point A

• the texture object T is currently bound to a texture unit U, and

• the current programmable vertex and/or fragment processing state makes it
possible (see below) to sample from the texture object T bound to texture
unit U

while either of the following conditions are true:

OpenGL ES 3.2 (November 3, 2016)

9.3. FEEDBACK LOOPS BETWEEN TEXTURES AND THE FRAMEBUFFER246

• the value of TEXTURE_MIN_FILTER for texture object T is NEAREST or
LINEAR, and the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL
for attachment point A is equal to the value of TEXTURE_BASE_LEVEL for
the texture object T

• the value of TEXTURE_MIN_FILTER for texture object T is one
of NEAREST_MIPMAP_NEAREST, NEAREST_MIPMAP_LINEAR, LINEAR_-
MIPMAP_NEAREST, or LINEAR_MIPMAP_LINEAR, and the value of
FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL for attachment point A is
within the range specified by the current values of TEXTURE_BASE_LEVEL
to q, inclusive, for the texture object T. q is defined in section 8.14.3.

For the purpose of this discussion, it is possible to sample from the texture
object T bound to texture unit U if the active fragment or vertex shader contains
any instructions that might sample from the texture object T bound to U, even if
those instructions might only be executed conditionally.

Note that if TEXTURE_BASE_LEVEL and TEXTURE_MAX_LEVEL exclude any
levels containing image(s) attached to the currently bound draw framebuffer object,
then the above conditions will not be met (i.e., the above rule will not cause the
values of rendered fragments to be undefined.)

9.3.2 Texture Copying Feedback Loops

Similarly to rendering feedback loops, it is possible for a texture image to be at-
tached to the currently bound read framebuffer object while the same texture im-
age is the destination of a CopyTexImage* operation, as described under “Texture
Copying Feedback Loops” in section 8.6.1. While this condition holds, a texture
copying feedback loop between the writing of texels by the copying operation and
the reading of those same texels when used as pixels in the read framebuffer may
exist. In this scenario, the values of texels written by the copying operation will be
undefined.

Specifically, the values of copied texels are undefined if all of the following
conditions are true:

• an image from texture object T is attached to the currently bound read frame-
buffer object at attachment point A

• the selected read buffer (see section 16.1.1) is attachment point A

• T is bound to the texture target of a CopyTexImage* operation

• the level argument of the copying operation selects the same image that is
attached to A

OpenGL ES 3.2 (November 3, 2016)

9.4. FRAMEBUFFER COMPLETENESS 247

9.4 Framebuffer Completeness

A framebuffer must be framebuffer complete to effectively be used as the draw or
read framebuffer of the GL.

The default framebuffer is always complete if it exists; however, if no default
framebuffer exists (no window system-provided drawable is associated with the
GL context), it is deemed to be incomplete.

A framebuffer object is said to be framebuffer complete if all of its attached
images, and all framebuffer parameters required to utilize the framebuffer for ren-
dering and reading, are consistently defined and meet the requirements defined
below. The rules of framebuffer completeness are dependent on the properties of
the attached images, and on certain implementation-dependent restrictions.

The internal formats of the attached images can affect the completeness of
the framebuffer, so it is useful to first define the relationship between the internal
format of an image and the attachment points to which it can be attached.

• An internal format is color-renderable if it is one of the sized internal formats
from table 8.10 whose “CR” (color-renderable) column is checked in that
table, or if it is unsized, non-floating-point format RGB or RGBA. No other
formats, including compressed internal formats, are color-renderable.

• An internal format is depth-renderable if it is one of the formats from ta-
ble 8.11 whose base internal format is DEPTH_COMPONENT or DEPTH_-

STENCIL. No other formats are depth-renderable.

• An internal format is stencil-renderable if it is one of the formats from
table 8.11 whose base internal format is STENCIL_INDEX or DEPTH_-

STENCIL. No other formats are stencil-renderable.

9.4.1 Framebuffer Attachment Completeness

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for the framebuffer
attachment point attachment is not NONE, then it is said that a framebuffer-
attachable image, named image, is attached to the framebuffer at the attachment
point. image is identified by the state in attachment as described in section 9.2.2.

The framebuffer attachment point attachment is said to be framebuffer attach-
ment complete if the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for
attachment is NONE (i.e., no image is attached), or if all of the following conditions
are true:

OpenGL ES 3.2 (November 3, 2016)

9.4. FRAMEBUFFER COMPLETENESS 248

• image is a component of an existing object with the name specified by
the value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, and of the type
specified by the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE.

• The width and height of image are greater than zero and less than or equal
to the values of the implementation-dependent limits MAX_FRAMEBUFFER_-
WIDTH and MAX_FRAMEBUFFER_HEIGHT, respectively.

• If image is a three-dimensional, two-dimensional array or cube map array
texture and the attachment is not layered, the selected layer is less than the
depth or layer count, respectively, of the texture.

• If image is a three-dimensional, two-dimensional array or cube map array
texture and the attachment is layered, the depth or layer count of the texture is
less than or equal to the value of the implementation-dependent limit MAX_-
FRAMEBUFFER_LAYERS.

• If image has multiple samples, its sample count is less than or equal to
the value of the implementation-dependent limit MAX_FRAMEBUFFER_-

SAMPLES.

• If image is not an immutable-format texture, the selected level number is in
the range [levelbase, q], where levelbase and q are as defined in section 8.14.3.

• If image is not an immutable-format texture and the selected level is not
levelbase, the texture must be mipmap complete; if image is part of a cube-
map texture, the texture must also be mipmap cube complete.

• If attachment is COLOR_ATTACHMENTi, then image must have a color-
renderable internal format.

• If attachment is DEPTH_ATTACHMENT, then image must have a depth-
renderable internal format.

• If attachment is STENCIL_ATTACHMENT, then image must have a stencil-
renderable internal format.

9.4.2 Whole Framebuffer Completeness

Each rule below is followed by an error token enclosed in { brackets }. The mean-
ing of these errors is explained below and under “Effects of Framebuffer Com-
pleteness on Framebuffer Operations” in section 9.4.4. Note that the error token
FRAMEBUFFER_INCOMPLETE_DIMENSIONS is included in the API for OpenGL

OpenGL ES 3.2 (November 3, 2016)

9.4. FRAMEBUFFER COMPLETENESS 249

ES 2.0 compatibility, but cannot be generated by an OpenGL ES 3.0 or later im-
plementation.

The framebuffer object bound to target is said to be framebuffer complete if all
the following conditions are true:

• if target is the default framebuffer, the default framebuffer exists.

{ FRAMEBUFFER_UNDEFINED }

• All framebuffer attachment points are framebuffer attachment complete.

{ FRAMEBUFFER_INCOMPLETE_ATTACHMENT }

• There is at least one image attached to the framebuffer, or the value of
the framebuffer’s FRAMEBUFFER_DEFAULT_WIDTH and FRAMEBUFFER_-

DEFAULT_HEIGHT parameters are both non-zero.

{ FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT }

• The combination of internal formats of the attached images does not violate
an implementation-dependent set of restrictions.

{ FRAMEBUFFER_UNSUPPORTED }

• Depth and stencil attachments, if present, are the same image.

{ FRAMEBUFFER_UNSUPPORTED }

• The value of RENDERBUFFER_SAMPLES is the same for all attached render-
buffers; the value of TEXTURE_SAMPLES is the same for all attached tex-
tures; and, if the attached images are a mix of renderbuffers and textures,
the value of RENDERBUFFER_SAMPLES matches the value of TEXTURE_-
SAMPLES.

FRAMEBUFFER_INCOMPLETE_MULTISAMPLE

• The value of TEXTURE_FIXED_SAMPLE_LOCATIONS is the same for all
attached textures; and, if the attached images are a mix of renderbuffers
and textures, the value of TEXTURE_FIXED_SAMPLE_LOCATIONS must be
TRUE for all attached textures.

{ FRAMEBUFFER_INCOMPLETE_MULTISAMPLE }

OpenGL ES 3.2 (November 3, 2016)

9.4. FRAMEBUFFER COMPLETENESS 250

• If any framebuffer attachment is layered, all populated attachments must
be layered. Additionally, all populated color attachments must be from
textures of the same target (three-dimensional, two-dimensional array two-
dimensional multisample array, cube map, or cube map array textures.

{ FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS }

The token in brackets after each clause of the framebuffer completeness rules
specifies the return value of CheckFramebufferStatus (see below) that is gen-
erated when that clause is violated. If more than one clause is violated, it is
implementation-dependent which value will be returned by CheckFramebuffer-
Status.

Performing any of the following actions may change whether the framebuffer
is considered complete or incomplete:

• Binding to a different framebuffer with BindFramebuffer.

• Attaching an image to the framebuffer with FramebufferTexture* or
FramebufferRenderbuffer.

• Detaching an image from the framebuffer with FramebufferTexture* or
FramebufferRenderbuffer.

• Changing the internal format of a texture image that is attached to the frame-
buffer by calling TexImage*, TexStorage*, CopyTexImage*, or Com-
pressedTexImage*.

• Changing the internal format of a renderbuffer that is attached to the frame-
buffer by calling RenderbufferStorage*.

• Deleting, with DeleteTextures or DeleteRenderbuffers, an object contain-
ing an image that is attached to a currently bound framebuffer object.

• Associating a different window system-provided drawable, or no drawable,
with the default framebuffer using a window system binding API such as
those described in section 1.6.3.

Although the GL defines a wide variety of internal formats for framebuffer-
attachable images, such as texture images and renderbuffer images, some imple-
mentations may not support rendering to particular combinations of internal for-
mats. If the combination of formats of the images attached to a framebuffer object
are not supported by the implementation, then the framebuffer is not complete un-
der the clause labeled FRAMEBUFFER_UNSUPPORTED.

OpenGL ES 3.2 (November 3, 2016)

9.4. FRAMEBUFFER COMPLETENESS 251

Implementations are required to support certain combinations of framebuffer
internal formats as described under “Required Framebuffer Formats” in sec-
tion 9.4.3.

Because of the implementation-dependent clause of the framebuffer complete-
ness test in particular, and because framebuffer completeness can change when the
set of attached images is modified, it is strongly advised, though not required, that
an application check to see if the framebuffer is complete prior to rendering. The
status of the framebuffer object currently bound to target can be queried by calling

enum CheckFramebufferStatus(enum target);

target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.

A value is returned that identifies whether or not the framebuffer object or
default framebuffer bound to target is complete when treated as a read or draw
framebuffer (as determined by target). If the framebuffer object is complete, then
FRAMEBUFFER_COMPLETE is returned. Otherwise, the value returned is one of
the error codes defined as the start of section 9.4.2 identifying one of the rules of
framebuffer completeness that is violated.

If CheckFramebufferStatus generates an error, zero is returned.

Errors

An INVALID_ENUM error is generated if target is not DRAW_-

FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.

9.4.3 Required Framebuffer Formats

Implementations must support framebuffer objects with up to MAX_COLOR_-

ATTACHMENTS color attachments, a depth attachment, and a stencil attachment.
Each color attachment may be in any of the color-renderable formats described in
section 9.4. The depth attachment may be in any of the required depth or combined
depth+stencil formats described in sections 8.5.1 and 9.2.5, and the stencil attach-
ment may be in any of the required stencil or combined depth+stencil formats.
However, when both depth and stencil attachments are present, implementations
must not support framebuffer objects where depth and stencil attachments refer to
separate images.

9.4.4 Effects of Framebuffer Completeness on Framebuffer Opera-
tions

OpenGL ES 3.2 (November 3, 2016)

9.4. FRAMEBUFFER COMPLETENESS 252

Errors

An INVALID_FRAMEBUFFER_OPERATION error is generated by attempts
to render to or read from a framebuffer which is not framebuffer complete.
This error is generated regardless of whether fragments are actually read from
or written to the framebuffer. For example, it is generated when a rendering
command is called and the framebuffer is incomplete, even if RASTERIZER_-
DISCARD is enabled.

An INVALID_FRAMEBUFFER_OPERATION error is generated by render-
ing commands (see section 2.4), and commands that read from the frame-
buffer such as ReadPixels, CopyTexImage*, and CopyTexSubImage*, if
called while the framebuffer is not framebuffer complete.

9.4.5 Effects of Framebuffer State on Framebuffer Dependent Values

The values of the state variables listed in table 21.56 may change when a change
is made to the current framebuffer binding, to the state of the currently bound
framebuffer object, or to an image attached to that framebuffer object. Most such
state is dependent on the draw framebuffer (DRAW_FRAMEBUFFER_BINDING),
but IMPLEMENTATION_COLOR_READ_TYPE and IMPLEMENTATION_COLOR_-

READ_FORMAT are dependent on the read framebuffer (READ_FRAMEBUFFER_-
BINDING).

When the relevant framebuffer binding is zero, the values of the state variables
listed in table 21.56 are implementation defined.

When the relevant framebuffer binding is non-zero, if the currently bound
framebuffer object is not framebuffer complete, then the values of the state vari-
ables listed in table 21.56 are undefined.

When the relevant framebuffer binding is non-zero and the currently bound
draw framebuffer object is framebuffer complete, then the values of the state vari-
ables listed in table 21.56 are completely determined by the relevant framebuffer
binding, the state of the currently bound framebuffer object, and the state of the
images attached to that framebuffer object. The values of RED_BITS, GREEN_-
BITS, BLUE_BITS, and ALPHA_BITS are defined only if all color attachments
of the draw framebuffer have identical formats, in which case the color component
depths of color attachment zero are returned. The values returned for DEPTH_BITS
and STENCIL_BITS are the depth or stencil component depth of the corresponding
attachment of the draw framebuffer, respectively.

The actual sizes of the color, depth, or stencil bit planes can be obtained by
querying an attachment point using GetFramebufferAttachmentParameteriv,
or querying the object attached to that point. If the value of FRAMEBUFFER_-

OpenGL ES 3.2 (November 3, 2016)

9.5. MAPPING BETWEEN PIXEL AND ELEMENT IN ATTACHED IMAGE253

ATTACHMENT_OBJECT_TYPE at a particular attachment point is RENDERBUFFER,
the sizes may be determined by calling GetRenderbufferParameteriv as de-
scribed in section 9.2.6.

9.5 Mapping between Pixel and Element in Attached Im-
age

When DRAW_FRAMEBUFFER_BINDING is non-zero, an operation that writes to the
framebuffer modifies the image attached to the selected logical buffer, and an oper-
ation that reads from the framebuffer reads from the image attached to the selected
logical buffer.

If the attached image is a renderbuffer image, then the window coordinates
(xw, yw) corresponds to the value in the renderbuffer image at the same coordi-
nates.

If the attached image is a texture image, then the window coordinates (xw, yw)
correspond to the texel (i, j, k) from figure 8.6 as follows:

i = xw

j = yw

k = layer

where layer is the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER for
the selected logical buffer. For a two-dimensional texture, k and layer are irrele-
vant.

9.6 Conversion to Framebuffer-Attachable Image Com-
ponents

When an enabled color value is written to the framebuffer while the draw frame-
buffer binding is non-zero, for each draw buffer the R, G, B, and A values are
converted to internal components as described in table 8.8, according to the ta-
ble row corresponding to the internal format of the framebuffer-attachable image
attached to the selected logical buffer, and the resulting internal components are
written to the image attached to logical buffer. The masking operations described
in section 15.2.2 are also effective.

OpenGL ES 3.2 (November 3, 2016)

9.7. CONVERSION TO RGBA VALUES 254

9.7 Conversion to RGBA Values

When a color value is read while the read framebuffer binding is non-zero, or is
used as the source of blending while the draw framebuffer binding is non-zero,
components of that color taken from the framebuffer-attachable image attached to
the selected logical buffer are first converted to R, G, B, and A values according to
table 14.1 and the internal format of the attached image.

9.8 Layered Framebuffers

A framebuffer is considered to be layered if it is complete and all of its populated
attachments are layered, as described in section 9.2.8. When rendering to a layered
framebuffer, each fragment generated by the GL is assigned a layer number. The
layer number for a fragment is zero if

• geometry shaders are disabled, or

• the current geometry shader does not statically assign a value to the built-in
output variable gl_Layer.

Otherwise, the layer for each point, line, or triangle emitted by the geometry
shader is taken from the gl_Layer output of one of the vertices of the primitive.
The vertex used is implementation-dependent and may be queried as described in
section 11.3.4. To get defined results, all vertices of each primitive emitted should
set the same value for gl_Layer. Since the EndPrimitive built-in function
starts a new output primitive, defined results can be achieved if EndPrimitive is
called between two vertices emitted with different layer numbers. A layer number
written by a geometry shader has no effect if the framebuffer is not layered.

When fragments are written to a layered framebuffer, the fragment’s layer num-
ber selects an image from the array of images at each attachment point to use for
the stencil test (see section 15.1.2), depth buffer test (see section 15.1.3), and for
blending and color buffer writes (see section 15.1.5). If the fragment’s layer num-
ber is negative, or greater than or equal to the minimum number of layers of any
attachment, the effects of the fragment on the framebuffer contents are undefined.

When the Clear or ClearBuffer* commands described in section 15.2.3 are
used to clear a layered framebuffer attachment, all layers of the attachment are
cleared.

When commands such as ReadPixels read from a layered framebuffer, the
image at layer zero of the selected attachment is always used to obtain pixel values.

OpenGL ES 3.2 (November 3, 2016)

9.8. LAYERED FRAMEBUFFERS 255

When cube map texture levels are attached to a layered framebuffer, there are
six layers, numbered zero through five. Each layer number corresponds to a cube
map face, as shown in table 8.24.

When cube map array texture levels are attached to a layered framebuffer, the
layer number corresponds to a layer-face. The layer-face is be translated into an
array layer and a cube map face as described in section 8.23 for layer-face numbers
passed to BindImageTexture.

OpenGL ES 3.2 (November 3, 2016)

Chapter 10

Vertex Specification and Drawing
Commands

Most geometric primitives are drawn by specifying a series of generic attribute sets
corresponding to the vertices of a primitive using DrawArrays or one of the other
drawing commands defined in section 10.5. Points, lines, polygons, and a variety
of related geometric primitives (see section 10.1) can be drawn in this way.

The process of specifying attributes of a vertex and passing them to a shader is
referred to as transferring a vertex to the GL.

Vertex Shader Processing and Vertex State
Each vertex is specified with one or more generic vertex attributes. Each at-

tribute is specified with one, two, three, or four scalar values.
Generic vertex attributes can be accessed from within vertex shaders (see sec-

tion 11.1) and used to compute values for consumption by later processing stages.
Before vertex shader execution, the state required by a vertex is its generic

vertex attributes. Vertex shader execution processes vertices producing a homoge-
neous vertex position and any outputs explicitly written by the vertex shader.

Figure 10.1 shows the sequence of operations that builds a primitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed, it is
clipped to a clip volume. This may modify the primitive by altering vertex coordi-
nates and vertex shader outputs. In the case of line and polygon primitives, clipping
may insert new vertices into the primitive. The vertices defining a primitive to be
rasterized have output variables associated with them.

256

257

Figure 10.1. Vertex processing and primitive assembly.

OpenGL ES 3.2 (November 3, 2016)

10.1. PRIMITIVE TYPES 258

10.1 Primitive Types

A sequence of vertices is passed to the GL using DrawArrays or one of the other
drawing commands defined in section 10.5. There is no limit to the number of
vertices that may be specified, other than the size of the vertex arrays. The mode
parameter of these commands determines the type of primitives to be drawn using
the vertices. Primitive types and the corresponding mode parameters are summa-
rized below.

10.1.1 Points

A series of individual points are specified with mode POINTS. Each vertex defines
a separate point.

10.1.2 Line Strips

A series of one or more connected line segments are specified with mode LINE_-
STRIP. In this case, the first vertex specifies the first segment’s start point while
the second vertex specifies the first segment’s endpoint and the second segment’s
start point. In general, the ith vertex (for i > 1) specifies the beginning of the ith
segment and the end of the i − 1st. The last vertex specifies the end of the last
segment. If only one vertex is specified, then no primitive is generated.

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

10.1.3 Line Loops

A line loop is specified with mode LINE_LOOP. Loops are the same as line strips
except that a final segment is added from the final specified vertex to the first vertex.
The required state consists of the processed first vertex, in addition to the state
required for line strips.

10.1.4 Separate Lines

Individual line segments, each defined by a pair of vertices, are specified with mode
LINES. The first two vertices passed define the first segment, with subsequent pairs
of vertices each defining one more segment. If the number of vertices passed is
odd, then the last vertex is ignored. The state required is the same as for line strips
but it is used differently: a processed vertex holding the first vertex of the current

OpenGL ES 3.2 (November 3, 2016)

10.1. PRIMITIVE TYPES 259

(a) (b) (c)

1

2

3

4

5 1

2
3

4

5
1

2

3

4

5

6

Figure 10.2. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices in order within the vertex arrays. Note
that in (a) and (b) triangle edge ordering is determined by the first triangle, while in
(c) the order of each triangle’s edges is independent of the other triangles.

segment, and a boolean flag indicating whether the current vertex is odd or even (a
segment start or end).

10.1.5 Triangle Strips

A triangle strip is a series of triangles connected along shared edges, and is spec-
ified with mode TRIANGLE_STRIP. In this case, the first three vertices define the
first triangle (and their order is significant). Each subsequent vertex defines a new
triangle using that point along with two vertices from the previous triangle. If fewer
than three vertices are specified, no primitive is produced. See figure 10.2.

The required state consists of a flag indicating if the first triangle has been
completed, two stored processed vertices (called vertex A and vertex B), and a
one bit pointer indicating which stored vertex will be replaced with the next vertex.
When a series of vertices are transferred to the GL, the pointer is initialized to point
to vertex A. Each successive vertex toggles the pointer. Therefore, the first vertex
is stored as vertex A, the second stored as vertex B, the third stored as vertex A,
and so on. Any vertex after the second one sent forms a triangle from vertex A,
vertex B, and the current vertex (in that order).

OpenGL ES 3.2 (November 3, 2016)

10.1. PRIMITIVE TYPES 260

10.1.6 Triangle Fans

A triangle fan is specified with mode TRIANGLE_FAN, and is the same as a triangle
strip with one exception: each vertex after the first always replaces vertex B of the
two stored vertices.

10.1.7 Separate Triangles

Separate triangles are specified with mode TRIANGLES. In this case, the 3i + 1st,
3i + 2nd, and 3i + 3rd vertices (in that order) determine a triangle for each i =
0, 1, . . . , n − 1, where there are 3n + k vertices drawn. k is either 0, 1, or 2; if k
is not zero, the final k vertices are ignored. For each triangle, vertex A is vertex
3i and vertex B is vertex 3i + 1. Otherwise, separate triangles are the same as a
triangle strip.

10.1.8 Lines with Adjacency

Lines with adjacency are specified with mode LINES_ADJACENCY, and are inde-
pendent line segments where each endpoint has a corresponding adjacent vertex
that can be accessed by a geometry shader (see section 11.3). If a geometry shader
is not active, the adjacent vertices are ignored.

A line segment is drawn from the 4i+2nd vertex to the 4i+3rd vertex for each
i = 0, 1, . . . , n − 1, where there are 4n + k vertices passed. k is either 0, 1, 2, or
3; if k is not zero, the final k vertices are ignored. For line segment i, the 4i + 1st
and 4i+ 4th vertices are considered adjacent to the 4i+ 2nd and 4i+ 3rd vertices,
respectively (see figure 10.3).

10.1.9 Line Strips with Adjacency

Line strips with adjacency are specified with mode LINE_STRIP_ADJACENCY and
are similar to line strips, except that each line segment has a pair of adjacent ver-
tices that can be accessed by a geometry shader. If a geometry shader is not active,
the adjacent vertices are ignored.

A line segment is drawn from the i+ 2nd vertex to the i+ 3rd vertex for each
i = 0, 1, . . . , n − 1, where there are n + 3 vertices passed. If there are fewer than
four vertices, all vertices are ignored. For line segment i, the i + 1st and i + 4th
vertex are considered adjacent to the i+ 2nd and i+ 3rd vertices, respectively (see
figure 10.3).

OpenGL ES 3.2 (November 3, 2016)

10.1. PRIMITIVE TYPES 261

Figure 10.3. Lines with adjacency (a) and line strips with adjacency (b). The ver-
tices connected with solid lines belong to the main primitives; the vertices connected
by dashed lines are the adjacent vertices that may be used in a geometry shader.

Figure 10.4. Triangles with adjacency. The vertices connected with solid lines
belong to the main primitive; the vertices connected by dashed lines are the adjacent
vertices that may be used in a geometry shader.

OpenGL ES 3.2 (November 3, 2016)

10.1. PRIMITIVE TYPES 262

Figure 10.5. Triangle strips with adjacency. The vertices connected with solid lines
belong to the main primitives; the vertices connected by dashed lines are the adja-
cent vertices that may be used in a geometry shader.

10.1.10 Triangles with Adjacency

Triangles with adjacency are specified with mode TRIANGLES_ADJACENCY, and
are similar to separate triangles except that each triangle edge has an adjacent ver-
tex that can be accessed by a geometry shader. If a geometry shader is not active,
the adjacent vertices are ignored.

The 6i+ 1st, 6i+ 3rd, and 6i+ 5th vertices (in that order) determine a triangle
for each i = 0, 1, . . . , n − 1, where there are 6n + k vertices passed. k is either
0, 1, 2, 3, 4, or 5; if k is non-zero, the final k vertices are ignored. For triangle i,
the i+ 2nd, i+ 4th, and i+ 6th vertices are considered adjacent to edges from the
i + 1st to the i + 3rd, from the i + 3rd to the i + 5th, and from the i + 5th to the
i+ 1st vertices, respectively (see figure 10.4).

OpenGL ES 3.2 (November 3, 2016)

10.1. PRIMITIVE TYPES 263

Primitive Vertices Adjacent Vertices
Primitive 1st 2nd 3rd 1/2 2/3 3/1
only (i = 0, n = 1) 1 3 5 2 6 4
first (i = 0) 1 3 5 2 7 4
middle (i odd) 2i+ 3 2i+ 1 2i+ 5 2i− 1 2i+ 4 2i+ 7

middle (i even) 2i+ 1 2i+ 3 2i+ 5 2i− 1 2i+ 7 2i+ 4

last (i = n− 1, i odd) 2i+ 3 2i+ 1 2i+ 5 2i− 1 2i+ 4 2i+ 6

last (i = n− 1, i even) 2i+ 1 2i+ 3 2i+ 5 2i− 1 2i+ 6 2i+ 4

Table 10.1: Triangles generated by triangle strips with adjacency. Each triangle
is drawn using the vertices whose numbers are in the 1st, 2nd, and 3rd columns
under primitive vertices, in that order. The vertices in the 1/2, 2/3, and 3/1 columns
under adjacent vertices are considered adjacent to the edges from the first to the
second, from the second to the third, and from the third to the first vertex of the
triangle, respectively. The six rows correspond to six cases: the first and only
triangle (i = 0, n = 1), the first triangle of several (i = 0, n > 0), “odd” middle
triangles (i = 1, 3, 5 . . .), “even” middle triangles (i = 2, 4, 6, . . .), and special
cases for the last triangle, when i is either even or odd. For the purposes of this
table, the first vertex passed is numbered 1 and the first triangle is numbered 0.

10.1.11 Triangle Strips with Adjacency

Triangle strips with adjacency are specified with mode TRIANGLE_STRIP_-

ADJACENCY and are similar to triangle strips except that each triangle edge has
an adjacent vertex that can be accessed by a geometry shader (see section 11.3). If
a geometry shader is not active, the adjacent vertices are ignored.

In triangle strips with adjacency, n triangles are drawn where there are 2(n +
2) + k vertices passed. k is either 0 or 1; if k is 1, the final vertex is ignored. If
there are fewer than 6 vertices, the entire primitive is ignored. Table 10.1 describes
the vertices and order used to draw each triangle, and which vertices are considered
adjacent to each edge of the triangle (see figure 10.5).

10.1.12 Separate Patches

Separate patches are specified with mode PATCHES. A patch is an ordered collec-
tion of vertices used for primitive tessellation (section 11.2). The vertices compris-
ing a patch have no implied geometric ordering. The vertices of a patch are used by
tessellation shaders and the fixed-function tessellator to generate new point, line,
or triangle primitives.

OpenGL ES 3.2 (November 3, 2016)

10.2. CURRENT VERTEX ATTRIBUTE VALUES 264

Each patch in the series has a fixed number of vertices, which is specified by
calling

void PatchParameteri(enum pname, int value);

with pname set to PATCH_VERTICES.

Errors

An INVALID_ENUM error is generated if pname is not PATCH_VERTICES.
An INVALID_VALUE error is generated if value is less than or equal to

zero, or greater than the implementation-dependent maximum patch size (the
value of MAX_PATCH_VERTICES). The patch size is initially three vertices.

If the number of vertices in a patch is given by v, the vi+ 1st through vi+ vth
vertices (in that order) determine a patch for each i = 0, 1, . . . n − 1, where there
are vn+ k vertices. k is in the range [0, v − 1]; if k is not zero, the final k vertices
are ignored.

10.1.13 General Considerations For Polygon Primitives

A polygon primitive is one generated from a drawing command with mode
TRIANGLE_FAN, TRIANGLE_STRIP, TRIANGLES, TRIANGLES_ADJACENCY, or
TRIANGLE_STRIP_ADJACENCY. The order of vertices in such a primitive is sig-
nificant in polygon rasterization (see section 13.7.1) and fragment shading (see
section 14.2.2).

10.2 Current Vertex Attribute Values

The commands in this section are used to specify current attribute values. These
values are used by drawing commands to define the attributes transferred for a
vertex when a vertex array defining a required attribute is not enabled, as described
in section 10.3.

10.2.1 Current Generic Attributes

Vertex shaders (see section 11.1) access an array of 4-component generic vertex
attributes. The first slot of this array is numbered zero, and the size of the array is
specified by the value of the implementation-dependent constant MAX_VERTEX_-
ATTRIBS.

OpenGL ES 3.2 (November 3, 2016)

10.2. CURRENT VERTEX ATTRIBUTE VALUES 265

The current values of a generic shader attribute declared as a floating-point
scalar, vector, or matrix may be changed at any time by issuing one of the com-
mands

void VertexAttrib{1234}f(uint index,float values);
void VertexAttrib{1234}fv(uint index,const float

*values);
void VertexAttribI4{i ui}(uint index, T values);
void VertexAttribI4{i ui}v(uint index, const

T values);

The VertexAttribI* commands specify signed or unsigned fixed-point values
that are stored as signed or unsigned integers, respectively. Such values are referred
to as pure integers.

All other VertexAttrib* commands specify values that are converted directly
to the internal floating-point representation.

The resulting value(s) are loaded into the generic attribute at slot index, whose
components are named x, y, z, and w. The VertexAttrib1* family of commands
sets the x coordinate to the provided single argument while setting y and z to 0 and
w to 1. Similarly, VertexAttrib2* commands set x and y to the specified values,
z to 0 and w to 1; VertexAttrib3* commands set x, y, and z, with w set to 1, and
VertexAttrib4* commands set all four coordinates.

The VertexAttrib* entry points may also be used to load shader attributes de-
clared as a floating-point matrix. Each column of a matrix takes up one generic
4-component attribute slot out of the MAX_VERTEX_ATTRIBS available slots. Ma-
trices are loaded into these slots in column major order. Matrix columns are loaded
in increasing slot numbers.

When values for a vertex shader attribute variable are sourced from a current
generic attribute value, the attribute must be specified by a command compatible
with the data type of the variable. The values loaded into a shader attribute variable
bound to generic attribute index are undefined if the current value for attribute index
was not specified by

• VertexAttrib[1234]* for single-precision floating-point scalar, vector, and
matrix types

• VertexAttribI[1234]i or VertexAttribI[1234]iv, for signed integer scalar
and vector types

• VertexAttribI[1234]ui or VertexAttribI[1234]uiv, for unsigned integer
scalar and vector types

OpenGL ES 3.2 (November 3, 2016)

10.3. VERTEX ARRAYS 266

Errors

An INVALID_VALUE error is generated for all VertexAttrib* commands
if index is greater than or equal to the value of MAX_VERTEX_ATTRIBS.

10.2.2 Vertex Attribute Queries

Current generic vertex attribute values can be queried using the GetVertexAttrib*
commands as described in section 10.6.

10.2.3 Required State

The state required to support vertex specification consists of the value of MAX_-
VERTEX_ATTRIBS four-component vectors to store generic vertex attributes.

The initial values for all generic vertex attributes are (0.0, 0.0, 0.0, 1.0).

10.3 Vertex Arrays

Vertex data are placed into arrays that are stored in the client’s address space (de-
scribed here) or in the server’s address space (described in section 10.3.7). Blocks
of data in these arrays may then be used to specify multiple geometric primitives
through the execution of a single GL command.

10.3.1 Specifying Arrays for Generic Vertex Attributes

A generic vertex attribute array is described by an index into an array of vertex
buffer bindings which contain the vertex data and state describing how that data is
organized.

The commands

void VertexAttribFormat(uint attribindex, int size,
enum type, boolean normalized, uint relativeoffset);

void VertexAttribIFormat(uint attribindex, int size,
enum type, uint relativeoffset);

describe the organization of vertex arrays. attribindex identifies the generic vertex
attribute array. size indicates the number of values per vertex that are stored in the
array. type specifies the data type of the values stored in the array.

Table 10.2 indicates the allowable values for size and type. For type the val-
ues BYTE, UNSIGNED_BYTE, SHORT, UNSIGNED_SHORT, INT, UNSIGNED_INT

OpenGL ES 3.2 (November 3, 2016)

10.3. VERTEX ARRAYS 267

Integer
Command Sizes Handling Types
VertexAttribPointer, Vertex-
AttribFormat

1, 2, 3, 4 flag byte, ubyte, short,
ushort, int, uint,
fixed, float, half,
packed

VertexAttribIPointer, Vertex-
AttribIFormat

1, 2, 3, 4 integer byte, ubyte, short,
ushort, int, uint

Table 10.2: Vertex array sizes (values per vertex) and data types for generic vertex
attributes. See the body text for a full description of each column.

FLOAT, and HALF_FLOAT indicate the corresponding GL data type shown in ta-
ble 8.4. A type of FIXED indicates the data type fixed. A type of INT_2_10_-
10_10_REV or UNSIGNED_INT_2_10_10_10_REV, indicates respectively four
signed or unsigned elements packed into a single uint; both correspond to the
term packed in table 10.2. The components are packed as shown in figure 8.4.
packed is not a GL type, but indicates commands accepting multiple components
packed into a single uint.

The “Integer Handling” column in table 10.2 indicates how integer and fixed-
point data are handled. “integer” means that they remain as integer values; such
data are referred to as pure integers. “flag” means that either normalize or cast
behavior applies, as described below, depending on whether the normalized flag
to the command is TRUE or FALSE, respectively. normalize means that values are
converted to floating-point by normalizing to [0, 1] (for unsigned types) or [−1, 1]
(for signed types), as described in equations 2.1 and 2.2, respectively. cast means
that values are converted to floating-point directly.

The normalized flag is ignored for floating-point data types, including fixed,
float, and half.

relativeoffset is a byte offset of the first element relative to the start of the vertex
buffer binding this attribute fetches from.

Errors

An INVALID_VALUE error is generated if attribindex is greater than or
equal to the value of MAX_VERTEX_ATTRIBS.

An INVALID_VALUE error is generated if size is not one of the values
shown in table 10.2 for the corresponding command.

OpenGL ES 3.2 (November 3, 2016)

10.3. VERTEX ARRAYS 268

An INVALID_ENUM error is generated if type is not one of the parameter
token names from table 8.4 corresponding to one of the allowed GL data types
for that command as shown in table 10.2.

An INVALID_OPERATION error is generated under any of the following
conditions:

• if the default vertex array object is currently bound (see section 10.4);

• type is INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_-

REV, and size is not 4.

An INVALID_VALUE error is generated if relativeoffset is larger than the
value of MAX_VERTEX_ATTRIB_RELATIVE_OFFSET.

A vertex buffer object is created by binding a name returned by GenBuffers
to a bind point of the currently bound vertex array object. The binding is effected
with the command

void BindVertexBuffer(uint bindingindex, uint buffer,
intptr offset, sizei stride);

The vertex buffer buffer is bound to the bind point bindingindex1.
Pointers to the ith and (i + 1)st elements of the array differ by stride basic

machine units, the pointer to the (i + 1)st element being greater. offset specifies
the offset in basic machine units of the first element in the vertex buffer.

If buffer has not been previously bound, the GL creates a new state vector,
initialized with a zero-sized memory buffer and comprising all the state and with
the same initial values listed in table 6.2, just as for BindBuffer.

BindVertexBuffer may also be used to bind an existing buffer object. If the
bind is successful no change is made to the state of the newly bound buffer object,
and any previous binding to bindingindex is broken.

If buffer is zero, any buffer object bound to bindingindex is detached.

Errors

An INVALID_OPERATION error is generated if buffer is not zero, the
name of an existing buffer object or a name returned from a previous call to
GenBuffers, or if such a name has since been deleted with DeleteBuffers.

An INVALID_VALUE error is generated if bindingindex is greater than or

1 In order for buffer to be affected by any of the buffer object manipulation functions, such as
BindBuffer or MapBufferRange, it must separately be bound to one of the general binding points.

OpenGL ES 3.2 (November 3, 2016)

10.3. VERTEX ARRAYS 269

equal to the value of MAX_VERTEX_ATTRIB_BINDINGS.
An INVALID_VALUE error is generated if stride or offset is negative, or if

stride is greater than the value of MAX_VERTEX_ATTRIB_STRIDE.
An INVALID_OPERATION error is generated if the default vertex array

object is bound.

The association between a vertex attribute and the vertex buffer binding used
by that attribute is set by the command

void VertexAttribBinding(uint attribindex,
uint bindingindex);

Errors

An INVALID_VALUE error is generated if attribindex is greater than or
equal to the value of MAX_VERTEX_ATTRIBS.

An INVALID_VALUE error is generated if bindingindex is greater than or
equal to the value of MAX_VERTEX_ATTRIB_BINDINGS.

An INVALID_OPERATION error is generated if the default vertex array
object is bound.

The one, two, three, or four values in an array that correspond to a single ver-
tex comprise an array element. The values within each array element are stored
sequentially in memory.

When values for a vertex shader attribute variable are sourced from an enabled
generic vertex attribute array, the array must be specified by a command compat-
ible with the data type of the variable. The values loaded into a shader attribute
variable bound to generic attribute index are undefined if the array for index was
not specified by:

• VertexAttribFormat, for floating-point base type attributes;

• VertexAttribIFormat with type BYTE, SHORT, or INT for signed integer
base type attributes; or

• VertexAttribIFormat with type UNSIGNED_BYTE, UNSIGNED_SHORT, or
UNSIGNED_INT for unsigned integer base type attributes.

The commands

void VertexAttribPointer(uint index, int size, enum type,
boolean normalized, sizei stride, const
void *pointer);

OpenGL ES 3.2 (November 3, 2016)

10.3. VERTEX ARRAYS 270

void VertexAttribIPointer(uint index, int size, enum type,
sizei stride, const void *pointer);

control vertex attribute state, a vertex buffer binding, and the mapping between
a vertex attribute and a vertex buffer binding. They are equivalent to (assuming
no errors are generated, and with the exception that no errors are generated if the
default vertex array object is bound):

if (the default vertex array object is bound and
no buffer is bound to ARRAY_BUFFER) {

vertex_buffer = temporary buffer
offset = 0;

} else {
vertex_buffer = <buffer bound to ARRAY_BUFFER>
offset = (char *)pointer - (char *)NULL;

}
VertexAttrib*Format(index, size, type, {normalized, }, 0);
VertexAttribBinding(index, index);
if (stride != 0) {

effectiveStride = stride;
} else {

compute effectiveStride based on size and type;
}
VERTEX_ATTRIB_ARRAY_STRIDE[index] = stride;
VERTEX_ATTRIB_ARRAY_POINTER[index] = pointer;
// This sets VERTEX_BINDING_STRIDE to effectiveStride
BindVertexBuffer(index, vertex_buffer, offset, effectiveStride);

If stride is specified as zero, then array elements are stored sequentially.

Errors

An INVALID_VALUE error is generated if stride is greater than the value
of MAX_VERTEX_ATTRIB_STRIDE.

An INVALID_OPERATION error is generated if a non-zero vertex array
object is bound, no buffer is bound to ARRAY_BUFFER, and pointer is not
NULL2.

In addition, any of the errors defined by VertexAttrib*Format and Ver-
texAttribBinding may be generated if the parameters passed to those com-
mands in the equivalent code above would generate those errors.

OpenGL ES 3.2 (November 3, 2016)

10.3. VERTEX ARRAYS 271

An individual generic vertex attribute array is enabled or disabled by calling
one of

void EnableVertexAttribArray(uint index);
void DisableVertexAttribArray(uint index);

where index identifies the generic vertex attribute array to enable or disable.

Errors

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_VERTEX_ATTRIBS.

10.3.2 Vertex Attribute Divisors

Each generic vertex attribute has a corresponding divisor which modifies the rate
at which attributes advance, which is useful when rendering multiple instances of
primitives in a single draw call. If the divisor is zero, the corresponding attributes
advance once per vertex. Otherwise, attributes advance once per divisor instances
of the set(s) of vertices being rendered. A generic attribute is referred to as in-
stanced if its corresponding divisor value is non-zero.

The command

void VertexBindingDivisor(uint bindingindex,
uint divisor);

sets the divisor value for attributes taken from the buffer bound to bindingindex.

Errors

An INVALID_VALUE error is generated if bindingindex is greater than or
equal to the value of MAX_VERTEX_ATTRIB_BINDINGS.

An INVALID_OPERATION error is generated if the default vertex array
object is bound.

The command

void VertexAttribDivisor(uint index, uint divisor);
2 This error makes it impossible to create a vertex array object containing client array pointers,

while still allowing buffer objects to be unbound.

OpenGL ES 3.2 (November 3, 2016)

10.3. VERTEX ARRAYS 272

is equivalent to (assuming no errors are generated, and with the exception that no
errors are generated if the default vertex array object is bound):

VertexAttribBinding(index, index);
VertexBindingDivisor(index, divisor);

Errors

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_VERTEX_ATTRIBS.

An INVALID_OPERATION error is generated if the default vertex array
object is bound.

10.3.3 Transferring Array Elements

When an vertex is transferred to the GL by DrawArrays, DrawElements, or the
other Draw* commands described below, each generic attribute is expanded to four
components. If size is one then the x component of the attribute is specified by the
array; the y, z, and w components are implicitly set to 0, 0, and 1, respectively. If
size is two then the x and y components of the attribute are specified by the array;
the z and w components are implicitly set to 0 and 1, respectively. If size is three
then x, y, and z are specified, and w is implicitly set to 1. If size is four then all
components are specified.

10.3.4 Primitive Restart

Primitive restarting is enabled or disabled by calling one of the commands

void Enable(enum target);

and

void Disable(enum target);

with target PRIMITIVE_RESTART_FIXED_INDEX.
When DrawElements, DrawElementsInstanced, or DrawRangeElements

transfers a set of generic attribute array elements to the GL, if the index within
the vertex arrays corresponding to that set is equal to 2N − 1, where N is 8, 16
or 32 if the type is UNSIGNED_BYTE, UNSIGNED_SHORT, or UNSIGNED_INT, re-
spectively, then the GL does not process those elements as a vertex. Instead, it is

OpenGL ES 3.2 (November 3, 2016)

10.3. VERTEX ARRAYS 273

as if the drawing command ended with the immediately preceding transfer, and an-
other drawing command is immediately started with the same parameters, but only
transferring the immediately following element through the end of the originally
specified elements.

When one of the *BaseVertex drawing commands specified in section 10.5 is
used, the primitive restart comparison occurs before the basevertex offset is added
to the array index.

Implementations are not required to support primitive restart for separate
patch primitives (primitive type PATCHES). Support can be queried by calling
GetBooleanv with pname PRIMITIVE_RESTART_FOR_PATCHES_SUPPORTED.
A value of FALSE indicates that primitive restart is treated as disabled when draw-
ing patches, no matter the value of the enables. A value of TRUE indicates that
primitive restart behaves normally for patches.

10.3.5 Robust Buffer Access

Robust buffer access is enabled by creating a context with robust access enabled
through the window system binding APIs. When enabled, indices within the el-
ement array (see section 10.3.8) that reference vertex data that lies outside the
enabled attribute’s vertex buffer object result in undefined values for the corre-
sponding attributes, but cannot result in application failure.

Robust buffer access behavior may be queried by calling GetIntegerv with
pname CONTEXT_FLAGS, as described in section 20.2.

10.3.6 Packed Vertex Data Formats

Vertex data formats UNSIGNED_INT_2_10_10_10_REV and INT_2_10_10_-

10_REV describe packed, 4 component formats stored in a single 32-bit word.
For UNSIGNED_INT_2_10_10_10_REV, the first (x), second (y), and third (z)

components are represented as 10-bit unsigned integer values and the fourth (w)
component is represented as a 2-bit unsigned integer value.

For INT_2_10_10_10_REV, the x, y and z components are represented as 10-
bit signed two’s complement integer values and the w component is represented as
a 2-bit signed two’s complement integer value.

The normalized value is used to indicate whether to normalize the data to [0, 1]
(for unsigned types) or [−1, 1] (for signed types). During normalization, the con-
version rules specified in equations 2.1 and 2.2 are followed.

Figure 10.6 describes how these components are laid out in a 32-bit word.

OpenGL ES 3.2 (November 3, 2016)

10.3. VERTEX ARRAYS 274

012345678910111213141516171819202122232425262728293031

w z y x

Figure 10.6: Packed component layout. Bit numbers are indicated for each com-
ponent.

10.3.7 Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objects with the same format
and layout options described in section 10.3.

A buffer object binding point is added to the client state associated with each
vertex array index. The commands that specify the locations and organizations of
vertex arrays copy the buffer object name that is bound to ARRAY_BUFFER to the
binding point corresponding to the vertex array index being specified. For example,
the VertexAttribPointer command copies the value of ARRAY_BUFFER_BINDING
(the queriable name of the buffer binding corresponding to the target ARRAY_-
BUFFER) to the client state variable VERTEX_ATTRIB_ARRAY_BUFFER_BINDING
for the specified index.

The drawing commands using vertex arrays described in section 10.5 operate as
previously defined, except that data for enabled generic attribute arrays are sourced
from buffers if the array’s buffer binding is non-zero.

When an array is sourced from a buffer object for a vertex attribute, the
bindingindex set with VertexAttribBinding for that attribute indicates which ver-
tex buffer binding is used. The sum of the relativeoffset set for the attribute
with VertexAttrib*Format and the offset set for the vertex buffer with BindVer-
texBuffer is used as the offset in basic machine units of the first element in that
buffer’s data store.

When a generic attribute array is sourced from client memory, the vertex
attribute binding state is ignored. Instead, the parameters set with VertexAt-
trib*Pointer for that attribute indicate the location in client memory of attribute
values and their size, type, and stride.

10.3.8 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with the same format
options that are supported for client-side index arrays. Initially zero is bound
to ELEMENT_ARRAY_BUFFER, indicating that DrawElements, DrawRangeEle-
ments, and DrawElementsInstanced are to source their indices from arrays
passed as their indices parameters.

OpenGL ES 3.2 (November 3, 2016)

10.3. VERTEX ARRAYS 275

Indirect Command Name Indirect Buffer target

DrawArraysIndirect DRAW_INDIRECT_BUFFER

DrawElementsIndirect DRAW_INDIRECT_BUFFER

DispatchComputeIndirect DISPATCH_INDIRECT_BUFFER

Table 10.3: Indirect commands and corresponding indirect buffer targets.

A buffer object is bound to ELEMENT_ARRAY_BUFFER by calling BindBuffer
with target set to ELEMENT_ARRAY_BUFFER, and buffer set to the name of the
buffer object. If no corresponding buffer object exists, one is initialized as defined
in section 6.

While a non-zero buffer object name is bound to ELEMENT_ARRAY_BUFFER,
DrawElements, DrawRangeElements, and DrawElementsInstanced source
their indices from that buffer object, using their indices parameters as off-
sets into the buffer object in the same fashion as described in section 10.3.7.
DrawElementsBaseVertex, DrawRangeElementsBaseVertex, and DrawEle-
mentsInstancedBaseVertex also source their indices from that buffer object,
adding the basevertex offset to the appropriate vertex index as a final step before in-
dexing into the vertex buffer; this does not affect the calculation of the base pointer
for the index array.

In some cases performance will be optimized by storing indices and array data
in separate buffer objects, and by creating those buffer objects with the correspond-
ing binding points.

10.3.9 Indirect Commands in Buffer Objects

Arguments to the indirect commands DrawArraysIndirect and DrawEle-
mentsIndirect (see section 10.5), and to DispatchComputeIndirect (see sec-
tion 17) are sourced from the buffer object currently bound to the corresponding
indirect buffer target (see table 10.3), using the command’s indirect parameter as
an offset into the buffer object in the same fashion as described in section 10.3.7.
Buffer objects are created and/or bound to a target as described in section 6.1.
Initially zero is bound to each target.

Arguments are stored in buffer objects as structures (for Draw*Indirect) or
arrays (for DispatchComputeIndirect) of tightly packed 32-bit integers.

OpenGL ES 3.2 (November 3, 2016)

10.4. VERTEX ARRAY OBJECTS 276

10.4 Vertex Array Objects

The buffer objects that are to be used by the vertex stage of the GL are collected
together to form a vertex array object. All state related to the definition of data
used by the vertex processor is encapsulated in a vertex array object.

The name space for vertex array objects is the unsigned integers, with zero
reserved by the GL to represent the default vertex array object.

The command

void GenVertexArrays(sizei n, uint *arrays);

returns n previous unused vertex array object names in arrays. These names are
marked as used, for the purposes of GenVertexArrays only, but they acquire array
state only when they are first bound.

Errors

An INVALID_VALUE error is generated if n is negative.

Vertex array objects are deleted by calling

void DeleteVertexArrays(sizei n, const uint *arrays);

arrays contains n names of vertex array objects to be deleted. Once a vertex array
object is deleted it has no contents and its name is again unused. If a vertex array
object that is currently bound is deleted, the binding for that object reverts to zero
and the default vertex array becomes current. Unused names in arrays that have
been marked as used for the purposes of GenVertexArrays are marked as unused
again. Unused names in arrays are silently ignored, as is the value zero.

Errors

An INVALID_VALUE error is generated if n is negative.

A vertex array object is created by binding a name returned by GenVertexAr-
rays with the command

void BindVertexArray(uint array);

array is the vertex array object name. The resulting vertex array object is a new
state vector, comprising all the state and with the same initial values listed in ta-
ble 21.3.

OpenGL ES 3.2 (November 3, 2016)

10.5. DRAWING COMMANDS USING VERTEX ARRAYS 277

BindVertexArray may also be used to bind an existing vertex array object.
If the bind is successful no change is made to the state of the bound vertex array
object, and any previous binding is broken.

The currently bound vertex array object is used for all commands which modify
vertex array state, such as VertexAttribPointer and EnableVertexAttribArray;
all commands which draw from vertex arrays, such as DrawArrays and DrawEle-
ments; and all queries of vertex array state (see chapter 20).

Errors

An INVALID_OPERATION error is generated if array is not zero or a name
returned from a previous call to GenVertexArrays, or if such a name has since
been deleted with DeleteVertexArrays.

The command

boolean IsVertexArray(uint array);

returns TRUE if array is the name of a vertex array object. If array is zero, or a
non-zero value that is not the name of a vertex array object, IsVertexArray returns
FALSE. No error is generated if array is not a valid vertex array object name.

10.5 Drawing Commands Using Vertex Arrays

The command

void DrawArraysOneInstance(enum mode, int first,
sizei count, int instance, uint baseinstance);

does not exist in the GL, but is used to describe functionality in the rest of this sec-
tion. This command constructs a sequence of geometric primitives by successively
transferring elements for count vertices. Elements first through first + count − 1
of each enabled non-instanced array are transferred to the GL. If count is zero, no
elements are transferred.

mode specifies what kind of primitives are constructed, and must be one of the
primitive types defined in section 10.1.

If an enabled vertex attribute array is instanced (it has a non-zero divisor as
specified by VertexAttribDivisor), the element index that is transferred to the GL,
for all vertices, is given by 3

3baseinstance is included for commonality with OpenGL, but its value will always be zero in
unextended OpenGL ES.

OpenGL ES 3.2 (November 3, 2016)

10.5. DRAWING COMMANDS USING VERTEX ARRAYS 278

⌊
instance

divisor

⌋
+ baseinstance

If an array corresponding to an attribute required by a vertex shader is not
enabled, then the corresponding element is taken from the current attribute state
(see section 10.2).

If an array is enabled, the corresponding current vertex attribute value is unaf-
fected by the execution of DrawArraysOneInstance.

The index of any element transferred to the GL by DrawArraysOneInstance
is referred to as its vertex ID, and may be read by a vertex shader as gl_VertexID.
The vertex ID of the ith element transferred is first + i.

The value of instance may be read by a vertex shader as gl_InstanceID, as
described in section 11.1.3.9.

Errors

An INVALID_ENUM error is generated if mode is not one of the primitive
types defined in section 10.1.

Specifying first < 0 results in undefined behavior. Generating an
INVALID_VALUE error is recommended in this case.

An INVALID_VALUE error is generated if count is negative.

The command

void DrawArrays(enum mode, int first, sizei count);

is equivalent to

DrawArraysOneInstance(mode, first, count, 0, 0);

The command

void DrawArraysInstanced(enum mode, int first,
sizei count, sizei instancecount);

behaves identically to DrawArrays except that instancecount instances of the
range of elements are executed and the value of instance advances for each it-
eration. Those attributes that have non-zero values for divisor, as specified by
VertexAttribDivisor, advance once every divisor instances.

DrawArraysInstanced is equivalent to

OpenGL ES 3.2 (November 3, 2016)

10.5. DRAWING COMMANDS USING VERTEX ARRAYS 279

if (mode, count, or instancecount is invalid)
generate appropriate error

else {
for (i = 0; i < instancecount; i++) {

DrawArraysOneInstance(mode, first, count, i, 0);
}

}

The command

void DrawArraysIndirect(enum mode, const
void *indirect);

is equivalent to

typedef struct {
uint count;
uint instanceCount;
uint first;
uint reservedMustBeZero;

} DrawArraysIndirectCommand;

DrawArraysIndirectCommand *cmd =
(DrawArraysIndirectCommand *)indirect;

DrawArraysInstanced(mode, cmd->first, cmd->count,
cmd->instanceCount);

Unlike DrawArraysInstanced, the first argument is unsigned and cannot
cause an error.

DrawArraysIndirect requires that all data sourced for the command, includ-
ing the DrawArraysIndirectCommand structure, be in buffer objects, and
may not be called when the default vertex array object is bound.

All elements of DrawArraysIndirectCommand are tightly-packed 32-bit val-
ues.

Errors

An INVALID_OPERATION error is generated if zero is bound to
VERTEX_ARRAY_BINDING, DRAW_INDIRECT_BUFFER or to any enabled ver-
tex array.

An INVALID_OPERATION error is generated if the command would

OpenGL ES 3.2 (November 3, 2016)

10.5. DRAWING COMMANDS USING VERTEX ARRAYS 280

source data beyond the end of the buffer object.
An INVALID_VALUE error is generated if indirect is not a multiple of the

size, in basic machine units, of uint.
Results are undefined if reservedMustBeZero is non-zero, but may not re-

sult in program termination.

The command

void DrawElementsOneInstance(enum mode, sizei count,
enum type, const void *indices, int instance,
int basevertex, uint baseinstance);

does not exist in the GL, but is used to describe functionality in the rest of this sec-
tion. This command constructs a sequence of geometric primitives by successively
transferring elements for count vertices to the GL.

The index of any element transferred to the GL by DrawElementsOneIn-
stance is referred to as its vertex ID, and may be read by a vertex shader as gl_-
VertexID. If no element array buffer is bound, the vertex ID of the ith element
transferred is indices[i] + basevertex. Otherwise, the vertex ID of the ith ele-
ment transferred is the sum of basevertex and the value stored in the currently
bound element array buffer at offset indices + i . If the vertex ID is larger than the
maximum value representable by type, it should behave as if the calculation were
upconverted to 32-bit unsigned integers (with wrapping on overflow conditions).
Behavior of DrawElementsOneInstance is undefined if the vertex ID is negative
for any element, and should be handled as described in section 6.4.

type must be one of UNSIGNED_BYTE, UNSIGNED_SHORT, or UNSIGNED_-
INT, indicating that the index values are of GL type ubyte, ushort, or uint
respectively. mode specifies what kind of primitives are constructed, and must be
one of the primitive types defined in section 10.1.

If an enabled vertex attribute array is instanced (it has a non-zero divisor as
specified by VertexAttribDivisor), the element index that is transferred to the GL,
for all vertices, is given by 4⌊

instance

divisor

⌋
+ baseinstance

If type is UNSIGNED_INT, an implementation may restrict the maximum value
that can be used as an index to less than the maximum value that can be represented

4As described for DrawArraysOneInstance above, the value of baseinstance will always be
zero.

OpenGL ES 3.2 (November 3, 2016)

10.5. DRAWING COMMANDS USING VERTEX ARRAYS 281

by the uint type. The maximum value supported by an implementation may be
queried by calling GetInteger64v with pname MAX_ELEMENT_INDEX.

If an array corresponding to a generic attribute is not enabled, then the corre-
sponding element is taken from the current attribute state (see section 10.2).

If an array is enabled, the corresponding current vertex attribute value is unaf-
fected by the execution of DrawElementsOneInstance.

The value of instance may be read by a vertex shader as gl_InstanceID, as
described in section 11.1.3.9.

Errors

An INVALID_ENUM error is generated if mode is not one of the primitive
types defined in section 10.1.

An INVALID_ENUM error is generated if type is not UNSIGNED_BYTE,
UNSIGNED_SHORT, or UNSIGNED_INT.

Using an index value greater than MAX_ELEMENT_INDEX will result in
undefined implementation-dependent behavior, unless primitive restart is en-
abled (see section 10.3.4) and the index value is 232 − 1.

The command

void DrawElements(enum mode, sizei count, enum type,
const void *indices);

behaves identically to DrawElementsOneInstance with instance, basevertex, and
baseinstance set to zero; the effect of calling

DrawElements(mode, count, type, indices);

is equivalent to

if (mode, count or type is invalid)
generate appropriate error

else
DrawElementsOneInstance(mode, count, type, indices,

0, 0, 0);

The command

void DrawElementsInstanced(enum mode, sizei count,
enum type, const void *indices, sizei instancecount);

OpenGL ES 3.2 (November 3, 2016)

10.5. DRAWING COMMANDS USING VERTEX ARRAYS 282

behaves identically to DrawElements except that instancecount instances of the
set of elements are executed and the value of instance advances between each set.
Instanced attributes are advanced as they do during execution of DrawArraysIn-
stanced. It has the same effect as:

if (mode, count, instancecount, or type is invalid)
generate appropriate error

else {
for (int i = 0; i < instancecount; i++) {

DrawElementsOneInstance(mode, count, type, indices,
i, 0, 0);

}
}

The command

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enum type, const
void *indices);

is a restricted form of DrawElements. mode, count, type, and indices match the
corresponding arguments to DrawElements, with the additional constraint that all
index values identified by indices must lie between start and end inclusive.

Implementations denote recommended maximum amounts of vertex and index
data, which may be queried by calling GetIntegerv with the symbolic constants
MAX_ELEMENTS_VERTICES and MAX_ELEMENTS_INDICES. If end − start + 1
is greater than the value of MAX_ELEMENTS_VERTICES, or if count is greater than
the value of MAX_ELEMENTS_INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start, end] be
referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

Errors

An INVALID_VALUE error is generated if end < start.
Invalid mode, count, or type parameters generate the same errors as would

the corresponding call to DrawElements.
It is an error for index values (other than the primitive restart index,

when primitive restart is enabled) to lie outside the range [start, end], but

OpenGL ES 3.2 (November 3, 2016)

10.5. DRAWING COMMANDS USING VERTEX ARRAYS 283

implementations are not required to check for this. Such indices will cause
implementation-dependent behavior.

The commands

void DrawElementsBaseVertex(enum mode, sizei count,
enum type, const void *indices, int basevertex);

void DrawRangeElementsBaseVertex(enum mode,
uint start, uint end, sizei count, enum type, const
void *indices, int basevertex);

void DrawElementsInstancedBaseVertex(enum mode,
sizei count, enum type, const void *indices,
sizei instancecount, int basevertex);

are equivalent to the commands with the same base name (without the BaseVertex
suffix), except that the basevertex value passed to DrawElementsOneInstance is
the basevertex value of these commands, instead of zero.

For DrawRangeElementsBaseVertex, the values taken from indices for each
element transferred must be in the range [start, end] prior to adding the basev-
ertex offset. Index values lying outside this range are treated in the same way as
DrawRangeElements.

The command

void DrawElementsIndirect(enum mode, enum type, const
void *indirect);

is equivalent to

typedef struct {
uint count;
uint instanceCount;
uint firstIndex;
int baseVertex;
uint reservedMustBeZero;

} DrawElementsIndirectCommand;

if (no element array buffer is bound) {
generate appropriate error

} else {
DrawElementsIndirectCommand *cmd =

(DrawElementsIndirectCommand *)indirect;

OpenGL ES 3.2 (November 3, 2016)

10.6. VERTEX ARRAY AND VERTEX ARRAY OBJECT QUERIES 284

DrawElementsInstancedBaseVertex(mode,
cmd->count, type,
cmd->firstIndex * size-of-type,
cmd->instanceCount, cmd->baseVertex);

}

DrawElementsIndirect requires that all data sourced for the command, in-
cluding the DrawElementsIndirectCommand structure, be in buffer objects,
and may not be called when the default vertex array object is bound.

All elements of DrawElementsIndirectCommand are tightly-packed 32-bit
values.

Errors

An INVALID_OPERATION error is generated if zero is bound to
VERTEX_ARRAY_BINDING, DRAW_INDIRECT_BUFFER, ELEMENT_ARRAY_-
BUFFER, or to any enabled vertex array.

An INVALID_OPERATION error is generated if the command would
source data beyond the end of the buffer object.

An INVALID_VALUE error is generated if indirect is not a multiple of the
size, in basic machine units, of uint.

Results are undefined if reservedMustBeZero is non-zero, but may not re-
sult in program termination.

10.6 Vertex Array and Vertex Array Object Queries

Queries of vertex array state variables are qualified by the value of VERTEX_-
ARRAY_BINDING to determine which vertex array object is queried. Table 21.3
defines the set of state stored in a vertex array object.

The commands

void GetVertexAttribfv(uint index, enum pname,
float *params);

void GetVertexAttribiv(uint index, enum pname,
int *params);

void GetVertexAttribIiv(uint index, enum pname,
int *params);

void GetVertexAttribIuiv(uint index, enum pname,
uint *params);

OpenGL ES 3.2 (November 3, 2016)

10.6. VERTEX ARRAY AND VERTEX ARRAY OBJECT QUERIES 285

obtain the vertex attribute state named by pname for the generic vertex attribute
numbered index and places the information in the array params. pname must
be one of VERTEX_ATTRIB_ARRAY_BUFFER_BINDING, VERTEX_ATTRIB_-

ARRAY_ENABLED, VERTEX_ATTRIB_ARRAY_SIZE, VERTEX_ATTRIB_ARRAY_-
STRIDE, VERTEX_ATTRIB_ARRAY_TYPE, VERTEX_ATTRIB_ARRAY_-

NORMALIZED, VERTEX_ATTRIB_ARRAY_INTEGER, VERTEX_ATTRIB_ARRAY_-
DIVISOR, VERTEX_ATTRIB_BINDING, VERTEX_ATTRIB_RELATIVE_OFFSET,
or CURRENT_VERTEX_ATTRIB. Note that all the queries except CURRENT_-

VERTEX_ATTRIB return values stored in the currently bound vertex array object
(the value of VERTEX_ARRAY_BINDING). If the zero object is bound, these values
are client state.

Queries of VERTEX_ATTRIB_ARRAY_BUFFER_BINDING and VERTEX_-

ATTRIB_ARRAY_DIVISOR map the requested attribute index to a binding index
via the VERTEX_ATTRIB_BINDING state, and then return the value of VERTEX_-
BINDING_BUFFER or VERTEX_BINDING_DIVISOR, respectively.

All but CURRENT_VERTEX_ATTRIB return information about generic vertex
attribute arrays. The enable state of a generic vertex attribute array is set by the
command EnableVertexAttribArray and cleared by DisableVertexAttribArray.
The size, stride, type, relative offset, normalized flag, and unconverted integer flag
are set by the commands VertexAttribFormat and VertexAttribIFormat. The
normalized flag is always set to FALSE by VertexAttribIFormat. The unconverted
integer flag is always set to FALSE by VertexAttribFormat and TRUE VertexAt-
tribIFormat.

The query CURRENT_VERTEX_ATTRIB returns the current value for the
generic attribute index. GetVertexAttribfv reads and returns the current attribute
values as floating-point values; GetVertexAttribiv reads them as floating-point
values and converts them to integer values; GetVertexAttribIiv reads and returns
them as integers; GetVertexAttribIuiv reads and returns them as unsigned inte-
gers. The results of the query are undefined if the current attribute values are read
using one data type but were specified using a different one.

Errors

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_VERTEX_ATTRIBS.

An INVALID_ENUM error is generated if pname is not one of the values
listed above.

The command

void GetVertexAttribPointerv(uint index, enum pname,

OpenGL ES 3.2 (November 3, 2016)

10.7. REQUIRED STATE 286

const void **pointer);

obtains the pointer named pname for the vertex attribute numbered index and places
the information in the array pointer. pname must be VERTEX_ATTRIB_ARRAY_-
POINTER. The value returned is queried from the currently bound vertex array
object. If the zero object is bound, the value is queried from client state.

Errors

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_VERTEX_ATTRIBS.

Finally, the buffer bound to ELEMENT_ARRAY_BUFFER may be queried by
calling GetIntegerv with the symbolic constant ELEMENT_ARRAY_BUFFER_-

BINDING.

10.7 Required State

Let the number of supported generic vertex attributes (the value of MAX_VERTEX_-
ATTRIBS) be n. Let the number of supported generic vertex attribute bindings (the
value of MAX_VERTEX_ATTRIB_BINDINGS) be k.

Then the state required to implement vertex arrays consists of n boolean val-
ues, n memory pointers, n integer stride values, n symbolic constants representing
array types, n integers representing values per element, n boolean values indicat-
ing normalization, n boolean values indicating whether the attribute values are pure
integers, k integers representing vertex attribute divisors, n integer vertex attribute
binding indices, n integer relative offsets, k 64-bit integer vertex binding offsets,
and k integer vertex binding strides,

In the initial state, the boolean values are each false, the memory pointers are
each NULL, the strides are each zero, the array types are each FLOAT, the integers
representing values per element are each four, the normalized and pure integer flags
are each false, the divisors are each zero, the binding indices are i for each attribute
i, the relative offsets are each zero, the vertex binding offsets are each zero, and the
vertex binding strides are each 16.

OpenGL ES 3.2 (November 3, 2016)

Chapter 11

Programmable Vertex Processing

When the program object currently in use for the vertex stage (see section 7.3)
includes a vertex shader, its shader is considered active and is used to process
vertices transferred to the GL (see section 11.1). The resulting transformed vertices
are then processed as described in chapter 12.

If the current vertex stage program object has no vertex shader, or no program
object is current for the vertex stage, the results of programmable vertex processing
are undefined.

11.1 Vertex Shaders

Vertex shaders describe the operations that occur on vertex values and their associ-
ated data. When the program object currently in use for the vertex stage includes a
vertex shader, its vertex shader is considered active and is used to process vertices.

Vertex attributes are per-vertex values available to vertex shaders, and are spec-
ified as described in section 10.2.

11.1.1 Vertex Attributes

Vertex shaders can define named attribute variables, which are bound to generic
vertex attributes transferred by drawing commands. This binding can be specified
by the application before the program is linked, or automatically assigned by the
GL when the program is linked.

When an attribute variable declared using one of the scalar or vector data types
enumerated in table 11.3 is bound to a generic attribute index i, its value(s) are
taken from the components of generic attribute i. The generic attribute components

287

11.1. VERTEX SHADERS 288

Data type Component Components
used

scalar 0 x

scalar 1 y

scalar 2 z

scalar 3 w

two-component vector 0 (x, y)

two-component vector 1 (y, z)

two-component vector 2 (z, w)

three-component vector 0 (x, y, z)

three-component vector 1 (y, z, w)

four-component vector 0 (x, y, z, w)

Table 11.1: Generic attribute components accessed by attribute variables.

used depend on the type of the variable specified in the variable declaration, as
identified in table 11.1.

When an attribute variable declared using a matrix type is bound to a generic
attribute index i, its values are taken from consecutive generic attributes beginning
with generic attribute i. Such matrices are treated as an array of column vectors
with values taken from the generic attributes identified in table 11.2. Individual col-
umn vectors are taken from generic attribute components according to table 11.1,
using the vector type from table 11.2.

The command

void BindAttribLocation(uint program, uint index, const
char *name);

specifies that the attribute variable named name in program program should be
bound to generic vertex attribute index when the program is next linked. If name
was bound previously, its assigned binding is replaced with index, but the new
binding becomes effective only when the program is next linked. name must be
a null-terminated string. BindAttribLocation has no effect until the program is
linked. In particular, it doesn’t modify the bindings of active attribute variables in
a program that has already been linked.

When a program is linked, any active attributes without a binding specified
either through BindAttribLocation or explicitly set within the shader text will
automatically be bound to vertex attributes by the GL. Such bindings can be
queried using the command GetAttribLocation. LinkProgram will fail if the

OpenGL ES 3.2 (November 3, 2016)

11.1. VERTEX SHADERS 289

Data type Column vector type Generic
attributes used

mat2 two-component vector i, i+ 1

mat2x3 three-component vector i, i+ 1

mat2x4 four-component vector i, i+ 1

mat3x2 two-component vector i, i+ 1, i+ 2

mat3 three-component vector i, i+ 1, i+ 2

mat3x4 four-component vector i, i+ 1, i+ 2

mat4x2 two-component vector i, i+ 1, i+ 2, i+ 3

mat4x3 three-component vector i, i+ 1, i+ 2, i+ 3

mat4 four-component vector i, i+ 1, i+ 2, i+ 3

Table 11.2: Generic attributes and vector types used by column vectors of matrix
variables bound to generic attribute index i.

Data type Command
float VertexAttrib1*
vec2 VertexAttrib2*
vec3 VertexAttrib3*
vec4 VertexAttrib4*

Table 11.3: Scalar and vector vertex attribute types and VertexAttrib* commands
used to set the values of the corresponding generic attribute.

OpenGL ES 3.2 (November 3, 2016)

11.1. VERTEX SHADERS 290

assigned binding of an active attribute variable would cause the GL to reference
a non-existent generic attribute (one greater than or equal to the value of MAX_-
VERTEX_ATTRIBS). LinkProgram will fail if the attribute bindings specified ei-
ther by BindAttribLocation or explicitly set within the shader text do not leave
not enough space to assign a location for an active matrix attribute which requires
multiple contiguous generic attributes. If an active attribute has a binding explicitly
set within the shader text and a different binding assigned by BindAttribLocation,
the assignment in the shader text is used.

BindAttribLocation may be issued before any vertex shader objects are at-
tached to a program object. Hence it is allowed to bind any name (except a name
starting with "gl_") to an index, including a name that is never used as an at-
tribute in any vertex shader object. Assigned bindings for attribute variables that
do not exist or are not active are ignored.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if index is greater than or equal to
the value of MAX_VERTEX_ATTRIBS.

An INVALID_OPERATION error is generated if name starts with the re-
served "gl_" prefix).

To determine the set of active vertex attribute variables used by a program,
applications can query the properties and active resources of the PROGRAM_INPUT
interface of a program including a vertex shader.

Additionally, the command

void GetActiveAttrib(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

can be used to determine properties of the active input variable assigned the index
index in program object program. If no error occurs, the command is equivalent to

const enum props[] = { ARRAY_SIZE, TYPE };
GetProgramResourceName(program, PROGRAM_INPUT,

index, bufSize, length, name);
GetProgramResourceiv(program, PROGRAM_INPUT,

OpenGL ES 3.2 (November 3, 2016)

11.1. VERTEX SHADERS 291

index, 1, &props[0], 1, NULL, size);
GetProgramResourceiv(program, PROGRAM_INPUT,

index, 1, &props[1], 1, NULL, (int *)type);

For GetActiveAttrib, all active vertex shader input variables are enumerated,
including the special built-in inputs gl_VertexID and gl_InstanceID.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if index is not the index of an
active input variable in program.

An INVALID_VALUE error is generated for all values of index if program
does not include a vertex shader, as it has no active vertex attributes.

An INVALID_VALUE error is generated if bufSize is negative.

The command

int GetAttribLocation(uint program, const char *name);

can be used to determine the location assigned to the active input variable named
name in program object program.

Errors

If program has been linked successfully but contains no vertex shader, no
error is generated but -1 will be returned.

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_OPERATION error is generated and -1 is returned if program
has not been linked successfully.

Otherwise, the command is equivalent to

GetProgramResourceLocation(program, PROGRAM_INPUT, name);

OpenGL ES 3.2 (November 3, 2016)

11.1. VERTEX SHADERS 292

There is an implementation-dependent limit on the number of active at-
tribute variables in a vertex shader. A program with more than the value of
MAX_VERTEX_ATTRIBS active attribute variables may fail to link, unless device-
dependent optimizations are able to make the program fit within available hardware
resources.

The values of generic attributes sent to generic attribute index i are part of
current state. If a new program object has been made active, then these values
will be tracked by the GL in such a way that the same values will be observed by
attributes in the new program object that are also bound to index i.

Binding more than one attribute name to the same location is referred to as
aliasing, and is not permitted in OpenGL ES Shading Language 3.00 or later ver-
tex shaders. LinkProgram will fail when this condition exists. However, aliasing
is possible in OpenGL ES Shading Language 1.00 vertex shaders. This will only
work if only one of the aliased attributes is active in the executable program, or if
no path through the shader consumes more than one attribute of a set of attributes
aliased to the same location. A link error can occur if the linker determines that
every path through the shader consumes multiple aliased attributes, but implemen-
tations are not required to generate an error in this case. The compiler and linker
are allowed to assume that no aliasing is done, and may employ optimizations that
work only in the absence of aliasing.

11.1.2 Vertex Shader Variables

Vertex shaders can access uniforms belonging to the current program object. Lim-
its on uniform storage and methods for manipulating uniforms are described in
section 7.6.

Vertex shaders also have access to samplers to perform texturing operations, as
described in section 7.9.

11.1.2.1 Output Variables

A vertex shader may define one or more output variables or outputs (see the
OpenGL ES Shading Language Specification).

The OpenGL ES Shading Language Specification also defines a set of built-in
outputs that vertex shaders can write to (see section 7.1 (“Built-In Variables”) of
the OpenGL ES Shading Language Specification). These output variables are used
as the mechanism to communicate values to the next active stage in the vertex pro-
cessing pipeline: either the tessellation control shader, the tessellation evaluation
shader, the geometry shader, or the fixed-function vertex processing stages leading
to rasterization.

OpenGL ES 3.2 (November 3, 2016)

11.1. VERTEX SHADERS 293

If the output variables are passed directly to the vertex processing stages lead-
ing to rasterization, the values of all outputs are expected to be interpolated across
the primitive being rendered, unless flatshaded. Otherwise the values of all out-
puts are collected by the primitive assembly stage and passed on to the subsequent
pipeline stage once enough data for one primitive has been collected.

The number of components (individual scalar numeric values) of output vari-
ables that can be written by the vertex shader, whether or not a tessellation con-
trol, tessellation evaluation, or geometry shader is active, is given by the value
of the implementation-dependent constant MAX_VERTEX_OUTPUT_COMPONENTS.
Outputs declared as vectors, matrices, and arrays will all consume multiple com-
ponents.

When a program is linked, all components of any outputs written by a vertex
shader will count against this limit. A program whose vertex shader writes more
than the value of MAX_VERTEX_OUTPUT_COMPONENTS components worth of out-
puts may fail to link, unless device-dependent optimizations are able to make the
program fit within available hardware resources.

Additionally, when linking a program containing only a vertex and frag-
ment shader, there is a limit on the total number of components used as ver-
tex shader outputs or fragment shader inputs. This limit is given by the value
of the implementation-dependent constant MAX_VARYING_COMPONENTS. The
implementation-dependent constant MAX_VARYING_VECTORS has a value equal
to the value of MAX_VARYING_COMPONENTS divided by four. Each output vari-
able component used as either a vertex shader output or fragment shader input
count against this limit, except for the components of gl_Position. A program
that accesses more than this limit’s worth of components of outputs may fail to
link, unless device-dependent optimizations are able to make the program fit within
available hardware resources.

Each program object can specify a set of output variables from one shader to be
recorded in transform feedback mode (see section 12.1). The variables that can be
recorded are those emitted by the first active shader, in order, from the following
list:

• geometry shader

• tessellation evaluation shader

• vertex shader

The set of variables to record is specified with the command

OpenGL ES 3.2 (November 3, 2016)

11.1. VERTEX SHADERS 294

void TransformFeedbackVaryings(uint program,
sizei count, const char * const *varyings,
enum bufferMode);

program specifies the program object. count specifies the number of output vari-
ables used for transform feedback. varyings is an array of count zero-terminated
strings specifying the names of the outputs to use for transform feedback. The
variables specified in varyings can be either built-in (beginning with "gl_") or
user-defined variables. Each variable can either be a basic type or an array of ba-
sic types. Structure, array of array and array of structure types cannot be captured
directly. Base-level members of aggregates can be captured by specifying the fully
qualified path identifying the member, using the same rules with which active re-
source lists are enumerated for program interfaces as described in section 7.3.1.1,
with one exception. To allow capturing whole arrays or individual elements of an
array, there are additional rules for array variables. To capture a single element, the
name of the output array is specified with a constant-integer index "name[x]"
where name is the name of the array variable and x is the constant-integer index of
the array element. To capture the whole of the output array, name is specified with-
out the array index or square brackets. Output variables are written out in the order
they appear in the array varyings. bufferMode is either INTERLEAVED_ATTRIBS
or SEPARATE_ATTRIBS, and identifies the mode used to capture the outputs when
transform feedback is active.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

An INVALID_VALUE error is generated if count is negative.
An INVALID_ENUM error is generated if bufferMode is not SEPARATE_-

ATTRIBS or INTERLEAVED_ATTRIBS.
An INVALID_VALUE error is generated if bufferMode is SEPARATE_-

ATTRIBS and count is greater than the value of the implementation-dependent
limit MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS.

The state set by TransformFeedbackVaryings has no effect on the execu-
tion of the program until program is subsequently linked. When LinkProgram
is called, the program is linked so that the values of the specified outputs for the
vertices of each primitive generated by the GL are written to a single buffer object
(if the buffer mode is INTERLEAVED_ATTRIBS) or multiple buffer objects (if the

OpenGL ES 3.2 (November 3, 2016)

11.1. VERTEX SHADERS 295

buffer mode is SEPARATE_ATTRIBS). A program will fail to link if:

• the count specified by TransformFeedbackVaryings is non-zero, but the
program object has no vertex, tessellation evaluation, or geometry shader;

• any variable name specified in the varyings array is not declared as a built-
in or user-defined output variable in the shader stage whose outputs can be
recorded;

• any two entries in the varyings array specify the same output variable or
include the same elements from an array variable (different elements from
the same array are permitted);

• the total number of components to capture in any output in varyings is greater
than the value of MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS
and the buffer mode is SEPARATE_ATTRIBS; or

• the total number of components to capture is greater than the value of
MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS and the buffer
mode is INTERLEAVED_ATTRIBS.

When a program is linked, a list of output variables that will be captured in
transform feedback mode is built as described in section 7.3. The variables in this
list are assigned consecutive indices, beginning with zero. The total number of
variables in the list may be queried by calling GetProgramiv (section 7.12) with a
pname of TRANSFORM_FEEDBACK_VARYINGS.

To determine the set of output variables in a linked program object that will
be captured in transform feedback mode, applications can query the properties and
active resources of the TRANSFORM_FEEDBACK_VARYING interface.

Additionally, the dedicated command

void GetTransformFeedbackVarying(uint program,
uint index, sizei bufSize, sizei *length, sizei *size,
enum *type, char *name);

can be used to enumerate properties of a single output variable captured in trans-
form feedback mode, and is equivalent to

const enum props[] = { ARRAY_SIZE, TYPE };
GetProgramResourceName(program, TRANSFORM_FEEDBACK_VARYING,

index, bufSize, length, name);
GetProgramResourceiv(program, TRANSFORM_FEEDBACK_VARYING,

OpenGL ES 3.2 (November 3, 2016)

11.1. VERTEX SHADERS 296

index, 1, &props[0], 1, NULL, size);
GetProgramResourceiv(program, TRANSFORM_FEEDBACK_VARYING,

index, 1, &props[1], 1, NULL, (int *)type);

11.1.3 Shader Execution

If there is an active program object present for the vertex, tessellation control,
tessellation evaluation, or geometry shader stages, the executable code for these
active programs is used to process incoming vertex values. The following sequence
of operations is performed:

• Vertices are processed by the vertex shader (see section 11.1) and assembled
into primitives as described in sections 10.1 through 10.3.

• If the current program contains a tessellation control shader, each indi-
vidual patch primitive is processed by the tessellation control shader (sec-
tion 11.2.1). Otherwise, primitives are passed through unmodified. If active,
the tessellation control shader consumes its input patch and produces a new
patch primitive, which is passed to subsequent pipeline stages.

• If the current program contains a tessellation evaluation shader, each indi-
vidual patch primitive is processed by the tessellation primitive generator
(section 11.2.2) and tessellation evaluation shader (see section 11.2.3). Oth-
erwise, primitives are passed through unmodified. When a tessellation eval-
uation shader is active, the tessellation primitive generator produces a new
collection of point, line, or triangle primitives to be passed to subsequent
pipeline stages. The vertices of these primitives are processed by the tes-
sellation evaluation shader. The patch primitive passed to the tessellation
primitive generator is consumed by this process.

• If the current program contains a geometry shader, each individual primitive
is processed by the geometry shader (section 11.3). Otherwise, primitives
are passed through unmodified. If active, the geometry shader consumes its
input patch. However, each geometry shader invocation may emit new ver-
tices, which are arranged into primitives and passed to subsequent pipeline
stages.

Following shader execution, the fixed-function operations described in chap-
ter 12 are applied.

Special considerations for vertex shader execution are described in the follow-
ing sections.

OpenGL ES 3.2 (November 3, 2016)

11.1. VERTEX SHADERS 297

11.1.3.1 Shader Only Texturing

This section describes texture functionality that is accessible through shaders (of
all types). Also refer to chapter 8 and to section 8.7 (“Texture Functions”) of the
OpenGL ES Shading Language Specification.

11.1.3.2 Texel Fetches

The texelFetch builtins provide the ability to extract a single texel from a spec-
ified texture image. Texel fetches cannot access cube map textures.

The integer coordinates (i, j, k) passed to texelFetch are used to point-
sample the texture image. The level of detail accessed is computed by adding the
specified level-of-detail parameter lod to the base level of the texture, levelbase.

Texel fetch proceeds similarly to the steps described for texture access in sec-
tion 11.1.3.5, with the exception that none of the operations controlled by sampler
object state are performed, including:

• level of detail clamping;

• texture wrap mode application;

• filtering (however, a mipmapped minification filter is required to access any
level of detail other than the base level);

• depth comparison.

The steps that are performed are:

• validation of texel coordinates as described below, including the computed
level-of-detail, (i, j, k), the specified level for array textures, and texture
completeness;

• sRGB conversion of fetched values as described in section 8.21;

• conversion to base color Cb;

• component swizzling.

The results of texelFetch builtins are undefined if any of the following con-
ditions hold:

• the computed level of detail is less than the texture’s base level (levelbase) or
greater than the maximum defined level, q (see section 8.14.3)

OpenGL ES 3.2 (November 3, 2016)

11.1. VERTEX SHADERS 298

• the computed level of detail is not the texture’s base level and the texture’s
minification filter is NEAREST or LINEAR

• the layer specified for array textures is negative or greater than or equal to
the number of layers in the array texture

• the texel coordinates (i, j, k) refer to a texel outside the extents of the com-
puted level of detail, where any of

i < 0 i ≥ ws

j < 0 j ≥ hs
k < 0 k ≥ ds

and the size parameters ws, hs, and ds refer to the width, height, and depth
of the image

• the texture being accessed is not complete, as defined in section 8.17.

In all the above cases, the result of the texture fetch is undefined in each case.

11.1.3.3 Multisample Texel Fetches

Multisample buffers do not have mipmaps, and there is no level of detail parameter
for multisample texel fetches. Instead, an integer parameter selects the sample
number to be fetched from the buffer. The number identifying the sample is the
same as the value used to query the sample location using GetMultisamplefv.
Multisample textures are not filtered when samples are fetched, and filter state is
ignored.

The results of a multisample texel fetch are undefined if any of the following
conditions hold:

• the texel coordinates (i, j, k) refer to a texel outside the extents of the multi-
sample texture image, where any of

i < 0 i ≥ ws

j < 0 j ≥ hs
k < 0 k ≥ ds

and the size parameters ws, hs, and ds refer to the width, height, and depth
of the image

• the specified sample number does not exist (is negative, or greater than or
equal to the number of samples in the texture).

OpenGL ES 3.2 (November 3, 2016)

11.1. VERTEX SHADERS 299

Additionally, these fetches may only be performed on a multisample texture
sampler. No other sample or fetch commands may be performed on a multisample
texture sampler.

11.1.3.4 Texture Queries

The textureSize builtins provide the ability to query the size of a texture image.
The LOD value lod passed in as an argument to the texture size functions is added
to the levelbase of the texture to determine a texture image level. The dimensions of
that image level, are then returned. If the computed texture image level is outside
the range [levelbase, q], the results are undefined. When querying the size of an
array texture, both the dimensions and the layer index are returned.

11.1.3.5 Texture Access

Shaders have the ability to do a lookup into a texture map. The maximum number
of texture image units available to shaders are the values of the implementation-
dependant constants

• MAX_VERTEX_TEXTURE_IMAGE_UNITS (for vertex shaders),

• MAX_TESS_CONTROL_TEXTURE_IMAGE_UNITS (for tessellation control
shaders),

• MAX_TESS_EVALUATION_TEXTURE_IMAGE_UNITS (for tessellation eval-
uation shaders),

• MAX_GEOMETRY_TEXTURE_IMAGE_UNITS (for geometry shaders),

• MAX_TEXTURE_IMAGE_UNITS (for fragment shaders), and

• MAX_COMPUTE_TEXTURE_IMAGE_UNITS (for compute shaders),

All active shaders combined cannot use more than the value of MAX_-

COMBINED_TEXTURE_IMAGE_UNITS texture image units. If more than one
pipeline stage accesses the same texture image unit, each such access counts sepa-
rately against the MAX_COMBINED_TEXTURE_IMAGE_UNITS limit.

When a texture lookup is performed in a shader, the filtered texture value τ is
computed in the manner described in sections 8.14 and 8.15, and converted to a
texture base color Cb as shown in table 14.1, followed by application of the texture
swizzle as described in section 14.2.1 to compute the texture source color Cs and
As.

OpenGL ES 3.2 (November 3, 2016)

11.1. VERTEX SHADERS 300

The resulting four-component vector (Rs, Gs, Bs, As) is returned to the shader.
Texture lookup functions (see section 8.7 (“Texture Functions”) of the OpenGL ES
Shading Language Specification) may return floating-point, signed, or unsigned
integer values depending on the function and the internal format of the texture.

In shaders other than fragment shaders, it is not possible to perform automatic
level-of-detail calculations using partial derivatives of the texture coordinates with
respect to window coordinates as described in section 8.14. Hence, there is no au-
tomatic selection of an image array level. Minification or magnification of a texture
map is controlled by a level-of-detail value optionally passed as an argument in the
texture lookup functions. If the texture lookup function supplies an explicit level-
of-detail value l, then the pre-bias level-of-detail value λbase(x, y) = l (replacing
equation 8.5). If the texture lookup function does not supply an explicit level-of-
detail value, then λbase(x, y) = 0. The scale factor ρ(x, y) and its approximation
function f(x, y) (see equation 8.9) are ignored.

Texture lookups involving textures with depth component data generate a tex-
ture base color Cb either using depth data directly or by performing a comparison
with the Dref value used to perform the lookup, as described in section 8.20.1,
and expanding the resulting value Rt to a color Cb = (Rt, 0, 0, 1). In either case,
swizzling of Cb is then performed as described above, but only the first compo-
nent Cs[0] is returned to the shader. The comparison operation is requested in the
shader by using any of the shadow sampler types (sampler*Shadow), and in the
texture using the TEXTURE_COMPARE_MODE parameter. These requests must be
consistent; the results of a texture lookup are undefined if any of the following
conditions are true:

• The sampler used in a texture lookup function is not one of the shadow sam-
pler types, the texture object’s base internal format is DEPTH_COMPONENT
or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE is not NONE.

• The sampler used in a texture lookup function is one of the shadow sam-
pler types, the texture object’s base internal format is DEPTH_COMPONENT
or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE is NONE.

• The sampler used in a texture lookup function is one of the shadow sam-
pler types, and the texture object’s base internal format is not DEPTH_-
COMPONENT or DEPTH_STENCIL.

• The sampler used in a texture lookup function is one of the shadow sam-
pler types, the texture object’s internal format is DEPTH_STENCIL, and the
DEPTH_STENCIL_TEXTURE_MODE is not DEPTH_COMPONENT.

OpenGL ES 3.2 (November 3, 2016)

11.1. VERTEX SHADERS 301

The stencil index texture internal component is ignored if the base internal
format is DEPTH_STENCIL and the value of DEPTH_STENCIL_TEXTURE_MODE is
not STENCIL_INDEX.

Texture lookups involving texture objects with an internal format of DEPTH_-
STENCIL can read the stencil value as described in section 8.20 by setting
the DEPTH_STENCIL_TEXTURE_MODE to STENCIL_INDEX. Textures with a
STENCIL_INDEX base internal format may also be used to read stencil data. The
stencil value is read as an integer and assigned to Rt. An unsigned integer sampler
should be used to lookup the stencil component, otherwise the results are unde-
fined.

If a sampler is used in a shader and the sampler’s associated texture is not
complete, as defined in section 8.17, (0.0, 0.0, 0.0, 1.0), in floating-point, will be
returned for a non-shadow sampler and 0 for a shadow sampler. In this case, if the
sampler is declared in the shader as a signed or unsigned integer sampler type, un-
defined values are returned as specified in section 9.9 (“Texture Functions”) of the
OpenGL ES Shading Language Specification when the texture format and sampler
type are unsupported combinations.

11.1.3.6 Atomic Counter Access

Shaders have the ability to set and get atomic counters. The maximum number of
atomic counters available to shaders are the values of the implementation depen-
dent constants

• MAX_VERTEX_ATOMIC_COUNTERS (for vertex shaders)

• MAX_TESS_CONTROL_ATOMIC_COUNTERS (for tessellation control
shaders),

• MAX_TESS_EVALUATION_ATOMIC_COUNTERS (for tessellation evaluation
shaders),

• MAX_GEOMETRY_ATOMIC_COUNTERS (for geometry shaders),

• MAX_FRAGMENT_ATOMIC_COUNTERS (for fragment shaders), and

• MAX_COMPUTE_ATOMIC_COUNTERS (for compute shaders)

All active shaders combined cannot use more than the value of MAX_-

COMBINED_ATOMIC_COUNTERS atomic counters. If more than one pipeline stage
accesses the same atomic counter, each such access counts separately against the
MAX_COMBINED_ATOMIC_COUNTERS limit.

OpenGL ES 3.2 (November 3, 2016)

11.1. VERTEX SHADERS 302

11.1.3.7 Image Access

Shaders have the ability to read and write to textures using image uniforms. The
maximum number of image uniforms available to individual shader stages are the
values of the implementation dependent constants

• MAX_VERTEX_IMAGE_UNIFORMS (for vertex shaders),

• MAX_TESS_CONTROL_IMAGE_UNIFORMS (for tessellation control shaders),

• MAX_TESS_EVALUATION_IMAGE_UNIFORMS (for tessellation evaluation
shaders),

• MAX_GEOMETRY_IMAGE_UNIFORMS (for geometry shaders),

• MAX_FRAGMENT_IMAGE_UNIFORMS (for fragment shaders), and

• MAX_COMPUTE_IMAGE_UNIFORMS (for compute shaders)

All active shaders combined cannot use more than the value of MAX_-

COMBINED_IMAGE_UNIFORMS image units. If more than one shader stage ac-
cesses the same image uniform, each such access counts separately against the
MAX_COMBINED_IMAGE_UNIFORMS limit.

11.1.3.8 Shader Storage Buffer Access

Shaders have the ability to read and write to buffer memory via buffer variables in
shader storage blocks. The maximum number of shader storage blocks available to
shaders are the values of the implementation dependent constants

• MAX_VERTEX_SHADER_STORAGE_BLOCKS (for vertex shaders),

• MAX_TESS_CONTROL_SHADER_STORAGE_BLOCKS (for tessellation control
shaders),

• MAX_TESS_EVALUATION_SHADER_STORAGE_BLOCKS (for tessellation
evaluation shaders),

• MAX_GEOMETRY_SHADER_STORAGE_BLOCKS (for geometry shaders),

• MAX_FRAGMENT_SHADER_STORAGE_BLOCKS (for fragment shaders), and

• MAX_COMPUTE_SHADER_STORAGE_BLOCKS (for compute shaders)

OpenGL ES 3.2 (November 3, 2016)

11.1. VERTEX SHADERS 303

All active shaders combined cannot use more than the value of MAX_-

COMBINED_SHADER_STORAGE_BLOCKS shader storage blocks. If more than one
pipeline stage accesses the same shader storage block, each such access separately
against this combined limit.

11.1.3.9 Shader Inputs

Besides having access to vertex attributes and uniform variables, vertex shaders
can access the read-only built-in variables gl_VertexID and gl_InstanceID.

gl_VertexID holds the integer index i implicitly passed by DrawArrays or
one of the other drawing commands defined in section 10.5. The value of gl_-
VertexID is defined if and only if all enabled vertex arrays have non-zero buffer
object bindings.

gl_InstanceID holds the integer instance number of the current primitive in
an instanced draw call (see section 10.5).

Section 7.1 (“Built-In Variables”) of the OpenGL ES Shading Language Spec-
ification also describes these variables.

11.1.3.10 Shader Outputs

A vertex shader can write to user-defined output variables. These values are ex-
pected to be interpolated across the primitive it outputs, unless they are specified
to be flat shaded. Refer to sections 4.3.6 (“Output Variables”), 7.1 (“Interpolation
Qualifiers”), and 7.6 (“Built-In Variables”) of the OpenGL ES Shading Language
Specification for more detail.

The built-in output gl_Position is intended to hold the homogeneous vertex
position. Writing gl_Position is optional.

The built-in output gl_PointSize, if written, holds the size of the point to be
rasterized, measured in pixels.

11.1.3.11 Validation

It is not always possible to determine at link time if a program object can execute
successfully, given that LinkProgram can not know the state of the remainder of
the pipeline. Therefore validation is done when the first rendering command which
triggers shader invocations is issued, to determine if the set of active program ob-
jects can be executed. If there is no current program object and no current program
pipeline object, the results of rendering commands are undefined. However, this is
not an error.

OpenGL ES 3.2 (November 3, 2016)

11.1. VERTEX SHADERS 304

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL or launches compute work if the current set of active
program objects cannot be executed, for reasons including:

• The current program pipeline object contains a shader interface that
doesn’t have an exact match (see section 7.4.1)

• A program object is active for at least one, but not all of the shader
stages that were present when the program was linked.

• One program object is active for at least two shader stages and a second
program is active for a shader stage between two stages for which the
first program was active. The active compute shader is ignored for the
purposes of this test.

• There is an active program for tessellation control, tessellation evalua-
tion, or geometry stages with corresponding executable shader, but there
is no active program with executable vertex shader.

• One but not both of the tessellation control and tessellation evaluation
stages have an active program with corresponding executable shader.

• There is no current program object specified by UseProgram, there is a
current program pipeline object, and the current program for any shader
stage has been relinked since being applied to the pipeline object via
UseProgramStages with the PROGRAM_SEPARABLE parameter set to
FALSE.

• There is no current program object specified by UseProgram, there is a
current program pipeline object, and that object is empty (no executable
code is installed for any stage).

• Any two active samplers in the set of active program objects are of dif-
ferent types, but refer to the same texture image unit,

• The sum of the number of active samplers for each active program ex-
ceeds the maximum number of texture image units allowed.

• The sum of the number of active shader storage blocks used by the
current program objects exceeds the combined limit on the number of

OpenGL ES 3.2 (November 3, 2016)

11.1. VERTEX SHADERS 305

active shader storage blocks (the value of MAX_COMBINED_SHADER_-
STORAGE_BLOCKS).

The INVALID_OPERATION error generated by these rendering commands may
not provide enough information to find out why the currently active program object
would not execute. No information at all is available about a program object that
would still execute, but is inefficient or suboptimal given the current GL state. As
a development aid, use the command

void ValidateProgram(uint program);

to validate the program object program against the current GL state. Each program
object has a boolean status, VALIDATE_STATUS, that is modified as a result of
validation. This status can be queried with GetProgramiv (see section 7.12). If
validation succeeded this status will be set to TRUE, otherwise it will be set to
FALSE. If validation succeeded, no INVALID_OPERATION validation error will be
generated if program is made current via UseProgram, given the current state. If
validation failed, such errors are generated under the current state.

ValidateProgram will check for all the conditions described in this section,
and may check for other conditions as well. For example, it could give a hint on
how to optimize some piece of shader code. The information log of program is
overwritten with information on the results of the validation, which could be an
empty string. The results written to the information log are typically only use-
ful during application development; an application should not expect different GL
implementations to produce identical information.

A shader should not fail to compile, and a program object should not fail to
link due to lack of instruction space or lack of temporary variables. Implementa-
tions should ensure that all valid shaders and program objects may be successfully
compiled, linked and executed.

Errors

An INVALID_VALUE error is generated if program is not the name of ei-
ther a program or shader object.

An INVALID_OPERATION error is generated if program is the name of a
shader object.

Separable program objects may have validation failures that cannot be detected
without the complete program pipeline. Mismatched interfaces, improper usage
of program objects together, and the same state-dependent failures can result in
validation errors for such program objects. As a development aid, use the command

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 306

void ValidateProgramPipeline(uint pipeline);

to validate the program pipeline object pipeline against the current GL state. Each
program pipeline object has a boolean status, VALIDATE_STATUS, that is modified
as a result of validation. This status can be queried with GetProgramPipelineiv
(see section 7.12). If validation succeeded, no INVALID_OPERATION validation
error will be generated if pipeline is bound and no program were made current via
UseProgram, given the current state. If validation failed, such errors are generated
under the current state.

If pipeline is a name that has been generated (without subsequent deletion) by
GenProgramPipelines, but refers to a program pipeline object that has not been
previously bound, the GL first creates a new state vector in the same manner as
when BindProgramPipeline creates a new program pipeline object.

Errors

An INVALID_OPERATION error is generated if pipeline is not a name re-
turned from a previous call to GenProgramPipelines or if such a name has
since been deleted by DeleteProgramPipelines,

11.1.3.12 Undefined Behavior

When using array or matrix variables in a shader, it is possible to access a vari-
able with an index computed at run time that is outside the declared extent of the
variable. Such out-of-bounds accesses have undefined behavior, and system er-
rors (possibly including program termination) may occur. The level of protection
provided against such errors in the shader is implementation-dependent.

Applications that require defined behavior for out-of-bounds accesses should
range check all computed indices before dereferencing the array, vector or matrix.

11.2 Tessellation

Tessellation is a process that reads a patch primitive and generates new primitives
used by subsequent pipeline stages. The generated primitives are formed by sub-
dividing a single triangle or quad primitive according to fixed or shader-computed
levels of detail and transforming each of the vertices produced during this subdivi-
sion.

Tessellation functionality is controlled by two types of tessellation shaders:
tessellation control shaders and tessellation evaluation shaders. Tessellation is con-

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 307

sidered active if and only if the active program object or program pipeline object
includes both a tessellation control shader and a tessellation evaluation shader.

The tessellation control shader is used to read an input patch provided by the
application, and emit an output patch. The tessellation control shader is run once
for each vertex in the output patch and computes the attributes of that vertex. Addi-
tionally, the tessellation control shader may compute additional per-patch attributes
of the output patch. The most important per-patch outputs are the tessellation lev-
els, which are used to control the number of subdivisions performed by the tessella-
tion primitive generator. The tessellation control shader may also write additional
per-patch attributes for use by the tessellation evaluation shader. If no tessellation
control shader is active, patch primitives may not be provided by the application.

If a tessellation evaluation shader is active, the tessellation primitive generator
subdivides a triangle or quad primitive into a collection of points, lines, or triangles
according to the tessellation levels of the patch and the set of layout declarations
specified in the tessellation evaluation shader text.

When a tessellation evaluation shader is active, it is run on each vertex gener-
ated by the tessellation primitive generator to compute the final position and other
attributes of the vertex. The tessellation evaluation shader can read the relative
location of the vertex in the subdivided output primitive, given by an (u, v) or
(u, v, w) coordinate, as well as the position and attributes of any or all of the ver-
tices in the input patch.

Tessellation operates only on patch primitives. Patch primitives are not sup-
ported by pipeline stages below the tessellation evaluation shader.

A non-separable program object or program pipeline object that includes a
tessellation shader of any kind must also include a vertex shader.

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if the current program state has one but not both of a
tessellation control shader and tessellation evaluation shader.

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if tessellation is active and the primitive mode is not
PATCHES.

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if tessellation is not active and the primitive mode is
PATCHES.

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if the current program state has a tessellation shader but

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 308

no vertex shader.

11.2.1 Tessellation Control Shaders

The tessellation control shader consumes an input patch provided by the applica-
tion and emits a new output patch. The input patch is an array of vertices with at-
tributes corresponding to output variables written by the vertex shader. The output
patch consists of an array of vertices with attributes corresponding to per-vertex
output variables written by the tessellation control shader and a set of per-patch
attributes corresponding to per-patch output variables written by the tessellation
control shader. Tessellation control output variables are per-vertex by default, but
may be declared as per-patch using the patch qualifier.

The number of vertices in the output patch is fixed when the program is linked,
and is specified in tessellation control shader source code using the output layout
qualifier vertices, as described in the OpenGL ES Shading Language Specifica-
tion. A program will fail to link if the output patch vertex count is not specified by
the tessellation control shader object attached to the program, if it is less than or
equal to zero, or if it is greater than the implementation-dependent maximum patch
size. The output patch vertex count may be queried by calling GetProgramiv with
pname TESS_CONTROL_OUTPUT_VERTICES.

Tessellation control shaders are created as described in section 7.1, using a type
of TESS_CONTROL_SHADER. When a new input patch is received, the tessellation
control shader is run once for each vertex in the output patch. The tessellation con-
trol shader invocations collectively specify the per-vertex and per-patch attributes
of the output patch. The per-vertex attributes are obtained from the per-vertex out-
put variables written by each invocation. Each tessellation control shader invoca-
tion may only write to per-vertex output variables corresponding to its own output
patch vertex. The output patch vertex number corresponding to a given tessellation
control shader invocation is given by the built-in variable gl_InvocationID. Per-
patch attributes are taken from the per-patch output variables, which may be writ-
ten by any tessellation control shader invocation. While tessellation control shader
invocations may read any per-vertex and per-patch output variable and write any
per-patch output variable, reading or writing output variables also written by other
invocations has ordering hazards discussed below.

11.2.1.1 Tessellation Control Shader Variables

Tessellation control shaders can access uniforms belonging to the current program
object. Limits on uniform storage and methods for manipulating uniforms are
described in section 7.6.

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 309

Tessellation control shaders also have access to samplers to perform texturing
operations, as described in section 7.9.

Tessellation control shaders can access the transformed attributes of all vertices
for their input primitive using input variables. A vertex shader writing to output
variables generates the values of these input variables. Values for any inputs that
are not written by a vertex shader are undefined.

Additionally, tessellation control shaders can write to one or more output vari-
ables, including per-vertex attributes for the vertices of the output patch and per-
patch attributes of the patch. Tessellation control shaders can also write to a set
of built-in per-vertex and per-patch outputs defined in the OpenGL ES Shading
Language. The per-vertex and per-patch attributes of the output patch are used by
the tessellation primitive generator (section 11.2.2) and may be read by tessellation
evaluation shader (section 11.2.3).

11.2.1.2 Tessellation Control Shader Execution Environment

If there is an active program for the tessellation control stage, the executable ver-
sion of the program’s tessellation control shader is used to process patches result-
ing from the primitive assembly stage. When tessellation control shader execu-
tion completes, the input patch is consumed. A new patch is assembled from the
per-vertex and per-patch output variables written by the shader and is passed to
subsequent pipeline stages.

There are several special considerations for tessellation control shader execu-
tion described in the following sections.

11.2.1.2.1 Texture Access Section 11.1.3.1 describes texture lookup function-
ality accessible to a vertex shader. The texel fetch and texture size query function-
ality described there also applies to tessellation control shaders.

11.2.1.2.2 Tessellation Control Shader Inputs Section 7.1 (“Built-In Vari-
ables”) of the OpenGL ES Shading Language Specification describes the built-
in variable array gl_in available as input to a tessellation control shader. gl_-

in receives values from equivalent built-in output variables written by the vertex
shader (section 11.1.3). Each array element of gl_in is a structure holding a
value for a specific vertex of the input patch. The length of gl_in is equal to the
implementation-dependent maximum patch size (gl_MaxPatchVertices). Be-
havior is undefined if gl_in is indexed with a vertex index greater than or equal

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 310

to the current patch size. The sole member of each element of the gl_in array is
gl_Position.

Tessellation control shaders have available several other built-in input variables
not replicated per-vertex and not contained in gl_in, including:

• The variable gl_PatchVerticesIn holds the number of vertices in the
input patch being processed by the tessellation control shader.

• The variable gl_PrimitiveID is filled with the number of primitives pro-
cessed by the drawing command which generated the input vertices. The first
primitive generated by a drawing command is numbered zero, and the prim-
itive ID counter is incremented after every individual point, line, or triangle
primitive is processed. The counter is reset to zero between each instance
drawn. Restarting a primitive topology using the primitive restart index has
no effect on the primitive ID counter.

• The variable gl_InvocationID holds an invocation number for the cur-
rent tessellation control shader invocation. Tessellation control shaders are
invoked once per output patch vertex, and invocations are numbered begin-
ning with zero.

Similarly to the built-in inputs, each user-defined input variable has a value
for each vertex and thus needs to be declared as arrays or inside input blocks
declared as arrays. Declaring an array size is optional. If no size is speci-
fied, it will be taken from the implementation-dependent maximum patch size
(gl_MaxPatchVertices). If a size is specified, it must match the maxi-
mum patch size; otherwise, a compile or link error will occur. Since the ar-
ray size may be larger than the number of vertices found in the input patch,
behavior is undefined if a per-vertex input variable is accessed using an in-
dex greater than or equal to the number of vertices in the input patch.
The OpenGL ES Shading Language doesn’t support multi-dimensional arrays as
shader inputs or outputs; therefore, user-defined tessellation control shader inputs
corresponding to vertex shader outputs declared as arrays must be declared as array
members of an input block that is itself declared as an array.

Similarly to the limit on vertex shader output components (see sec-
tion 11.1.2.1), there is a limit on the number of components of input variables
that can be read by the tessellation control shader, given by the value of the
implementation-dependent constant MAX_TESS_CONTROL_INPUT_COMPONENTS.

When a program is linked, all components of any input read by a tessellation
control shader will count against this limit. A program whose tessellation control

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 311

shader exceeds this limit may fail to link, unless device-dependent optimizations
are able to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

11.2.1.2.3 Tessellation Control Shader Outputs Section 7.1 (“Built-In Vari-
ables”) of the OpenGL ES Shading Language Specification describes the built-in
variable array gl_out available as an output for a tessellation control shader. gl_-
out passes values to equivalent built-in input variables read by subsequent shader
stages or to subsequent fixed functionality vertex processing pipeline stages. Each
array element of gl_out is a structure holding values for a specific vertex of the
output patch. The length of gl_out is equal to the output patch size specified in
the tessellation control shader output layout declaration. The sole member of
each element of the gl_out array is gl_Position. It behaves identically to the
equivalently named vertex shader output (see section 11.1.3).

Tessellation shaders additionally have three built-in per-patch output arrays,
gl_TessLevelOuter, gl_TessLevelInner and gl_BoundingBox. These
arrays are not replicated for each output patch vertex and are not members of
gl_out. gl_TessLevelOuter is an array of four floating-point values speci-
fying the approximate number of segments that the tessellation primitive gener-
ator should use when subdividing each outer edge of the primitive it subdivides.
gl_TessLevelInner is an array of two floating-point values specifying the ap-
proximate number of segments used to produce a regularly-subdivided primitive
interior. The values written to gl_TessLevelOuter and gl_TessLevelInner

need not be integers, and their interpretation depends on the type of primitive the
tessellation primitive generator will subdivide and other tessellation parameters, as
discussed in the following section. gl_BoundingBox is an array of two vec4 val-
ues that should be used instead of the value of PRIMITIVE_BOUNDING_BOX as the
primitive bounding box (see section 13.2) for primitives generated from the output
patch.

A tessellation control shader may also declare user-defined per-vertex output
variables. User-defined per-vertex output variables are declared with the qualifier
out and have a value for each vertex in the output patch. Such variables must be
declared as arrays or inside output blocks declared as arrays. Declaring an array
size is optional. If no size is specified, it will be taken from the output patch size
declared in the shader. If a size is specified, it must match the maximum patch size;
otherwise, a compile or link error will occur. The OpenGL ES Shading Language
doesn’t support multi-dimensional arrays as shader inputs or outputs; therefore,
user-defined per-vertex tessellation control shader outputs with multiple elements

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 312

per vertex must be declared as array members of an output block that is itself
declared as an array.

While per-vertex output variables are declared as arrays indexed by vertex
number, each tessellation control shader invocation may write only to those outputs
corresponding to its output patch vertex. Tessellation control shaders must use the
special variable gl_InvocationID as the vertex number index when writing to
per-vertex output variables.

Additionally, a tessellation control shader may declare per-patch output vari-
ables using the qualifier patch out. Unlike per-vertex outputs, per-patch outputs
do not correspond to any specific vertex in the patch, and are not indexed by vertex
number. Per-patch outputs declared as arrays have multiple values for the output
patch; similarly declared per-vertex outputs would indicate a single value for each
vertex in the output patch. User-defined per-patch outputs are not used by the tes-
sellation primitive generator, but may be read by tessellation evaluation shaders.

There are several limits on the number of components of output variables that
can be written by the tessellation control shader. The number of components
of active per-vertex output variables may not exceed the value of MAX_TESS_-
CONTROL_OUTPUT_COMPONENTS. The number of components of active per-patch
output variables may not exceed the value of MAX_TESS_PATCH_COMPONENTS.
The built-in outputs gl_TessLevelOuter and gl_TessLevelInner are not
counted against the per-patch limit. The built-in output gl_BoundingBox, if stat-
ically assigned by the shader, is counted against the per-patch limit. The total
number of components of active per-vertex and per-patch outputs is derived by
multiplying the per-vertex output component count by the output patch size and
then adding the per-patch output component count. The total component count
may not exceed MAX_TESS_CONTROL_TOTAL_OUTPUT_COMPONENTS.

When a program is linked, all components of any output variable written by a
tessellation control shader will count against this limit. A program exceeding any
of these limits may fail to link, unless device-dependent optimizations are able to
make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

11.2.1.2.4 Tessellation Control Shader Execution Order For tessellation
control shaders with a declared output patch size greater than one, the shader is
invoked more than once for each input patch. The order of execution of one tessel-
lation control shader invocation relative to the other invocations for the same input
patch is largely undefined. The built-in function barrier provides some control
over relative execution order. When a tessellation control shader calls the barrier

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 313

function, its execution pauses until all other invocations have also called the same
function. Output variable assignments performed by any invocation executed prior
to calling barrier will be visible to any other invocation after the call to barrier
returns. Shader output values read in one invocation but written by another may be
undefined without proper use of barrier; full rules are found in the OpenGL ES
Shading Language Specification.

The barrier function may only be called inside the main entry point of the
tessellation control shader and may not be called in code containing potentially di-
vergent flow of control. In particular, barrier may not be called inside a switch
statement, in either sub-statement of an if statement, inside a do, for, or while
loop, or at any point after a return statement in the function main.

11.2.2 Tessellation Primitive Generation

The tessellation primitive generator consumes the input patch and produces a new
set of basic primitives (points, lines, or triangles). These primitives are produced
by subdividing a geometric primitive (rectangle or triangle) according to the per-
patch tessellation levels written by the tessellation control shader. This subdivision
is performed in an implementation- dependent manner.

The type of subdivision performed by the tessellation primitive generator is
specified by an input layout declaration in the tessellation evaluation shader us-
ing one of the identifiers triangles, quads, and isolines. For triangles,
the primitive generator subdivides a triangle primitive into smaller triangles. For
quads, the primitive generator subdivides a rectangle primitive into smaller tri-
angles. For isolines, the primitive generator subdivides a rectangle primitive
into a collection of line segments arranged in strips stretching horizontally across
the rectangle. Each vertex produced by the primitive generator has an associated
(u, v, w) or (u, v) position in a normalized parameter space, with parameter values
in the range [0, 1], as illustrated in figure 11.1. For triangles, the vertex position
is a barycentric coordinate (u, v, w), where u+ v +w = 1, and indicates the rela-
tive influence of the three vertices of the triangle on the position of the vertex. For
quads and isolines, the position is a (u, v) coordinate indicating the relative
horizontal and vertical position of the vertex relative to the subdivided rectangle.
The subdivision process is explained in more detail in subsequent sections.

A patch is discarded by the tessellation primitive generator if any relevant outer
tessellation level is less than or equal to zero. Patches will also be discarded if
any relevant outer tessellation level corresponds to a floating-point NaN (not a
number) in implementations supporting NaN. When patches are discarded, no new
primitives will be generated and the tessellation evaluation program will not be run.
For quads, all four outer levels are relevant. For triangles and isolines, only

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 314

Figure 11.1. Domain parameterization for tessellation generator primitive modes
(triangles, quads, or isolines). The coordinates illustrate the value of gl_-
TessCoord at the corners of the domain. The labels on the edges indicate the
inner (IL0 and IL1) and outer (OL0 through OL3) tessellation level values used to
control the number of subdivisions along each edge of the domain.

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 315

the first three or two outer levels, respectively, are relevant. Negative inner levels
will not cause a patch to be discarded; they will be clamped as described below.

Each of the tessellation levels is used to determine the number and spacing
of segments used to subdivide a corresponding edge. The method used to derive
the number and spacing of segments is specified by an input layout declaration
in the tessellation evaluation shader using one of the identifiers equal_spacing,
fractional_even_spacing, or fractional_odd_spacing. If no spacing is
specified in the tessellation evaluation shader, equal_spacing will be used.

If equal_spacing is used, the floating-point tessellation level is first clamped
to the range [1,max], where max is the implementation-dependent maximum tes-
sellation level (the value of MAX_TESS_GEN_LEVEL). The result is rounded up to
the nearest integer n, and the corresponding edge is divided into n segments of
equal length in (u, v) space.

If fractional_even_spacing is used, the tessellation level is first clamped
to the range [2,max] and then rounded up to the nearest even integer n. If
fractional_odd_spacing is used, the tessellation level is clamped to the range
[1,max−1] and then rounded up to the nearest odd integer n. If n is one, the edge
will not be subdivided. Otherwise, the corresponding edge will be divided into
n − 2 segments of equal length, and two additional segments of equal length that
are typically shorter than the other segments. The length of the two additional seg-
ments relative to the others will decrease monotonically with the value of n − f ,
where f is the clamped floating-point tessellation level. When n − f is zero, the
additional segments will have equal length to the other segments. As n − f ap-
proaches 2.0, the relative length of the additional segments approaches zero. The
two additional segments should be placed symmetrically on opposite sides of the
subdivided edge. The relative location of these two segments is undefined, but
must be identical for any pair of subdivided edges with identical values of f .

When the tessellation primitive generator produces triangles (in the
triangles or quads modes), the orientation of all triangles can be specified by
an input layout declaration in the tessellation evaluation shader using the identi-
fiers cw and ccw. If the order is cw, the vertices of all generated triangles will have
a clockwise ordering in (u, v) or (u, v, w) space, as illustrated in figure 11.1. If the
order is ccw, the vertices will be specified in counter-clockwise order. If no layout
is specified, ccw will be used.

For all primitive modes, the tessellation primitive generator is capable of gen-
erating points instead of lines or triangles. If an input layout declaration in the
tessellation evaluation shader specifies the identifier point_mode, the primitive
generator will generate one point for each distinct vertex produced by tessellation.
Otherwise, the primitive generator will produce a collection of line segments or
triangles according to the primitive mode. When tessellating triangles or quads in

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 316

point mode with fractional odd spacing, the tessellation primitive generator may
produce “interior” vertices that are positioned on the edge of the patch if an inner
tessellation level is less than or equal to one. Such vertices are considered distinct
from vertices produced by subdividing the outer edge of the patch, even if there are
pairs of vertices with identical coordinates.

The points, lines, or triangles produced by the tessellation primitive generator
are passed to subsequent pipeline stages in an implementation-dependent order.

11.2.2.1 Triangle Tessellation

If the tessellation primitive mode is triangles, an equilateral triangle is subdi-
vided into a collection of triangles covering the area of the original triangle. First,
the original triangle is subdivided into a collection of concentric equilateral trian-
gles. The edges of each of these triangles are subdivided, and the area between
each triangle pair is filled by triangles produced by joining the vertices on the sub-
divided edges. The number of concentric triangles and the number of subdivisions
along each triangle except the outermost is derived from the first inner tessellation
level. The edges of the outermost triangle are subdivided independently, using the
first, second, and third outer tessellation levels to control the number of subdivi-
sions of the u = 0 (left), v = 0 (bottom), and w = 0 (right) edges, respectively.
The second inner tessellation level and the fourth outer tessellation level have no
effect in this mode.

If the first inner tessellation level and all three outer tessellation levels are ex-
actly one after clamping and rounding, only a single triangle with (u, v, w) co-
ordinates of (0, 0, 1), (1, 0, 0), and (0, 1, 0) is generated. If the inner tessellation
level is one and any of the outer tessellation levels is greater than one, the inner
tessellation level is treated as though it were originally specified as 1 + ε and will
be rounded up to result in a two- or three-segment subdivision according to the
tessellation spacing. When used with fractional odd spacing, the three-segment
subdivision may produce “inner” vertices positioned on the edge of the triangle.

If any tessellation level is greater than one, tessellation begins by producing a
set of concentric inner triangles and subdividing their edges. First, the three outer
edges are temporarily subdivided using the clamped and rounded first inner tes-
sellation level and the specified tessellation spacing, generating n segments. For
the outermost inner triangle, the inner triangle is degenerate – a single point at the
center of the triangle – if n is two. Otherwise, for each corner of the outer trian-
gle, an inner triangle corner is produced at the intersection of two lines extended
perpendicular to the corner’s two adjacent edges running through the vertex of the
subdivided outer edge nearest that corner. If n is three, the edges of the inner trian-
gle are not subdivided and it is the final triangle in the set of concentric triangles.

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 317

Figure 11.2. Inner triangle tessellation with inner tessellation levels of (a) five and
(b) four, respectively (not to scale). Solid black circles depict vertices along the
edges of the concentric triangles. The edges of inner triangles are subdivided by
intersecting the edge with segments perpendicular to the edge passing through each
inner vertex of the subdivided outer edge. Dotted lines depict edges connecting
corresponding vertices on the inner and outer triangle edges.

Otherwise, each edge of the inner triangle is divided into n − 2 segments, with
the n− 1 vertices of this subdivision produced by intersecting the inner edge with
lines perpendicular to the edge running through the n− 1 innermost vertices of the
subdivision of the outer edge. Once the outermost inner triangle is subdivided, the
previous subdivision process repeats itself, using the generated triangle as an outer
triangle. This subdivision process is illustrated in figure 11.2.

Once all the concentric triangles are produced and their edges are subdivided,
the area between each pair of adjacent inner triangles is filled completely with a
set of non-overlapping triangles. In this subdivision, two of the three vertices of
each triangle are taken from adjacent vertices on a subdivided edge of one triangle;
the third is one of the vertices on the corresponding edge of the other triangle.
If the innermost triangle is degenerate (i.e., a point), the triangle containing it is
subdivided into six triangles by connecting each of the six vertices on that triangle
with the center point. If the innermost triangle is not degenerate, that triangle is
added to the set of generated triangles as-is.

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 318

After the area corresponding to any inner triangles is filled, the primitive gen-
erator generates triangles to cover area between the outermost triangle and the out-
ermost inner triangle. To do this, the temporary subdivision of the outer triangle
edge above is discarded. Instead, the u = 0, v = 0, and w = 0 edges are subdi-
vided according to the first, second, and third outer tessellation levels, respectively,
and the tessellation spacing. The original subdivision of the first inner triangle is
retained. The area between the outer and first inner triangles is completely filled by
non-overlapping triangles as described above. If the first (and only) inner triangle
is degenerate, a set of triangles is produced by connecting each vertex on the outer
triangle edges with the center point.

After all triangles are generated, each vertex in the subdivided triangle is as-
signed a barycentric (u, v, w) coordinate based on its location relative to the three
vertices of the outer triangle.

The algorithm used to subdivide the triangular domain in (u, v, w) space into
individual triangles is implementation-dependent. However, the set of triangles
produced will completely cover the domain, and no portion of the domain will be
covered by multiple triangles. The order in which the generated triangles passed
to subsequent pipeline stages and the order of the vertices in those triangles are
both implementation-dependent. However, when depicted in a manner similar to
figure 11.2, the order of the vertices in the generated triangles will be either all
clockwise or all counter-clockwise, according to the vertex order layout declara-
tion.

11.2.2.2 Quad Tessellation

If the tessellation primitive mode is quads, a rectangle is subdivided into a col-
lection of triangles covering the area of the original rectangle. First, the original
rectangle is subdivided into a regular mesh of rectangles, where the number of
rectangles along the u = 0 and u = 1 (vertical) and v = 0 and v = 1 (horizon-
tal) edges are derived from the first and second inner tessellation levels, respec-
tively. All rectangles, except those adjacent to one of the outer rectangle edges,
are decomposed into triangle pairs. The outermost rectangle edges are subdivided
independently, using the first, second, third, and fourth outer tessellation levels to
control the number of subdivisions of the u = 0 (left), v = 0 (bottom), u = 1
(right), and v = 1 (top) edges, respectively. The area between the inner rectangles
of the mesh and the outer rectangle edges is filled by triangles produced by joining
the vertices on the subdivided outer edges to the vertices on the edge of the inner
rectangle mesh.

If both clamped inner tessellation levels and all four clamped outer tessella-
tion levels are exactly one, only a single triangle pair covering the outer rectangle

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 319

is generated. Otherwise, if either clamped inner tessellation level is one, that tes-
sellation level is treated as though it were originally specified as 1 + ε and will
result in a two- or three-segment subdivision depending on the tessellation spac-
ing. When used with fractional odd spacing, the three-segment subdivision may
produce “inner” vertices positioned on the edge of the rectangle.

If any tessellation level is greater than one, tessellation begins by subdividing
the u = 0 and u = 1 edges of the outer rectangle into m segments using the
clamped and rounded first inner tessellation level and the tessellation spacing. The
v = 0 and v = 1 edges are subdivided into n segments using the second inner
tessellation level. Each vertex on the u = 0 and v = 0 edges is joined with the
corresponding vertex on the u = 1 and v = 1 edges to produce a set of vertical
and horizontal lines that divide the rectangle into a grid of smaller rectangles. The
primitive generator emits a pair of non-overlapping triangles covering each such
rectangle not adjacent to an edge of the outer rectangle. The boundary of the re-
gion covered by these triangles forms an inner rectangle, the edges of which are
subdivided by the grid vertices that lie on the edge. If either m or n is two, the
inner rectangle is degenerate, and one or both of the rectangle’s “edges” consist of
a single point. This subdivision is illustrated in figure 11.3.

After the area corresponding to the inner rectangle is filled, the primitive gen-
erator must produce triangles to cover area between the inner and outer rectangles.
To do this, the subdivision of the outer rectangle edge above is discarded. Instead,
the u = 0, v = 0, u = 1, and v = 1 edges are subdivided according to the
first, second, third, and fourth outer tessellation levels, respectively, and the tes-
sellation spacing. The original subdivision of the inner rectangle is retained. The
area between the outer and inner rectangles is completely filled by non-overlapping
triangles. Two of the three vertices of each triangle are adjacent vertices on a sub-
divided edge of one rectangle; the third is one of the vertices on the corresponding
edge of the other triangle. If either edge of the innermost rectangle is degenerate,
the area near the corresponding outer edges is filled by connecting each vertex on
the outer edge with the single vertex making up the inner “edge”.

The algorithm used to subdivide the rectangular domain in (u, v) space into
individual triangles is implementation-dependent. However, the set of triangles
produced will completely cover the domain, and no portion of the domain will
be covered by multiple triangles. The order in which the generated triangles are
passed to subsequent pipeline stages and the order of the vertices in those triangles
are both implementation-dependent. However, when depicted in a manner similar
to figure 11.3, the order of the vertices in the generated triangles will be either all
clockwise or all counter-clockwise, according to the vertex order layout declara-
tion.

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 320

Figure 11.3. Inner quad tessellation with inner tessellation levels of (a) (4, 2) and
(b) (7, 4), respectively. Gray regions on the bottom figure depict the 10 inner rectan-
gles, each of which will be subdivided into two triangles. Solid black circles depict
vertices on the boundary of the outer and inner rectangles, where the inner rectangle
on the top figure is degenerate (a single line segment). Dotted lines depict the hor-
izontal and vertical edges connecting corresponding vertices on the inner and outer
rectangle edges.

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 321

11.2.2.3 Isoline Tessellation

If the tessellation primitive mode is isolines, a set of independent horizontal line
segments is drawn. The segments are arranged into connected strips called isolines,
where the vertices of each isoline have a constant v coordinate and u coordinates
covering the full range [0, 1]. The number of isolines generated is derived from the
first outer tessellation level; the number of segments in each isoline is derived from
the second outer tessellation level. Both inner tessellation levels and the third and
fourth outer tessellation levels have no effect in this mode.

As with quad tessellation above, isoline tessellation begins with a rectangle.
The u = 0 and u = 1 edges of the rectangle are subdivided according to the
first outer tessellation level. For the purposes of this subdivision, the tessellation
spacing is ignored and treated as equal_spacing. An isoline is drawn connecting
each vertex on the u = 0 rectangle edge with the corresponding vertex on the u = 1
rectangle edge, except that no line is drawn between (0, 1) and (1, 1). If the number
of isolines on the subdivided u = 0 and u = 1 edges is n, this process will result
in n equally spaced lines with constant v coordinates of 0, 1n ,

2
n , . . . ,

n−1
n .

Each of the n isolines is then subdivided according to the second outer tessella-
tion level and the tessellation spacing, resulting in m line segments. Each segment
of each line is emitted by the tessellation primitive generator, as illustrated in fig-
ure 11.4.

The order in which the generated line segments are passed to subsequent
pipeline stages and the order of the vertices in each generated line segment are
both implementation-dependent.

11.2.3 Tessellation Evaluation Shaders

If active, the tessellation evaluation shader takes the (u, v) or (u, v, w) location of
each vertex in the primitive subdivided by the tessellation primitive generator, and
generates a vertex with a position and associated attributes. The tessellation evalua-
tion shader can read any of the vertices of its input patch, which is the output patch
produced by the tessellation control shader. Tessellation evaluation shaders are
created as described in section 7.1, using a type of TESS_EVALUATION_SHADER.

Each invocation of the tessellation evaluation shader writes the attributes of
exactly one vertex. The number of vertices evaluated per patch depends on the
tessellation level values computed by the tessellation control shaders. Tessellation
evaluation shader invocations run independently, and no invocation can access the
variables belonging to another invocation. All invocations are capable of accessing
all the vertices of their corresponding input patch.

The number of the vertices in the input patch is fixed and is equal to the tessel-

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 322

Figure 11.4. Isoline tessellation with the first two outer tessellation levels of (a)
(1, 3) and (b) (4, 6), respectively. Line segments connecting the vertices marked
with solid black circles are emitted by the primitive generator. Vertices marked
with empty circles correspond to (u, v) coordinates of (0, 1) and (1, 1), where no
line segments are generated.

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 323

lation control shader output patch size parameter in effect when the program was
last linked.

11.2.3.1 Tessellation Evaluation Shader Variables

Tessellation evaluation shaders can access uniforms belonging to the current pro-
gram object. Limits on uniform storage and methods for manipulating uniforms
are described in section 7.6.

Tessellation evaluation shaders also have access to samplers to perform textur-
ing operations, as described in section 7.9.

Tessellation evaluation shaders can access the transformed attributes of all ver-
tices for their input primitive using input variables. A tessellation control shader
writing to output variables generates the values of these input variables. Values for
any input variables that are not written by a tessellation control shader are unde-
fined.

Additionally, tessellation evaluation shaders can write to one or more output
variables that will be passed to subsequent programmable shader stages or fixed
functionality vertex pipeline stages.

11.2.3.2 Tessellation Evaluation Shader Execution Environment

If there is an active program for the tessellation evaluation stage, the executable
version of the program’s tessellation evaluation shader is used to process vertices
produced by the tessellation primitive generator. During this processing, the shader
may access the input patch processed by the primitive generator. When tessellation
evaluation shader execution completes, a new vertex is assembled from the output
variables written by the shader and is passed to subsequent pipeline stages.

There are several special considerations for tessellation evaluation shader exe-
cution described in the following sections.

11.2.3.2.1 Texture Access Section 11.1.3.1 describes texture lookup function-
ality accessible to a vertex shader. The texel fetch and texture size query function-
ality described there also applies to tessellation evaluation shaders.

11.2.3.3 Tessellation Evaluation Shader Inputs

Section 7.1 (“Built-In Variables”) of the OpenGL ES Shading Language Specifica-
tion describes the built-in variable array gl_in available as input to a tessellation
evaluation shader. gl_in receives values from equivalent built-in output variables

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 324

written by a previous shader (section 11.1.3). Each array element of gl_in is
a structure holding values for a specific vertex of the input patch. The length
of gl_in is equal to the implementation-dependent maximum patch size (gl_-
MaxPatchVertices). Behavior is undefined if gl_in is indexed with a vertex
index greater than or equal to the current patch size. The sole member of each
element of the gl_in array is gl_Position.

Tessellation evaluation shaders have available several other built-in input vari-
ables not replicated per-vertex and not contained in gl_in, including:

• The variables gl_PatchVerticesIn and gl_PrimitiveID are filled
with the number of the vertices in the input patch and a primitive number,
respectively. They behave exactly as the identically named inputs for tessel-
lation control shaders.

• The variable gl_TessCoord is a three-component floating-point vector
consisting of the (u, v, w) coordinate of the vertex being processed by the
tessellation evaluation shader. The values of u, v, and w are in the range
[0, 1], and vary linearly across the primitive being subdivided. For tessella-
tion primitive modes of quads or isolines, the w value is always zero.
The (u, v, w) coordinates are generated by the tessellation primitive gen-
erator in a manner dependent on the primitive mode, as described in sec-
tion 11.2.2. gl_TessCoord is not an array; it specifies the location of the
vertex being processed by the tessellation evaluation shader, not of any ver-
tex in the input patch.

• The variables gl_TessLevelOuter and gl_TessLevelInner are arrays
holding outer and inner tessellation levels of the patch, as used by the tes-
sellation primitive generator. Tessellation level values loaded in these vari-
ables will be prior to the clamping and rounding operations performed by
the primitive generator as described in section 11.2.2. For triangular tes-
sellation, gl_TessLevelOuter[3] and gl_TessLevelInner[1] will
be undefined. For isoline tessellation, gl_TessLevelOuter[2], gl_-
TessLevelOuter[3], and both values in gl_TessLevelInner are un-
defined.

The special tessellation control shader output gl_BoundingBox is consumed
by the tessellation primitive generator, and is not available as an input to the tessel-
lation evaluation shader.

A tessellation evaluation shader may also declare user-defined per-vertex in-
put variables. User-defined per-vertex input variables are declared with the qual-
ifier in and have a value for each vertex in the input patch. User-defined per-
vertex input variables have a value for each vertex and thus need to be declared

OpenGL ES 3.2 (November 3, 2016)

11.2. TESSELLATION 325

as arrays or inside input blocks declared as arrays. Declaring an array size is op-
tional. If no size is specified, it will be taken from the implementation-dependent
maximum patch size (gl_MaxPatchVertices). If a size is specified, it must
match the maximum patch size; otherwise, a compile or link error will occur.
Since the array size may be larger than the number of vertices found in the in-
put patch, behavior is undefined if a per-vertex input variable is accessed using
an index greater than or equal to the number of vertices in the input patch.
The OpenGL ES Shading Language doesn’t support multi-dimensional arrays as
shader inputs or outputs; therefore, user-defined tessellation evaluation shader
inputs corresponding to shader outputs declared as arrays must be declared as array
members of an input block that is itself declared as an array.

Additionally, a tessellation evaluation shader may declare per-patch input vari-
ables using the qualifier patch in. Unlike per-vertex inputs, per-patch inputs do
not correspond to any specific vertex in the patch, and are not indexed by vertex
number. Per-patch inputs declared as arrays have multiple values for the input
patch; similarly declared per-vertex inputs would indicate a single value for each
vertex in the output patch. User-defined per-patch input variables are filled with
corresponding per-patch output values written by the tessellation control shader.

Similarly to the limit on vertex shader output components (see sec-
tion 11.1.2.1), there is a limit on the number of components of per-vertex and
per-patch input variables that can be read by the tessellation evaluation shader,
given by the values of the implementation-dependent constants MAX_TESS_-

EVALUATION_INPUT_COMPONENTS and MAX_TESS_PATCH_COMPONENTS, re-
spectively. The built-in inputs gl_TessLevelOuter and gl_TessLevelInner

are not counted against the per-patch limit.
When a program is linked, all components of any input variable read by a tes-

sellation evaluation shader will count against this limit. A program whose tessella-
tion evaluation shader exceeds this limit may fail to link, unless device-dependent
optimizations are able to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

11.2.3.4 Tessellation Evaluation Shader Outputs

Tessellation evaluation shaders have a built-in output variable used to pass val-
ues to an equivalent built-in input variable read by subsequent shader stages or to
subsequent fixed functionality vertex processing pipeline stages. This variable is
gl_Position, and behaves identically to the equivalently named vertex shader
output (see section 11.1.3). A tessellation evaluation shader may also declare user-
defined per-vertex output variables.

OpenGL ES 3.2 (November 3, 2016)

11.3. GEOMETRY SHADERS 326

Similarly to the limit on vertex shader output components (see sec-
tion 11.1.2.1), there is a limit on the number of components of output variables
that can be written by the tessellation evaluation shader, given by the values
of the implementation-dependent constant MAX_TESS_EVALUATION_OUTPUT_-
COMPONENTS.

When a program is linked, all components of any output variable written by
a tessellation evaluation shader will count against this limit. A program whose
tessellation evaluation shader exceeds this limit may fail to link, unless device-
dependent optimizations are able to make the program fit within available hardware
resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 11.1.2.1).

11.3 Geometry Shaders

After vertices are processed, they are arranged into primitives, as described in sec-
tion 10.1. This section describes geometry shaders, an additional pipeline stage
defining operations to further process those primitives. Geometry shaders are de-
fined by source code in the OpenGL ES Shading Language, in the same manner as
vertex shaders. They operate on a single primitive at a time and emit one or more
output primitives, all of the same type, which are then processed like an equivalent
GL primitive specified by the application. The original primitive is discarded af-
ter geometry shader execution. The inputs available to a geometry shader are the
transformed attributes of all the vertices that belong to the primitive. Additional
adjacency primitives are available which also make the transformed attributes of
neighboring vertices available to the shader. The results of the shader are a new set
of transformed vertices, arranged into primitives by the shader.

The geometry shader pipeline stage is inserted after primitive assembly, prior
to transform feedback (see section 12.1).

Geometry shaders are created as described in section 7.1 using a type of
GEOMETRY_SHADER. They are attached to and used in program objects as described
in section 7.3. When the program object currently in use includes a geometry
shader, its geometry shader is considered active, and is used to process primitives.
If the program object has no geometry shader, this stage is bypassed.

A non-separable program object or program pipeline object that includes a
geometry shader must also include a vertex shader.

Errors

OpenGL ES 3.2 (November 3, 2016)

11.3. GEOMETRY SHADERS 327

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if the current program state has a geometry shader but
no vertex shader.

11.3.1 Geometry Shader Input Primitives

A geometry shader can operate on one of five input primitive types. Depending on
the input primitive type, one to six input vertices are available when the shader is
executed. Each input primitive type supports a subset of the primitives provided by
the GL.

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if a geometry shader is active and the primitive mode
parameter is incompatible with the input primitive type of the geometry shader
of the active geometry program object, as discussed below. If a tessellation
evaluation shader is not active, the mode parameter passed to drawing com-
mands is used for purposes of this error check. Otherwise, the type of primitive
emitted by that shader is used.

A geometry shader that accesses more input vertices than are available for a
given input primitive type can be successfully compiled, because the input prim-
itive type is not part of the shader object. However, a program object containing
a shader object that accesses more input vertices than are available for the input
primitive type of the program object will not link.

The input primitive type is specified in the geometry shader source code us-
ing an input layout qualifier, as described in the OpenGL ES Shading Language
Specification. A program will fail to link if the input primitive type is not specified
by the geometry shader object attached to the program The input primitive type
may be queried by calling GetProgramiv with pname GEOMETRY_INPUT_TYPE.
The supported types and the corresponding OpenGL ES Shading Language input
layout qualifier keywords are:

Points (points)
Geometry shaders that operate on points are valid only for the POINTS primi-

tive type. There is only a single vertex available for each geometry shader invoca-
tion.

Lines (lines)

OpenGL ES 3.2 (November 3, 2016)

11.3. GEOMETRY SHADERS 328

Geometry shaders that operate on line segments are valid only for the LINES,
LINE_STRIP, and LINE_LOOP primitive types. There are two vertices available
for each geometry shader invocation. The first vertex refers to the vertex at the
beginning of the line segment and the second vertex refers to the vertex at the end
of the line segment. See also section 11.3.4.

Lines with Adjacency (lines_adjacency)
Geometry shaders that operate on line segments with adjacent vertices are valid

only for the LINES_ADJACENCY and LINE_STRIP_ADJACENCY primitive types.
There are four vertices available for each program invocation. The second vertex
refers to attributes of the vertex at the beginning of the line segment and the third
vertex refers to the vertex at the end of the line segment. The first and fourth
vertices refer to the vertices adjacent to the beginning and end of the line segment,
respectively.

Triangles (triangles)
Geometry shaders that operate on triangles are valid for the TRIANGLES,

TRIANGLE_STRIP and TRIANGLE_FAN primitive types. There are three vertices
available for each program invocation. The first, second and third vertices refer to
attributes of the first, second and third vertex of the triangle, respectively.

Triangles with Adjacency (triangles_adjacency)
Geometry shaders that operate on triangles with adjacent vertices are valid

for the TRIANGLES_ADJACENCY and TRIANGLE_STRIP_ADJACENCY primitive
types. There are six vertices available for each program invocation. The first, third
and fifth vertices refer to attributes of the first, second and third vertex of the tri-
angle, respectively. The second, fourth and sixth vertices refer to attributes of the
vertices adjacent to the edges from the first to the second vertex, from the second
to the third vertex, and from the third to the first vertex, respectively.

11.3.2 Geometry Shader Output Primitives

A geometry shader can generate primitives of one of three types. The supported
output primitive types are points (POINTS), line strips (LINE_STRIP), and triangle
strips (TRIANGLE_STRIP). The vertices output by the geometry shader are assem-
bled into points, lines, or triangles based on the output primitive type in the manner
described in section 10.5. The resulting primitives are then further processed as de-
scribed in section 11.3.4. If the number of vertices emitted by the geometry shader
is not sufficient to produce a single primitive, nothing is drawn. The number of
vertices output by the geometry shader is limited to a maximum count specified in

OpenGL ES 3.2 (November 3, 2016)

11.3. GEOMETRY SHADERS 329

the shader.
The output primitive type and maximum output vertex count are specified in

the geometry shader source code using an output layout qualifier, as described in
section 4.4.2.2 (“Geometry Outputs”) of the OpenGL ES Shading Language Spec-
ification. A program will fail to link if either the output primitive type or maximum
output vertex count are not specified by the geometry shader object attached to the
program. The output primitive type and maximum output vertex count of a linked
program may be queried by calling GetProgramiv with the symbolic constants
GEOMETRY_OUTPUT_TYPE and GEOMETRY_VERTICES_OUT, respectively.

11.3.3 Geometry Shader Variables

Geometry shaders can access uniforms belonging to the current program object.
Limits on uniform storage and methods for manipulating uniforms are described in
section 7.6.

Geometry shaders also have access to samplers to perform texturing operations,
as described in section 7.9.

Geometry shaders can access the transformed attributes of all vertices for their
input primitive type using input variables. A vertex or tessellation shader (the
upstream shader for the geometry shader) writing to output variables generates the
values of these input variables. Values for any inputs that are not written by a
vertex shader are undefined. Additionally, a geometry shader has access to a built-
in variable that holds the ID of the current primitive. This ID is generated by the
primitive assembly stage that sits in between the vertex and geometry shader.

Additionally, geometry shaders can write to one or more output variables for
each vertex they output. These values are optionally flatshaded (using the OpenGL
ES Shading Language qualifier flat) and clipped, then the clipped values inter-
polated across the primitive (if not flatshaded). The results of these interpolations
are available to the fragment shader.

11.3.4 Geometry Shader Execution Environment

If there is an active program for the geometry stage, the executable version of
the program’s geometry shader is used to process primitives resulting from the
primitive assembly stage.

There are several special considerations for geometry shader execution de-
scribed in the following sections.

OpenGL ES 3.2 (November 3, 2016)

11.3. GEOMETRY SHADERS 330

11.3.4.1 Texture Access

Section 11.1.3.1 describes texture lookup functionality accessible to a vertex
shader. The texel fetch and texture size query functionality described there also
applies to geometry shaders.

11.3.4.2 Instanced Geometry Shaders

For each input primitive received by the geometry shader pipeline stage, the geom-
etry shader may be run once or multiple times. The number of times a geometry
shader should be executed for each input primitive may be specified using a layout
qualifier in a geometry shader of a linked program. If the invocation count is not
specified in any layout qualifier, the invocation count will be one.

Each separate geometry shader invocation is assigned a unique invocation num-
ber. For a geometry shader with N invocations, each input primitive spawns
N invocations, numbered 0 through N − 1. The built-in input variable gl_-

InvocationID may be used by a geometry shader invocation to determine its
invocation number.

When executing instanced geometry shaders, the output primitives generated
from each input primitive are passed to subsequent pipeline stages using the shader
invocation number to order the output. The first primitives received by the subse-
quent pipeline stages are those emitted by the shader invocation numbered zero,
followed by those from the shader invocation numbered one, and so forth. Addi-
tionally, all output primitives generated from a given input primitive are passed to
subsequent pipeline stages before any output primitives generated from subsequent
input primitives.

11.3.4.3 Geometry Shader Inputs

Section 7.1 (“Built-In Variables”) of the OpenGL ES Shading Language Specifi-
cation describes the built-in variable array gl_in[] available as input to a geom-
etry shader. gl_in[] receives values from the equivalent built-in output variables
written by the upstream shader, and each array element of gl_in[] is a structure
holding values for a specific vertex of the input primitive. The length of gl_in[]
is determined by the geometry shader input type (see section 11.3.1). The members
of each element of the gl_in[] array are:

• Structure member gl_Position holds the per-vertex position written by
the upstream shader to its built-in output variable gl_Position. Note that
writing to gl_Position from either the upstream or geometry shader is op-

OpenGL ES 3.2 (November 3, 2016)

11.3. GEOMETRY SHADERS 331

tional (also see section 7.1 (“Built-In Variables”) of the OpenGL ES Shading
Language Specification).

Geometry shaders also have available the built-in input variable gl_-

PrimitiveIDIn, which is not an array and has no vertex shader equivalent. It
is filled with the number of primitives processed by the drawing command which
generated the input vertices. The first primitive generated by a drawing command
is numbered zero, and the primitive ID counter is incremented after every individ-
ual point, line, or triangle primitive is processed. For triangles drawn in point or
line mode, the primitive ID counter is incremented only once, even though multiple
points or lines may eventually be drawn. The counter is reset to zero between each
instance drawn. Restarting a primitive topology using the primitive restart index
has no effect on the primitive ID counter.

Similarly to the built-in inputs, each user-defined input has a value for each
vertex and thus needs needs to be declared as arrays or inside input blocks declared
as arrays. Declaring an array size is optional. If no size is specified, it will be
inferred by the linker from the input primitive type. If a size is specified, it must
match the number of vertices for the input primitive type; otherwise a link error
will occur. The OpenGL ES Shading Language doesn’t support multi-dimensional
arrays as shader inputs or outputs; therefore, user-defined geometry shader inputs
corresponding to upstream shader outputs declared as arrays must be declared as
array members of an input block that is itself declared as an array. See section 4.3.6
(“Output Variables”) and chapter 7 of the OpenGL ES Shading Language Specifi-
cation for more information.

Similarly to the limit on vertex shader output components (see sec-
tion 11.1.2.1), there is a limit on the number of components of input variables
that can be read by the geometry shader, given by the value of the implementation-
dependent constant MAX_GEOMETRY_INPUT_COMPONENTS.

When a program is linked, all components of any input read by a geometry
shader will count against this limit. A program whose geometry shader exceeds
this limit may fail to link, unless device-dependent optimizations are able to make
the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

11.3.4.4 Geometry Shader Outputs

A geometry shader is limited in the number of vertices it may emit per invocation.
The maximum number of vertices a geometry shader can possibly emit is specified
in the geometry shader source and may be queried after linking by calling Get-

OpenGL ES 3.2 (November 3, 2016)

11.3. GEOMETRY SHADERS 332

Programiv with pname GEOMETRY_VERTICES_OUT. If a single invocation of a
geometry shader emits more vertices than this value, the emitted vertices may have
no effect.

There are two implementation-dependent limits on the value of GEOMETRY_-
VERTICES_OUT; it may not exceed the value of MAX_GEOMETRY_OUTPUT_-

VERTICES, and the product of the total number of vertices and the sum of all
components of all active output variables may not exceed the value of MAX_-

GEOMETRY_TOTAL_OUTPUT_COMPONENTS. LinkProgram will fail if it deter-
mines that the total component limit would be violated.

A geometry shader can write to built-in as well as user-defined output variables.
These values are expected to be interpolated across the primitive it outputs, unless
they are specified to be flat shaded. To enable seamlessly inserting or removing a
geometry shader from a program object, the rules, names and types of the built-
in and user-defined output variables are the same as for the vertex shader. Refer
to section 11.1.2.1, and to sections 4.3.6 (“Output Variables”) and 7.1 (“Built-In
Language Variables”) of the OpenGL ES Shading Language Specification for more
detail.

After a geometry shader emits a vertex, all output variables are undefined, as
described in section 8.15 (“Geometry Shader Functions”) of the OpenGL ES Shad-
ing Language Specification.

The built-in output gl_Position is intended to hold the homogeneous vertex
position. Writing gl_Position is optional.

The built-in output gl_PrimitiveID holds the primitive ID counter read by
the fragment shader, replacing the value of gl_PrimitiveID generated by draw-
ing commands when no geometry shader is active. The geometry shader must
write to gl_PrimitiveID for the provoking vertex (see section 12.3) of a prim-
itive being generated, or the primitive ID counter read by the fragment shader for
that primitive is undefined.

The built-in output gl_Layer is used in layered rendering, and discussed fur-
ther in the next section.

Similarly to the limit on vertex shader output components (see sec-
tion 11.1.2.1), there is a limit on the number of components of output variables that
can be written by the geometry shader, given by the value of the implementation-
dependent constant MAX_GEOMETRY_OUTPUT_COMPONENTS.

When a program is linked, all components of any output variable written by a
geometry shader will count against this limit. A program whose geometry shader
exceeds this limit may fail to link, unless device-dependent optimizations are able
to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS (see section 11.1.2.1).

OpenGL ES 3.2 (November 3, 2016)

11.3. GEOMETRY SHADERS 333

11.3.4.5 Layer Selection

Geometry shaders can be used to render to one of several different layers of cube
map, three-dimensional, cube map array, or two-dimensional array textures. This
functionality allows an application to bind an entire complex texture to a frame-
buffer object, and render primitives to arbitrary layers computed at run time. For
example, it can be used to project and render a scene onto all six faces of a cubemap
texture in one pass. The layer to render to is specified by writing to the built-in out-
put variable gl_Layer. Layered rendering requires the use of framebuffer objects
(see section 9.8).

The specific vertex of a primitive that is used to select the rendering layer
is implementation-dependent and thus portable applications will assign the same
layer for all vertices in a primitive. The vertex convention followed for gl_Layer
may be determined by calling GetIntegerv with pname LAYER_PROVOKING_-

VERTEX. If the value returned is FIRST_VERTEX_CONVENTION, selection is al-
ways taken from the first vertex of a primitive. If the value returned is LAST_-
VERTEX_CONVENTION, the selection is always taken from the last vertex of a prim-
itive. If the value returned is UNDEFINED_VERTEX, the selection is not guaranteed
to be taken from any specific vertex in the primitive. The vertex considered the
provoking vertex for particular primitive types is given in table 12.3.

11.3.4.6 Primitive Type Mismatches and Drawing Commands

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL, and no fragments will be rendered, if a mismatch exists
between the type of primitive being drawn and the input primitive type of a ge-
ometry shader. A mismatch exists under any of the following conditions:

• the input primitive type of the current geometry shader is POINTS and mode
is not POINTS,

• the input primitive type of the current geometry shader is LINES and mode
is not LINES, LINE_STRIP, or LINE_LOOP,

• the input primitive type of the current geometry shader is TRIANGLES and
mode is not TRIANGLES, TRIANGLE_STRIP or TRIANGLE_FAN,

• the input primitive type of the current geometry shader is LINES_-

ADJACENCY and mode is not LINES_ADJACENCY or LINE_STRIP_-

ADJACENCY, or,

OpenGL ES 3.2 (November 3, 2016)

11.3. GEOMETRY SHADERS 334

• the input primitive type of the current geometry shader is TRIANGLES_-

ADJACENCY and mode is not TRIANGLES_ADJACENCY or TRIANGLE_-

STRIP_ADJACENCY.

OpenGL ES 3.2 (November 3, 2016)

Chapter 12

Fixed-Function Vertex
Post-Processing

After programmable vertex processing, the following fixed-function operations are
applied to vertices of the resulting primitives:

• Transform feedback (see section 12.1).

• Primitive queries (see section 12.2).

• Flatshading (see section 12.3).

• Clipping (see section 12.4).

• Shader output clipping (see section 12.4.1).

• Perspective division on clip coordinates (see section 12.5).

• Viewport mapping, including depth range scaling (see section 12.5.1).

• Front face determination (see section 13.7.1).

• Generic attribute clipping (see section 12.4.1).

Next, rasterization is performed on primitives as described in chapter 13).

12.1 Transform Feedback

In transform feedback mode, attributes of the vertices of transformed primitives
passed to the transform feedback stage are written out to one or more buffer objects.

335

12.1. TRANSFORM FEEDBACK 336

The vertices are fed back before flatshading and clipping. The transformed vertices
may be optionally discarded after being stored into one or more buffer objects, or
they can be passed on down to the clipping stage for further processing. The set of
attributes captured is determined when a program is linked.

The data captured in transform feedback mode depends on the active programs
on each of the shader stages. If a program is active for the geometry shader stage,
transform feedback captures the vertices of each primitive emitted by the geometry
shader. Otherwise, if a program is active for the tessellation evaluation shader
stage, transform feedback captures each primitive produced by the tessellation
primitive generator, whose vertices are processed by the tessellation evaluation
shader. Otherwise, transform feedback captures each primitive processed by the
vertex shader.

The last shader stage processing the primitives captured by transform feedback
is referred to as the upstream shader for transform feedback.

If separable program objects are in use, the set of attributes captured is taken
from the program object active on the upstream shader. The set of attributes to
capture in transform feedback mode for any other program active on a previous
shader stage is ignored.

12.1.1 Transform Feedback Objects

The set of buffer objects used to capture vertex output variables and related state are
stored in a transform feedback object. The set of attributes captured in transform
feedback mode is determined using the state of the active program object. The
name space for transform feedback objects is the unsigned integers. The name
zero designates the default transform feedback object.

The command

void GenTransformFeedbacks(sizei n, uint *ids);

returns n previously unused transform feedback object names in ids. These names
are marked as used, for the purposes of GenTransformFeedbacks only, but they
acquire transform feedback state only when they are first bound.

Errors

An INVALID_VALUE error is generated if n is negative.

Transform feedback objects are deleted by calling

void DeleteTransformFeedbacks(sizei n, const
uint *ids);

OpenGL ES 3.2 (November 3, 2016)

12.1. TRANSFORM FEEDBACK 337

ids contains n names of transform feedback objects to be deleted. After a trans-
form feedback object is deleted it has no contents, and its name is again unused.
Unused names in ids that have been marked as used for the purposes of GenTrans-
formFeedbacks are marked as unused again. Unused names in ids are silently
ignored, as is the value zero. The default transform feedback object cannot be
deleted.

Active transform feedback objects cannot be deleted. If an inactive transform
feedback object that is bound to the context is deleted it is first unbound, as if

BindTransformFeedback(TRANSFORM_FEEDBACK, 0);

were called.
In the initial state, a default transform feedback object is bound and treated as

a transform feedback object with a name of zero. That object is bound any time
BindTransformFeedback is called with id of zero.

Errors

An INVALID_VALUE error is generated if n is negative.
An INVALID_OPERATION error is generated if the transform feedback

operation for any object named by ids is currently active.

The command

boolean IsTransformFeedback(uint id);

returns TRUE if id is the name of a transform feedback object. If id is zero, or
a non-zero value that is not the name of a transform feedback object, IsTrans-
formFeedback returns FALSE. No error is generated if id is not a valid transform
feedback object name.

A transform feedback object is created by binding a name returned by Gen-
TransformFeedbacks with the command

void BindTransformFeedback(enum target, uint id);

target must be TRANSFORM_FEEDBACK and id is the transform feedback object
name. The resulting transform feedback object is a new state vector, comprising
all the state and with the same initial values listed in table 21.35. Additionally, the
new object is bound to the GL state vector and is used for subsequent transform
feedback operations.

BindTransformFeedback can also be used to bind an existing transform feed-
back object to the GL state for subsequent use. If the bind is successful, no change

OpenGL ES 3.2 (November 3, 2016)

12.1. TRANSFORM FEEDBACK 338

is made to the state of the newly bound transform feedback object and any previous
binding to target is broken.

While a transform feedback buffer is bound, GL operations on the target to
which it is bound affect the bound transform feedback object, and queries of the
target to which a transform feedback object is bound return state from the bound
object. When buffer objects are bound for transform feedback, they are attached to
the currently bound transform feedback object. Buffer objects are used for trans-
form feedback only if they are attached to the currently bound transform feedback
object.

In the initial state, a default transform feedback object is bound and treated as
a transform feedback object with a name of zero. That object is bound any time
BindTransformFeedback is called with id of zero.

Errors

An INVALID_ENUM error is generated if target is not TRANSFORM_-

FEEDBACK.
An INVALID_OPERATION error is generated if the transform feedback

operation is active on the currently bound transform feedback object, and that
operation is not paused (as described below).

An INVALID_OPERATION error is generated if id is not zero or a name
returned from a previous call to GenTransformFeedbacks, or if such a name
has since been deleted with DeleteTransformFeedbacks.

12.1.2 Transform Feedback Primitive Capture

Transform feedback for the currently bound transform feedback object is is started
(made active) and finished (made inactive) with the commands

void BeginTransformFeedback(enum primitiveMode);

and

void EndTransformFeedback(void);

respectively. primitiveMode must be TRIANGLES, LINES, or POINTS, and speci-
fies the output type of primitives that will be recorded into the buffer objects bound
for transform feedback (see below). primitiveMode restricts the primitive types
that may be rendered while transform feedback is active and not paused.

EndTransformFeedback first performs an implicit ResumeTransformFeed-
back (see below) if transform feedback is paused.

OpenGL ES 3.2 (November 3, 2016)

12.1. TRANSFORM FEEDBACK 339

Transform Feedback Allowed render primitive
primitiveMode modes
POINTS POINTS

LINES LINES, LINE_LOOP, LINE_STRIP
TRIANGLES TRIANGLES, TRIANGLE_STRIP, TRIANGLE_FAN

Table 12.1: Legal combinations of the transform feedback primitive mode, as
passed to BeginTransformFeedback, and the current primitive mode.

BeginTransformFeedback and EndTransformFeedback calls must be
paired. Transform feedback is initially inactive.

Transform feedback mode captures the values of output variables written by
the upstream shader.

Errors

An INVALID_ENUM error is generated by BeginTransformFeedback if
primitiveMode is not TRIANGLES, LINES, or POINTS.

An INVALID_OPERATION error is generated by BeginTransformFeed-
back if transform feedback is active for the current transform feedback object.

An INVALID_OPERATION error is generated by EndTransformFeed-
back if transform feedback is inactive.

Transform feedback operations for the currently bound transform feedback ob-
ject may be paused and resumed by calling

void PauseTransformFeedback(void);

and

void ResumeTransformFeedback(void);

respectively. When transform feedback operations are paused, transform feedback
is still considered active and changing most transform feedback state related to the
object results in an error. However, a new transform feedback object may be bound
while transform feedback is paused.

When transform feedback is active and not paused, all geometric primitives
generated must be compatible with the value of primitiveMode passed to Begin-
TransformFeedback.

OpenGL ES 3.2 (November 3, 2016)

12.1. TRANSFORM FEEDBACK 340

Errors

An INVALID_OPERATION error is generated by PauseTransformFeed-
back if the currently bound transform feedback object is not active or is
paused.

An INVALID_OPERATION error is generated by ResumeTransformFeed-
back if the currently bound transform feedback object is not active or is not
paused.

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if mode is not one of the allowed modes in table 12.1.
If a tessellation evaluation or geometry shader is active, the type of primitive
emitted by that shader is used instead of the mode parameter passed to drawing
commands for the purposes of this error check. If tessellation evaluation and
geometry shaders are both active, the output primitive type of the geometry
shader will be used for the purposes of this error. Any primitive type may be
used while transform feedback is paused.

Regions of buffer objects are bound as the targets of transform feedback by
calling one of the BindBuffer* commands (see section 6) with target set to
TRANSFORM_FEEDBACK_BUFFER.

When an individual point, line, or triangle primitive reaches the transform feed-
back stage while transform feedback is active and not paused, the values of the
specified output variables of the vertex are appended to the buffer objects bound
to the transform feedback binding points. The output variables of the first vertex
received after BeginTransformFeedback are written at the starting offsets of the
bound buffer objects set by BindBuffer*, and subsequent output variables are ap-
pended to the buffer object. When capturing line and triangle primitives, all output
variables of the first vertex are written first, followed by output variables of the
subsequent vertices.

When writing output variables that are arrays, individual array elements are
written in order. For multi-component output variables or elements of output ar-
rays, the individual components are written in order. Variables declared with lowp
or mediump precision are promoted to highp before being written. See Table 12.2
showing the output buffer type for each OpenGL ES Shading Language variable
type. The value for any output variable specified to be streamed to a buffer ob-
ject but not actually written by the upstream shader is undefined. The results of
appending an output variable to a transform feedback buffer are undefined if any
component of that variable would be written at an offset not aligned to the size of
the component.

OpenGL ES 3.2 (November 3, 2016)

12.1. TRANSFORM FEEDBACK 341

Keyword Output Type
float float

vec2

vec3

vec4

mat2

mat3

mat4

mat2x3

mat2x4

mat3x2

mat3x4

mat4x2

mat4x3

int int

ivec2

ivec3

ivec4

uint uint

uvec2

uvec3

uvec4

bool

bvec2

bvec3

bvec4

Table 12.2: OpenGL ES Shading Language keywords declaring each type and
corresponding output buffer type.

OpenGL ES 3.2 (November 3, 2016)

12.1. TRANSFORM FEEDBACK 342

When transform feedback is paused, no vertices are recorded. When transform
feedback is resumed, subsequent vertices are appended to the bound buffer ob-
jects immediately following the last vertex written before transform feedback was
paused.

Individual lines or triangles of a strip or fan primitive will be extracted and
recorded separately. Incomplete primitives are not recorded.

Transform feedback can operate in either INTERLEAVED_ATTRIBS or
SEPARATE_ATTRIBS mode.

In INTERLEAVED_ATTRIBS mode, the values of one or more output variables
written by the upstream shader are written, interleaved, into the buffer object bound
to the first transform feedback binding point (index = 0). If more than one output
variable is written to a buffer object, they will be recorded in the order specified by
TransformFeedbackVaryings (see section 11.1.2.1).

In SEPARATE_ATTRIBS mode, the first output variable specified by Trans-
formFeedbackVaryings is written to the first transform feedback binding point;
subsequent output variables are written to the subsequent transform feedback bind-
ing points. The total number of variables that may be captured in separate mode is
given by MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS.

In either separate or interleaved modes, all transform feedback binding points
that will be written to must have buffer objects bound when BeginTransformFeed-
back is called.

Errors

An INVALID_OPERATION error is generated by BeginTransformFeed-
back if any binding point used in transform feedback mode does not have a
buffer object bound. In interleaved mode, only the first buffer object binding
point is ever written to.

An INVALID_OPERATION error is generated by BeginTransformFeed-
back if no binding points would be used, either because no program object is
active or because the active program object has specified no output variables
to record.

When BeginTransformFeedback is called with an active program containing
a vertex, tessellation or geometry shader, the set of output variables captured dur-
ing transform feedback is taken from the active program object and may not be
changed while transform feedback is active. The program object must be active
until EndTransformFeedback is called, except while the transform feedback ob-
ject is paused.

OpenGL ES 3.2 (November 3, 2016)

12.1. TRANSFORM FEEDBACK 343

Errors

An INVALID_OPERATION error is generated :

• by UseProgram if the current transform feedback object is active and
not paused;

• by UseProgramStages if the program pipeline object it refers to is cur-
rent and the current transform feedback object is active and not paused;

• by BindProgramPipeline if the current transform feedback object is
active and not paused;

• by LinkProgram or ProgramBinary if program is the name of a pro-
gram being used by one or more transform feedback objects, even if the
objects are not currently bound or are paused;

• by ResumeTransformFeedback if the program object being used
by the current transform feedback object is not active. or has
been re-linked since transform feedback became active for the current
transform feedback object;

• by ResumeTransformFeedback if the program pipeline object being
used by the current transform feedback object is not bound, if any of
its shader stage bindings has changed, or if a single program object is
active and overriding it; and

• by BindBufferRange or BindBufferBase if target is TRANSFORM_-

FEEDBACK_BUFFER and transform feedback is currently active.

Buffers should not be bound or in use for both transform feedback and other
purposes in the GL. Specifically, if a buffer object is simultaneously bound to a
transform feedback buffer binding point and elsewhere in the GL, any writes to
or reads from the buffer generate undefined values. Examples of such bindings
include ReadPixels to a pixel buffer object binding point and client access to a
buffer mapped with MapBuffer.

However, if a buffer object is written and read sequentially by transform feed-
back and other mechanisms, it is the responsibility of the GL to ensure that data
are accessed consistently, even if the implementation performs the operations in a
pipelined manner. For example, MapBufferRange may need to block pending the
completion of a previous transform feedback operation.

OpenGL ES 3.2 (November 3, 2016)

12.2. PRIMITIVE QUERIES 344

12.2 Primitive Queries

Primitive queries use query objects to track the number of primitives that are gen-
erated by the GL and the number of primitives that are written to buffer objects in
transform feedback mode.

When BeginQuery is called with a target of PRIMITIVES_GENERATED, the
primitives generated count maintained by the GL is set to zero. When a gener-
ated primitive query is active, the primitives-generated count is incremented every
time an emitted primitive reaches the transform feedback stage (see section 12.1),
whether or not transform feedback is active. This counter counts the number of
primitives emitted by a geometry shader, if active, possibly further tessellated into
separate primitives during the transform feedback stage, if active.

When BeginQuery is called with a target of TRANSFORM_FEEDBACK_-

PRIMITIVES_WRITTEN, the transform feedback primitives written count main-
tained by the GL is set to zero. When the transform feedback primitive written
query is active, the transform feedback primitives written count is incremented ev-
ery time the vertices of a primitive are recorded into a buffer object. If transform
feedback is not active or if a primitive to be recorded does not fit in a buffer object,
this counter is not incremented.

These two types of queries can be used together to determine if all primitives
in a given vertex stream have been written to the bound feedback buffers; if both
queries are run simultaneously and the query results are equal, all primitives have
been written to the buffer(s). If the number of primitives written is less than the
number of primitives generated, one or more buffers overflowed.

12.3 Flatshading

Flatshading a vertex shader output means to assign all vertices of the primitive the
same value for that output.

The output values assigned are those of the provoking vertex of the primitive,
as shown in table 12.3.

User-defined output variables may be flatshaded by using the flat qualifier
when declaring the output, as described in section 4.3.6 (“Interpolation Qualifiers”)
of the OpenGL ES Shading Language Specification.

OpenGL ES 3.2 (November 3, 2016)

12.4. PRIMITIVE CLIPPING 345

Type of primitive i Provoking vertex
point i

independent line 2i

line loop i+ 1, if i < n
1, if i = n

line strip i+ 1

independent triangle 3i

triangle strip i+ 2

triangle fan i+ 2

line adjacency 4i− 1

line strip adjacency i+ 2

triangle adjacency 6i− 1

triangle strip adjacency 2i+ 3

Table 12.3: Provoking vertex selection. The output values used for flatshading the
ith primitive generated by drawing commands with the indicated primitive type are
derived from the corresponding values of the vertex whose index is shown in the
table. Vertices are numbered 1 through n, where n is the number of vertices drawn.

12.4 Primitive Clipping

Primitives are clipped to the clip volume. In clip coordinates, the clip volume is
defined by

−wc ≤ xc ≤ wc

−wc ≤ yc ≤ wc

−wc ≤ zc ≤ wc.

If the primitive under consideration is a point, then clipping passes it un-
changed if it lies within the near and far clip planes; otherwise, it is discarded.

If the primitive is a line segment, then clipping does nothing to it if it lies
entirely within the near and far clip planes, and discards it if it lies entirely outside
these planes.

If part of the line segment lies between the near and far clip planes and part lies
outside, then the line segment is clipped and new vertex coordinates are computed
for one or both vertices. A clipped line segment endpoint lies on both the original
line segment and the near and/or far clip planes.

This clipping produces a value, 0 ≤ t ≤ 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices’ coordinates are P1

OpenGL ES 3.2 (November 3, 2016)

12.4. PRIMITIVE CLIPPING 346

and P2, then t is given by

P = tP1 + (1− t)P2.

The value of t is used to clip vertex shader outputs as described in section 12.4.1.
If the primitive is a polygon, then it is passed if every one of its edges lies

entirely inside the clip volume and either clipped or discarded otherwise. Polygon
clipping may cause polygon edges to be clipped, but because polygon connectivity
must be maintained, these clipped edges are connected by new edges that lie along
the clip volume’s boundary. Thus, clipping may require the introduction of new
vertices into a polygon.

If it happens that a polygon intersects an edge of the clip volume’s boundary,
then the clipped polygon must include a point on this boundary edge.

12.4.1 Clipping Shader Outputs

Next, vertex shader outputs are clipped. The output values associated with a vertex
that lies within the clip volume are unaffected by clipping. If a primitive is clipped,
however, the output values assigned to vertices produced by clipping are clipped.

Let the output values assigned to the two vertices P1 and P2 of an unclipped
edge be c1 and c2. The value of t (section 12.4) for a clipped point P is used to
obtain the output value associated with P as1

c = tc1 + (1− t)c2.

(Multiplying an output value by a scalar means multiplying each of x, y, z, and w
by the scalar.)

Polygon clipping may create a clipped vertex along an edge of the clip volume’s
boundary. This situation is handled by noting that polygon clipping proceeds by
clipping against one half-space at a time. Output value clipping is done in the
same way, so that clipped points always occur at the intersection of polygon edges
(possibly already clipped) with the clip volume’s boundary.

Outputs of integer or unsigned integer type must always be declared with the
flat qualifier. Since such outputs are constant over the primitive being rasterized
(see sections 13.6.1 and 13.7.1), no interpolation is performed.

1 Since this computation is performed in clip space before division by wc, clipped output values
are perspective-correct.

OpenGL ES 3.2 (November 3, 2016)

12.5. COORDINATE TRANSFORMATIONS 347

12.5 Coordinate Transformations

Clip coordinates for a vertex result from shader execution, which yields a vertex
coordinate gl_Position.

Perspective division on clip coordinates yields normalized device coordinates,
followed by a viewport transformation (see section 12.5.1) to convert these coordi-
nates into window coordinates.

If a vertex in clip coordinates is given by


xc
yc
zc
wc


then the vertex’s normalized device coordinates arexdyd

zd

 =

 xc
wc
yc
wc
zc
wc

 .

12.5.1 Controlling the Viewport

The viewport transformation is determined by the viewport’s width and height in
pixels, px and py, respectively, and its center (ox, oy) (also in pixels). The vertex’s

window coordinates,

xwyw
zw

 , are given by

xwyw
zw

 =

 px
2 xd + ox
py
2 yd + oy

f−n
2 zd + n+f

2

 .

The factor and offset applied to zd encoded by n and f are set using

void DepthRangef(float n, float f);

zw may be represented using either a fixed-point or floating-point representation.
However, a floating-point representation must be used if the draw framebuffer has
a floating-point depth buffer. If an m-bit fixed-point representation is used, we
assume that it represents each value k

2m−1 , where k ∈ {0, 1, . . . , 2m − 1}, as k
(e.g. 1.0 is represented in binary as a string of all ones). The parameters n and f are
clamped to the range [0, 1] when specified.

Viewport transformation parameters are specified using

void Viewport(int x, int y, sizei w, sizei h);

OpenGL ES 3.2 (November 3, 2016)

12.5. COORDINATE TRANSFORMATIONS 348

where x and y give the x and y window coordinates of the viewport’s lower left
corner and w and h give the viewport’s width and height, respectively. The viewport
parameters shown in the above equations are found from these values as

ox = x+ w
2

oy = y + h
2

px = w
py = h.

Viewport width and height are clamped to implementation-dependent maxi-
mums when specified. The maximum width and height may be found by call-
ing GetFloatv with the symbolic constant MAX_VIEWPORT_DIMS. The maximum
viewport dimensions must be greater than or equal to the larger of the visible di-
mensions of the display being rendered to (if a display exists), and the largest ren-
derbuffer image which can be successfully created and attached to a framebuffer
object (see chapter 9).

Errors

An INVALID_VALUE error is generated if either w or h is negative.

The state required to implement the viewport transformation is four integers
and two clamped floating-point values. In the initial state, w and h are set to the
width and height, respectively, of the window into which the GL is to do its ren-
dering. If the default framebuffer is bound but no default framebuffer is associated
with the GL context (see chapter 9), then w and h are initially set to zero. ox, oy,
n, and f are set to w

2 , h
2 , 0.0, and 1.0, respectively.

OpenGL ES 3.2 (November 3, 2016)

Chapter 13

Fixed-Function Primitive
Assembly and Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information as color and depth.

Rasterizing a primitive begins by determining which squares of an integer grid
in window coordinates are occupied by the primitive, and assigning a depth value
to each such square. This process is described in sections 13.1-13.7 for point, line,
and triangle primitives.

A grid square, including its (x, y) window coordinates, z (depth), and asso-
ciated data which may be added by fragment shaders, is called a fragment. A
fragment is located by its lower left corner, which lies on integer grid coordinates.
Rasterization operations also refer to a fragment’s center, which is offset by (12 ,

1
2)

from its lower left corner (and so lies on half-integer coordinates).
Fragments need not actually be square, and rasterization rules are not affected

by the aspect ratio of fragments. Display of non-square grids, however, will cause
rasterized points and line segments to appear fatter in one direction than the other.
We assume that fragments are square, since it simplifies antialiasing and texturing.

After rasterization, fragments are processed by the early per-fragment tests de-
scribed in section 13.8, which may modify or discard fragments.

Surviving fragments are passed to fragment shaders (see chapter 14). Fragment
shaders determine color values for fragments, and may also modify or replace their
assigned depth values.

Figure 13.1 diagrams the rasterization process.
Several factors affect rasterization. Primitives may be discarded before rasteri-

zation. Points may be given differing diameters and line segments differing widths.
Rasterization only produces fragments corresponding to pixels in the frame-

349

350

Point
Rasterization

From
Primitive
Assembly

Processed
Fragments

Scissor
Test

Multisample
Fragment

Operations

Fragment
Shading

Line
Rasterization

Triangle
Rasterization

Pixel
Ownership

Test

Other Early
Tests

Figure 13.1. Rasterization, early per-fragment tests, and fragment shading. Optional
early tests described in section 13.8 are included in the “Other Early Tests” box.

OpenGL ES 3.2 (November 3, 2016)

13.1. DISCARDING PRIMITIVES BEFORE RASTERIZATION 351

buffer. Fragments which would be produced by application of any of the primitive
rasterization rules described below but which lie outside the framebuffer are not
produced, nor are they processed by any later stage of the GL, including any of the
early per-fragment tests described in section 13.8.

13.1 Discarding Primitives Before Rasterization

Primitives can be optionally discarded before rasterization by calling Enable and
Disable with RASTERIZER_DISCARD. When enabled, primitives are discarded im-
mediately before the rasterization stage, but after the optional transform feedback
stage (see section 12.1). When disabled, primitives are passed through to the ras-
terization stage to be processed normally. When enabled, RASTERIZER_DISCARD
also causes the Clear and ClearBuffer* commands to be ignored.

The state required to control primitive discard is a bit indicating whether dis-
card is enabled or disabled. The initial value of primitive discard is FALSE.

13.2 Primitive Bounding Box

Implementations may be able to optimize performance if the application provides
bounds of primitives that will be generated by the tessellation primitive generator
or the geometry shader prior to executing those stages. If the provided bounds
are incorrect and primitives extend beyond them, the rasterizer may or may not
generate fragments for the portions of primitives outside the bounds.

The primitive bounding box is specified with the command

void PrimitiveBoundingBox(float minX, float minY,
float minZ, float minW, float maxX, float maxY,
float maxZ, float maxW);

where minX, minY, minZ, and minW specify the minimum clip space coordinate
of the bounding box and maxX, maxY, maxZ, and maxW specify the maximum
coordinate.

If tessellation is active, each invocation of the tessellation control shader may
re-specify the bounding box by writing to the built-in variable gl_BoundingBox.
If the shader statically assigns a value to any part of this variable, then gl_-

BoundingBox[0] is used instead of minX, minY, minZ, minW, and gl_-

BoundingBox[1] is used instead of maxX, maxY, maxZ, maxW. If the shader
contains a static assignment to gl_BoundingBox and there is an execution path
through the shader that does not write all components of gl_BoundingBox, the

OpenGL ES 3.2 (November 3, 2016)

13.3. INVARIANCE 352

value of unwritten components and corresponding bounding box coordinates is un-
defined for executions of the shader that take that path.

If the tessellation control shader re-specifies the bounding box, the re-specified
value is used for primitives generated from the output patch by the primitive gener-
ator, any primitives emitted by the geometry shader invocations for those generated
primitives, and any primitives further introduced during clipping.

The bounding box in clip space is composed of 16 vertices formed by all com-
binations of the minimum and maximum values for each dimension. This bounding
box is clipped against wc > 0, and projected to three dimensions by dividing xc,
yc, and zc by wc for each vertex. The viewport transform is then applied to each
vertex to produce a three-dimensional bounding volume in window coordinates.

The window space bounding volume is expanded in the X and Y dimensions
to accomodate the rasterization rules for the primitive type, and to fall on fragment
boundaries:

minwc
′

=

⌊
minwc −

size

2.0

⌋
maxwc

′
=

⌈
maxwc +

size

2.0

⌉
.

where the minwc rule is used for x and y window coordinates of bounding volume
vertices formed from minX and min respectively, and the maxwc rule is used for
x and y window coordinates of bounding volume vertices formed from maxX and
maxY respectively. For point primitives, size is the per-primitive point size after
clamping to the implementation-defined maximum point size as described in sec-
tion 13.5. For line primitives, size is the line width, after rounding and clamping
as described in section 13.6.2.1. For triangle primitives, size is zero.

During rasterization, the rasterizer will generate fragments with window coor-
dinates inside the windows space bounding volume, but may or may not generate
fragments with window coordinates outside the bounding volume.

13.3 Invariance

Consider a primitive p′ obtained by translating a primitive p through an offset (x, y)
in window coordinates, where x and y are integers. As long as neither p′ nor p is
clipped, it must be the case that each fragment f ′ produced from p′ is identical to
a corresponding fragment f from p except that the center of f ′ is offset by (x, y)
from the center of f .

OpenGL ES 3.2 (November 3, 2016)

13.4. MULTISAMPLING 353

13.4 Multisampling

Multisampling is a mechanism to antialias all GL primitives: points, lines, and
polygons. The technique is to sample all primitives multiple times at each pixel.
The color sample values are resolved to a single, displayable color. For window
system-provided framebuffers, this occurs each time a pixel is updated, so the an-
tialiasing appears to be automatic at the application level. For application-created
framebuffers, this must be requested by calling the BlitFramebuffer command
(see section 16.2). Because each sample includes color, depth, and stencil informa-
tion, the color (including texture operation), depth, and stencil functions perform
equivalently to the single-sample mode.

An additional buffer, called the multisample buffer, is added to the window
system-provided framebuffer. Pixel sample values, including color, depth, and
stencil values, are stored in this buffer. Samples contain separate color values for
each fragment color. When the window system-provided framebuffer includes a
multisample buffer, it does not include depth or stencil buffers, even if the multi-
sample buffer does not store depth or stencil values. Color buffers do coexist with
the multisample buffer, however.

Multisample antialiasing is most valuable for rendering polygons, because it
requires no sorting for hidden surface elimination, and it correctly handles adjacent
polygons, object silhouettes, and even intersecting polygons.

If the value of SAMPLE_BUFFERS (see section 9.2.3.1) is one, the rasteriza-
tion of all primitives is changed, and is referred to as multisample rasterization.
Otherwise, primitive rasterization is referred to as single-sample rasterization.

During multisample rendering the contents of a pixel fragment are changed in
two ways. First, each fragment includes a coverage value with SAMPLES bits (see
section 9.2.3.1).

The location at which shading is performed for a given sample (the shading
sample location) is queried with the command

void GetMultisamplefv(enum pname, uint index,
float *val);

pname must be SAMPLE_POSITION, and index corresponds to the sample for
which the location should be returned. The shading sample location (x, y) is re-
turned as two floating-point values in (val[0], val[1]) respectively. x and y each lie
in the range [0, 1] and represent a location in pixel space at which depth and asso-
ciated data for that sample are evaulated for a fragment (e.g. where sample shading
is performed). (0.5, 0.5) thus corresponds to the pixel center. If the multisample
mode does not have fixed shading sample locations, the returned values may only
reflect the locations of samples within some pixels.

OpenGL ES 3.2 (November 3, 2016)

13.4. MULTISAMPLING 354

Errors

An INVALID_ENUM error is generated if pname is not SAMPLE_-

POSITION.
An INVALID_VALUE error is generated if index is greater than or equal to

the value of SAMPLES.

Second, each fragment includes SAMPLES depth values and sets of associated
data, instead of the single depth value and set of associated data that is maintained
in single-sample rendering mode. An implementation may choose to assign the
same associated data to more than one sample. The location for evaluating such
associated data can be anywhere within the pixel including the fragment center or
any of the sample locations. The different associated data values need not all be
evaluated at the same location. Each pixel fragment thus consists of integer x and y
grid coordinates, SAMPLES depth values and sets of associated data, and a coverage
value with a maximum of SAMPLES bits.

Multisample rasterization is only in effect when the value of SAMPLE_-

BUFFERS is one.
Multisample rasterization of all primitives differs substantially from single-

sample rasterization. It is understood that each pixel in the framebuffer has sample
locations associated with it. These locations are exact positions, rather than re-
gions or areas, and each is referred to as a sample point. These sample points do
not necessarily correspond to the shading sample locations returned by GetMulti-
samplefv. Their locations cannot be queried, and may lie inside or outside of the
unit square that is considered to bound the pixel. The number of these samples
may be different than the value of SAMPLES. Furthermore, the relative locations
of sample points may be identical for each pixel in the framebuffer, or they may
differ.

If the value of SAMPLE_BUFFERS is one and the current program object in-
cludes a fragment shader with one or more input variables qualified with sample

in, the data associated with those variables will be assigned independently. The
values for each sample must be evaluated at the location of the sample. The data
associated with any other variables not qualified with sample in need not be
evaluated independently for each sample.

If the sample locations differ per pixel, they should be aligned to window, not
screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in section 13.3 is relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

OpenGL ES 3.2 (November 3, 2016)

13.5. POINTS 355

13.4.1 Sample Shading

Sample shading can be used to specify a minimum number of unique samples to
process for each fragment. Sample shading is controlled by calling Enable or
Disable with target SAMPLE_SHADING.

If the value of SAMPLE_BUFFERS is zero or SAMPLE_SHADING is disabled,
sample shading has no effect. Otherwise, an implementation must provide a mini-
mum of

max(dmss× samplese, 1)

unique sets of fragment shader inputs for each fragment, where mss is the value of
MIN_SAMPLE_SHADING_VALUE and samples is the number of samples (the val-
ues of SAMPLES). These are associated with the samples in an implementation-
dependent manner. The value of MIN_SAMPLE_SHADING_VALUE is specified by
calling

void MinSampleShading(float value);

with value set to the desired minimum sample shading fraction. value is clamped
to [0, 1] when specified. The sample shading fraction may be queried by calling
GetFloatv with pname MIN_SAMPLE_SHADING_VALUE.

When the sample shading fraction is 1.0, a separate set of fragment shader
input values are evaluated for each sample, and each set of values is evaluated at
the sample location.

13.5 Points

A point is drawn by generating a set of fragments in the shape of a square centered
around the vertex of the point. Each vertex has an associated point size that controls
the size of that square or circle.

The point size is determined by the last active stage before the rasterizer (the
upstream shader).

• the geometry shader, if active;

• the tessellation evaluation shader, if active and no geometry shader is active;
or

• the vertex shader, otherwise.

If the upstream shader is not a vertex shader, the point size is 1.0.

OpenGL ES 3.2 (November 3, 2016)

13.5. POINTS 356

If the upstream shader is a vertex shader, the point size is taken from the
shader built-in gl_PointSize written by the vertex shader, and is clamped to the
implementation-dependent point size range. If the value written to gl_PointSize
is less than or equal to zero, or if no value is written to gl_PointSize, the point
size is undefined. The supported [min,max] range of point sizes may be queried
as ALIASED_POINT_SIZE_RANGE, as described in table 21.40. The maximum
point size supported must be at least one.

13.5.1 Basic Point Rasterization

Point rasterization produces a fragment for each framebuffer pixel whose center
lies inside a square centered at the point’s (xw, yw), with side length equal to the
current point size.

All fragments produced in rasterizing a point sprite are assigned the same asso-
ciated data, which are those of the vertex corresponding to the point. However, the
fragment shader builtin gl_PointCoord defines a per-fragment coordinate space
(s, t) where s varies from 0 to 1 across the point horizontally left-to-right, and t
varies from 0 to 1 across the point vertically top-to-bottom.

The following formula is used to evaluate (s, t) values:

s =
1

2
+

(
xf + 1

2 − xw
)

size
(13.1)

t =
1

2
−
(
yf + 1

2 − yw
)

size
(13.2)

where size is the point’s size, xf and yf are the (integral) window coordinates of
the fragment, and xw and yw are the exact, unrounded window coordinates of the
vertex for the point.

13.5.2 Point Multisample Rasterization

If the value of SAMPLE_BUFFERS is one, then points are rasterized using the fol-
lowing algorithm. Point rasterization produces a fragment for each framebuffer
pixel with one or more sample points that intersect a region centered at the point’s
(xw, yw). This region is a square with sides equal to the current point size. Cov-
erage bits that correspond to sample points that intersect the region are 1, other
coverage bits are 0. All data associated with each sample for the fragment are the
data associated with the point being rasterized.

OpenGL ES 3.2 (November 3, 2016)

13.6. LINE SEGMENTS 357

13.6 Line Segments

A line segment results from a line strip, a line loop, or a series of separate line
segments. Line segment rasterization is controlled by several variables. Line width,
which may be set by calling

void LineWidth(float width);

with an appropriate positive floating-point width, controls the width of rasterized
line segments. The default width is 1.0.

The supported [min,max] range of line widths may be queried as ALIASED_-
LINE_WIDTH_RANGE, as described in table 21.40. The maximum line width sup-
ported must be at least one.

Errors

An INVALID_VALUE error is generated if width is less than or equal to
zero.

13.6.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either x-major
or y-major. x-major line segments have slope in the closed interval [−1, 1]; all
other line segments are y-major (slope is determined by the segment’s endpoints).
We shall specify rasterization only for x-major segments except in cases where the
modifications for y-major segments are not self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments that
are produced by rasterizing a line segment. For each fragment f with center at win-
dow coordinates xf and yf , define a diamond-shaped region that is the intersection
of four half planes:

Rf = { (x, y) | |x− xf |+ |y − yf | <
1

2
.}

Essentially, a line segment starting at pa and ending at pb produces those frag-
ments f for which the segment intersects Rf , except if pb is contained in Rf . See
figure 13.2.

To avoid difficulties when an endpoint lies on a boundary of Rf we (in princi-
ple) perturb the supplied endpoints by a tiny amount. Let pa and pb have window
coordinates (xa, ya) and (xb, yb), respectively. Obtain the perturbed endpoints p′a
given by (xa, ya) − (ε, ε2) and p′b given by (xb, yb) − (ε, ε2). Rasterizing the line
segment starting at pa and ending at pb produces those fragments f for which the

OpenGL ES 3.2 (November 3, 2016)

13.6. LINE SEGMENTS 358

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Figure 13.2. Visualization of Bresenham’s algorithm. A portion of a line segment is
shown. A diamond shaped region of height 1 is placed around each fragment center;
those regions that the line segment exits cause rasterization to produce correspond-
ing fragments.

segment starting at p′a and ending on p′b intersects Rf , except if p′b is contained in
Rf . ε is chosen to be so small that rasterizing the line segment produces the same
fragments when δ is substituted for ε for any 0 < δ ≤ ε.

When pa and pb lie on fragment centers, this characterization of fragments
reduces to Bresenham’s algorithm with one modification: lines produced in this
description are “half-open,” meaning that the final fragment (corresponding to pb)
is not drawn. This means that when rasterizing a series of connected line segments,
shared endpoints will be produced only once rather than twice (as would occur with
Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may be difficult
to implement, other line segment rasterization algorithms are allowed, subject to
the following rules:

1. The coordinates of a fragment produced by the algorithm may not deviate by
more than one unit in either x or y window coordinates from a corresponding
fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may differ from
that produced by the diamond-exit rule by no more than one.

OpenGL ES 3.2 (November 3, 2016)

13.6. LINE SEGMENTS 359

3. For an x-major line, no two fragments may be produced that lie in the same
window-coordinate column (for a y-major line, no two fragments may ap-
pear in the same row).

4. If two line segments share a common endpoint, and both segments are either
x-major (both left-to-right or both right-to-left) or y-major (both bottom-to-
top or both top-to-bottom), then rasterizing both segments may not produce
duplicate fragments, nor may any fragments be omitted so as to interrupt
continuity of the connected segments.

Next we must specify how the data associated with each rasterized fragment
are obtained. Let the window coordinates of a produced fragment center be given
by pr = (xd, yd) and let pa = (xa, ya) and pb = (xb, yb). Set

t =
(pr − pa) · (pb − pa)

‖pb − pa‖2
. (13.3)

(Note that t = 0 at pa and t = 1 at pb.) The value of an associated datum f for the
fragment, whether it be a shader output or the clip w coordinate, is found as

f =
(1− t)fa/wa + tfb/wb

(1− t)/wa + t/wb
(13.4)

where fa and fb are the data associated with the starting and ending endpoints of
the segment, respectively; wa and wb are the clip w coordinates of the starting and
ending endpoints of the segments, respectively. However, depth values for lines
must be interpolated by

z = (1− t)za + tzb (13.5)

where za and zb are the depth values of the starting and ending endpoints of the
segment, respectively.

Although the interpolation formula given above is preferred, the formula given
in equation 13.3 may be approximated by replacing (pr,pa,pb) with (xr, xa, xb)
for x-major lines, or with (yr, ya, yb) for y-major lines, respectively.

The flat keyword used to declare shader outputs affects how they are inter-
polated. When it is not specified, interpolation is performed as described in equa-
tion 13.4. When the flat keyword is specified, no interpolation is performed,
and outputs are taken from the corresponding input value of the provoking vertex
corresponding to that primitive (see section 12.3).

OpenGL ES 3.2 (November 3, 2016)

13.6. LINE SEGMENTS 360

width = 2 width = 3

Figure 13.3. Rasterization of wide lines. x-major line segments are shown. The
heavy line segment is the one specified to be rasterized; the light segment is the off-
set segment used for rasterization. x marks indicate the fragment centers produced
by rasterization.

13.6.2 Other Line Segment Features

We have just described the rasterization of line segments of width one. We now
describe the rasterization of line segments for general values of line width.

13.6.2.1 Wide Lines

The actual width of lines is determined by rounding the supplied width to the near-
est integer, then clamping it to the implementation-dependent maximum line width.
This implementation-dependent value must be no less than 1. If rounding the spec-
ified width results in the value 0, then it is as if the value were 1.

Line segments of width other than one are rasterized by offsetting them in the
minor direction (for an x-major line, the minor direction is y, and for a y-major
line, the minor direction is x) and replicating fragments in the minor direction
(see figure 13.3). Let w be the width rounded to the nearest integer (if w = 0,
then it is as if w = 1). If the line segment has endpoints given by (x0, y0) and
(x1, y1) in window coordinates, the segment with endpoints (x0, y0 − (w − 1)/2)
and (x1, y1 − (w − 1)/2) is rasterized, but instead of a single fragment, a column
of fragments of height w (a row of fragments of length w for a y-major segment)

OpenGL ES 3.2 (November 3, 2016)

13.6. LINE SEGMENTS 361

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

Figure 13.4. The region used in rasterizing a multisampled line segment (an x-major
line segment is shown).

is produced at each x (y for y-major) location. The lowest fragment of this column
is the fragment that would be produced by rasterizing the segment of width 1 with
the modified coordinates.

13.6.3 Line Rasterization State

The state required for line rasterization consists of the floating-point line width.
The initial value of the line width is 1.0.

13.6.4 Line Multisample Rasterization

If the value of SAMPLE_BUFFERS is one, then lines are rasterized using the follow-
ing algorithm. Line rasterization produces a fragment for each framebuffer pixel
with one or more sample points that intersect a rectangle centered on the line seg-
ment (see figure 13.4). Two of the edges are parallel to the specified line segment;
each is at a distance of one-half the line width from that segment: one above the
segment and one below it. The other two edges pass through the line endpoints and
are perpendicular to the direction of the specified line segment.

Coverage bits that correspond to sample points that intersect a rectangle are
1, other coverage bits are 0. Each depth value and set of associated data is pro-
duced by substituting the corresponding sample location into equation 13.3, then
using the result to evaluate equation 13.4. Note that the approximate form of equa-

OpenGL ES 3.2 (November 3, 2016)

13.7. POLYGONS 362

tion 13.3 described in section 13.6.1 may not be used during multisampled line
rasterization. An implementation may choose to assign the associated data to more
than one sample by evaluating equation 13.3 at any location within the pixel in-
cluding the fragment center or any one of the sample locations, then substituting
into equation 13.4. The different associated data values need not be evaluated at
the same location.

The supported [min,max] range of multisampled line widths, and the width of
evenly-spaced gradations within that range are implementation-dependent and may
be queried as MULTISAMPLE_LINE_WIDTH_RANGE and MULTISAMPLE_LINE_-

WIDTH_GRANULARITY respectively, as described in table 21.40. If, for instance,
the width range is from 0.1 to 2.0 and the gradation width is 0.1, then the widths
0.1, 0.2, . . . , 1.9, 2.0 are supported. Additional line widths may also be supported;
there is no requirement that these widths be evenly spaced. If an unsupported width
is requested, the nearest supported width is used instead. Width 1.0 segments must
be supported.

13.7 Polygons

A polygon results from a triangle arising from a triangle strip, triangle fan, or series
of separate triangles.

13.7.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygon is back-facing
or front-facing. This determination is made based on the sign of the (clipped or
unclipped) polygon’s area computed in window coordinates. One way to compute
this area is

a =
1

2

n−1∑
i=0

xiwy
i⊕1
w − xi⊕1w yiw (13.6)

where xiw and yiw are the x and y window coordinates of the ith vertex of the
n-vertex polygon (vertices are numbered starting at zero for purposes of this com-
putation) and i⊕ 1 is (i+ 1) mod n. The interpretation of the sign of this value is
controlled with

void FrontFace(enum dir);

Setting dir to CCW (corresponding to counter-clockwise orientation of the pro-
jected polygon in window coordinates) uses a as computed above. Setting dir to

OpenGL ES 3.2 (November 3, 2016)

13.7. POLYGONS 363

CW (corresponding to clockwise orientation) indicates that the sign of a should be
reversed prior to use. Front face determination requires one bit of state, and is
initially set to CCW.

Errors

An INVALID_ENUM error is generated if dir is not CW or CCW.

If the sign of a (including the possible reversal of this sign as determined by
FrontFace) is positive, the polygon is front-facing; otherwise, it is back-facing.
This determination is used in conjunction with the CullFace enable bit and mode
value to decide whether or not a particular polygon is rasterized. The CullFace
mode is set by calling

void CullFace(enum mode);

mode is a symbolic constant: one of FRONT, BACK or FRONT_AND_BACK. Culling
is enabled or disabled with Enable or Disable using the symbolic constant CULL_-
FACE. Front-facing polygons are rasterized if either culling is disabled or the Cull-
Face mode is BACK while back-facing polygons are rasterized only if either culling
is disabled or the CullFace mode is FRONT. The initial setting of the CullFace
mode is BACK. Initially, culling is disabled.

Errors

An INVALID_ENUM error is generated if mode is not FRONT, BACK, or
FRONT_AND_BACK.

The rule for determining which fragments are produced by polygon rasteriza-
tion is called point sampling. The two-dimensional projection obtained by taking
the x and y window coordinates of the polygon’s vertices is formed. Fragment
centers that lie inside of this polygon are produced by rasterization. Special treat-
ment is given to a fragment whose center lies on a polygon edge. In such a case
we require that if two polygons lie on either side of a common edge (with identical
endpoints) on which a fragment center lies, then exactly one of the polygons results
in the production of the fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a poly-
gon, we begin by specifying how these values are produced for fragments in a
triangle. Define barycentric coordinates for a triangle. Barycentric coordinates are
a set of three numbers, a, b, and c, each in the range [0, 1], with a + b + c = 1.

OpenGL ES 3.2 (November 3, 2016)

13.7. POLYGONS 364

These coordinates uniquely specify any point p within the triangle or on the trian-
gle’s boundary as

p = apa + bpb + cpc,

where pa, pb, and pc are the vertices of the triangle. a, b, and c can be found as

a =
A(ppbpc)

A(papbpc)
, b =

A(ppapc)

A(papbpc)
, c =

A(ppapb)

A(papbpc)
,

where A(lmn) denotes the area in window coordinates of the triangle with vertices
l, m, and n.

Denote an associated datum at pa, pb, or pc as fa, fb, or fc, respectively. Then
the value f of a datum at a fragment produced by rasterizing a triangle is given by

f =
afa/wa + bfb/wb + cfc/wc

a/wa + b/wb + c/wc
(13.7)

where wa, wb and wc are the clip w coordinates of pa, pb, and pc, respectively.
a, b, and c are the barycentric coordinates of the fragment for which the data are
produced. a, b, and c must correspond precisely to the exact coordinates of the
center of the fragment. Another way of saying this is that the data associated with
a fragment must be sampled at the fragment’s center. However, depth values for
polygons must be interpolated by

z = aza + bzb + czc (13.8)

where za, zb, and zc are the depth values of pa, pb, and pc, respectively.
When outputs are declared with the flat keyword, the method used to com-

pute associated data depends on the type of the output. For floating point outputs,
equation 13.7 is used, but fa, fb, and fc are replaced with fp, the value of the da-
tum at the provoking vertex. The equation collapses to f = fp, but note that since
interpolation is still performed, precision may be lost.

For a polygon with more than three edges, such as may be produced by clipping
a triangle, we require only that a convex combination of the values of the datum
at the polygon’s vertices can be used to obtain the value assigned to each fragment
produced by the rasterization algorithm. That is, it must be the case that at every
fragment

f =

n∑
i=1

aifi

where n is the number of vertices in the polygon, fi is the value of the f at vertex
i; for each i 0 ≤ ai ≤ 1 and

∑n
i=1 ai = 1. The values of the ai may differ from

fragment to fragment, but at vertex i, aj = 0, j 6= i and ai = 1.

OpenGL ES 3.2 (November 3, 2016)

13.7. POLYGONS 365

One algorithm that achieves the required behavior is to triangulate a polygon
(without adding any vertices) and then treat each triangle individually as already
discussed. A scan-line rasterizer that linearly interpolates data along each edge
and then linearly interpolates data across each horizontal span from edge to edge
also satisfies the restrictions (in this case, the numerator and denominator of equa-
tion 13.7 should be iterated independently and a division performed for each frag-
ment).

13.7.2 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon may
be offset by a single value that is computed for that polygon. The function that
determines this value is specified by calling

void PolygonOffset(float factor, float units);

factor scales the maximum depth slope of the polygon, and units scales an
implementation-dependent constant that relates to the usable resolution of the
depth buffer. The resulting values are summed to produce the polygon offset value.
Both factor and units may be either positive or negative.

The maximum depth slope m of a triangle is

m =

√(
∂zw
∂xw

)2

+

(
∂zw
∂yw

)2

(13.9)

where (xw, yw, zw) is a point on the triangle. m may be approximated as

m = max

{∣∣∣∣ ∂zw∂xw

∣∣∣∣ , ∣∣∣∣∂zw∂yw

∣∣∣∣} . (13.10)

The minimum resolvable difference r is an implementation-dependent param-
eter that depends on the depth buffer representation. It is the smallest difference in
window coordinate z values that is guaranteed to remain distinct throughout poly-
gon rasterization and in the depth buffer. All pairs of fragments generated by the
rasterization of two polygons with otherwise identical vertices, but zw values that
differ by r, will have distinct depth values.

For fixed-point depth buffer representations, r is constant throughout the range
of the entire depth buffer. For floating-point depth buffers, there is no single min-
imum resolvable difference. In this case, the minimum resolvable difference for a
given polygon is dependent on the maximum exponent, e, in the range of z values
spanned by the primitive. If n is the number of bits in the floating-point mantissa,
the minimum resolvable difference, r, for the given primitive is defined as

OpenGL ES 3.2 (November 3, 2016)

13.7. POLYGONS 366

r = 2e−n.

If no depth buffer is present, r is undefined.
The offset value o for a polygon is

o = m× factor + r × units. (13.11)

m is computed as described above. If the depth buffer uses a fixed-point represen-
tation, m is a function of depth values in the range [0, 1], and o is applied to depth
values in the same range.

Boolean state value POLYGON_OFFSET_FILL determines whether o is applied
during the rasterization of polygons. This boolean state value is enabled and dis-
abled with the commands Enable and Disable.

For fixed-point depth buffers, fragment depth values are always limited to the
range [0, 1] by clamping after offset addition is performed. Fragment depth values
are clamped even when the depth buffer uses a floating-point representation.

13.7.3 Polygon Multisample Rasterization

If the value of SAMPLE_BUFFERS is one, then polygons are rasterized using the
following algorithm. Polygon rasterization produces a fragment for each frame-
buffer pixel with one or more sample points that satisfy the point sampling criteria
described in section 13.7.1. If a polygon is culled, based on its orientation and the
CullFace mode, then no fragments are produced during rasterization.

Coverage bits that correspond to sample points that satisfy the point sampling
criteria are 1, other coverage bits are 0. Each associated datum is produced as
described in section 13.7.1, but using the corresponding sample location instead of
the fragment center. An implementation may choose to assign the same associated
data values to more than one sample by barycentric evaluation using any location
within the pixel including the fragment center or one of the sample locations.

The flat qualifier affects how shader outputs are interpolated in the same
fashion as described for basic polygon rasterization in section 13.7.1.

13.7.4 Polygon Rasterization State

The state required for polygon rasterization consists of whether polygon offsets are
enabled or disabled, and the factor and bias values of the polygon offset equation.
The initial polygon offset factor and bias values are both 0; initially polygon offset
is disabled.

OpenGL ES 3.2 (November 3, 2016)

13.8. EARLY PER-FRAGMENT TESTS 367

13.8 Early Per-Fragment Tests

Once fragments are produced by rasterization, a number of per-fragment operations
are performed prior to fragment shader execution. If a fragment is discarded during
any of these operations, it will not be processed by any subsequent stage, including
fragment shader execution.

Three fragment operations are performed, and a further three are optionally
performed on each fragment, in the following order:

• the pixel ownership test (see section 13.8.1);

• the scissor test (see section 13.8.2);

• multisample fragment operations (see section 13.8.3);

If early per-fragment operations are enabled, these tests are also performed:

• the stencil test (see section 15.1.2);

• the depth buffer test (see section 15.1.3); and

• occlusion query sample counting (see section 15.1.4).

13.8.1 Pixel Ownership Test

The first test is to determine if the pixel at location (xw, yw) in the framebuffer
is currently owned by the GL (more precisely, by this GL context). If it is not,
the window system decides the fate of the incoming fragment. Possible results are
that the fragment is discarded or that some subset of the subsequent per-fragment
operations are applied to the fragment. This test allows the window system to
control the GL’s behavior, for instance, when a GL window is obscured.

If the draw framebuffer is a framebuffer object (see section 15.2.1), the pixel
ownership test always passes, since the pixels of framebuffer objects are owned by
the GL, not the window system. If the draw framebuffer is the default framebuffer,
the window system controls pixel ownership.

13.8.2 Scissor Test

The scissor test determines if (xw, yw) lies within the scissor rectangle defined by
four values for each viewport. These values are set with

void Scissor(int left, int bottom, sizei width,
sizei height);

OpenGL ES 3.2 (November 3, 2016)

13.8. EARLY PER-FRAGMENT TESTS 368

If left ≤ xw < left +width and bottom ≤ yw < bottom +height , then the scissor
test passes. Otherwise, the test fails and the fragment is discarded.

The test is enabled or disabled using Enable or Disable with target
SCISSOR_TEST. When disabled, it is as if the scissor test always passes.

Errors

An INVALID_VALUE error is generated if width or height is negative.

The state required consists of four integer values and a bit indicating whether
the test is enabled or disabled. In the initial state, left = bottom = 0. width
and height are set to the width and height, respectively, of the window into which
the GL is to do its rendering. If the default framebuffer is bound but no default
framebuffer is associated with the GL context (see chapter 9), then width and height
are initially set to zero. Initially, the scissor test is disabled.

13.8.3 Multisample Fragment Operations

This step modifies fragment coverage values based on the values of SAMPLE_-
COVERAGE, SAMPLE_COVERAGE_VALUE, SAMPLE_COVERAGE_INVERT,
SAMPLE_MASK, and SAMPLE_MASK_VALUE. If the value of SAMPLE_BUFFERS is
not one, this step is skipped.

All alpha values in this section refer only to the alpha component of the frag-
ment shader output linked to color number zero (see section 14.2.3). If the fragment
shader does not write to this output, the alpha value is undefined.

Sample coverage and sample mask operations are enabled or disabled by call-
ing Enable and Disable with targets SAMPLE_COVERAGE or SAMPLE_MASK, re-
spectively.

If SAMPLE_COVERAGE is enabled, the fragment coverage value is ANDed with
a temporary coverage mask generated from the value of SAMPLE_COVERAGE_-
VALUE. If the value of SAMPLE_COVERAGE_INVERT is TRUE, this mask is inverted
(all bit values are inverted) before it is ANDed with the fragment coverage. Finally,
if SAMPLE_MASK is enabled, the fragment coverage is ANDed with the value of
SAMPLE_MASK_VALUE. This updated coverage becomes the new fragment cover-
age value.

No specific algorithm is required for converting the sample coverage value to
a temporary coverage mask. It is intended that the number of 1’s in this value be
proportional to the sample coverage value, with all 1’s corresponding to a value
of 1.0 and all 0’s corresponding to 0.0. It is also intended that the algorithm be
pseudo-random in nature, to avoid image artifacts due to regular coverage sample

OpenGL ES 3.2 (November 3, 2016)

13.8. EARLY PER-FRAGMENT TESTS 369

locations. The algorithm can and probably should be different at different pixel
locations. If it does differ, it should be defined relative to window, not screen,
coordinates, so that rendering results are invariant with respect to window position.

The values of SAMPLE_COVERAGE_VALUE and SAMPLE_COVERAGE_INVERT

are specified by calling

void SampleCoverage(float value, boolean invert);

with value set to the desired coverage value, and invert set to TRUE or FALSE. value
is clamped to [0, 1] before being stored as SAMPLE_COVERAGE_VALUE. These val-
ues may be queried as described in table 21.8.

The value of SAMPLE_MASK_VALUE is specified using

void SampleMaski(uint maskNumber, bitfield mask);

with mask set to the desired mask for mask word maskNumber. Bit B of mask
wordM corresponds to sample 32M+B as described in section 13.4. The sample
mask value is queried by calling GetIntegeri v with target SAMPLE_MASK_VALUE
and index set to maskNumber.

Errors

An INVALID_VALUE error is generated if maskNumber is greater than or
equal to the value of MAX_SAMPLE_MASK_WORDS.

13.8.4 The Early Fragment Test Qualifier

The stencil test, depth buffer test and occlusion query sample counting are per-
formed if and only if early fragment tests are enabled in the active fragment shader
(see section 14.2.4). When early per-fragment operations are enabled, these op-
erations are performed prior to fragment shader execution, and the stencil buffer,
depth buffer, and occlusion query sample counts will be updated accordingly; these
operations will not be performed again after fragment shader execution.

When there is no active program, the active program has no fragment shader, or
the active program was linked with early fragment tests disabled, these operations
are performed only after fragment program execution, in the order described in
section 15.1.

If early fragment tests are enabled, the depth buffer, stencil buffer, and occlu-
sion query sample counts may be updated even for fragments or samples that would
be discarded after fragment shader execution due to per-fragment operations such
as alpha-to-coverage tests.

OpenGL ES 3.2 (November 3, 2016)

Chapter 14

Programmable Fragment
Processing

When the program object currently in use for the fragment stage (see section 7.3)
includes a fragment shader, its shader is considered active and is used to process
fragments resulting from rasterization (see section 13).

If the current fragment stage program object has no fragment shader, or no
fragment program object is current for the fragment stage, the results of fragment
shader execution are undefined.

The processed fragments resulting from fragment shader execution are then
further processed and written to the framebuffer as described in chapter 15.

14.1 Fragment Shader Variables

Fragment shaders can access uniforms belonging to the current program object.
Limits on uniform storage and methods for manipulating uniforms are described in
section 7.6.

Fragment shaders also have access to samplers to perform texturing operations,
as described in section 7.9.

Fragment shaders can read input variables or inputs that correspond to the
attributes of the fragments produced by rasterization.

The OpenGL ES Shading Language Specification defines a set of built-in in-
puts that can be be accessed by a fragment shader. These built-in inputs include
data associated with a fragment such as the fragment’s position.

Additionally, the previous active shader stage may define one or more output
variables (see section 11.1.2.1 and the OpenGL ES Shading Language Specifica-
tion). The values of these user-defined outputs are, if not flat shaded, interpolated

370

14.2. SHADER EXECUTION 371

across the primitive being rendered. The results of these interpolations are avail-
able when inputs of the same name are defined in the fragment shader.

When interpolating input variables, the default screen-space location at which
these variables are sampled is defined in previous rasterization sections. The
default location may be overriden by interpolation qualifiers. When interpolat-
ing variables declared using centroid in, the variable is sampled at a location
within the pixel covered by the primitive generating the fragment. When interpo-
lating variables declared using sample in when the value of SAMPLE_BUFFERS
is one, the fragment shader will be invoked separately for each covered sample and
the variable will be sampled at the corresponding sample point.

Additionally, built-in fragment shader functions provide further fine-grained
control over interpolation. The built-in functions interpolateAtCentroid

and interpolateAtSample will sample variables as though they were declared
with the centroid or sample qualifiers, respectively. The built-in function
interpolateAtOffset will sample variables at a specified (x, y) offset rela-
tive to the center of the pixel. The range and granularity of offsets supported
by this function is implementation-dependent. If either component of the speci-
fied offset is less than MIN_FRAGMENT_INTERPOLATION_OFFSET or greater than
MAX_FRAGMENT_INTERPOLATION_OFFSET, the position used to interpolate the
variable is undefined. Not all values of offset may be supported; x and y off-
sets may be rounded to fixed-point values with the number of fraction bits given by
the implementation-dependent constant FRAGMENT_INTERPOLATION_OFFSET_-
BITS.

A fragment shader can also write to output variables. Values written to these
outputs are used in the subsequent per-fragment operations. Output variables can
be used to write floating-point, integer or unsigned integer values destined for
buffers attached to a framebuffer object, or destined for color buffers attached to the
default framebuffer. Section 14.2.3 describes how to direct these values to buffers.

14.2 Shader Execution

The executable version of the fragment shader is used to process incoming frag-
ment values that are the result of rasterization.

Following shader execution, the fixed-function operations described in chap-
ter 15 are performed.

Special considerations for fragment shader execution are described in the fol-
lowing sections.

OpenGL ES 3.2 (November 3, 2016)

14.2. SHADER EXECUTION 372

14.2.1 Texture Access

Section 11.1.3.1 describes texture lookup functionality accessible to a vertex
shader. The texel fetch and texture size query functionality described there also
applies to fragment shaders.

When a texture lookup is performed in a fragment shader, the GL computes
the filtered texture value τ in the manner described in sections 8.14 and 8.15,
and converts it to a texture base color Cb as shown in table 14.1, followed
by swizzling the components of Cb, controlled by the values of the texture pa-
rameters TEXTURE_SWIZZLE_R, TEXTURE_SWIZZLE_G, TEXTURE_SWIZZLE_B,
and TEXTURE_SWIZZLE_A. If the value of TEXTURE_SWIZZLE_R is denoted by
swizzler, swizzling computes the first component of Cs according to

if (swizzler == RED)
Cs[0] = Cb[0];

else if (swizzler == GREEN)
Cs[0] = Cb[1];

else if (swizzler == BLUE)
Cs[0] = Cb[2];

else if (swizzler == ALPHA)
Cs[0] = Ab;

else if (swizzler == ZERO)
Cs[0] = 0;

else if (swizzler == ONE)
Cs[0] = 1; // float or int depending on texture component type

Swizzling of Cs[1], Cs[2], and As are similarly controlled by the values of
TEXTURE_SWIZZLE_G, TEXTURE_SWIZZLE_B, and TEXTURE_SWIZZLE_A, re-
spectively.

The resulting four-component vector (Rs, Gs, Bs, As) is returned to the frag-
ment shader. For the purposes of level-of-detail calculations, the derivatives du

dx ,
du
dy , dv

dx , dv
dy , dw

dx and dw
dy may be approximated by a differencing algorithm as de-

scribed in section 8.8 (“Texture Functions”) of the OpenGL ES Shading Language
Specification.

Texture lookups involving textures with depth and/or stencil component data
are performed as described in section 11.1.3.5.

14.2.2 Shader Inputs

The OpenGL ES Shading Language Specification describes the values that are
available as inputs to the fragment shader.

OpenGL ES 3.2 (November 3, 2016)

14.2. SHADER EXECUTION 373

Texture Base Texture base color
Internal Format Cb Ab

RED (Rt, 0, 0) 1
RG (Rt, Gt, 0) 1
RGB (Rt, Gt, Bt) 1
RGBA (Rt, Gt, Bt) At

LUMINANCE (Lt, Lt, Lt) 1
ALPHA (0, 0, 0) At

LUMINANCE_ALPHA (Lt, Lt, Lt) At

Table 14.1: Correspondence of filtered texture components to texture base com-
ponents. The values Rt, Gt, Bt, At, and Lt are respectively the red, green, blue,
alpha, and luminance components of the filtered texture value τ (see table 8.8).

The built-in variable gl_FragCoord holds the fragment coordinate(
xw yw zw

1
wc

)
for the fragment where

(
xw yw zw

)
is the fragment’s

window-space position and wc is the w component of the fragment’s clip-space
position (see section 12.5). The zw component of gl_FragCoord undergoes an
implied conversion to floating-point. This conversion must leave the values 0 and
1 invariant. Note that zw already has a polygon offset added in, if enabled (see
section 13.7.2).

The built-in variable gl_FrontFacing is set to TRUE if the fragment is gener-
ated from a front-facing primitive, and FALSE otherwise. For fragments generated
from triangle primitives, the determination is made by examining the sign of the
area computed by equation 13.6 of section 13.7.1 (including the possible reversal
of this sign controlled by FrontFace). If the sign is positive, fragments gener-
ated by the primitive are front-facing; otherwise, they are back-facing. All other
fragments are considered front-facing.

If a geometry shader is active, the built-in variable gl_PrimitiveID con-
tains the ID value emitted by the geometry shader for the provoking vertex. If no
geometry shader is active, gl_PrimitiveID contains the number of primitives
processed by the rasterizer since the last drawing command was called. The first
primitive generated by a drawing command is numbered zero, and the primitive
ID counter is incremented after every individual point, line, or polygon primitive
is processed. The counter is reset to zero between each instance drawn. Restarting
a primitive using the primitive restart index (see section 10.3) has no effect on the
primitive ID counter.

gl_PrimitiveID is only defined under the same conditions that gl_-

OpenGL ES 3.2 (November 3, 2016)

14.2. SHADER EXECUTION 374

VertexID is defined, as described under “Shader Inputs” in section 11.1.3.9.
The built-in read-only variable gl_SampleID is filled with the sample number

of the sample currently being processed. This variable is in the range zero to gl_-
NumSamples minus one, where gl_NumSamples is the total number of samples
in the framebuffer, or one if rendering to a non-multisample framebuffer. Using
gl_SampleID in a fragment shader causes the entire shader to be executed per-
sample. When rendering to a non-multisample buffer, gl_SampleID will always
be zero. gl_NumSamples is the sample count of the framebuffer regardless of
whether the framebuffer is multisampled or not.

The built-in read-only variable gl_SamplePosition contains the position of
the current sample within the multi-sample draw buffer. The x and y components
of gl_SamplePosition contain the sub-pixel coordinate of the current sample
and will have values in the range [0, 1]. The sub-pixel coordinate of the center of
the pixel is always (0.5, 0.5). Using gl_SamplePosition in a fragment shader
causes the entire shader to be executed per-sample. When rendering to a non-
multisample buffer, gl_SamplePosition will always be (0.5, 0.5).

The built-in variable gl_SampleMaskIn is an integer array holding bitfields
indicating the set of fragment samples covered by the primitive corresponding to
the fragment shader invocation. The number of elements in the array is⌈ s

32

⌉
,

where s is the value of MAX SAMPLES the maximum number of color samples
supported by the implementation for any renderable internal format. Bit n of ele-
ment w in the array is set if and only if the sample numbered 32w+n is considered
covered for this fragment shader invocation. When rendering to a non-multisample
buffer, all bits are zero except for bit zero of the first array element. That bit will
be one if the pixel is covered and zero otherwise. Bits in the sample mask cor-
responding to covered samples that will be killed due to SAMPLE_COVERAGE or
SAMPLE_MASK will not be set (see section 13.8.3). When per-sample shading is
active due to the use of a fragment input qualified by sample or due to the use
of the gl_SampleID or gl_SamplePosition variables, only the bit for the cur-
rent sample is set in gl_SampleMaskIn. When state specifies multiple fragment
shader invocations for a given fragment, the sample mask for any single fragment
shader invocation may specify a subset of the covered samples for the fragment. In
this case, the bit corresponding to each covered sample will be set in exactly one
fragment shader invocation.

Similarly to the limit on geometry shader output components (see sec-
tion 11.3.4.4), there is a limit on the number of components of built-in and
user-defined input variables that can be read by the fragment shader, given by

OpenGL ES 3.2 (November 3, 2016)

14.2. SHADER EXECUTION 375

the value of the implementation-dependent constant MAX_FRAGMENT_INPUT_-
COMPONENTS.

When a program is linked, all components of any input variables read by a
fragment shader will count against this limit. A program whose fragment shader
exceeds this limit may fail to link, unless device-dependent optimizations are able
to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 11.1.2.1).

14.2.3 Shader Outputs

The OpenGL ES Shading Language Specification describes the values that may
be output by a fragment shader. These outputs are split into two categories, user-
defined outputs and the built-in outputs gl_FragColor, gl_FragData[n] (both
available only in OpenGL ES Shading Language version 1.00), gl_FragDepth
and gl_SampleMask.

For fixed-point depth buffers, the final fragment depth written by a fragment
shader is first clamped to [0, 1] and then converted to fixed-point as if it were a
window z value (see section 12.5.1). For floating-point depth buffers, conversion
is not performed but clamping is. Note that the depth range computation is not
applied here, only the conversion to fixed-point.

The built-in integer array gl_SampleMask can be used to change the sample
coverage for a fragment from within the shader. The number of elements in the
array is ⌈ s

32

⌉
,

where s is the value of MAX SAMPLES the maximum number of color samples
supported by the implementation for any renderable internal format. If bit n of ele-
ment w in the array is set to zero, sample 32w+n should be considered uncovered
for the purposes of additional multisample fragment operations, as described in
section 15.1.8, and the corresponding bits in the fragment coverage mask are set to
zero. Modifying the sample mask in this way may exclude covered samples from
being processed further at a per-fragment granularity. However, setting sample
mask bits to one will never enable samples not covered by the original primitive.
If the fragment shader is being executed at any frequency other than per-fragment,
bits of the sample mask not corresponding to the current fragment shader invo-
cation do not affect the fragment coverage mask. If a fragment shader does not
statically assign a value to gl_SampleMask, the fragment coverage mask is not
modified. If a value is not assigned to gl_SampleMask due to flow of control, the
affected bits of the sample mask are undefined.

OpenGL ES 3.2 (November 3, 2016)

14.2. SHADER EXECUTION 376

If there is only a single output variable, it does not need to be explicitly bound
to a fragment color within the shader text, in which case it is implicitly bound to
fragment color zero. If there is more than one output variable, all output variables
must be explicitly bound to fragment colors within the shader text. Missing or
conflicting binding assignments will cause CompileShader to fail.

Color values written by a fragment shader may be floating-point, signed inte-
ger, or unsigned integer. If the color buffer has a signed or unsigned normalized
fixed-point format, color values are assumed to be floating-point and are converted
to fixed-point as described in equations 2.4 or 2.3, respectively; otherwise no type
conversion is applied. If the values written by the fragment shader do not match
the format(s) of the corresponding color buffer(s), the result is undefined.

Writing to gl_FragColor specifies the fragment color (color number zero)
that will be used by subsequent stages of the pipeline. Writing to gl_-

FragData[n] specifies the value of fragment color number n. Writing to a
user-defined output variable specifies the value of the fragment color it is explicitly
or implicitly bound to. Any fragment colors which are not written by the fragment
shader are undefined.

A fragment shader may not statically assign values to both gl_FragColor

and gl_FragData[n]. In this case, a compile or link error will result. A shader
statically assigns a value to a variable if, after pre-processing, it contains a state-
ment that would write to the variable, whether or not run-time flow of control will
cause that statement to be executed.

Writing to gl_FragDepth specifies the depth value for the fragment being
processed. If the active fragment shader does not statically assign a value to gl_-

FragDepth, then the depth value generated during rasterization is used by sub-
sequent stages of the pipeline. Otherwise, the value assigned to gl_FragDepth

is used, and is undefined for any fragments where statements assigning a value to
gl_FragDepth are not executed. Thus, if a shader statically assigns a value to
gl_FragDepth, then it is responsible for always writing it.

To determine the set of fragment shader output attribute variables used by a pro-
gram, applications can query the properties and active resources of the PROGRAM_-
OUTPUT interface of a program including a fragment shader.

Additionally, the command

int GetFragDataLocation(uint program, const
char *name);

is provided to query the location assigned to a fragment shader output variable.

OpenGL ES 3.2 (November 3, 2016)

14.2. SHADER EXECUTION 377

Errors

If program has been linked successfully but contains no fragment shader,
no error is generated but -1 will be returned.

An INVALID_OPERATION error is generated and -1 is returned if program
has not been linked successfully.

Otherwise, the command is equivalent to

GetProgramResourceLocation(program, PROGRAM_OUTPUT, name);

14.2.4 Early Fragment Tests

An explicit control is provided to allow fragment shaders to enable early frag-
ment tests. If the fragment shader specifies the early_fragment_tests layout
qualifier, the per-fragment tests described in section 13.8 will be performed prior
to fragment shader execution. Otherwise, they will be performed after fragment
shader execution.

OpenGL ES 3.2 (November 3, 2016)

Chapter 15

Writing Fragments and Samples
to the Framebuffer

After programmable fragment processing, per-fragment operations are performed
as described in section 15.1, followed by writing to the framebuffer, which is the
final set of operations performed as a result of drawing primitives.

Additional commands controlling the framebuffer as a whole are described in
section 15.2.

15.1 Per-Fragment Operations

A fragment is produced by rasterization with window coordinates of (xw, yw)
and depth z, as described in chapter 13. The fragment is then modified by pro-
grammable fragment processing, which adds associated data as described in chap-
ter 14. The fragment is then further modified, and possibly discarded by the per-
fragment operations described in this chapter. These operations are diagrammed
in figure 15.1, in the order in which they are performed. Finally, if the fragment
was not discarded, it is used to update the framebuffer at the fragment’s window
coordinates.

The stencil test, depth test, and occlusion query operations described in sec-
tions 15.1.2, 15.1.3, and 15.1.4 may instead be performed prior to fragment pro-
cessing, as described in section 13.8, if requested by the fragment program.

15.1.1 Alpha To Coverage

This step modifies fragment alpha and coverage values based on the value of
SAMPLE_ALPHA_TO_COVERAGE. If the value of SAMPLE_BUFFERS is not one, or

378

15.1. PER-FRAGMENT OPERATIONS 379

Depth Buffer
Test (*)

Write To
Framebuffer

Fragment
Shader

Additional
Multisample

Fragment
Operations

Fragment
(or sample)

from
Rasterization

Stencil
Test (*)

SRGB
Conversion

Dithering

Alpha To
Coverage
Operation

Framebuffer Framebuffer

Occlusion
Query (*)

Blending

Framebuffer

Fragment (or sample)
and Associated Data

Figure 15.1. Per-fragment operations. The boxes labelled with “(*)” may instead
be performend during early per-fragment operations, as described in section 13.8.

OpenGL ES 3.2 (November 3, 2016)

15.1. PER-FRAGMENT OPERATIONS 380

if draw buffer zero is not NONE and the buffer it references has an integer format,
the operation is skipped.

Alpha to coverage is enabled or disabled by calling Enable and Disable with
target SAMPLE_ALPHA_TO_COVERAGE

All alpha values in this section refer only to the alpha component of the frag-
ment shader output linked to color number zero (see section 14.2.3).

If SAMPLE_ALPHA_TO_COVERAGE is enabled, a temporary coverage value is
generated where each bit is determined by the alpha value at the corresponding
sample location (see section 13.4) of draw buffer zero (see section 14.2.3). The
temporary coverage value is then ANDed with the fragment coverage value to gen-
erate a new fragment coverage value.

This temporary coverage is generated in the same manner as for sample cover-
age (see section 13.8.3), but as a function of the fragment’s alpha value, clamped
to the range [0, 1]. The function need not be identical, but it must have the same
properties of proportionality and invariance.

15.1.2 Stencil Test

The stencil test conditionally discards a fragment based on the outcome of a com-
parison between the value in the stencil buffer at location (xw, yw) and a reference
value. The test is enabled or disabled with the Enable and Disable commands,
using the symbolic constant STENCIL_TEST. When disabled, the stencil test and
associated modifications are not made, and the fragment is always passed.

The stencil test is controlled with

void StencilFunc(enum func, int ref, uint mask);
void StencilFuncSeparate(enum face, enum func, int ref,

uint mask);
void StencilOp(enum sfail, enum dpfail, enum dppass);
void StencilOpSeparate(enum face, enum sfail, enum dpfail,

enum dppass);

There are two sets of stencil-related state, the front stencil state set and the
back stencil state set. Stencil tests and writes use the front set of stencil state when
processing fragments rasterized from non-polygon primitives (points and lines)
and front-facing polygon primitives while the back set of stencil state is used when
processing fragments rasterized from back-facing polygon primitives. Whether a
polygon is front- or back-facing is determined in the same manner used for face
culling (see section 13.7.1).

OpenGL ES 3.2 (November 3, 2016)

15.1. PER-FRAGMENT OPERATIONS 381

StencilFuncSeparate and StencilOpSeparate take a face argument which can
be FRONT, BACK, or FRONT_AND_BACK and indicates which set of state is affected.
StencilFunc and StencilOp set front and back stencil state to identical values.

StencilFunc and StencilFuncSeparate take three arguments that control
whether the stencil test passes or fails. ref is an integer reference value that is used
in the unsigned stencil comparison. Stencil comparison operations and queries of
ref clamp its value to the range [0, 2s − 1], where s is the number of bits in the
stencil buffer attached to the draw framebuffer. The s least significant bits of mask
are bitwise ANDed with both the reference and the stored stencil value, and the
resulting masked values are those that participate in the comparison controlled by
func. func is a symbolic constant that determines the stencil comparison function;
the eight symbolic constants are NEVER, ALWAYS, LESS, LEQUAL, EQUAL, GEQUAL,
GREATER, or NOTEQUAL. Accordingly, the stencil test passes never, always, and if
the masked reference value is less than, less than or equal to, equal to, greater than
or equal to, greater than, or not equal to the masked stored value in the stencil
buffer.

StencilOp and StencilOpSeparate take three arguments that indicate what
happens to the stored stencil value if this or certain subsequent tests fail or pass.
sfail indicates what action is taken if the stencil test fails. The symbolic constants
are KEEP, ZERO, REPLACE, INCR, DECR, INVERT, INCR_WRAP, and DECR_WRAP.
These correspond to keeping the current value, setting to zero, replacing with the
reference value, incrementing with saturation, decrementing with saturation, bit-
wise inverting it, incrementing without saturation, and decrementing without satu-
ration.

For purposes of increment and decrement, the stencil bits are considered as an
unsigned integer. Incrementing or decrementing with saturation clamps the stencil
value at 0 and the maximum representable value. Incrementing or decrementing
without saturation will wrap such that incrementing the maximum representable
value results in 0, and decrementing 0 results in the maximum representable value.

The same symbolic values are given to indicate the stencil action if the depth
buffer test (see section 15.1.3) fails (dpfail), or if it passes (dppass).

If the stencil test fails, the incoming fragment is discarded. The state required
consists of the most recent values passed to StencilFunc or StencilFuncSeparate
and to StencilOp or StencilOpSeparate, and a bit indicating whether stencil test-
ing is enabled or disabled. In the initial state, stenciling is disabled, the front and
back stencil reference value are both zero, the front and back stencil comparison
functions are both ALWAYS, and the front and back stencil mask are both set to the
value 2s − 1, where s is greater than or equal to the number of bits in the deepest
stencil buffer supported by the GL implementation. Initially, all three front and
back stencil operations are KEEP.

OpenGL ES 3.2 (November 3, 2016)

15.1. PER-FRAGMENT OPERATIONS 382

If there is no stencil buffer, no stencil modification can occur, and it is as if the
stencil tests always pass, regardless of any calls to StencilFunc.

15.1.3 Depth Buffer Test

The depth buffer test discards the incoming fragment if a depth comparison fails.
The comparison is enabled or disabled by calling Enable and Disable with tar-
get DEPTH_TEST. When disabled, the depth comparison and subsequent possible
updates to the depth buffer value are bypassed and the fragment is passed to the
next operation. The stencil value, however, is modified as indicated below as if
the depth buffer test passed. If enabled, the comparison takes place and the depth
buffer and stencil value may subsequently be modified.

The comparison is specified with

void DepthFunc(enum func);

This command takes a single symbolic constant: one of NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GREATER, GEQUAL, NOTEQUAL. Accordingly, the depth buffer
test passes never, always, if the incoming fragment’s zw value is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal to
the depth value stored at the location given by the incoming fragment’s (xw, yw)
coordinates.

If the depth buffer test fails, the incoming fragment is discarded. The stencil
value at the fragment’s (xw, yw) coordinates is updated according to the function
currently in effect for depth buffer test failure. Otherwise, the fragment continues
to the next operation and the value of the depth buffer at the fragment’s (xw, yw)
location is set to the fragment’s zw value. In this case the stencil value is updated
according to the function currently in effect for depth buffer test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth buffering is enabled or disabled. In the initial state the function
is LESS and the test is disabled.

If there is no depth buffer, it is as if the depth buffer test always passes.

15.1.4 Occlusion Queries

Occlusion queries use query objects to track the number of fragments or samples
that pass the depth test. An occlusion query can be started and finished by calling
BeginQuery and EndQuery, respectively, with a target ANY_SAMPLES_PASSED
or ANY_SAMPLES_PASSED_CONSERVATIVE.

OpenGL ES 3.2 (November 3, 2016)

15.1. PER-FRAGMENT OPERATIONS 383

When an occlusion query is started with the target ANY_SAMPLES_PASSED,
the samples-boolean state maintained by the GL is set to FALSE. While that oc-
clusion query is active, the samples-boolean state is set to TRUE if any fragment
or sample passes the depth test. When the target is ANY_SAMPLES_PASSED_-

CONSERVATIVE, an implementation may choose to use a less precise version of
the test which can additionally set the samples-boolean state to TRUE in some other
implementation-dependent cases. This may offer better performance on some im-
plementations at the expense of false positives. When the occlusion query finishes,
the samples-boolean state of FALSE or TRUE is written to the corresponding query
object as the query result value, and the query result for that object is marked as
available.

15.1.5 Blending

Blending combines the incoming source fragment’s R, G, B, and A values with
the destination R, G, B, and A values stored in the framebuffer at the fragment’s
(xw, yw) location.

Source and destination values are combined according to the blend equation,
quadruplets of source and destination weighting factors determined by the blend
functions, and a constant blend color to obtain a new set of R, G, B, and A values,
as described below.

If the color buffer is fixed-point, the components of the source and destination
values and blend factors are each clamped to [0, 1] or [−1, 1] respectively for an un-
signed normalized or signed normalized color buffer prior to evaluating the blend
equation. If the color buffer is floating-point, no clamping occurs. The resulting
four values are sent to the next operation.

Blending applies only if the color buffer has a fixed-point or floating-point
format. If the color buffer has an integer format, proceed to the next operation.

Blending is enabled or disabled for an individual draw buffer with the com-
mands

void Enablei(enum target, uint index);
void Disablei(enum target, uint index);

target is the symbolic constant BLEND and index is an integer i specifying the draw
buffer associated with the symbolic constant DRAW_BUFFERi. Blending can be en-
abled or disabled for all draw buffers using Enable or Disable with target BLEND.
If blending is disabled for a particular draw buffer, proceed to the next operation.

If one or more fragment colors are being written to multiple buffers (see sec-
tion 15.2.1), blending is computed and applied separately for each fragment color
and the corresponding buffer.

OpenGL ES 3.2 (November 3, 2016)

15.1. PER-FRAGMENT OPERATIONS 384

Errors

An INVALID_VALUE error is generated by Enablei, Disablei and IsEn-
abledi if target is BLEND and index is greater than or equal to the value of
MAX_DRAW_BUFFERS.

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if blending is enabled (see below) and any draw buffer
has 32-bit floating-point format components.

15.1.5.1 Blend Equation

Blending is controlled by the blend equation. This equation can be simultaneously
set to the same value for all draw buffers using the commands

void BlendEquation(enum mode);
void BlendEquationSeparate(enum modeRGB,

enum modeAlpha);

or for an individual draw buffer using the indexed commands

void BlendEquationi(uint buf, enum mode);
void BlendEquationSeparatei(uint buf, enum modeRGB,

enum modeAlpha);

BlendEquationSeparate and BlendEquationSeparatei argument modeRGB de-
termines the RGB blend function while modeAlpha determines the alpha blend
equation. BlendEquation and BlendEquationi argument mode determines both
the RGB and alpha blend equations. BlendEquation and BlendEquationSepa-
rate modify the blend equations for all draw buffers. BlendEquationi and Blend-
EquationSeparatei modify the blend equations associated with an individual draw
buffer. The buf argument is an integer i that indicates that the blend equations
should be modified for DRAW_BUFFERi.

Errors

An INVALID_VALUE error is generated if buf is not in the range zero to
the value of MAX_DRAW_BUFFERS minus one.

An INVALID_ENUM error is generated by BlendEquation if mode is not
one of the blend equation modes in tables 15.1, 15.3, and 15.4.

An INVALID_ENUM error is generated by BlendEquationSeparate if ei-
ther modeRGB or modeAlpha is not one of the blend equation modes in ta-

OpenGL ES 3.2 (November 3, 2016)

15.1. PER-FRAGMENT OPERATIONS 385

ble 15.1.

Unsigned normalized fixed-point destination (framebuffer) components are
represented as described in section 2.3.5. Constant color components, floating-
point destination components, and source (fragment) components are taken to be
floating-point values. If source components are represented internally by the GL
as fixed-point values, they are also interpreted according to section 2.3.5.

Prior to blending, unsigned normalized fixed-point color components undergo
an implied conversion to floating-point using equation 2.1. This conversion must
leave the values zero and one invariant. Blending computations are treated as if
carried out in floating-point. For the equations in table 15.1, computations will be
performed with a precision and dynamic range no lower than that used to represent
destination components. For the equations in tables 15.3 and 15.4, computations
will be performed with a precision and dynamic range no lower than the smaller
of that used to represent destination components or that used to represent 16-bit
floating-point values, as described in section 2.3.4.2.

If the value of FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING for the
framebuffer attachment corresponding to the destination buffer is SRGB (see sec-
tion 9.2.3), the R, G, and B destination color values (after conversion from fixed-
point to floating-point) are considered to be encoded for the sRGB color space and
hence must be linearized prior to their use in blending. Each R, G, and B compo-
nent is converted in the same fashion described for sRGB texture components in
section 8.21.

If the value of FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING is not SRGB,
no linearization is performed.

The resulting linearized R, G, and B and unmodified A values are recombined
as the destination color used in blending computations.

Table 15.1 provides the corresponding per-component blend equations for each
mode, whether acting on RGB components for modeRGB or the alpha component
for modeAlpha.

In the table, the s subscript on a color component abbreviation (R, G, B, or
A) refers to the source color component for an incoming fragment, the d subscript
on a color component abbreviation refers to the destination color component at
the corresponding framebuffer location, and the c subscript on a color component
abbreviation refers to the constant blend color component. A color component ab-
breviation without a subscript refers to the new color component resulting from
blending. Additionally, Sr, Sg, Sb, and Sa are the red, green, blue, and alpha com-
ponents of the source weighting factors determined by the source blend function,
and Dr, Dg, Db, and Da are the red, green, blue, and alpha components of the
destination weighting factors determined by the destination blend function. Blend

OpenGL ES 3.2 (November 3, 2016)

15.1. PER-FRAGMENT OPERATIONS 386

Mode RGB Components Alpha Component
FUNC_ADD R = Rs ∗ Sr +Rd ∗Dr A = As ∗ Sa +Ad ∗Da

G = Gs ∗ Sg +Gd ∗Dg

B = Bs ∗ Sb +Bd ∗Db

FUNC_SUBTRACT R = Rs ∗ Sr −Rd ∗Dr A = As ∗ Sa −Ad ∗Da

G = Gs ∗ Sg −Gd ∗Dg

B = Bs ∗ Sb −Bd ∗Db

FUNC_REVERSE_SUBTRACT R = Rd ∗Dr −Rs ∗ Sr A = Ad ∗Da −As ∗ Sa
G = Gd ∗Dg −Gs ∗ Sg
B = Bd ∗Db −Bs ∗ Sb

MIN R = min(Rs, Rd) A = min(As, Ad)
G = min(Gs, Gd)
B = min(Bs, Bd)

MAX R = max(Rs, Rd) A = max(As, Ad)
G = max(Gs, Gd)
B = max(Bs, Bd)

Table 15.1: RGB and alpha blend equations.

functions are described below.

15.1.5.2 Blend Functions

The weighting factors used by the blend equation are determined by the blend
functions. There are three possible sources for weighting factors. These are
the constant color (Rc, Gc, Bc, Ac) set with BlendColor (see below), the source
color (Rs, Gs, Bs, As), and the destination color (the existing content of the draw
buffer). Additionally the special constants ZERO and ONE are available as weight-
ing factors.

Blend functions are simultaneously specified for all draw buffers using the
commands

void BlendFunc(enum src, enum dst);
void BlendFuncSeparate(enum srcRGB, enum dstRGB,

enum srcAlpha, enum dstAlpha);

or for an individual draw buffer using the indexed commands

void BlendFunci(uint buf, enum src, enum dst);

OpenGL ES 3.2 (November 3, 2016)

15.1. PER-FRAGMENT OPERATIONS 387

Function RGB Blend Factors Alpha Blend Factor
(Sr, Sg, Sb) or (Dr, Dg, Db) Sa or Da

ZERO (0, 0, 0) 0

ONE (1, 1, 1) 1

SRC_COLOR (Rs, Gs, Bs) As

ONE_MINUS_SRC_COLOR (1, 1, 1)− (Rs, Gs, Bs) 1−As

DST_COLOR (Rd, Gd, Bd) Ad

ONE_MINUS_DST_COLOR (1, 1, 1)− (Rd, Gd, Bd) 1−Ad

SRC_ALPHA (As, As, As) As

ONE_MINUS_SRC_ALPHA (1, 1, 1)− (As, As, As) 1−As

DST_ALPHA (Ad, Ad, Ad) Ad

ONE_MINUS_DST_ALPHA (1, 1, 1)− (Ad, Ad, Ad) 1−Ad

CONSTANT_COLOR (Rc, Gc, Bc) Ac

ONE_MINUS_CONSTANT_COLOR (1, 1, 1)− (Rc, Gc, Bc) 1−Ac

CONSTANT_ALPHA (Ac, Ac, Ac) Ac

ONE_MINUS_CONSTANT_ALPHA (1, 1, 1)− (Ac, Ac, Ac) 1−Ac

SRC_ALPHA_SATURATE (f, f, f)1 1

Table 15.2: RGB and ALPHA source and destination blending functions and the
corresponding blend factors. Addition and subtraction of triplets is performed
component-wise.
1 f = min(As, 1−Ad).

void BlendFuncSeparatei(uint buf, enum srcRGB,
enum dstRGB, enum srcAlpha, enum dstAlpha);

BlendFuncSeparate and BlendFuncSeparatei arguments srcRGB and dstRGB
determine the source and destination RGB blend functions, respectively, while sr-
cAlpha and dstAlpha determine the source and destination alpha blend functions.
BlendFunc and BlendFunci argument src determines both RGB and alpha source
functions, while dst determines both RGB and alpha destination functions. Blend-
FuncSeparate and BlendFunc modify the blend functions for all draw buffers.
BlendFuncSeparatei and BlendFunci modify the blend functions associated with
an individual draw buffer. The buf argument is an integer i that indicates that the
blend functions should be modified for DRAW_BUFFERi.

The possible source and destination blend functions and their corresponding
computed blend factors are summarized in table 15.2.

OpenGL ES 3.2 (November 3, 2016)

15.1. PER-FRAGMENT OPERATIONS 388

Errors

An INVALID_ENUM error is generated if any of src, dst, srcRGB, dstRGB,
srcAlpha, or dstAlpha are not one of the blend functions in table 15.2.

15.1.5.3 Advanced Blend Equations

The advanced blend equations are those listed in tables 15.3 and 15.4. When using
one of these equations, blending is performed according to the following equations:

R = f(Rs
′
, Rd

′
)p0(As, Ad) + Y Rs

′
p1(As, Ad) + ZRd

′
p2(As, Ad)

G = f(Gs
′
, Gd

′
)p0(As, Ad) + Y Gs

′
p1(As, Ad) + ZGd

′
p2(As, Ad)

B = f(Bs
′
, Bd

′
)p0(As, Ad) + Y Bs

′
p1(As, Ad) + ZBd

′
p2(As, Ad)

A = Xp0(As, Ad) + Y p1(As, Ad) + Zp2(As, Ad)

where the function f and terms X , Y , and Z are specified in the tables. The R,
G, and B components of the source color used for blending are considered to have
been premultiplied by the A component prior to blending. The base source color
(Rs

′
, Gs

′
, Bs

′
) is obtained by dividing through by the A component:

(Rs
′
, Gs

′
, Bs

′
) =

{
(0, 0, 0), As = 0(
Rs
As
, Gs
As
, Bs
As

)
, otherwise

The destination color components are always considered to have been pre-
multiplied by the destination A component, and the base destination color
(Rd

′
, Gd

′
, Bd

′
) is obtained by dividing through by the A component:

(Rd
′
, Gd

′
, Bd

′
) =

{
(0, 0, 0), Ad = 0(
Rd
Ad
, Gd
Ad
, Bd
Ad

)
, otherwise

When blending using advanced blend equations, we expect that the R, G, and
B components of premultiplied source and destination color inputs be stored as the
product of non-premultipliedR,G, andB components and theA component of the
color. If any R, G, or B component of a premultiplied input color is non-zero and
the A component is zero, the color is considered ill-formed, and the corresponding
component of the blend result will be undefined.

The weighting functions p0, p1, and p2 are defined as follows:

p0(As, Ad) = AsAd

OpenGL ES 3.2 (November 3, 2016)

15.1. PER-FRAGMENT OPERATIONS 389

Mode Blend Coefficients
(X,Y, Z) f(Cs, Cd)

MULTIPLY (1, 1, 1) CsCd

SCREEN (1, 1, 1) Cs + Cd − CsCd

OVERLAY (1, 1, 1)

{
2CsCd, Cd ≤ 0.5

1− 2(1− Cs)(1− Cd) otherwise

DARKEN (1, 1, 1) min(Cs, Cd)

LIGHTEN (1, 1, 1) max(Cs, Cd)

COLORDODGE (1, 1, 1)


0, Cd ≤ 0

min(1, Cd
1−Cs

), Cd > 0, Cs < 1

1, Cd > 0, Cs ≥ 1

COLORBURN (1, 1, 1)


1, Cd ≥ 1

1−min(1, 1−Cd
Cs

), Cd < 1, Cs > 0

0, Cd < 1, Cs ≤ 0

HARDLIGHT (1, 1, 1)

{
2CsCd, Cs ≤ 0.5

1− 2(1− Cs)(1− Cd), otherwise

SOFTLIGHT (1, 1, 1)


Cd − (1− 2Cs)Cd(1− Cd), Cs ≤ 0.5

Cd + (2Cs − 1)Cd((16Cd − 12)Cd + 3), Cs > 0.5, Cd ≤ 0.25

Cd + (2Cs − 1)(
√
Cd − Cd), Cs > 0.5, Cd > 0.25

DIFFERENCE (1, 1, 1) |Cd − Cs|
EXCLUSION (1, 1, 1) Cs + Cd − 2CsCd

Table 15.3: Advanced Blend Equations

p1(As, Ad) = As(1−Ad)

p2(As, Ad) = Ad(1−As)

In these functions, the A components of the source and destination colors are
taken to indicate the portion of the pixel covered by the fragment (source) and the
fragments previously accumulated in the pixel (destination). The functions p0, p1,
and p2 approximate the relative portion of the pixel covered by the intersection
of the source and destination, covered only by the source, and covered only by
the destination, respectively. The equations defined here assume that there is no
correlation between the source and destination coverage.

When using one of the HSL blend equations in table 15.4 as the blend equation,
the RGB color components produced by the function f are effectively obtained by

OpenGL ES 3.2 (November 3, 2016)

15.1. PER-FRAGMENT OPERATIONS 390

converting both the non-premultiplied source and destination colors to the HSL
(hue, saturation, luminosity) color space, generating a new HSL color by selecting
H , S, and L components from the source or destination according to the blend
equation, and then converting the result back to RGB. In the equations below, a
blended RGB color is produced according to the following pseudocode:

float minv3(vec3 c) {
return min(min(c.r, c.g), c.b);

}
float maxv3(vec3 c) {

return max(max(c.r, c.g), c.b);
}
float lumv3(vec3 c) {

return dot(c, vec3(0.30, 0.59, 0.11));
}
float satv3(vec3 c) {

return maxv3(c) - minv3(c);
}

// Take the base RGB color cbase and override its
// luminosity with that of the RGB color clum.
vec3 SetLum(vec3 cbase, vec3 clum) {

float lbase = lumv3(cbase);
float llum = lumv3(clum);
float ldiff = llum - lbase;
vec3 color = cbase + vec3(ldiff);
if (minv3(color) < 0.0) {

return llum + ((color-llum)*llum) / (llum-minv3(color));
} else if (maxv3(color) > 1.0) {

return llum + ((color-llum)*(1-llum)) / (maxv3(color)-llum);
} else {

return color;
}

}

// Take the base RGB color cbase and override its saturation
// with that of the RGB color csat. Then override the
// luminosity of the result with that of the RGB color clum.
vec3 SetLumSat(vec3 cbase, vec3 csat, vec3 clum) {

float minbase = minv3(cbase);

OpenGL ES 3.2 (November 3, 2016)

15.1. PER-FRAGMENT OPERATIONS 391

Mode Blend Coefficients
(X,Y, Z) f(Cs, Cd)

HSL_HUE (1, 1, 1) SetLumSat(Cs, Cd, Cd)

HSL_SATURATION (1, 1, 1) SetLumSat(Cd, Cs, Cd)

HSL_COLOR (1, 1, 1) SetLum(Cs, Cd)

HSL_LUMINOSITY (1, 1, 1) SetLum(Cd, Cs)

Table 15.4: Hue-Saturation-Luminosity Advanced Blend Equations

float sbase = satv3(cbase);
float ssat = satv3(csat);
vec3 color;
if (sbase > 0) {

// Equivalent (modulo rounding errors) to setting
// the smallest (R,G,B) component to 0, the largest
// to ssat, and interpolating the "middle"
// component based on its original value relative
// to the smallest/largest.
color = (cbase - minbase) * ssat / sbase;

} else {
color = vec3(0.0);

}
return SetLum(color, clum);

}

Advanced blending equations are supported only when rendering to a single
color buffer using fragment color zero.

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if any non-NONE draw buffer uses a blend equation
found in table 15.3 or 15.4, and

• the draw buffer for color output zero selects multiple color buffers; or

• the draw buffer for any other color output is not NONE.

When using advanced blending equations, applications should split their ren-
dering into a collection of blending passes, none of which touch an individual

OpenGL ES 3.2 (November 3, 2016)

15.1. PER-FRAGMENT OPERATIONS 392

sample in the framebuffer more than once. The results of blending are undefined
if the sample being blended has been touched previously in the same pass. The
command

void BlendBarrier(void);

specifies a boundary between passes when using advanced blend equations. Any
command that causes the value of a sample to be modified using the framebuffer is
considered to touch the sample, including clears, blended or unblended primitives,
and BlitFramebuffer copies.

Advanced blending equations require the use of a fragment shader with a
matching blend_support layout qualifier.

Errors

An INVALID_OPERATION error is generated by any command that trans-
fers vertices to the GL if blending is enabled, the current blend equation is
found in table 15.3 or 15.4, and the active fragment shader does not include
the layout qualifier matching the blend equation or blend_support_all_-
equations.

The set of layout qualifiers supported in fragment shaders is specified in sec-
tion 4.3.8.2 (“Texture Functions”) of the OpenGL ES Shading Language Specifi-
cation.

15.1.5.4 Blend Color

The constant color Cc to be used in blending is specified with the command

void BlendColor(float red, float green, float blue,
float alpha);

The constant color can be used in both the source and destination blending
functions. If destination framebuffer components use an unsigned normalized
fixed-point representation, the constant color components are clamped to the range
[0, 1] when computing blend factors.

15.1.5.5 Blending State

The state required for blending, for each draw buffer, is two integers for the RGB
and alpha blend equations, four integers indicating the source and destination RGB

OpenGL ES 3.2 (November 3, 2016)

15.1. PER-FRAGMENT OPERATIONS 393

and alpha blending functions, and a bit indicating whether blending is enabled or
disabled. Additionally, four floating-point values to store the RGBA constant blend
color are required.

For all draw buffers, the initial blend equations for RGB and alpha are both
FUNC_ADD, and the initial blending functions are ONE for the source RGB and alpha
functions and ZERO for the destination RGB and alpha functions. Initially, blending
is disabled for all draw buffers. The initial constant blend color is (R,G,B,A) =
(0, 0, 0, 0).

The value of the blend enable for draw buffer i may be queried by calling
IsEnabledi with target BLEND and index i, and the values of the blend equations
and functions may be queried by calling GetIntegeri v with the corresponding
target as shown in table 21.13 and index i.

The value of the blend enable, or the blend equations and functions for draw
buffer zero may also be queried by calling IsEnabled or GetIntegerv respectively,
with the same target but no index parameter.

Blending occurs once for each color buffer currently enabled for blending and
for writing (see section 15.2.1), using each buffer’s color for Cd. If a color buffer
has no A value, then Ad is taken to be 1.

15.1.6 sRGB Conversion

If the value of FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING for the frame-
buffer attachment corresponding to the destination buffer is SRGB1 (see sec-
tion 9.2.3), the R, G, and B values after blending are converted into the non-linear
sRGB color space by computing

cs =


0.0, cl ≤ 0

12.92cl, 0 < cl < 0.0031308

1.055c0.41666l − 0.055, 0.0031308 ≤ cl < 1

1.0, cl ≥ 1

(15.1)

where cl is the R, G, or B element and cs is the result (effectively converted into an
sRGB color space).

If FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING is not SRGB, then

cs = cl.

1Note that only unsigned normalized fixed-point color buffers may be SRGB-encoded. Signed
normalized fixed-point + SRGB encoding is not defined.

OpenGL ES 3.2 (November 3, 2016)

15.1. PER-FRAGMENT OPERATIONS 394

The resulting cs values for R, G, and B, and the unmodified A form a new
RGBA color value. If the color buffer is fixed-point, each component is clamped
to the range [0, 1] and then converted to a fixed-point value using equation 2.3. The
resulting four values are sent to the subsequent dithering operation.

15.1.7 Dithering

Dithering selects between two representable color values or indices. A repre-
sentable value is a value that has an exact representation in the color buffer. Dither-
ing selects, for each color component, either the largest representable color value
(for that particular color component) that is less than or equal to the incoming color
component value, c, or the smallest representable color value that is greater than or
equal to c. The selection may depend on the xw and yw coordinates of the pixel,
as well as on the exact value of c. If one of the two values does not exist, then the
selection defaults to the other value.

Many dithering selection algorithms are possible, but an individual selection
must depend only on the incoming component value and the fragment’s x and y
window coordinates. If dithering is disabled, then one of the two values above is
selected, in an implementation-dependent manner that must not depend on the xw
and yw coordinates of the pixel.

Dithering is enabled and disabled by calling Enable or Disable with target
DITHER. The state required is a single bit. Initially, dithering is enabled.

15.1.8 Additional Multisample Fragment Operations

If the DrawBuffer mode (see section 15.2.1) is NONE, no change is made to any
multisample or color buffer. Otherwise, fragment processing is as described below.

If the value of SAMPLE_BUFFERS is one, the stencil test, depth test, blending,
and dithering are performed for each pixel sample, rather than just once for each
fragment. Failure of the stencil or depth test results in termination of the processing
of that sample, rather than discarding of the fragment. All operations are performed
on the color, depth, and stencil values stored in the multisample renderbuffer at-
tachments if a draw framebuffer object is bound, or otherwise in the multisample
buffer of the default framebuffer. The contents of the color buffers are not modified
at this point.

Stencil, depth, blending, dithering, and logical operations are performed for
a pixel sample only if that sample’s fragment coverage bit is a value of 1. If the
corresponding coverage bit is 0, no operations are performed for that sample.

If a draw framebuffer object is not bound, after all operations have been com-
pleted on the multisample buffer, the sample values for each color in the multisam-

OpenGL ES 3.2 (November 3, 2016)

15.2. WHOLE FRAMEBUFFER OPERATIONS 395

Symbolic Constant Meaning
NONE No buffer
COLOR_ATTACHMENTi (see caption) Output fragment color to image attached

at color attachment point i

Table 15.5: Arguments to DrawBuffers and ReadBuffer when the context is
bound to a framebuffer object, and the buffers they indicate. i in COLOR_-

ATTACHMENTi may range from zero to the value of MAX_COLOR_ATTACHMENTS
minus one.

ple buffer are combined to produce a single color value, and that value is written
into the corresponding color buffer selected by DrawBuffers. An implementation
may defer the writing of the color buffers until a later time, but the state of the
framebuffer must behave as if the color buffers were updated as each fragment was
processed. The method of combination is not specified. If the framebuffer contains
sRGB values, then it is recommended that the an average of sample values is com-
puted in a linearized space, as for blending (see section 15.1.5). Otherwise, a sim-
ple average computed independently for each color component is recommended.

15.2 Whole Framebuffer Operations

The preceding sections described the operations that occur as individual fragments
are sent to the framebuffer. This section describes operations that control or affect
the whole framebuffer.

15.2.1 Selecting Buffers for Writing

The first such operation is controlling the color buffers into which each of the
fragment color values is written. This is accomplished with DrawBuffers.

The command

void DrawBuffers(sizei n, const enum *bufs);

defines the draw buffers to which all fragment colors are written. n specifies the
number of buffers in bufs. bufs is a pointer to an array of symbolic constants
specifying the buffer to which each fragment color is written.

Each buffer listed in bufs must be BACK, NONE, or one of the values from ta-
ble 15.5. Further, acceptable values for the constants in bufs depend on whether the
GL is using the default framebuffer (the value of DRAW_FRAMEBUFFER_BINDING

OpenGL ES 3.2 (November 3, 2016)

15.2. WHOLE FRAMEBUFFER OPERATIONS 396

is zero), or a framebuffer object (the value of DRAW_FRAMEBUFFER_BINDING is
non-zero). For more information about framebuffer objects, see section 9.

If the GL is bound to the default framebuffer, then n must be 1 and the constant
must be BACK or NONE. When draw buffer zero is BACK, color values are written
into the sole buffer for single-buffered contexts, or into the back buffer for double-
buffered contexts.

If the GL is bound to a draw framebuffer object, then each of the constants
must be one of the values listed in table 15.5. Calling DrawBuffers with 0 as the
value of n is equivalent to setting all the draw buffers to NONE.

In both cases, the draw buffers being defined correspond in order to the re-
spective fragment colors. The draw buffer for fragment colors beyond n is set to
NONE.

The maximum number of draw buffers is implementation-dependent. The
number of draw buffers supported can be queried by calling GetIntegerv with
the symbolic constant MAX_DRAW_BUFFERS.

If the GL is bound to a draw framebuffer object, the ith buffer listed in bufs
must be COLOR_ATTACHMENTi or NONE.

Fragment color(s) are written by the fragment shader as described in sec-
tion 14.2.3. DrawBuffers specifies a set of draw buffers into which the fragment
color(s) are written. If a fragment color is undefined after fragment shader execu-
tion, or if the value written for a fragment color does not match the format of a
draw buffer it is to be written to, the resulting value in the draw buffer is undefined.

If an OpenGL ES Shading Language 1.00 fragment shader writes to
gl FragColor or gl FragData, DrawBuffers specifies the draw buffer, if any, into
which the single fragment color defined by gl FragColor or gl FragData[0] is
written. If an OpenGL ES Shading Language 3.00 or later fragment shader writes a
user-defined varying out variable, DrawBuffers specifies a set of draw buffers into
which each of the multiple output colors defined by these variables are separately
written. If a fragment shader writes to none of gl FragColor, gl FragData, nor any
user-defined output variables, the values of the fragment colors following shader
execution are undefined, and may differ for each fragment color. If some, but
not all user-defined output variables are written, the values of fragment colors
corresponding to unwritten variables are similarly undefined.

The order of writes to user-defined output variables is undefined. If the same
image is attached to multiple attachment points of a framebuffer object and differ-
ent values are written to outputs bound to those attachments, the resulting value in
the attached image is undefined. Similarly undefined behavior results during any
other per-fragment operations where a multiply-attached image may be written to
by more than one output, such as during blending.

OpenGL ES 3.2 (November 3, 2016)

15.2. WHOLE FRAMEBUFFER OPERATIONS 397

Errors

An INVALID_VALUE error is generated if n is negative, or greater than the
value of MAX_DRAW_BUFFERS.

An INVALID_ENUM error is generated if any value in bufs is not one of the
values in tables 15.5, BACK, or NONE.

An INVALID_OPERATION error is generated if the GL is bound to the
default framebuffer and n is not 1, or *bufs is a value other than BACK or
NONE.

An INVALID_OPERATION error is generated if the GL is bound to a
draw framebuffer object and the ith argument is a value other than COLOR_-

ATTACHMENTi or NONE.
An INVALID OPERATION error is generated if the GL is bound to

a draw framebuffer object and DrawBuffers is supplied with BACK or
COLOR ATTACHMENTm where m is greater than or equal to the value of
MAX COLOR ATTACHMENTS.

Indicating a buffer or buffers using DrawBuffers causes subsequent pixel color
value writes to affect the indicated buffers. If the GL is bound to a draw framebuffer
object and a draw buffer selects an attachment that has no image attached, then that
fragment color is not written.

Specifying NONE as the draw buffer for a fragment color will inhibit that frag-
ment color from being written.

The state required to handle color buffer selection for each framebuffer is an
integer for each supported fragment color. For the default framebuffer, in the initial
state the draw buffer for fragment color zero is BACK if there is a default frame-
buffer associated with the context, otherwise NONE. For framebuffer objects, in
the initial state the draw buffer for fragment color zero is COLOR_ATTACHMENT0.
For both the default framebuffer and framebuffer objects, the initial state of draw
buffers for fragment colors other than zero is NONE.

The draw buffer of the currently bound draw framebuffer selected for fragment
color i can be queried by calling GetIntegerv with pname set to DRAW_BUFFERi.

15.2.2 Fine Control of Buffer Updates

Writing of bits to each of the logical buffers after all per-fragment operations have
been performed may be masked. The commands

void ColorMask(boolean r, boolean g, boolean b,
boolean a);

OpenGL ES 3.2 (November 3, 2016)

15.2. WHOLE FRAMEBUFFER OPERATIONS 398

void ColorMaski(uint buf, boolean r, boolean g,
boolean b, boolean a);

control writes to the active draw buffers.
ColorMask and ColorMaski are used to mask the writing of R, G, B and A

values to the draw buffer or buffers. ColorMaski sets the mask for a particular
draw buffer. The mask for DRAW_BUFFERi is modified by passing i as the param-
eter buf. r, g, b, and a indicate whether R, G, B, or A values, respectively, are
written or not (a value of TRUE means that the corresponding value is written).
The mask specified by r, g, b, and a is applied to the color buffer associated with
DRAW_BUFFERi.

ColorMask sets the mask for all draw buffers to the same values as specified
by r, g, b, and a.

Errors

An INVALID_VALUE error is generated by ColorMaski if buf is greater
than the value of MAX_DRAW_BUFFERS minus one.

In the initial state, all color values are enabled for writing for all draw buffers.
The value of the color writemask for draw buffer i may be queried by calling

GetBooleani v with target COLOR_WRITEMASK and index i. The value of the color
writemask for draw buffer zero may also be queried by calling GetBooleanv with
pname COLOR_WRITEMASK.

The depth buffer can be enabled or disabled for writing zw values using

void DepthMask(boolean mask);

If mask is non-zero, the depth buffer is enabled for writing; otherwise, it is disabled.
In the initial state, the depth buffer is enabled for writing.

The commands

void StencilMask(uint mask);
void StencilMaskSeparate(enum face, uint mask);

control the writing of particular bits into the stencil planes.
The least significant s bits of mask, where s is the number of bits in the stencil

buffer, specify an integer mask. Where a 1 appears in this mask, the corresponding
bit in the stencil buffer is written; where a 0 appears, the bit is not written. The face
parameter of StencilMaskSeparate can be FRONT, BACK, or FRONT_AND_BACK
and indicates whether the front or back stencil mask state is affected. StencilMask
sets both front and back stencil mask state to identical values.

OpenGL ES 3.2 (November 3, 2016)

15.2. WHOLE FRAMEBUFFER OPERATIONS 399

Fragments generated by front-facing primitives use the front mask and frag-
ments generated by back-facing primitives use the back mask (see section 15.1.2).
The clear operation always uses the front stencil write mask when clearing the
stencil buffer.

The state required for the various masking operations is two integers for the
front and back stencil values, and a bit for depth values. A set of four bits is also
required indicating which color components of an RGBA value should be written.
In the initial state, the integer masks are all ones, as are the bits controlling depth
value and RGBA component writing.

15.2.2.1 Fine Control of Multisample Buffer Updates

When a framebuffer object is not bound and the value of SAMPLE_BUFFERS is one,
ColorMask, DepthMask, and StencilMask or StencilMaskSeparate control the
modification of values in the multisample buffer. The color mask has no effect on
modifications to the color buffers. If the color mask is entirely disabled, the color
sample values must still be combined (as described above) and the result used to
replace the color values of the buffers enabled by DrawBuffer.

15.2.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel in a particular buffer
to the same value. The argument to

void Clear(bitfield buf);

is zero or the bitwise OR of one or more values indicating which buffers are
to be cleared. The values are COLOR_BUFFER_BIT, DEPTH_BUFFER_BIT, and
STENCIL_BUFFER_BIT, indicating the buffers currently enabled for color writ-
ing, the depth buffer, and the stencil buffer (see below), respectively. The value
to which each buffer is cleared depends on the setting of the clear value for that
buffer. If buf is zero, no buffers are cleared.

Errors

An INVALID_VALUE error is generated if buf contains any bits other than
COLOR_BUFFER_BIT, DEPTH_BUFFER_BIT, or STENCIL_BUFFER_BIT.

void ClearColor(float r, float g, float b, float a);

OpenGL ES 3.2 (November 3, 2016)

15.2. WHOLE FRAMEBUFFER OPERATIONS 400

sets the clear value for fixed-point and floating-point color buffers. The specified
components are stored as floating-point values. Unsigned normalized fixed-point
RGBA color buffers are cleared to color values derived by clamping each com-
ponent of the clear color to the range [0, 1], then converting the (possibly sRGB
converted and/or dithered) color to fixed-point using equations 2.3 or 2.4, respec-
tively. The result of clearing integer color buffers with Clear is undefined.

The command

void ClearDepthf(float d);

sets the depth value used when clearing the depth buffer. d is clamped to the range
[0, 1] when specified. When clearing a fixed-point depth buffer, d is converted to
fixed-point according to the rules for a window z value given in section 12.5.1. No
conversion is applied when clearing a floating-point depth buffer.

The command

void ClearStencil(int s);

takes a single integer argument that is the value to which to clear the stencil buffer.
s is masked to the number of bitplanes in the stencil buffer.

When Clear is called, the only per-fragment operations that are applied (if
enabled) are the pixel ownership test, the scissor test, sRGB conversion (see sec-
tion 15.1.6), and dithering. The masking operations described in section 15.2.2 are
also applied. If a buffer is not present, then a Clear directed at that buffer has no
effect.

The state required for clearing is a clear value for each of the color buffer,
the depth buffer, and the stencil buffer. Initially, the RGBA color clear value is
(0.0, 0.0, 0.0, 0.0), the depth buffer clear value is 1.0, and the stencil buffer clear
index is 0.

15.2.3.1 Clearing Individual Buffers

Individual buffers of the currently bound draw framebuffer may be cleared with the
command

void ClearBuffer{if ui}v(enum buffer, int drawbuffer,
const T *value);

where buffer and drawbuffer identify a buffer to clear, and value specifies the value
or values to clear it to. ClearBufferfv, ClearBufferiv, and ClearBufferuiv should

OpenGL ES 3.2 (November 3, 2016)

15.2. WHOLE FRAMEBUFFER OPERATIONS 401

be used to clear fixed- and floating-point, signed integer, and unsigned integer color
buffers respectively.

If buffer is COLOR, a particular draw buffer DRAW_BUFFERi is specified by
passing i as the parameter drawbuffer, and value points to a four-element vec-
tor specifying the R, G, B, and A color to clear that draw buffer to. If the value
of DRAW_BUFFERi is NONE, the command has no effect. Otherwise, the value of
DRAW_BUFFERi is BACK or one of the possible values in tables 15.5 identifying the
color buffer to clear. Clamping and conversion for fixed-point color buffers are
performed in the same fashion as ClearColor.

If buffer is DEPTH, drawbuffer must be zero, and value points to the single
depth value to clear the depth buffer to. Clamping and type conversion for fixed-
point depth buffers are performed in the same fashion as ClearDepth. Only Clear-
Bufferfv should be clear depth buffers; neither ClearBufferiv nor ClearBufferuiv
accept a buffer of DEPTH.

If buffer is STENCIL, drawbuffer must be zero, and value points to the single
stencil value to clear the stencil buffer to. Masking is performed in the same fash-
ion as ClearStencil. Only ClearBufferiv should be used to clear stencil buffers;
neither ClearBufferfv nor ClearBufferuiv accept a buffer of STENCIL.

The command

void ClearBufferfi(enum buffer, int drawbuffer,
float depth, int stencil);

clears both depth and stencil buffers of the currently bound draw framebuffer.
buffer must be DEPTH_STENCIL and drawbuffer must be zero. depth and sten-
cil are the values to clear the depth and stencil buffers to, respectively. Clamping
and type conversion of depth for fixed-point depth buffers is performed in the same
fashion as ClearDepth. Masking of stencil for stencil buffers is performed in the
same fashion as ClearStencil. ClearBufferfi is equivalent to clearing the depth
and stencil buffers separately, but may be faster when a buffer of internal format
DEPTH_STENCIL is being cleared.

The result of these commands is undefined if no conversion between the type of
the specified value and the type of the buffer being cleared is defined (for example,
if ClearBufferiv is called for a fixed- or floating-point buffer, or if ClearBufferfv
is called for a signed or unsigned integer buffer). This is not an error.

When ClearBuffer* is called, the same per-fragment and masking operations
defined for Clear are applied.

OpenGL ES 3.2 (November 3, 2016)

15.2. WHOLE FRAMEBUFFER OPERATIONS 402

Errors

An INVALID_ENUM error is generated by ClearBufferiv if buffer is not
COLOR or STENCIL.

An INVALID_ENUM error is generated by ClearBufferuiv if buffer is not
COLOR.

An INVALID_ENUM error is generated by ClearBufferfv if buffer is not
COLOR or DEPTH.

An INVALID_ENUM error is generated by ClearBufferfi if buffer is not
DEPTH_STENCIL.

An INVALID_VALUE error is generated if buffer is COLOR and drawbuffer
is negative, or greater than the value of MAX_DRAW_BUFFERS minus one; or if
buffer is DEPTH, STENCIL, or DEPTH_STENCIL and drawbuffer is not zero.

15.2.3.2 Clearing the Multisample Buffer

The color samples of the multisample buffer are cleared when one or more color
buffers are cleared, as specified by the Clear mask bit COLOR_BUFFER_BIT and
the DrawBuffer mode. If the DrawBuffer mode is NONE, the color samples of the
multisample buffer cannot be cleared using Clear.

If the Clear mask bits DEPTH_BUFFER_BIT or STENCIL_BUFFER_BIT are
set, then the corresponding depth or stencil samples, respectively, are cleared.

The ClearBuffer* commands also clear color, depth, or stencil samples of
multisample buffers corresponding to the specified buffer.

Masking and scissoring affect clearing the multisample buffer in the same way
as they affect clearing the corresponding color, depth, and stencil buffers.

15.2.4 Invalidating Framebuffer Contents

The GL provides a means for invalidating portions of every pixel or a subregion
of pixels in a particular buffer, effectively leaving their contents undefined. The
command

void InvalidateSubFramebuffer(enum target,
sizei numAttachments, const enum *attachments, int x,
int y, sizei width, sizei height);

signals the GL that it need not preserve all contents of a bound framebuffer object.
target must be FRAMEBUFFER, DRAW_FRAMEBUFFER, or READ_FRAMEBUFFER.
FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. numAttachments indicates

OpenGL ES 3.2 (November 3, 2016)

15.2. WHOLE FRAMEBUFFER OPERATIONS 403

how many attachments are supplied in the attachments list. If an attachment is
specified that does not exist in the framebuffer bound to target, it is ignored. x and
y are the origin (with lower left-hand corner at (0, 0)) and width and height are the
width and height, respectively, of the pixel rectangle to be invalidated. Any of these
pixels lying outside of the window allocated to the current GL context, or outside
of the attachments of the currently bound framebuffer object, are ignored.

If a framebuffer object is bound to target, then including DEPTH_STENCIL_-

ATTACHMENT in the attachments list is a special case causing both the depth and
stencil attachments of the framebuffer object to be invalidated. Note that if a speci-
fied attachment has base internal format DEPTH_STENCIL but the attachments list
does not include DEPTH_STENCIL_ATTACHMENT or both DEPTH_ATTACHMENT

and STENCIL_ATTACHMENT, then only the specified portion of every pixel in the
subregion of pixels of the DEPTH_STENCIL buffer may be invalidated, and the
other portion must be preserved.

If the framebuffer object is not complete, InvalidateSubFramebuffer may be
ignored.

Errors

An INVALID_ENUM error is generated if target is not FRAMEBUFFER,
DRAW_FRAMEBUFFER, or READ_FRAMEBUFFER.

An INVALID_ENUM error is generated if a framebuffer object is bound
to target and any elements of attachments are not one of the attachments in
table 9.1.

An INVALID_ENUM error is generated if attachments contains a value
other than COLOR_ATTACHMENTm for m in the range [0, 31].

An INVALID_OPERATION error is generated if attachments contains a
value COLOR_ATTACHMENTm where m is greater than or equal to the value
of MAX_COLOR_ATTACHMENTS.

An INVALID_VALUE error is generated if numAttachments, width, or
height is negative.

An INVALID_ENUM error is generated if the default framebuffer is bound
to target and any elements of attachments are not one of

• COLOR, identifying the color buffer

• DEPTH, identifying the depth buffer

• STENCIL, identifying the stencil buffer.

The command

OpenGL ES 3.2 (November 3, 2016)

15.2. WHOLE FRAMEBUFFER OPERATIONS 404

void InvalidateFramebuffer(enum target,
sizei numAttachments, const enum *attachments);

is equivalent to

InvalidateSubFramebuffer(target, numAttachments, attachments,
0, 0, vw, vh);

where vw and vh are equal to the maximum viewport width and height, respc-
tively, obtained by querying MAX_VIEWPORT_DIMS (for the default framebuffer)
or the largest framebuffer object’s attachments’ width and height, respectively (for
a framebuffer object).

OpenGL ES 3.2 (November 3, 2016)

Chapter 16

Reading and Copying Pixels

Pixels may be read from the framebuffer using ReadPixels. BlitFramebuffer can
be used to copy a block of pixels from one portion of the framebuffer to another.

16.1 Reading Pixels

The method for reading pixels from the framebuffer and placing them in pixel pack
buffer or client memory is diagrammed in figure 16.1. We describe the stages of
the pixel reading process in the order in which they occur.

16.1.1 Selecting Buffers for Reading

When reading pixels from a color buffer, the buffer selected for reading is termed
the read buffer, and is controlled with the command

void ReadBuffer(enum src);

If the GL is bound to the default framebuffer (see section 9), src must be BACK

or NONE. BACK refers to the back buffer of a double-buffered context or the sole
buffer of a single-buffered context. The initial value of the read framebuffer for
the default framebuffer is BACK if there is a default framebuffer associated with the
context, otherwise it is NONE.

If the GL is bound to a read framebuffer object, src must be one of the val-
ues listed in table 15.5, including NONE. Specifying COLOR_ATTACHMENTi en-
ables reading from the image attached to the framebuffer at that attachment point.
The initial value of the read framebuffer for framebuffer objects is COLOR_-

ATTACHMENT0. The read buffer of the currently bound read framebuffer can be
queried by calling GetIntegerv with pname set to READ_BUFFER.

405

16.1. READING PIXELS 406

byte, short, int, float, or packed
pixel component data stream

Clamp to [0,1]

Pack

Convert to float

RGBA pixel data in

Pixel Storage
Operations

Figure 16.1. Operation of ReadPixels. Operations in dashed boxes are not per-
formed for all data formats.

Errors

An INVALID_ENUM error is generated if src is not BACK or one of the
values from table 15.5.

An INVALID_OPERATION error is generated if src is BACK and there is no
default framebuffer associated with the context.

An INVALID_OPERATION error is generated if the GL is bound to the
default framebuffer and src is COLOR_ATTACHMENTm for any m.

An INVALID_OPERATION error is generated if the GL is bound to a draw
framebuffer object and src is BACK or COLOR_ATTACHMENTm where m is
greater than or equal to the value of MAX_COLOR_ATTACHMENTS.

16.1.2 ReadPixels

Initially, zero is bound for the PIXEL_PACK_BUFFER, indicating that image read
and query commands such as ReadPixels return pixel results into client memory
pointer parameters. However, if a non-zero buffer object is bound as the current
pixel pack buffer, then the pointer parameter is treated as an offset into the desig-
nated buffer object.

OpenGL ES 3.2 (November 3, 2016)

16.1. READING PIXELS 407

Parameter Name Type Initial Value Valid Range
PACK_ROW_LENGTH integer 0 [0,∞)

PACK_SKIP_ROWS integer 0 [0,∞)

PACK_SKIP_PIXELS integer 0 [0,∞)

PACK_ALIGNMENT integer 4 1,2,4,8

Table 16.1: PixelStorei parameters pertaining to ReadPixels.

Pixels are read using

void ReadPixels(int x, int y, sizei width, sizei height,
enum format, enum type, void *data);

void ReadnPixels(int x, int y, sizei width,
sizei height, enum format, enum type, sizei bufSize,
void *data);

The arguments after x and y to ReadPixels are described in section 8.4.2. The pixel
storage modes that apply to ReadPixels and other commands that query images
(see section 8.11) are summarized in table 16.1.

Only two combinations of format and type are accepted in most cases. The
first varies depending on the format of the currently bound rendering surface. For
normalized fixed-point rendering surfaces, the combination format RGBA and type
UNSIGNED_BYTE is accepted. For floating-point rendering surfaces, the combi-
nation format RGBA and type FLOAT is accepted. For signed integer rendering
surfaces, the combination format RGBA_INTEGER and type INT is accepted. For
unsigned integer rendering surfaces, the combination format RGBA_INTEGER and
type UNSIGNED_INT is accepted.

The second is an implementation-chosen format from among those de-
fined in table 8.2, excluding formats DEPTH_COMPONENT, DEPTH_STENCIL, and
STENCIL_INDEX. The values of format and type for this format may be determined
by calling GetIntegerv with the symbolic constants IMPLEMENTATION_COLOR_-
READ_FORMAT and IMPLEMENTATION_COLOR_READ_TYPE, respectively. The
implementation-chosen format may vary depending on the format of the selected
read buffer of the currently bound read framebuffer.

Additionally, when the internal format of the rendering surface is RGB10_A2,
a third combination of format RGBA and type UNSIGNED_INT_2_10_10_10_REV
is accepted.

OpenGL ES 3.2 (November 3, 2016)

16.1. READING PIXELS 408

Errors

An INVALID_OPERATION error is generated if the combination of format
and type is unsupported.

An INVALID_OPERATION error is generated if the read framebuffer is not
framebuffer complete.

An INVALID_OPERATION error is generated if the value of READ_-

FRAMEBUFFER_BINDING (see section 9) is non-zero, the read framebuffer
is framebuffer complete, and the effective value of SAMPLE_BUFFERS for the
read framebuffer is one.

An INVALID_OPERATION error is generated by ReadnPixels if the buffer
size required to store the requested data is greater than bufSize.

An INVALID_OPERATION error is generated by GetIntegerv if pname is
IMPLEMENTATION_COLOR_READ_FORMAT or IMPLEMENTATION_COLOR_-
READ_TYPE and any of:

• the read framebuffer is not framebuffer complete

• the read framebuffer is a framebuffer object, and the selected read buffer
(see section 16.1.1) has no image attached

• the selected read buffer is NONE

Additional errors for ReadPixels are described in the following sections.

16.1.3 Obtaining Pixels from the Framebuffer

Values are obtained from the color buffer selected by the read buffer (see sec-
tion 16.1.1).

ReadPixels obtains values from the selected buffer from each pixel with lower
left hand corner at (x+ i, y+ j) for 0 ≤ i < width and 0 ≤ j < height; this pixel
is said to be the ith pixel in the jth row. If any of these pixels lies outside of the
window allocated to the current GL context, or outside of the image attached to the
currently bound read framebuffer object, then the values obtained for those pixels
are undefined. When READ_FRAMEBUFFER_BINDING is zero, values are also un-
defined for individual pixels that are not owned by the current context. Otherwise,
ReadPixels obtains values from the selected buffer, regardless of how those values
were placed there.

If format is one of RED, RG, RGB, or RGBA, then red, green, blue, and alpha
values are obtained from the selected buffer at each pixel location.

OpenGL ES 3.2 (November 3, 2016)

16.1. READING PIXELS 409

Errors

An INVALID_OPERATION error is generated if:

• format is an integer format and the color buffer is not an integer format;

• format is not an and the color buffer is an integer format; not an integer
format;

• format is an integer format and type is FLOAT, HALF_FLOAT, or
UNSIGNED_INT_10F_11F_11F_REV; or

• the color buffer is a floating-point format and type is not FLOAT, HALF_-
FLOAT, or UNSIGNED_INT_10F_11F_11F_REV.

When READ_FRAMEBUFFER_BINDING is non-zero, the red, green, blue, and
alpha values are obtained by first reading the internal component values of the
corresponding value in the image attached to the selected logical buffer. Internal
components are converted to an RGBA color by taking each R, G, B, and A com-
ponent present according to the base internal format of the buffer (as shown in
table 8.8). If G, B, or A values are not present in the internal format, they are taken
to be zero, zero, and one respectively.

16.1.4 Conversion of RGBA values

The R, G, B, and A values form a group of elements. For a normalized fixed-point
color buffer, each element is converted to floating-point using equation 2.1. For an
integer or floating-point color buffer, the elements are unmodified.

16.1.5 Final Conversion

For a floating-point RGBA color, if type is not one of FLOAT, HALF_FLOAT, or
UNSIGNED_INT_10F_11F_11F_REV, each component is first clamped to [0, 1].
Then the appropriate conversion table 16.2 is applied to the component.

In the special case of calling ReadPixels with type of UNSIGNED_INT_10F_-
11F_11F_REV and format of RGB, conversion is performed as follows: the returned
data are packed into a series of uint values. The red, green, and blue components
are converted to unsigned 11-bit floating-point, unsigned 11-bit floating-point, and
unsigned 10-bit floating point as described in sections 2.3.4.3 and 2.3.4.4. The
resulting red 11 bits, green 11 bits, and blue 10 bits are then packed as the 1st, 2nd,
and 3rd components of the UNSIGNED_INT_10F_11F_11F_REV format as shown
in figure 8.4.

OpenGL ES 3.2 (November 3, 2016)

16.1. READING PIXELS 410

type Parameter GL Data Type Component
Conversion Formula

UNSIGNED_BYTE ubyte Equation 2.3, b = 8

BYTE byte Equation 2.4, b = 8

UNSIGNED_SHORT ushort Equation 2.3, b = 16

SHORT short Equation 2.4, b = 16

UNSIGNED_INT uint Equation 2.3, b = 32

INT int Equation 2.4, b = 32

HALF_FLOAT half c = f

FLOAT float c = f

UNSIGNED_SHORT_5_6_5 ushort Equation 2.3, b = bitfield width
UNSIGNED_SHORT_4_4_4_4 ushort Equation 2.3, b = bitfield width
UNSIGNED_SHORT_5_5_5_1 ushort Equation 2.3, b = bitfield width
UNSIGNED_INT_2_10_10_10_REV uint Equation 2.3, b = bitfield width
UNSIGNED_INT_10F_11F_11F_REV uint Special

Table 16.2: Reversed component conversions, used when component data are be-
ing returned to client memory. Color components are converted from the internal
floating-point representation (f) to a datum of the specified GL data type (c) using
the specified equation. All arithmetic is done in the internal floating point format.
These conversions apply to component data returned by GL query commands and
to components of pixel data returned to client memory. The equations remain the
same even if the implemented ranges of the GL data types are greater than the
minimum required ranges. (See table 2.2.)

For an integer RGBA color, each component is clamped to the representable
range of type.

16.1.6 Placement in Pixel Pack Buffer or Client Memory

If a pixel pack buffer is bound (as indicated by a non-zero value of PIXEL_PACK_-
BUFFER_BINDING), data is an offset into the pixel pack buffer and the pixels are
packed into the buffer relative to this offset; otherwise, data is a pointer to a block
client memory and the pixels are packed into the client memory relative to the
pointer.

Errors

OpenGL ES 3.2 (November 3, 2016)

16.2. COPYING PIXELS 411

An INVALID_OPERATION error is generated if a pixel pack buffer object
is bound and packing the pixel data according to the pixel pack storage state
would access memory beyond the size of the pixel pack buffer’s memory size.

An INVALID_OPERATION error is generated if a pixel pack buffer object
is bound and data is not evenly divisible by the number of basic machine units
needed to store in memory the corresponding GL data type from table 8.4 for
the type parameter.

Groups of elements are placed in memory just as they are taken from memory
when transferring pixel rectangles to the GL. That is, the ith group of the jth row
(corresponding to the ith pixel in the jth row) is placed in memory just where
the ith group of the jth row would be taken from when transferring pixels. See
Unpacking under section 8.4.2.1. The only difference is that the storage mode
parameters whose names begin with PACK_ are used instead of those whose names
begin with UNPACK_. If the format is RED, only the corresponding single element
is written. Likewise if the format is RG or RGB, only the corresponding two or three
elements are written. Otherwise all the elements of each group are written.

16.2 Copying Pixels

Several commands copy pixel data between regions of the framebuffer (see sec-
tion 16.2.1), or between regions of textures and renderbuffers (see section 16.2.2).
For all such commands, the source and destination buffers must not be identical.

16.2.1 Blitting Pixel Rectangles

To transfer a rectangle of pixel values from one region of a source framebuffer to
another region of a destination framebuffer, use the command

void BlitFramebuffer(int srcX0, int srcY0, int srcX1,
int srcY1, int dstX0, int dstY0, int dstX1, int dstY1,
bitfield mask, enum filter);

The source and destination framebuffers are those bound to READ_-

FRAMEBUFFER and DRAW_FRAMEBUFFER respectively. The source and desti-
nation must not be the same framebuffer.

If no framebuffer is bound to READ_FRAMEBUFFER or DRAW_FRAMEBUFFER,
then the default read or draw framebuffer is used as the corresponding source or
destination framebuffer, respectively.

mask is zero or the bitwise OR of one or more values indicating which buffers
are to be copied. The values are COLOR_BUFFER_BIT, DEPTH_BUFFER_BIT, and

OpenGL ES 3.2 (November 3, 2016)

16.2. COPYING PIXELS 412

STENCIL_BUFFER_BIT, which are described in section 15.2.3. The pixels corre-
sponding to these buffers are copied from the source rectangle bounded by the lo-
cations (srcX0, srcY 0) and (srcX1, srcY 1) to the destination rectangle bounded
by the locations (dstX0, dstY 0) and (dstX1, dstY 1).

Pixels have half-integer center coordinates. Only pixels whose centers lie
within the destination rectangle are written by BlitFramebuffer. Linear filter sam-
pling (see below) may result in pixels outside the source rectangle being read.

If mask is zero, no buffers are copied.
When the color buffer is transferred, values are taken from the read buffer of the

read framebuffer and written to each of the draw buffers of the draw framebuffer.
The actual region taken from the read framebuffer is limited to the intersection

of the source buffers being transferred, which may include the color buffer selected
by the read buffer, the depth buffer, and/or the stencil buffer depending on mask.
The actual region written to the draw framebuffer is limited to the intersection of
the destination buffers being written, which may include multiple draw buffers,
the depth buffer, and/or the stencil buffer depending on mask. Whether or not the
source or destination regions are altered due to these limits, the scaling and offset
applied to pixels being transferred is performed as though no such limits were
present.

If the source and destination rectangle dimensions do not match, the source im-
age is stretched to fit the destination rectangle. filter must be LINEAR or NEAREST,
and specifies the method of interpolation to be applied if the image is stretched.
LINEAR filtering is allowed only for the color buffer. If the source and destination
dimensions are identical, no filtering is applied. If either the source or destination
rectangle specifies a negative width or height (X1 < X0 or Y 1 < Y 0), the im-
age is reversed in the corresponding direction. If both the source and destination
rectangles specify a negative width or height for the same direction, no reversal is
performed. If a linear filter is selected and the rules of LINEAR sampling would
require sampling outside the bounds of a source buffer, it is as though CLAMP_-

TO_EDGE texture sampling were being performed. If a linear filter is selected and
sampling would be required outside the bounds of the specified source region, but
within the bounds of a source buffer, the implementation may choose to clamp
while sampling or not.

If the source and destination buffers are identical, and the source and
destination rectangles overlap, the result of the blit operation is undefined as
described in the introduction to section 16.2.

When values are taken from the read buffer, if the value of FRAMEBUFFER_-
ATTACHMENT_COLOR_ENCODING for the framebuffer attachment corresponding to
the read buffer is SRGB (see section 9.2.3), the red, green, and blue components are
converted from the non-linear sRGB color space according to equation 8.15.

OpenGL ES 3.2 (November 3, 2016)

16.2. COPYING PIXELS 413

When values are written to the draw buffers, blit operations bypass most of the
fragment pipeline. The only fragment operations which affect a blit are the pixel
ownership test, the scissor test, and sRGB conversion (see section 15.1.6). Color,
depth, and stencil masks (see section 15.2.2) are ignored.

If the read framebuffer is layered (see section 9.8), pixel values are read from
layer zero. If the draw framebuffer is layered, pixel values are written to layer zero.
If both read and draw framebuffers are layered, the blit operation is still performed
only on layer zero.

If a buffer is specified in mask and does not exist in both the read and draw
framebuffers, the corresponding bit is silently ignored.

If the color formats of the read and draw buffers do not match, and mask in-
cludes COLOR_BUFFER_BIT, pixel groups are converted to match the destination
format. However, colors are clamped only if all draw color buffers have fixed-point
components. Format conversion is not supported for all data types, as described be-
low.

If the read framebuffer is multisampled (its effective value of SAMPLE_-

BUFFERS is one) and the draw framebuffer is not (its value of SAMPLE_BUFFERS is
zero), the samples corresponding to each pixel location in the source are converted
to a single sample before being written to the destination. The filter parameter is
ignored. If the source formats are integer types or stencil values, a single sample’s
value is selected for each pixel. If the source formats are floating-point or nor-
malized types, the sample values for each pixel are resolved in an implementation-
dependent manner. If the source formats are depth values, sample values are re-
solved in an implementation-dependent manner where the result will be between
the minimum and maximum depth values in the pixel.

Errors

An INVALID_VALUE error is generated if mask contains any bits other
than COLOR_BUFFER_BIT, DEPTH_BUFFER_BIT, or STENCIL_BUFFER_-

BIT.
An INVALID_ENUM error is generated if filter is not LINEAR or NEAREST.
An INVALID_OPERATION error is generated if mask includes DEPTH_-

BUFFER_BIT or STENCIL_BUFFER_BIT, and filter is not NEAREST.
An INVALID_OPERATION error is generated if the source and destination

buffers are identical.
An INVALID_FRAMEBUFFER_OPERATION error is generated if either the

read framebuffer or the draw framebuffer is not framebuffer complete (sec-
tion 9.4.2).

OpenGL ES 3.2 (November 3, 2016)

16.2. COPYING PIXELS 414

An INVALID_OPERATION error is generated if mask includes DEPTH_-
BUFFER_BIT or STENCIL_BUFFER_BIT, and the source and destination
depth and stencil buffer formats do not match.

An INVALID_OPERATION error is generated if filter is LINEAR and the
read buffer contains integer data.

An INVALID_OPERATION error is generated if the read framebuffer is
multisampled, and the source and destination rectangles are not defined with
the same (X0, Y 0) and (X1, Y 1) bounds.

An INVALID_OPERATION error is generated if the read framebuffer is
multisampled, and the formats of the read and draw framebuffers are not iden-
tical.

An INVALID_OPERATION error is generated if the draw framebuffer is
multisampled.

An INVALID_OPERATION error is generated if format conversions are not
supported, which occurs under any of the following conditions:

• The read buffer contains fixed-point or floating-point values and any
draw buffer contains neither fixed-point nor floating-point values.

• The read buffer contains unsigned integer values and any draw buffer
does not contain unsigned integer values.

• The read buffer contains signed integer values and any draw buffer does
not contain signed integer values.

16.2.2 Copying Between Images

The function

void CopyImageSubData(uint srcName, enum srcTarget,
int srcLevel, int srcX, int srcY, int srcZ,
uint dstName, enum dstTarget, int dstLevel, int dstX,
int dstY, int dstZ, sizei srcWidth, sizei srcHeight,
sizei srcDepth);

may be used to copy a region of texel data between two image objects. An image
object may be either a texture or a renderbuffer.

CopyImageSubData does not perform general-purpose conversions such as
scaling, resizing, blending, color-space, or format conversions. It should be con-
sidered to operate in a manner similar to a CPU memcpy. CopyImageSubData

OpenGL ES 3.2 (November 3, 2016)

16.2. COPYING PIXELS 415

can copy between images with different internal formats, provided the formats are
compatible.

CopyImageSubData also allows copying between certain types of compressed
and uncompressed internal formats as described in table 16.3. This copy does not
perform on-the-fly compression or decompression. When copying from an un-
compressed internal format to a compressed internal format, each texel of uncom-
pressed data becomes a single block of compressed data. When copying from a
compressed internal format to an uncompressed internal format, a block of com-
pressed data becomes a single texel of uncompressed data. The texel size of the
uncompressed format must be the same size as the block size of the compressed
formats. Thus it is permitted to copy between a 128-bit uncompressed format and
a compressed format which uses 8-bit 4 × 4 blocks, or between a 64-bit uncom-
pressed format and a compressed format which uses 4-bit 4× 4 blocks.

The source object is identified by srcName and srcTarget. Similarly the des-
tination object is identified by dstName and dstTarget. The interpretation of the
name depends on the value of the corresponding target parameter. If the target pa-
rameter is RENDERBUFFER, the name is interpreted as the name of a renderbuffer
object. If the target parameter is a texture target, the name is interpreted as a texture
object. All texture targets are accepted, with the exception of TEXTURE_BUFFER
and the cubemap face selectors described in table 8.20.

srcLevel and dstLevel identify the source and destination level of detail. For
textures, this must be a valid level of detail in the texture object. For renderbuffers,
this value must be zero.

srcX, srcY, and srcZ specify the lower left texel coordinates of a srcWidth-wide
by srcHeight-high by srcDepth-deep rectangular subregion of the source texel ar-
ray. Similarly, dstX, dstY and dstZ specify the coordinates of a subregion of the
destination texture image. The source and destination subregions must be con-
tained entirely within the specified level of the corresponding image objects. The
dimensions are always specified in texels, even for compressed texture formats.
But it should be noted that if only one of the source and destination textures is
compressed then the number of texels touched in the compressed image will be a
factor of the block size larger than in the uncompressed image.

Slices of a two-dimensional array, cube map array, or three dimensional texture,
or faces of a cube map texture are all compatible provided they share a compatible
internal format, and multiple slices or faces may be copied between these objects
with a single call by specifying the starting slice with srcZ and dstZ, and the number
of slices to be copied with srcDepth. Cubemap textures always have six faces
which are selected by a zero-based face index, according to the order specified in
table 8.20.

OpenGL ES 3.2 (November 3, 2016)

16.2. COPYING PIXELS 416

For the purposes of CopyImageSubData, two internal formats are considered
compatible if any of the following conditions are met:

• the formats are the same,

• the formats are both listed in the same entry of table 16.4, or

• one format is compressed and the other is uncompressed and table 16.3 lists
the two formats in the same row.

Texel / Uncompressed Compressed
Block Size internal format internal format
128-bit RGBA32UI,

RGBA32I, RGBA32F
COMPRESSED_RGBA8_ETC2_EAC,
COMPRESSED_SRGB8_ALPHA8_-

ETC2_EAC, COMPRESSED_RG11_EAC,
COMPRESSED_SIGNED_RG11_EAC, and
all COMPRESSED_RGBA_ASTC* and
COMPRESSED_SRGB8_ALPHA8_ASTC*
formats from table 8.17

64-bit RGBA16F, RG32F,
RGBA16UI, RG32UI,
RGBA16I, RG32I

COMPRESSED_RGB8_ETC2,
COMPRESSED_SRGB8_ETC2,
COMPRESSED_R11_EAC, COMPRESSED_-

SIGNED_R11_EAC, COMPRESSED_-

RGB8_PUNCHTHROUGH_ALPHA1_ETC2,
COMPRESSED_SRGB8_PUNCHTHROUGH_-

ALPHA1_ETC2

Table 16.3: Compatible internal formats for copying between com-
pressed and uncompressed internal formats with CopyImageSub-
Data. Formats in the same row can be copied between each other.

Class Internal formats
VIEW_CLASS_128_BITS RGBA32F, RGBA32UI, RGBA32I
VIEW_CLASS_96_BITS RGB32F, RGB32UI, RGB32I
VIEW_CLASS_64_BITS RGBA16F, RG32F, RGBA16UI, RG32UI, RGBA16I, RG32I,
VIEW_CLASS_48_BITS RGB16F, RGB16UI, RGB16I

(Continued on next page)

OpenGL ES 3.2 (November 3, 2016)

16.2. COPYING PIXELS 417

Compatible internal formats for CopyImageSubData (continued)
Class Internal formats
VIEW_CLASS_32_BITS RG16F, R11F_G11F_B10F, R32F, RGB10_A2UI, RGBA8UI,

RG16UI, R32UI, RGBA8I, RG16I, R32I, RGB10_A2, RGBA8,
RG16, RGBA8_SNORM, SRGB8_ALPHA8, RGB9_E5

VIEW_CLASS_24_BITS RGB8, RGB8_SNORM, SRGB8, RGB8UI, RGB8I
VIEW_CLASS_16_BITS R16F, RG8UI, R16UI, RG8I, R16I, RG8, RG8_SNORM
VIEW_CLASS_8_BITS R8UI, R8I, R8, R8_SNORM
VIEW_CLASS_EAC_R11 COMPRESSED_R11_EAC, COMPRESSED_SIGNED_R11_EAC
VIEW_CLASS_EAC_RG11 COMPRESSED_RG11_EAC, COMPRESSED_SIGNED_RG11_EAC
VIEW_CLASS_ETC2_RGB COMPRESSED_RGB8_ETC2, COMPRESSED_SRGB8_ETC2
VIEW_CLASS_ETC2_RGBA COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2,

COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2

VIEW_CLASS_ETC2_EAC_RGBA COMPRESSED_RGBA8_ETC2_EAC, COMPRESSED_SRGB8_-

ALPHA8_ETC2_EAC

VIEW_CLASS_ASTC_4x4_RGBA COMPRESSED_RGBA_ASTC_4x4, COMPRESSED_SRGB8_-

ALPHA8_ASTC_4x4

VIEW_CLASS_ASTC_5x4_RGBA COMPRESSED_RGBA_ASTC_5x4, COMPRESSED_SRGB8_-

ALPHA8_ASTC_5x4

VIEW_CLASS_ASTC_5x5_RGBA COMPRESSED_RGBA_ASTC_5x5, COMPRESSED_SRGB8_-

ALPHA8_ASTC_5x5

VIEW_CLASS_ASTC_6x5_RGBA COMPRESSED_RGBA_ASTC_6x5, COMPRESSED_SRGB8_-

ALPHA8_ASTC_6x5

VIEW_CLASS_ASTC_6x6_RGBA COMPRESSED_RGBA_ASTC_6x6, COMPRESSED_SRGB8_-

ALPHA8_ASTC_6x6

VIEW_CLASS_ASTC_8x5_RGBA COMPRESSED_RGBA_ASTC_8x5, COMPRESSED_SRGB8_-

ALPHA8_ASTC_8x5

VIEW_CLASS_ASTC_8x6_RGBA COMPRESSED_RGBA_ASTC_8x6, COMPRESSED_SRGB8_-

ALPHA8_ASTC_8x6

VIEW_CLASS_ASTC_8x8_RGBA COMPRESSED_RGBA_ASTC_8x8, COMPRESSED_SRGB8_-

ALPHA8_ASTC_8x8

VIEW_CLASS_ASTC_10x5_RGBA COMPRESSED_RGBA_ASTC_10x5, COMPRESSED_SRGB8_-

ALPHA8_ASTC_10x5

VIEW_CLASS_ASTC_10x6_RGBA COMPRESSED_RGBA_ASTC_10x6, COMPRESSED_SRGB8_-

ALPHA8_ASTC_10x6

VIEW_CLASS_ASTC_10x8_RGBA COMPRESSED_RGBA_ASTC_10x8, COMPRESSED_SRGB8_-

ALPHA8_ASTC_10x8

(Continued on next page)

OpenGL ES 3.2 (November 3, 2016)

16.2. COPYING PIXELS 418

Compatible internal formats for CopyImageSubData (continued)
Class Internal formats
VIEW_CLASS_ASTC_10x10_RGBA COMPRESSED_RGBA_ASTC_10x10, COMPRESSED_SRGB8_-

ALPHA8_ASTC_10x10

VIEW_CLASS_ASTC_12x10_RGBA COMPRESSED_RGBA_ASTC_12x10, COMPRESSED_SRGB8_-

ALPHA8_ASTC_12x10

VIEW_CLASS_ASTC_12x12_RGBA COMPRESSED_RGBA_ASTC_12x12, COMPRESSED_SRGB8_-

ALPHA8_ASTC_12x12

Table 16.4: Compatible internal formats for CopyImageSubData.
Formats in the same row may be cast to each other.

If the source and destination buffers are identical, and the source and destina-
tion subregions overlap, texel values resulting from the copy operation are unde-
fined.

If the internal format does not exactly match the internal format of the original
texture, the contents of the memory are reinterpreted in the same manner as for
image bindings described in section 8.23.

Errors

An INVALID OPERATION error is generated if the source and
destination buffers are identical.

An INVALID_OPERATION error is generated if the texel size of the un-
compressed image is not equal to the block size of the compressed image.

An INVALID_ENUM error is generated if either target is not
RENDERBUFFER or a valid texture target; is TEXTURE_BUFFER or one of the
cubemap face selectors described in table 8.20; or if the target does not match
the type of the object.

An INVALID_OPERATION error is generated if either object is a texture
and the texture is not complete (as defined in section 8.17), if the source and
destination internal formats are not compatible, or if the number of samples
do not match.

An INVALID_VALUE error is generated if either name does not correspond
to a valid renderbuffer or texture object according to the corresponding target
parameter.

An INVALID_VALUE error is generated if srcLevel and dstLevel are not

OpenGL ES 3.2 (November 3, 2016)

16.3. PIXEL DRAW AND READ STATE 419

valid levels for the corresponding images.
An INVALID_VALUE error is generated if srcWidth, srcHeight, or sr-

cDepth is negative.
An INVALID_VALUE error is generated if the dimensions of either sub-

region exceeds the boundaries of the corresponding image object, or if the
image format is compressed and the dimensions of the subregion fail to meet
the alignment constraints of the format.

An INVALID_OPERATION error is generated if the formats are not com-
patible.

16.3 Pixel Draw and Read State

The state required for pixel operations consists of the parameters that are set with
PixelStorei. This state has been summarized in table 8.1. Additional state includes
an integer indicating the current setting of ReadBuffer. State set with PixelStorei
is GL client state.

OpenGL ES 3.2 (November 3, 2016)

Chapter 17

Compute Shaders

In addition to graphics-oriented shading operations such as vertex, tessellation,
geometry, and fragment shading, generic computation may be performed by the
GL through the use of compute shaders. The compute pipeline is a form of single-
stage machine that runs generic shaders. Compute shaders are created as described
in section 7.1 using a type parameter of COMPUTE_SHADER. They are attached to
and used in program objects as described in section 7.3.

Compute workloads are formed from groups of work items called work groups
and processed by the executable code for a compute program. A work group is a
collection of shader invocations that execute the same code, potentially in parallel.
An invocation within a work group may share data with other members of the
same workgroup through shared variables (see section 4.3.7 (“Shared Variables”)
of the OpenGL ES Shading Language Specification) and issue memory and control
barriers to synchronize with other members of the same work group. One or more
work groups is launched by calling:

void DispatchCompute(uint num groups x,
uint num groups y, uint num groups z);

Each work group is processed by the active program object for the compute
shader stage. The active program for the compute shader stage will be determined
in the same manner as the active program for other pipeline stages, as described
in section 7.3. While the individual shader invocations within a work group are
executed as a unit, work groups are executed completely independently and in
unspecified order.

num groups x, num groups y and num groups z specify the number of local
work groups that will be dispatched in the X, Y and Z dimensions, respectively.

420

421

The built-in vector variable gl_NumWorkGroups will be initialized with the con-
tents of the num groups x, num groups y and num groups z parameters. The max-
imum number of work groups that may be dispatched at one time may be deter-
mined by calling GetIntegeri v with target set to MAX_COMPUTE_WORK_GROUP_-
COUNT and index set to zero, one, or two, representing the X, Y, and Z dimensions
respectively. If the work group count in any dimension is zero, no work groups are
dispatched.

The local work size in each dimension are specified at compile time using an
input layout qualifier in the compute shader attached to the program (see section 4
(“Compute Shader Inputs”) of the OpenGL ES Shading Language Specification).
After the program has been linked, the local work group size of the program may
be queried by calling GetProgramiv with pname COMPUTE_WORK_GROUP_SIZE.
This will return an array of three integers containing the local work group size of
the compute program as specified by its input layout qualifier(s).

The maximum size of a local work group may be determined by calling Get-
Integeri v with target set to MAX_COMPUTE_WORK_GROUP_SIZE and index set to
0, 1, or 2 to retrieve the maximum work size in the X, Y and Z dimension, respec-
tively. Furthermore, the maximum number of invocations in a single local work
group (i.e., the product of the three dimensions) may be determined by calling
GetIntegerv with pname set to MAX_COMPUTE_WORK_GROUP_INVOCATIONS.

Errors

An INVALID_OPERATION error is generated if there is no active program
object for the compute shader stage.

An INVALID_VALUE error is generated if any of num groups x, num -
groups y and num groups z are greater than the maximum work group count
for the corresponding dimension.

The command

void DispatchComputeIndirect(intptr indirect);

is equivalent to calling DispatchCompute with num groups x, num groups y and
num groups z initialized with the three uint values contained in the buffer cur-
rently bound to the DISPATCH_INDIRECT_BUFFER binding at an offset, in basic
machine units, specified in indirect. If any of num groups x, num groups y or
num groups z is greater than the value of MAX_COMPUTE_WORK_GROUP_COUNT
for the corresponding dimension then the results are undefined.

OpenGL ES 3.2 (November 3, 2016)

17.1. COMPUTE SHADER VARIABLES 422

Errors

An INVALID_OPERATION error is generated if there is no active program
for the compute shader stage.

An INVALID_VALUE error is generated if indirect is negative or is not a
multiple of the size, in basic machine units, of uint.

An INVALID_OPERATION error is generated if the command would
source data beyond the end of the buffer object.

An INVALID_OPERATION error is generated if zero is bound to the
DRAW_INDIRECT_BUFFER binding.

17.1 Compute Shader Variables

Compute shaders can access variables belonging to the current program object.
Limits on uniform storage and methods for manipulating uniforms are described in
section 7.6.

There is a limit to the total size of all variables declared as shared in a single
program object. This limit, expressed in units of basic machine units, may be
queried as the value of MAX_COMPUTE_SHARED_MEMORY_SIZE.

OpenGL ES 3.2 (November 3, 2016)

Chapter 18

Debug Output

Application developers can obtain details about errors, undefined behavior,
implementation-dependent performance warnings, or other useful hints from the
GL in the form of debug output.

This information is communicated through a stream of debug messages that are
generated as GL commands are executed. The application can choose to receive
these messages either through a callback routine, or by querying for them from a
message log.

Controls are provided for disabling messages that the application does not care
about, and for inserting application-generated messages into the stream.

Different levels of debug output may be provided, depending on how the con-
text was created. If the context is not a debug context1 (e.g. if it was created without
the CONTEXT_FLAG_DEBUG_BIT set in the CONTEXT_FLAGS state, as described
in section 20.2), then the GL may optionally not generate any debug messages, but
the commands described in this chapter will otherwise operate without error.

Debug output functionality is enabled or disabled by calling Enable or Disable
with target DEBUG_OUTPUT. If the context is a debug context (if it was created with
the CONTEXT_FLAG_DEBUG_BIT set in CONTEXT_FLAGS) then the initial value of
DEBUG_OUTPUT is TRUE; otherwise the initial value is FALSE.

In a debug context, if DEBUG_OUTPUT is disabled the GL will not generate any
debug output logs or callbacks. Enabling DEBUG_OUTPUT again will enable full
debug output functionality.

In a non-debug context, if DEBUG_OUTPUT is later enabled, the level of debug
output logging is defined by the GL implementation, which may have zero debug
output.

1Debug contexts are specified at context creation time, using window system binding APIs such
as those specified by EGL 1.5.

423

18.1. DEBUG MESSAGES 424

Debug Output Message Source Messages Generated by
DEBUG_SOURCE_API The GL
DEBUG_SOURCE_SHADER_COMPILER The GLSL shader compiler or compilers

for other extension-provided languages
DEBUG_SOURCE_WINDOW_SYSTEM The window system, such as EGL, GLX

or WGL
DEBUG_SOURCE_THIRD_PARTY External debuggers or third-party middle-

ware libraries
DEBUG_SOURCE_APPLICATION The application
DEBUG_SOURCE_OTHER Sources that do not fit to any of the ones

listed above

Table 18.1: Sources of debug output messages. Each message must originate from
a source listed in this table.

Full debug output support is guaranteed only in a debug context.

18.1 Debug Messages

A debug message is uniquely identified by the source that generated it, a type
within that source, and an unsigned integer ID identifying the message within that
type. The message source is one of the symbolic constants listed in table 18.1. The
message type is one of the symbolic constants listed in table 18.2.

Each message source and type pair contains its own namespace of messages
with every message being associated with an ID. The assignment of IDs to mes-
sages within a namespace is implementation-dependent. There can potentially be
overlap between the namespaces of two different pairs of source and type, so mes-
sages can only be uniquely distinguished from each other by the full combination
of source, type and ID.

Each message is also assigned a severity level that roughly describes its im-
portance across all sources and types along a single global axis. The severity of a
message is one of the symbolic constants defined in table 18.3. Because messages
can be disabled by their severity, this allows for quick control the global volume of
debug output.

Every message also has a null-terminated string representation that is used to
describe the message. The contents of the string can change slightly between dif-
ferent instances of the same message (e.g. which parameter value caused a specific
GL error to occur). The format of a message string is left as implementation-

OpenGL ES 3.2 (November 3, 2016)

18.1. DEBUG MESSAGES 425

Debug Output Message Type Informs about
DEBUG_TYPE_ERROR Events that generated an error
DEBUG_TYPE_DEPRECATED_BEHAVIOR Behavior that has been marked for depre-

cation
DEBUG_TYPE_UNDEFINED_BEHAVIOR Behavior that is undefined according to

the specification
DEBUG_TYPE_PERFORMANCE Implementation-dependent performance

warnings
DEBUG_TYPE_PORTABILITY Use of extensions or shaders in a way that

is highly vendor-specific
DEBUG_TYPE_MARKER Annotation of the command stream
DEBUG_TYPE_PUSH_GROUP Entering a debug group
DEBUG_TYPE_POP_GROUP Leaving a debug group
DEBUG_TYPE_OTHER Types of events that do not fit any of the

ones listed above

Table 18.2: Types of debug output messages. Each message is associated with one
of these types that describes the nature of the message.

Severity Level Token Suggested examples of messages
DEBUG_SEVERITY_HIGH Any GL error; dangerous undefined be-

havior; any shader compiler and linker er-
rors;

DEBUG_SEVERITY_MEDIUM Severe performance warnings; GLSL or
other shader compiler and linker warn-
ings; use of currently deprecated behav-
ior

DEBUG_SEVERITY_LOW Performance warnings from redundant
state changes; trivial undefined behavior

DEBUG_SEVERITY_NOTIFICATION Any message which is not an error or per-
formance concern

Table 18.3: Severity levels of messages. Each debug output message is associated
with one of these severity levels.

OpenGL ES 3.2 (November 3, 2016)

18.2. DEBUG MESSAGE CALLBACK 426

dependent, although it should at least represent a concise description of the event
that caused the message to be generated. Messages with different IDs should also
have sufficiently distinguishable string representations to warrant their separation.

The lengths of all messages, including their null terminators, must be guar-
anteed to be less or equal to the value of the implementation-dependent constant
MAX_DEBUG_MESSAGE_LENGTH.

Messages can be either enabled or disabled. Messages that are disabled will
not be generated. All messages are initially enabled unless their assigned severity
is DEBUG_SEVERITY_LOW. The enabled state of messages can be changed using
the command DebugMessageControl.

18.2 Debug Message Callback

Applications can provide a callback function for receiving debug messages using
the command

void DebugMessageCallback(DEBUGPROC callback, const
void *userParam);

with callback storing the address of the callback function. callback must be a
function whose prototype is of the form

void callback(enum source, enum type, uint id,
enum severity, sizei length, const char *message,
const void *userParam);

Additionally, callback must be declared with the same platform-dependent
calling convention used in the definition of the type DEBUGPROC. Anything else
will result in undefined behavior.

Only one debug callback can be specified for the current context, and further
calls overwrite the previous callback. Specifying NULL as the value of callback
clears the current callback and disables message output through callbacks. Appli-
cations can provide user-specified data through the pointer userParam. The context
will store this pointer and will include it as one of the parameters in each call to the
callback function.

If the application has specified a callback function for receiving debug out-
put, the implementation will call that function whenever any enabled message is
generated. The source, type, ID, and severity of the message are specified by the
DEBUGPROC parameters source, type, id, and severity, respectively. The string
representation of the message is stored in message and its length (excluding the

OpenGL ES 3.2 (November 3, 2016)

18.3. DEBUG MESSAGE LOG 427

null-terminator) is stored in length. The parameter userParam is the user-specified
parameter that was given when calling DebugMessageCallback.

Applications that specify a callback function must be aware of certain special
conditions when executing code inside a callback when it is called by the GL,
regardless of the debug source.

The memory for message is owned and managed by the GL, and should only
be considered valid for the duration of the function call.

The behavior of calling any GL or window system function from within the
callback function is undefined and may lead to program termination.

Care must also be taken in securing debug callbacks for use with asynchronous
debug output by multi-threaded GL implementations. Section 18.8 describes this
in further detail.

If the DEBUG_OUTPUT state is disabled then the GL will not call the callback
function.

18.3 Debug Message Log

If DEBUG_CALLBACK_FUNCTION is NULL, then debug messages are instead stored
in an internal message log up to some maximum number of messages as defined
by the value of MAX_DEBUG_LOGGED_MESSAGES.

Each context stores its own message log and will only store messages gener-
ated by commands operating in that context. If the message log fills up, then any
subsequently generated messages will not be placed in the log until the message
log is cleared, and will instead be discarded.

Applications can query the number of messages currently in the log by obtain-
ing the value of DEBUG_LOGGED_MESSAGES, and the string length (including its
null terminator) of the oldest message in the log through the value of DEBUG_-
NEXT_LOGGED_MESSAGE_LENGTH.

To fetch message data stored in the log, the command GetDebugMessageLog
can be used.

If DEBUG_CALLBACK_FUNCTION is not NULL, no generated messages will be
stored in the log but will instead be passed to the debug callback routine as de-
scribed in section 18.2.

If the DEBUG_OUTPUT state is disabled then no messages are added to the mes-
sage log.

OpenGL ES 3.2 (November 3, 2016)

18.4. CONTROLLING DEBUG MESSAGES 428

18.4 Controlling Debug Messages

Applications can control the volume of debug output in the active debug group (see
section 18.6) by disabling specific groups of messages with the command

void DebugMessageControl(enum source, enum type,
enum severity, sizei count, const uint *ids,
boolean enabled);

If enabled is TRUE, the referenced subset of messages will be enabled. If
FALSE, then those messages will be disabled.

This command can reference different subsets of messages by first considering
the set of all messages, and filtering out messages based on the following ways:

• If source, type, or severity is DONT_CARE, then messages from all sources,
of all types, or of all severities are referenced respectively.

• When values other than DONT_CARE are specified, all messages whose
source, type, or severity match the specified source, type, or severity respec-
tively will be referenced.

• If count is greater than zero, then ids is an array of count message IDs for
the specified combination of source and type. In this case, source and type
must not be DONT_CARE, and severity must be DONT_CARE,

Unrecognized message IDs in ids are ignored. If count is zero, the value if
ids is ignored.

Although messages are grouped into an implicit hierarchy by their sources and
types, there is no explicit per-source, per-type or per-severity enabled state. Instead,
the enabled state is stored individually for each message. There is no difference
between disabling all messages from one source in a single call, and individually
disabling all messages from that source using their types and IDs.

If DEBUG_OUTPUT is disabled, then it is as if messages of every source, type,
or severity are disabled.

Errors

An INVALID_ENUM error is generated if any of source, type, and severity
is neither DONT_CARE nor one of the symbols from, respectively, tables 18.1,
18.2, and 18.3.

An INVALID_VALUE error is generated if count is negative,
An INVALID_OPERATION error is generated if count is greater than zero

OpenGL ES 3.2 (November 3, 2016)

18.5. EXTERNALLY GENERATED MESSAGES 429

and either source or type is DONT_CARE, or severity is not DONT_CARE.

18.5 Externally Generated Messages

To support applications and third-party libraries generating their own messages,
such as ones containing timestamp information or signals about specific render
system events, the following function can be called

void DebugMessageInsert(enum source, enum type, uint id,
enum severity, int length, const char *buf);

The value of id specifies the ID for the message and severity indicates its sever-
ity level as defined by the caller. The string buf contains the string representation
of the message. The parameter length contains the number of characters in buf. If
length is negative, it is implied that buf contains a null terminated string.

Errors

If DEBUG_OUTPUT is disabled, then calls to DebugMessageInsert are dis-
carded, but do not generate an error.

An INVALID_ENUM error is generated if type is not one of the values from
table 18.2, or if source is not DEBUG_SOURCE_APPLICATION or DEBUG_-
SOURCE_THIRD_PARTY.

An INVALID_ENUM error is generated if severity is not one of the severity
levels listed in table 18.3.

An INVALID_VALUE error is generated if the number of characters in buf,
excluding the null terminator when length is negative, is not less than the value
of MAX_DEBUG_MESSAGE_LENGTH.

18.6 Debug Groups

Debug groups provide a method for annotating a command stream with discrete
groups of commands using a descriptive text. Debug output messages, either gener-
ated by the implementation or inserted by the application with DebugMessageIn-
sert are written to the active debug group (the top of the debug group stack). Debug
groups are strictly hierarchical. Their sequences may be nested within other debug
groups but can not overlap. If no debug group has been pushed by the application
then the active debug group is the default debug group.

The command

OpenGL ES 3.2 (November 3, 2016)

18.6. DEBUG GROUPS 430

void PushDebugGroup(enum source, uint id, sizei length,
const char *message);

pushes a debug group described by the string message into the command stream.
The value of id specifies the ID of messages generated. The parameter length
contains the number of characters in message. If length is negative, it is im-
plied that message contains a null terminated string. The message has the spec-
ified source and id, type DEBUG_TYPE_PUSH_GROUP, and severity DEBUG_-

SEVERITY_NOTIFICATION. The GL will put a new debug group on top of the
debug group stack which inherits control of the volume of debug output of the de-
bug group previously residing on the top of the debug group stack. Because debug
groups are strictly hierarchical, any additional control of the debug output volume
will only apply within the active debug group and the debug groups pushed on top
of the active debug group.

Errors

An INVALID_ENUM error is generated if the value of source is neither
DEBUG_SOURCE_APPLICATION nor DEBUG_SOURCE_THIRD_PARTY.

An INVALID_VALUE error is generated if length is negative and the num-
ber of characters in message, excluding the null-terminator, is not less than the
value of MAX_DEBUG_MESSAGE_LENGTH.

A STACK_OVERFLOW error is generated if PushDebugGroup is called and
the stack contains the value of MAX_DEBUG_GROUP_STACK_DEPTHminus one
elements.

The command

void PopDebugGroup(void);

pops the active debug group. After popping a debug group, the GL will also
generate a debug output message describing its cause based on the message
string, the source, and an id submitted to the associated PushDebugGroup com-
mand. DEBUG_TYPE_PUSH_GROUP and DEBUG_TYPE_POP_GROUP share a sin-
gle namespace for message id. severity has the value DEBUG_SEVERITY_-

NOTIFICATION and type has the value DEBUG_TYPE_POP_GROUP. Popping a de-
bug group restores the debug output volume control of the parent debug group.

Errors

A STACK_UNDERFLOW error is generated if PopDebugGroup is called and

OpenGL ES 3.2 (November 3, 2016)

18.7. DEBUG LABELS 431

Identifier Object Type
BUFFER buffer

FRAMEBUFFER framebuffer
PROGRAM_PIPELINE program pipeline

PROGRAM program
QUERY query

RENDERBUFFER renderbuffer
SAMPLER sampler
SHADER shader
TEXTURE texture

TRANSFORM_FEEDBACK transform feedback
VERTEX_ARRAY vertex array

Table 18.4: Object namespace identifiers and the corresponding object types.

only the default debug group is on the stack.

18.7 Debug Labels

Debug labels provide a method for annotating any object (texture, buffer, shader,
etc.) with a descriptive text label. These labels may then be used by the debug
output (see section 5.5) or an external tool such as a debugger or profiler to describe
labelled objects.

The command

void ObjectLabel(enum identifier, uint name, sizei length,
const char *label);

labels the object identified by name and its namespace identifier. identifier must be
one of the tokens in table 18.4, indicating the type of the object corresponding to
name.

label contains a string used to label an object. length contains the number
of characters in label. If length is negative, then label contains a null-terminated
string. If label is NULL, any debug label is effectively removed from the object.

Errors

An INVALID_ENUM error is generated if identifier is not one of the object

OpenGL ES 3.2 (November 3, 2016)

18.8. ASYNCHRONOUS AND SYNCHRONOUS DEBUG OUTPUT 432

types listed in table 18.4.
An INVALID_VALUE error is generated if name is not the name of a valid

object of the type specified by identifier.
An INVALID_VALUE error is generated if the number of characters in la-

bel, excluding the null terminator when length is negative, is not less than the
value of MAX_LABEL_LENGTH.

The command

void ObjectPtrLabel(void *ptr, sizei length, const
char *label);

labels the sync object identified by ptr. length and label match the corresponding
arguments of ObjectLabel.

Errors

An INVALID_VALUE error is generated if ptr is not the name of a sync
object.

An INVALID_VALUE error is generated if the number of characters in la-
bel, excluding the null terminator when length is negative, is not less than the
value of MAX_LABEL_LENGTH.

A label is part of the state of the object to which it is associated. The initial
state of an object’s label is the empty string. Labels need not be unique.

18.8 Asynchronous and Synchronous Debug Output

The behavior of how and when the GL driver is allowed to generate debug mes-
sages, and subsequently either call back to the application or place the message in
the debug message log, is affected by the state DEBUG_OUTPUT_SYNCHRONOUS.
This state can be modified by the Enable and Disable commands. Its initial value
is FALSE.

When DEBUG_OUTPUT_SYNCHRONOUS is disabled, the driver is optionally al-
lowed to concurrently call the debug callback routine from potentially multiple
threads, including threads that the context that generated the message is not cur-
rently bound to. The implementation may also call the callback routine asyn-
chronously after the GL command that generated the message has already returned.
The application is fully responsible for ensuring thread safety due to debug call-
backs under these circumstances. In this situation the userParam value may be

OpenGL ES 3.2 (November 3, 2016)

18.9. DEBUG OUTPUT QUERIES 433

helpful in identifying which application thread’s command originally generated
the debug callback.

When DEBUG_OUTPUT_SYNCHRONOUS is enabled, the driver guarantees syn-
chronous calls to the callback routine by the context. When synchronous callbacks
are enabled, all calls to the callback routine will be made by the thread that owns
the current context; all such calls will be made serially by the current context; and
each call will be made before the GL command that generated the debug message
is allowed to return.

When no callback is specified and DEBUG_OUTPUT_SYNCHRONOUS is disabled,
the driver can still asynchronously place messages in the debug message log, even
after the context thread has returned from the GL function that generated those
messages. When DEBUG_OUTPUT_SYNCHRONOUS is enabled, the driver guaran-
tees that all messages are added to the log before the GL function returns.

Enabling synchronous debug output greatly simplifies the responsibilities of
the application for making its callback functions thread-safe, but may potentially
result in drastically reduced driver performance.

DEBUG_OUTPUT_SYNCHRONOUS only guarantees intra-context synchroniza-
tion for the callbacks of messages generated by that context, and does not guaran-
tee synchronization across multiple contexts. If multiple contexts are concurrently
used by the application, it is allowed for those contexts to also concurrently call
their designated callbacks, and the application is responsible for handling thread
safety in that situation even if DEBUG_OUTPUT_SYNCHRONOUS is enabled in all
contexts.

18.9 Debug Output Queries

Pointers set with debug output commands are queried with the generic GetPoint-
erv command (see section 20.2). pnames DEBUG_CALLBACK_FUNCTION and
DEBUG_CALLBACK_USER_PARAM respectively query the current callback function
and the user parameter to that function set with DebugMessageCallback.

When no debug callback is set, debug messages are stored in a debug message
log as described in section 18.3. Messages may be queried from the log by calling

uint GetDebugMessageLog(uint count, sizei bufSize,
enum *sources, enum *types, uint *ids, enum *severities,
sizei *lengths, char *messageLog);

GetDebugMessageLog fetches a maximum of count messages from the mes-
sage log, and will return the number of messages successfully fetched.

OpenGL ES 3.2 (November 3, 2016)

18.9. DEBUG OUTPUT QUERIES 434

Messages will be fetched from the log in order of oldest to newest. Those
messages that were fetched will be removed from the log.

The sources, types, severities, IDs, and string lengths of fetched messages will
be stored in the application-provided arrays sources, types, severities, ids, and
lengths, respectively. The application is responsible for allocating enough space
for each array to hold up to count elements. The string representations of all
fetched messages are stored in the messageLog array. If multiple messages are
fetched, their strings are concatenated into the same messageLog array and will
be separated by single null terminators. The last string in the array will also be
null-terminated. The maximum size of messageLog, including the space used by
all null terminators, is given by bufSize.

If a message’s string, including its null terminator, can not fully fit within the
messageLog array’s remaining space, then that message and any subsequent mes-
sages will not be fetched and will remain in the log. The string lengths stored in
the array lengths include the space for the null terminator of each string.

Any or all of the arrays sources, types, ids, severities, lengths and messageLog
can also be NULL pointers, which causes attributes for such arrays to be discarded
when messages are fetched. However, those messages will still be removed from
the log. Thus to simply delete up to count messages from the message log while ig-
noring their attributes, the application can call GetDebugMessageLog with NULL

pointers for all attribute arrays.
If the context is not a debug context, then the GL can opt to never add messages

to the message log, so that GetDebugMessageLog will always return zero.

Errors

An INVALID_VALUE error is generated if bufSize is negative and mes-
sageLog is not NULL.

The command

void GetObjectLabel(enum identifier, uint name,
sizei bufSize, sizei *length, char *label);

returns in label the string labelling an object. identifier and name specify the
namespace and name of the object, and match the corresponding arguments of
ObjectLabel (see section 18.7).

label will be null-terminated. The actual number of characters written into
label, excluding the null terminator, is returned in length. If length is NULL, no
length is returned. The maximum number of characters that may be written into
label, including the null terminator, is specified by bufSize. If no debug label was

OpenGL ES 3.2 (November 3, 2016)

18.9. DEBUG OUTPUT QUERIES 435

specified for the object then label will contain a null-terminated empty string, and
zero will be returned in length. If label is NULL and length is non-NULL then no
string will be returned and the length of the label will be returned in length.

Errors

An INVALID_ENUM error is generated is identifier is not one of the object
types listed in table 18.4 other than SYNC

An INVALID_VALUE error is generated if name is not the name of a valid
object of the type specified by identifier.

An INVALID_VALUE error is generated if bufSize is negative.

The command

void GetObjectPtrLabel(void *ptr, sizei bufSize,
size *length, char *label);

returns in label the string labelling the sync object identified by ptr. bufSize, length,
and label match the corresponding arguments of GetObjectLabel.

Errors

An INVALID_VALUE error is generated if ptr is not the name of a sync
object.

An INVALID_VALUE error is generated if bufSize is negative.

OpenGL ES 3.2 (November 3, 2016)

Chapter 19

Special Functions

This chapter describes additional functionality that does not fit easily into any of
the preceding chapters, including hints influencing GL behavior (see section 19.1).

19.1 Hints

Certain aspects of GL behavior, when there is room for variation, may be controlled
with hints. A hint is specified using

void Hint(enum target, enum hint);

target is a symbolic constant indicating the behavior to be controlled, and hint is a
symbolic constant indicating what type of behavior is desired. The possible targets
are described in table 19.1. For each target, hint must be one of FASTEST, indi-
cating that the most efficient option should be chosen; NICEST, indicating that the
highest quality option should be chosen; and DONT_CARE, indicating no preference
in the matter.

Target Hint description
GENERATE_MIPMAP_HINT Quality and performance of

automatic mipmap level generation
FRAGMENT_SHADER_DERIVATIVE_HINT Derivative accuracy for fragment

processing built-in functions
dFdx, dFdy and fwidth

Table 19.1: Hint targets and descriptions.

436

19.1. HINTS 437

The interpretation of hints is implementation-dependent. An implementation
may ignore them entirely.

The initial value of all hints is DONT_CARE.

Errors

An INVALID_ENUM error is generated if target is not one of the values in
table 19.1.

An INVALID_ENUM error is generated if hint is not FASTEST, NICEST, or
DONT_CARE.

OpenGL ES 3.2 (November 3, 2016)

Chapter 20

Context State Queries

The state required to describe the GL machine is enumerated in chapter 21, and is
set using commands described in previous chapters.

State that is part of GL objects can usually be queried using commands de-
scribed together with the commands to set that state. Such commands operate
either directly on a named object, or indirectly through a binding in the GL context
(such as a currently bound framebuffer object).

The commands in this chapter describe queries for state directly associated
with the context, rather than with an object. Data conversions may be done when
querying context state, as described in section 2.2.2.

20.1 Simple Queries

Much of the GL state is completely identified by symbolic constants. The values
of these state variables can be obtained using a set of Get* commands.

Valid values of the symbolic constants allowed as parameter names to the var-
ious queries in this section are not summarized here, because there are many al-
lowed parameters. Instead they are described elsewhere in the Specification to-
gether with the commands such state is relevant to, as well as in the state tables in
chapter 21.

There are four commands for obtaining simple state variables:

void GetBooleanv(enum pname, boolean *data);
void GetIntegerv(enum pname, int *data);
void GetInteger64v(enum pname, int64 *data);
void GetFloatv(enum pname, float *data);

438

20.1. SIMPLE QUERIES 439

The commands obtain boolean, integer, 64-bit integer, or floating-point state vari-
ables. pname is a symbolic constant indicating the state variable to return. data is
a pointer to a scalar or array of the indicated type in which to place the returned
data.

Errors

An INVALID_ENUM error is generated if pname is not state queriable with
these commands.

Indexed simple state variables are queried with the commands

void GetBooleani v(enum target, uint index,
boolean *data);

void GetIntegeri v(enum target, uint index, int *data);
void GetInteger64i v(enum target, uint index,

int64 *data);

target is the name of the indexed state and index is the index of the particular
element being queried. data is a pointer to a scalar or array of the indicated type in
which to place the returned data.

Errors

An INVALID_ENUM error is generated if target is not indexed state queri-
able with these commands.

An INVALID_VALUE error is generated if index is outside the valid range
for the indexed state target.

State which is controlled with Enable and Disable is queried with the com-
mand

boolean IsEnabled(enum cap);

TRUE or FALSE is returned if cap is currently enabled or disabled, respectively.

Errors

An INVALID_ENUM error is generated if cap is not enable state queriable
with IsEnabled.

boolean IsEnabledi(enum target, uint index);

OpenGL ES 3.2 (November 3, 2016)

20.2. POINTER, STRING, AND RELATED CONTEXT QUERIES 440

can be used to determine if the indexed state corresponding to target and index is
enabled or disabled.

Errors

An INVALID_ENUM error is generated if target is not indexed enable state
queriable with IsEnabledi.

An INVALID_VALUE error is generated if index is outside the valid range
for the indexed state target.

20.2 Pointer, String, and Related Context Queries

Pointers in the current GL context are queried with the command

void GetPointerv(enum pname, void **params);

pname is a symbolic constant indicating the pointer to return. params is a pointer
to a variable in which to place the single returned pointer value.

pnames of DEBUG_CALLBACK_FUNCTION and DEBUG_CALLBACK_USER_-

PARAM, return debug output state as described in section 18.9.

Errors

An INVALID_ENUM error is generated if pname is not DEBUG_-

CALLBACK_FUNCTION or DEBUG_CALLBACK_USER_PARAM.

String queries return pointers to UTF-8 encoded, null-terminated static strings
describing properties of the current GL context1.

The command

ubyte *GetString(enum name);

accepts name values of RENDERER, VENDOR, EXTENSIONS, VERSION, and
SHADING_LANGUAGE_VERSION. The format of the RENDERER and VENDOR

strings is implementation-dependent. The EXTENSIONS string contains a space
separated list of extension names (the extension names themselves do not contain
any spaces).

The VERSION string is laid out as follows:
1Applications making copies of these static strings should never use a fixed-length buffer, because

the strings may grow unpredictably between releases, resulting in buffer overflow when copying.
This is particularly true of the EXTENSIONS string, which has become extremely long in some
GL implementations.

OpenGL ES 3.2 (November 3, 2016)

20.2. POINTER, STRING, AND RELATED CONTEXT QUERIES 441

"OpenGL ES N.M vendor-specific information"

The SHADING_LANGUAGE_VERSION string is laid out as follows:

"OpenGL ES GLSL ES N.M vendor-specific
information"

The version number is either of the form major number.minor number or major -
number.minor number.release number, where the numbers all have one or more
digits. The minor number for SHADING_LANGUAGE_VERSION is always two dig-
its, matching the OpenGL ES Shading Language Specification release number.
For example, this query might return the string "3.10" while the corresponding
VERSION query returns "3.1". The release number and vendor specific infor-
mation are optional. However, if present, then they pertain to the server and their
format and contents are implementation-dependent.

GetString returns the version number (in the VERSION string) and the exten-
sion names (in the EXTENSIONS string) that can be supported by the current GL
context. Thus, if the client and server support different versions and/or extensions,
a compatible version and list of extensions is returned.

Errors

An INVALID_ENUM error is generated if name is not RENDERER, VENDOR,
EXTENSIONS, VERSION, or SHADING_LANGUAGE_VERSION.

The context version may also be queried by calling GetIntegerv with pname
MAJOR_VERSION and MINOR_VERSION, which respectively return the same val-
ues as major number and minor number in the VERSION string.

Flags defining additional properties of the context may be queried by calling
GetIntegerv with pname CONTEXT_FLAGS.

If CONTEXT_FLAG_DEBUG_BIT is set in CONTEXT_FLAGS, then the context is
a debug context, enabling full support for debug output as described in chapter 18.

If CONTEXT_FLAG_ROBUST_ACCESS_BIT is set in CONTEXT_FLAGS, then ro-
bust buffer access will be enabled for drawing commands using vertex arrays, as
described in section 10.3.5.

Indexed strings are queried with the command

ubyte *GetStringi(enum name, uint index);

name is the name of the indexed state and index is the index of the particular ele-
ment being queried.

OpenGL ES 3.2 (November 3, 2016)

20.3. INTERNAL FORMAT QUERIES 442

Target Usage
TEXTURE_2D_MULTISAMPLE 2D multisample texture
TEXTURE_2D_MULTISAMPLE_ARRAY 2D multisample array texture
RENDERBUFFER renderbuffer

Table 20.1: Possible targets that internalformat can be used with and the corre-
sponding usage meaning.

If name is EXTENSIONS, the extension name corresponding to the indexth
supported extension will be returned. index may range from zero to the value
of NUM_EXTENSIONS minus one. All extension names, and only the extension
names returned in GetString(EXTENSIONS) will be returned as individual names,
but there is no defined relationship between the order in which names appear in the
non-indexed string and the order in which they appear in the indexed query.

There is no defined relationship between any particular extension name and the
index values; an extension name may correspond to a different index in different
GL contexts and/or implementations.

Errors

An INVALID_ENUM error is generated if name is not EXTENSIONS.
An INVALID_VALUE error is generated if index is outside the valid range

for the indexed state name.

20.3 Internal Format Queries

Information about implementation-dependent support for internal formats can be
queried with the command

void GetInternalformativ(enum target, enum internalformat,
enum pname, sizei bufSize, int *params);

internalformat must be a sized internal format that is color-, depth- or stencil-
renderable, as defined in section 9.4.

target indicates the usage of the internalformat, and must be one of the targets
listed in table 20.1.

No more than bufSize integers will be written into params. If more data are
available, they will be ignored and no error will be generated.

OpenGL ES 3.2 (November 3, 2016)

20.3. INTERNAL FORMAT QUERIES 443

pname indicates the information to query. The following subsection lists the
valid values for pname and defines their meaning and the values that may be re-
turned.

20.3.1 Internal Format Query Parameters

Supported values for pname, their meanings, and their possible return values in-
clude:

• NUM_SAMPLE_COUNTS: The number of sample counts that would be re-
turned by querying SAMPLES is returned in params.

– If target does not support multiple samples (is not TEXTURE_2D_-
MULTISAMPLE, TEXTURE_2D_MULTISAMPLE_ARRAY or
RENDERBUFFER), zero is returned.

– If internalformat is RGBA16F, R32F, RG32F, or RGBA32F, zero may be
returned.

• SAMPLES: The sample counts supported for internalformat and target are
written into params, in descending numeric order. Only positive values are
returned.

– Note that querying SAMPLES with a bufSize of one will return just the
maximum supported number of samples for this format.

– The maximum value in SAMPLES is guaranteed to be at least the lowest
of the following:

∗ The value of MAX_INTEGER_SAMPLES, if internalformat is a
signed or unsigned integer format.
∗ The value of MAX_DEPTH_TEXTURE_SAMPLES, if internalformat

is a depth/stencil-renderable format and target is TEXTURE_2D_-
MULTISAMPLE or TEXTURE_2D_MULTISAMPLE_ARRAY.
∗ The value of MAX_COLOR_TEXTURE_SAMPLES, if internalfor-

mat is a color-renderable format and target is TEXTURE_2D_-

MULTISAMPLE or TEXTURE_2D_MULTISAMPLE_ARRAY.
∗ A value less than or equal to the value of MAX_SAMPLES, if inter-

nalformat is RGBA16F, R32F, RG32F, or RGBA32F.
∗ The value of MAX_SAMPLES, otherwise.

OpenGL ES 3.2 (November 3, 2016)

20.3. INTERNAL FORMAT QUERIES 444

Errors

An INVALID_ENUM error is generated if target is not one of the targets in
table 20.1, or if pname is not SAMPLES or NUM_SAMPLES_COUNTS.

An INVALID_ENUM error is generated if internalformat is not a sized
internal format that is color-, depth- or stencil-renderable.

An INVALID_VALUE error is generated if bufSize is negative.

OpenGL ES 3.2 (November 3, 2016)

Chapter 21

State Tables

The tables on the following pages indicate which state variables are obtained with
what commands. State variables that can be obtained using any of GetBooleanv,
GetIntegerv, GetInteger64v, or GetFloatv are listed with just one of these com-
mands – the one that is most appropriate given the type of the data to be returned.
These state variables cannot be obtained using IsEnabled. However, state vari-
ables for which IsEnabled is listed as the query command can also be obtained
using GetBooleanv, GetIntegerv, GetInteger64v, and GetFloatv. State variables
for which any other command is listed as the query command can be obtained by
using that command or any of its typed variants, although information may be lost
when not using the listed command. Unless otherwise specified, when floating-
point state is returned as integer values or integer state is returned as floating-point
values it is converted in the fashion described in section 2.2.2.

State table entries indicate a type for each variable. Table 21.1 explains these
types. The type actually identifies all state associated with the indicated descrip-
tion; in certain cases only a portion of this state is returned. This is the case with
textures, where only the selected texture or texture parameter is returned.

The abbreviations max, min, and no. are used interchangeably with maximum,
minimum, and number, respectively, to help fit tables without overflowing pages.

445

446

Type code Explanation
B Boolean

BMU Basic machine units
C Color (floating-point R, G, B, and A values)
E Enumerated value (as described in spec body)
Z Integer
Z+ Non-negative integer or enumerated token value

Zk, Zk∗ k-valued integer (k∗ indicates k is minimum)
R Floating-point number
R+ Non-negative floating-point number
R[a,b] Floating-point number in the range [a, b]

Rk k-tuple of floating-point numbers
S null-terminated string
I Image
Y Pointer (data type unspecified)

n× type n copies of type type (n∗ indicates n is minimum)

Table 21.1: State Variable Types

OpenGL ES 3.2 (November 3, 2016)

447

Get value Type
Get
Command

Initial
Value Description Sec.

PATCH VERTICES Z+ GetIntegerv 3 No. of vertices in input patch 10.1.12

Table
21.2:C

urrentV
alues

and
A

ssociated
D

ata

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

448

Get value Type
Get
Command

Initial
Value Description Sec.

VERTEX ATTRIB ARRAY ENABLED 16 ∗ ×B GetVertexAttribiv FALSE Vertex attrib array enable 10.3
VERTEX ATTRIB ARRAY SIZE 16 ∗ ×Z5 GetVertexAttribiv 4 Vertex attrib array size 10.3
VERTEX ATTRIB ARRAY STRIDE 16 ∗ ×Z+ GetVertexAttribiv 0 Vertex attrib array stride 10.3
VERTEX ATTRIB ARRAY TYPE 16 ∗ ×E GetVertexAttribiv FLOAT Vertex attrib array type 10.3

VERTEX ATTRIB ARRAY NORMALIZED 16 ∗ ×B GetVertexAttribiv FALSE
Vertex attrib array nor-
malized 10.3

VERTEX ATTRIB ARRAY INTEGER 16 ∗ ×B GetVertexAttribiv FALSE
Vertex attrib array has
unconverted integers 10.3

VERTEX ATTRIB ARRAY DIVISOR 16 ∗ ×Z+ GetVertexAttribiv 0
Vertex attrib array in-
stance divisor 10.5

VERTEX ATTRIB ARRAY POINTER 16 ∗ ×Y GetVertex-
AttribPointerv NULL

Vertex attrib array
pointer 10.3

ELEMENT ARRAY BUFFER BINDING Z+ GetIntegerv 0
Element array buffer
binding 10.3.8

VERTEX ATTRIB ARRAY BUFFER BINDING 16 ∗ ×Z+ GetVertexAttribiv 0
Attribute array buffer
binding 6

VERTEX ATTRIB BINDING 16× Z16∗ GetVertexAttribiv i † Vertex buffer binding
used by vertex attrib i 10.3

VERTEX ATTRIB RELATIVE OFFSET 16× Z+ GetVertexAttribiv 0
Byte offset added to ver-
tex binding offset for this
attribute

10.3

VERTEX BINDING OFFSET 16× Z GetInteger64i v 0

Byte offset of the first
element in data store of
the buffer bound to ver-
tex binding i

10.3

VERTEX BINDING STRIDE 16× Z GetIntegeri v 16
Stride between elements
in vertex binding i 10.3

VERTEX BINDING DIVISOR 16× Z+ GetIntegeri v 0
Instance divisor used for
vertex binding i 10.3

VERTEX BINDING BUFFER 16× Z+ GetIntegeri v 0
Name of buffer bound to
vertex binding i 10.3

– S GetObjectLabel empty Debug label 18.9

Table
21.3:V

ertex
A

rray
O

bjectState
†

T
he
ith

attribute
defaults

to
a

value
of
i.

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

449

Get value Type
Get
Command

Initial
Value Description Sec.

ARRAY BUFFER BINDING Z+ GetIntegerv 0 Current buffer binding 6

DRAW INDIRECT BUFFER BINDING Z+ GetIntegerv 0
Indirect command buffer
binding 10.3.9

VERTEX ARRAY BINDING Z+ GetIntegerv 0
Current vertex array ob-
ject binding 10.4

PRIMITIVE RESTART FIXED INDEX B IsEnabled FALSE
Primitive restart with
fixed index enable 10.3

Table
21.4:V

ertex
A

rray
D

ata
(notin

vertex
array

objects)

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

450

Get value Type
Get
Command

Initial
Value Description Sec.

BUFFER SIZE n× Z+ GetBufferParameteri64v 0 Buffer data size † 6
BUFFER USAGE n× E GetBufferParameteriv STATIC_DRAW Buffer usage pattern 6
BUFFER ACCESS FLAGS n× Z+ GetBufferParameteriv 0 Extended buffer access flag 6
BUFFER MAPPED n×B GetBufferParameteriv FALSE Buffer map flag 6
BUFFER MAP POINTER n× Y GetBufferPointerv NULL Mapped buffer pointer 6
BUFFER MAP OFFSET n× Z+ GetBufferParameteri64v 0 Start of mapped buffer range 6
BUFFER MAP LENGTH n× Z+ GetBufferParameteri64v 0 Size of mapped buffer range 6
– S GetObjectLabel empty Debug label 18.9

Table
21.5:B

ufferO
bjectState

†
T

his
state

m
ay

be
queried

w
ith

G
etB

ufferParam
eteriv,in

w
hich

case
values

greater
than

orequalto
2
3
1

w
illbe

clam
ped

to
2
3
1−

1.

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

451

Get value Type
Get
Command

Initial
Value Description Sec.

VIEWPORT 4× Z GetIntegerv see 12.5.1 Viewport origin & extent 12.5.1
DEPTH RANGE 2×R+ GetFloatv 0,1 Depth range near & far 12.5.1

TRANSFORM FEEDBACK BINDING Z+ GetIntegerv 0
Object bound for trans-
form feedback operations 12.1

PRIMITIVE BOUNDING BOX 8×R GetFloatv (−1,−1,−1, 1, 1, 1, 1, 1)
Default primitive bound-
ing box 13.2

Table
21.6:Transform

ation
State

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

452

Get value Type
Get
Command

Initial
Value Description Sec.

RASTERIZER DISCARD B IsEnabled FALSE
Discard primitives before rasteriza-
tion 13.1

LINE WIDTH R+ GetFloatv 1.0 Line width 13.6
CULL FACE B IsEnabled FALSE Polygon culling enabled 13.7.1
CULL FACE MODE E GetIntegerv BACK Cull front-/back-facing polygons 13.7.1

FRONT FACE E GetIntegerv CCW
Polygon frontface CW/CCW indica-
tor 13.7.1

POLYGON OFFSET FACTOR R GetFloatv 0 Polygon offset factor 13.7.2
POLYGON OFFSET UNITS R GetFloatv 0 Polygon offset units 13.7.2
POLYGON OFFSET FILL B IsEnabled FALSE Polygon offset enable 13.7.2

Table
21.7:R

asterization

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

453

Get value Type
Get
Command

Initial
Value Description Sec.

SAMPLE ALPHA TO COVERAGE B IsEnabled FALSE Modify coverage from alpha 15.1.1
SAMPLE COVERAGE B IsEnabled FALSE Mask to modify coverage 13.8.3
SAMPLE COVERAGE VALUE R+ GetFloatv 1 Coverage mask value 13.8.3
SAMPLE COVERAGE INVERT B GetBooleanv FALSE Invert coverage mask value 13.8.3
SAMPLE SHADING B IsEnabled FALSE Sample shading enable 13.8.3

MIN SAMPLE SHADING VALUE R+ GetFloatv 0
Fraction of multisamples to use for
sample shading 13.4.1

SAMPLE MASK B IsEnabled FALSE Additional sample mask 13.8.3
SAMPLE MASK VALUE n× Z+ † GetIntegeri v All bits of all words set Additional sample mask value 13.8.3

Table
21.8:M

ultisam
pling

†
n

is
the

value
of
M
A
X
_
S
A
M
P
L
E
_
M
A
S
K
_
W
O
R
D
S.

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

454

Get value Type
Get
Command

Initial
Value Description Sec.

ACTIVE TEXTURE E GetIntegerv TEXTURE0
Active texture unit selec-
tor 10.2

TEXTURE BINDING xD 96 ∗ ×2× Z+ GetIntegerv 0
Texture object bound to
TEXTURE_xD

8.1

TEXTURE BINDING 2D ARRAY 96 ∗ ×Z+ GetIntegerv 0
Texture object bound to
TEXTURE_2D_ARRAY

8.1

TEXTURE BINDING BUFFER 96 ∗ ×Z+ GetIntegerv 0
Texture object bound to
TEXTURE_BUFFER

8.1

TEXTURE BINDING CUBE MAP 96 ∗ ×Z+ GetIntegerv 0
Texture object bound to
TEXTURE_CUBE_MAP

8.1

TEXTURE BINDING CUBE MAP ARRAY 96 ∗ ×Z+ GetIntegerv 0
Texture object bound
to TEXTURE_CUBE_-
MAP_ARRAY

8.1

TEXTURE BINDING 2D MULTISAMPLE 96 ∗ ×Z+ GetIntegerv 0
Texture object bound
to TEXTURE_2D_-
MULTISAMPLE

8.1

TEXTURE BINDING 2D MULTISAMPLE -

ARRAY
96 ∗ ×Z+ GetIntegerv 0

Texture object bound
to TEXTURE_2D_-
MULTISAMPLE_-
ARRAY

8.1

SAMPLER BINDING 96 ∗ ×Z+ GetIntegerv 0
Sampler object bound to
active texture unit 8.2

Table
21.9:Textures

(selector,state
pertexture

unit)

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

455

Get value Type
Get
Command

Initial
Value Description Sec.

TEXTURE SWIZZLE R E GetTexParameter RED Red component swizzle 8.10

TEXTURE SWIZZLE G E GetTexParameter GREEN
Green component swiz-
zle 8.10

TEXTURE SWIZZLE B E GetTexParameter BLUE Blue component swizzle 8.10

TEXTURE SWIZZLE A E GetTexParameter ALPHA
Alpha component swiz-
zle 8.10

TEXTURE BORDER COLOR C GetTexParameterfv 0.0,0.0,0.0,0.0 Border color 8
TEXTURE MIN FILTER E GetTexParameter see sec. 8.19 Minification function 8.14
TEXTURE MAG FILTER E GetTexParameter LINEAR Magnification function 8.15
TEXTURE WRAP S E GetTexParameter see sec. 8.19 Texcoord s wrap mode 8.14.2

TEXTURE WRAP T E GetTexParameter see sec. 8.19
Texcoord t wrap mode
(2D, 3D, cube map tex-
tures only)

8.14.2

TEXTURE WRAP R E GetTexParameter see sec. 8.19
Texcoord r wrap mode
(3D textures only) 8.14.2

TEXTURE MIN LOD R GetTexParameterfv -1000 Min. level of detail 8
TEXTURE MAX LOD R GetTexParameterfv 1000 Max. level of detail 8
TEXTURE BASE LEVEL Z+ GetTexParameterfv 0 Base texture array 8
TEXTURE MAX LEVEL Z+ GetTexParameterfv 1000 Max. texture array level 8

DEPTH STENCIL TEXTURE MODE E GetTexParameteriv DEPTH_COMPONENT
Depth stencil texture-
mode 8.16

TEXTURE COMPARE MODE E GetTexParameteriv NONE Comparison mode 8.20
TEXTURE COMPARE FUNC E GetTexParameteriv LEQUAL Comparison function 8.20

TEXTURE IMMUTABLE FORMAT B GetTexParameter FALSE
Size and format im-
mutable 8.18

TEXTURE IMMUTABLE LEVELS Z+ GetTexParameter 0
No. of levels in im-
mutable textures 8.18

– S GetObjectLabel empty Debug label 18.9

Table
21.10:Textures

(state
pertexture

object)

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

456

Get value Type
Get
Command

Initial
Value Description Sec.

TEXTURE WIDTH Z+ GetTexLevelParameter 0 Specified width 8
TEXTURE HEIGHT Z+ GetTexLevelParameter 0 Specified height (2D/3D) 8
TEXTURE DEPTH Z+ GetTexLevelParameter 0 Specified depth (3D) 8
TEXTURE SAMPLES Z+ GetTexLevelParameter 0 No. of samples per texel 8.8

TEXTURE FIXED SAMPLE LOCATIONS B GetTexLevelParameter TRUE
Whether the image uses a
fixed sample pattern 8.8

TEXTURE INTERNAL FORMAT E GetTexLevelParameteriv RGBA or R8
Internal format (see sec-
tion 8.19) 8

TEXTURE x SIZE 6× Z+ GetTexLevelParameter 0

Component resolution (x
is RED, GREEN, BLUE,
ALPHA, DEPTH, or
STENCIL)

8

TEXTURE SHARED SIZE Z+ GetTexLevelParameter 0
Shared exponent field
resolution 8

TEXTURE x TYPE E GetTexLevelParameter NONE
Component type (x is
RED, GREEN, BLUE,
ALPHA, or DEPTH)

8.11

TEXTURE COMPRESSED B GetTexLevelParameter FALSE
True if image has a com-
pressed internal format 8.7

TEXTURE BUFFER DATA STORE BIND-

ING
Z+ GetTexLevelParameteriv 0

Buffer object bound as
the data store for the ac-
tive image unit’s buffer
texture

8.9

TEXTURE BUFFER OFFSET n× Z GetTexLevelParameteriv 0

Offset into buffer’s data
store used for the active
image unit’s buffer tex-
ture

8.9

TEXTURE BUFFER SIZE n× Z GetTexLevelParameteriv 0

Size of the buffer’s data
store used for the active
image unit’s buffer tex-
ture

8.9

Table
21.11:Textures

(state
pertexture

im
age)

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

457

Get value Type
Get
Command

Initial
Value Description Sec.

TEXTURE BORDER COLOR C GetSamplerParameterfv 0.0,0.0,0.0,0.0 Border color 8
TEXTURE MIN FILTER E GetSamplerParameter NEAREST_MIPMAP_LINEAR Minification function 8.14
TEXTURE MAG FILTER E GetSamplerParameter LINEAR Magnification function 8.15
TEXTURE WRAP S E GetSamplerParameter REPEAT Texcoord s wrap mode 8.14.2

TEXTURE WRAP T E GetSamplerParameter REPEAT
Texcoord t wrap mode
(2D, 3D, cube map tex-
tures only)

8.14.2

TEXTURE WRAP R E GetSamplerParameter REPEAT
Texcoord r wrap mode
(3D textures only) 8.14.2

TEXTURE MIN LOD R GetSamplerParameterfv -1000 Min. level of detail 8
TEXTURE MAX LOD R GetSamplerParameterfv 1000 Max. level of detail 8
TEXTURE COMPARE MODE E GetSamplerParameteriv NONE Comparison mode 8.20
TEXTURE COMPARE FUNC E GetSamplerParameteriv LEQUAL Comparison function 8.20
– S GetObjectLabel empty Debug label 18.9

Table
21.12:Textures

(state
persam

plerobject)

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

458

Get value Type
Get
Command

Initial
Value Description Sec.

SCISSOR TEST B IsEnabled FALSE Scissoring enabled 13.8.2
SCISSOR BOX 4× Z GetIntegerv see 13.8.2 Scissor box 13.8.2
STENCIL TEST B IsEnabled FALSE Stenciling enabled 15.1.2
STENCIL FUNC E GetIntegerv ALWAYS Front stencil function 15.1.2
STENCIL VALUE MASK Z+ GetIntegerv see 15.1.2 Front stencil mask 15.1.2
STENCIL REF Z+ GetIntegerv 0 Front stencil reference value 15.1.2
STENCIL FAIL E GetIntegerv KEEP Front stencil fail action 15.1.2
STENCIL PASS DEPTH FAIL E GetIntegerv KEEP Front stencil depth buffer fail action 15.1.2

STENCIL PASS DEPTH PASS E GetIntegerv KEEP
Front stencil depth buffer pass ac-
tion 15.1.2

STENCIL BACK FUNC E GetIntegerv ALWAYS Back stencil function 15.1.2
STENCIL BACK VALUE MASK Z+ GetIntegerv see 15.1.2 Back stencil mask 15.1.2
STENCIL BACK REF Z+ GetIntegerv 0 Back stencil reference value 15.1.2
STENCIL BACK FAIL E GetIntegerv KEEP Back stencil fail action 15.1.2
STENCIL BACK PASS DEPTH FAIL E GetIntegerv KEEP Back stencil depth buffer fail action 15.1.2
STENCIL BACK PASS DEPTH PASS E GetIntegerv KEEP Back stencil depth buffer pass action 15.1.2
DEPTH TEST B IsEnabled FALSE Depth test enabled 15.1.3
DEPTH FUNC E GetIntegerv LESS Depth test function 15.1.3
BLEND 4 ∗ ×B IsEnabledi FALSE Blending enabled for draw buffer i 15.1.5

BLEND SRC RGB 4 ∗ ×E GetIntegeri v ONE
Blending source RGB function for
draw buffer i 15.1.5

BLEND SRC ALPHA 4 ∗ ×E GetIntegeri v ONE
Blending source A function for draw
buffer i 15.1.5

BLEND DST RGB 4 ∗ ×E GetIntegeri v ZERO
Blending dest. RGB function for
draw buffer i 15.1.5

BLEND DST ALPHA 4 ∗ ×E GetIntegeri v ZERO
Blending dest. A function for draw
buffer i 15.1.5

BLEND EQUATION RGB 4 ∗ ×E GetIntegeri v FUNC_ADD
RGB blending equation for draw
buffer i 15.1.5

BLEND EQUATION ALPHA 4 ∗ ×E GetIntegeri v FUNC_ADD
Alpha blending equation for draw
buffer i 15.1.5

BLEND COLOR C GetFloatv 0.0,0.0,0.0,0.0 Constant blend color 15.1.5
DITHER B IsEnabled TRUE Dithering enabled 15.1.7

Table
21.13:PixelO

perations

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

459

Get value Type
Get
Command

Initial
Value Description Sec.

COLOR WRITEMASK 4 ∗ ×4×B GetBooleani v (TRUE,TRUE,TRUE,TRUE)
Color write en-
ables (R,G,B,A)
for draw buffer i

15.2.2

DEPTH WRITEMASK B GetBooleanv TRUE
Depth buffer en-
abled for writing 15.2.2

STENCIL WRITEMASK Z+ GetIntegerv 1’s
Front stencil
buffer writemask 15.2.2

STENCIL BACK WRITEMASK Z+ GetIntegerv 1’s
Back stencil
buffer writemask 15.2.2

COLOR CLEAR VALUE C GetFloatv 0.0,0.0,0.0,0.0
Color buffer clear
value 15.2.3

DEPTH CLEAR VALUE R+ GetFloatv 1
Depth buffer clear
value 15.2.3

STENCIL CLEAR VALUE Z+ GetIntegerv 0
Stencil clear
value 15.2.3

DRAW FRAMEBUFFER BINDING Z+ GetIntegerv 0

Framebuffer
object bound
to DRAW_-
FRAMEBUFFER

9.2

READ FRAMEBUFFER BINDING Z+ GetIntegerv 0

Framebuffer
object bound
to READ_-
FRAMEBUFFER

9.2

RENDERBUFFER BINDING Z GetIntegerv 0
Renderbuffer
object bound to
RENDERBUFFER

9.2.4

Table
21.14:Fram

ebufferC
ontrol

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

460

Get value Type
Get
Command

Initial
Value Description Sec.

DRAW BUFFERi 4 ∗ ×E GetIntegerv see 15.2.1
Draw buffer selected for color out-
put i 15.2.1

READ BUFFER E GetIntegerv see 16.1.1 Read source buffer † 16.1.1

FRAMEBUFFER DEFAULT WIDTH Z+ GetFramebufferParameteriv 0
Default width of framebuffer w/o at-
tachments 9.2

FRAMEBUFFER DEFAULT HEIGHT Z+ GetFramebufferParameteriv 0
Default height of framebuffer w/o
attachments 9.2

FRAMEBUFFER DEFAULT LAYERS Z+ GetFramebufferParameteriv 0
Default layer count of framebuffer
w/o attachments 9.2.1

FRAMEBUFFER DEFAULT SAMPLES Z+ GetFramebufferParameteriv 0
Default sample count of framebuffer
w/o attachments 9.2

FRAMEBUFFER DEFAULT FIXED SAMPLE LOCATIONS B GetFramebufferParameteriv FALSE
Default sample location pattern of
framebuffer w/o attachments 9.2

Table
21.15:Fram

ebuffer(state
perfram

ebufferobject)
†

T
his

state
is

queried
from

the
currently

bound
read

fram
ebuffer.

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

461

Get value Type
Get
Command

Initial
Value Description Sec.

FRAMEBUFFER ATTACHMENT OBJECT TYPE E
GetFramebuffer-
Attachment-
Parameteriv

NONE
Type of image attached
to framebuffer attach-
ment point

9.2.2

FRAMEBUFFER ATTACHMENT OBJECT NAME Z+
GetFramebuffer-
Attachment-
Parameteriv

0
Name of object at-
tached to framebuffer
attachment point

9.2.2

FRAMEBUFFER ATTACHMENT TEXTURE LEVEL Z+
GetFramebuffer-
Attachment-
Parameteriv

0
Mipmap level of texture
image attached, if object
attached is texture

9.2.8

FRAMEBUFFER ATTACHMENT TEXTURE CUBE MAP FACE Z+
GetFramebuffer-
Attachment-
Parameteriv

NONE

Cubemap face of texture
image attached, if object
attached is cubemap tex-
ture

9.2.8

FRAMEBUFFER ATTACHMENT TEXTURE LAYER Z
GetFramebuffer-
Attachment-
Parameteriv

0
Layer of texture image
attached, if object at-
tached is 3D texture

9.2.8

FRAMEBUFFER ATTACHMENT LAYERED B
GetFramebuffer-
Attachment-
Parameteriv

FALSE
Framebuffer attachment
is layered 9.8

FRAMEBUFFER ATTACHMENT COLOR ENCODING E
GetFramebuffer-
Attachment-
Parameteriv

-
Encoding of components
in the attached image 9.2.3

FRAMEBUFFER ATTACHMENT COMPONENT TYPE E
GetFramebuffer-
Attachment-
Parameteriv

-
Data type of components
in the attached image 9.2.3

FRAMEBUFFER ATTACHMENT x SIZE Z+
GetFramebuffer-
Attachment-
Parameteriv

-

Size in bits of attached
image’s x component; x
is RED, GREEN, BLUE,
ALPHA, DEPTH, or
STENCIL

9.2.3

– S GetObjectLabel empty Debug label 18.9

Table
21.16:Fram

ebuffer(state
perattachm

entpoint)

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

462

Get value Type
Get
Command

Initial
Value Description Sec.

RENDERBUFFER WIDTH Z+ GetRenderbufferParameteriv 0 Width of renderbuffer 9.2.4
RENDERBUFFER HEIGHT Z+ GetRenderbufferParameteriv 0 Height of renderbuffer 9.2.4
RENDERBUFFER INTERNAL FORMAT E GetRenderbufferParameteriv RGBA4 Internal format of renderbuffer 9.2.4

RENDERBUFFER RED SIZE Z+ GetRenderbufferParameteriv 0
Size in bits of renderbuffer image’s
red component 9.2.4

RENDERBUFFER GREEN SIZE Z+ GetRenderbufferParameteriv 0
Size in bits of renderbuffer image’s
green component 9.2.4

RENDERBUFFER BLUE SIZE Z+ GetRenderbufferParameteriv 0
Size in bits of renderbuffer image’s
blue component 9.2.4

RENDERBUFFER ALPHA SIZE Z+ GetRenderbufferParameteriv 0
Size in bits of renderbuffer image’s
alpha component 9.2.4

RENDERBUFFER DEPTH SIZE Z+ GetRenderbufferParameteriv 0
Size in bits of renderbuffer image’s
depth component 9.2.4

RENDERBUFFER STENCIL SIZE Z+ GetRenderbufferParameteriv 0
Size in bits of renderbuffer image’s
stencil component 9.2.4

RENDERBUFFER SAMPLES Z+ GetRenderbufferParameteriv 0 No. of samples 9.2.4
– S GetObjectLabel empty Debug label 18.9

Table
21.17:R

enderbuffer(state
perrenderbufferobject)

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

463

Get value Type
Get
Command

Initial
Value Description Sec.

UNPACK IMAGE HEIGHT Z+ GetIntegerv 0
Value of UNPACK_IMAGE_-
HEIGHT

8.4.1

UNPACK SKIP IMAGES Z+ GetIntegerv 0 Value of UNPACK_SKIP_IMAGES 8.4.1
UNPACK ROW LENGTH Z+ GetIntegerv 0 Value of UNPACK_ROW_LENGTH 8.4.1
UNPACK SKIP ROWS Z+ GetIntegerv 0 Value of UNPACK_SKIP_ROWS 8.4.1
UNPACK SKIP PIXELS Z+ GetIntegerv 0 Value of UNPACK_SKIP_PIXELS 8.4.1
UNPACK ALIGNMENT Z+ GetIntegerv 4 Value of UNPACK_ALIGNMENT 8.4.1
PACK ROW LENGTH Z+ GetIntegerv 0 Value of PACK_ROW_LENGTH 16.1
PACK SKIP ROWS Z+ GetIntegerv 0 Value of PACK_SKIP_ROWS 16.1
PACK SKIP PIXELS Z+ GetIntegerv 0 Value of PACK_SKIP_PIXELS 16.1
PACK ALIGNMENT Z+ GetIntegerv 4 Value of PACK_ALIGNMENT 16.1
PIXEL PACK BUFFER BINDING Z+ GetIntegerv 0 Pixel pack buffer binding 16.1
PIXEL UNPACK BUFFER BINDING Z+ GetIntegerv 0 Pixel unpack buffer binding 6.6

Table
21.18:Pixels

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

464

Get value Type
Get
Command

Initial
Value Description Sec.

SHADER TYPE E GetShaderiv – Type of shader (see table 7.1) 7.1
DELETE STATUS B GetShaderiv FALSE Shader flagged for deletion 7.1
COMPILE STATUS B GetShaderiv FALSE Last compile succeeded 7.1
-– S GetShaderInfoLog empty string Info log for shader objects 7.12
INFO LOG LENGTH Z+ GetShaderiv 0 Length of info log 7.12
-– S GetShaderSource empty string Source code for a shader 7.1
SHADER SOURCE LENGTH Z+ GetShaderiv 0 Length of source code 7.12
– S GetObjectLabel empty Debug label 18.9

Table
21.19:ShaderO

bjectState

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

465

Get value Type
Get
Command

Initial
Value Description Sec.

ACTIVE PROGRAM Z+ GetProgramPipelineiv 0
The program object that
Uniform* commands
update when PPO bound

7.4

VERTEX SHADER Z+ GetProgramPipelineiv 0
Name of current vertex
shader program object 7.4

GEOMETRY SHADER Z+ GetProgramPipelineiv 0
Name of current geom-
etry shader program ob-
ject

7.4

TESS CONTROL SHADER Z+ GetProgramPipelineiv 0
Name of current TCS
program object 7.4

TESS EVALUATION SHADER Z+ GetProgramPipelineiv 0
Name of current TES
program object 7.4

FRAGMENT SHADER Z+ GetProgramPipelineiv 0
Name of current frag-
ment shader program ob-
ject

7.4

COMPUTE SHADER Z+ GetProgramPipelineiv 0
Name of current compute
shader program object 7.4

VALIDATE STATUS B GetProgramPipelineiv FALSE
Validate status of pro-
gram pipeline object 7.4

– S GetProgramPipelineInfoLog empty
Info log for program
pipeline object 7.12

INFO LOG LENGTH Z+ GetProgramPipelineiv 0 Length of info log 7.12
– S GetObjectLabel empty Debug label 18.9

Table
21.20:Program

Pipeline
O

bjectState

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

466

Get value Type
Get
Command

Initial
Value Description Sec.

CURRENT PROGRAM Z+ GetIntegerv 0
Name of current program
object 7.3

PROGRAM PIPELINE BINDING Z+ GetIntegerv 0
Current program pipeline
object binding 7.4

PROGRAM SEPARABLE B GetProgramiv FALSE
Program object can
be bound for separate
pipeline stages

7.4

DELETE STATUS B GetProgramiv FALSE Program object deleted 7.3

LINK STATUS B GetProgramiv FALSE
Last link attempt suc-
ceeded 7.3

VALIDATE STATUS B GetProgramiv FALSE
Last validate attempt suc-
ceeded 7.3

ATTACHED SHADERS Z+ GetProgramiv 0
No. of attached shader
objects 7.12

-– 0 ∗ ×Z+ GetAttachedShaders empty Shader objects attached 7.12

-– S GetProgramInfoLog empty
Info log for program ob-
ject 7.12

INFO LOG LENGTH Z+ GetProgramiv 0 Length of info log 7.6

PROGRAM BINARY LENGTH Z+ GetProgramiv 0
Length of program bi-
nary 7.5

PROGRAM BINARY RETRIEVABLE HINT B GetProgramiv FALSE
Retrievable binary hint
enabled 7.5

-– 0 ∗ ×BMU GetProgramBinary –
Binary representation of
program 7.5

COMPUTE WORK GROUP SIZE 3× Z+ GetProgramiv {0, . . . } Local work size of a
linked compute program 17

– S GetObjectLabel empty Debug label 18.9

Table
21.21:Program

O
bjectState

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

467

Get value Type
Get
Command

Initial
Value Description Sec.

ACTIVE UNIFORMS Z+ GetProgramiv 0 No. of active uniforms 7.6

-– 0 ∗ ×Z GetUniformLocation –
Location of active uni-
forms 7.12

-– 0 ∗ ×Z+ GetActiveUniform – Size of active uniform 7.6
-– 0 ∗ ×Z+ GetActiveUniform – Type of active uniform 7.6
-– 0 ∗ ×char GetActiveUniform empty Name of active uniform 7.6

ACTIVE UNIFORM MAX LENGTH Z+ GetProgramiv 0
Max. active uniform
name length 7.12

-– − GetUniform 0 Uniform value 7.6
ACTIVE ATTRIBUTES Z+ GetProgramiv 0 No. of active attributes 11.1.1

Table
21.22:Program

O
bjectState

(cont.)

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

468

Get value Type
Get
Command

Initial
Value Description Sec.

-– 0 ∗ ×Z GetAttribLocation – Location of active generic
attribute 11.1.1

-– 0 ∗ ×Z+ GetActiveAttrib – Size of active attribute 11.1.1
-– 0 ∗ ×Z+ GetActiveAttrib – Type of active attribute 11.1.1
-– 0 ∗ ×char GetActiveAttrib empty Name of active attribute 11.1.1

ACTIVE ATTRIBUTE MAX LENGTH Z+ GetProgramiv 0 Max. active attribute name
length 7.12

GEOMETRY VERTICES OUT Z+ GetProgramiv 0 Max. no. of output vertices 11.3.4
GEOMETRY INPUT TYPE E GetProgramiv TRIANGLES Primitive input type 11.3.1
GEOMETRY OUTPUT TYPE E GetProgramiv TRIANGLE_STRIP Primitive output type 11.3.2

GEOMETRY SHADER INVOCA-

TIONS
Z+ GetProgramiv 1

No. of times a geom.
shader should be executed
for each input primitive

11.3.4.2

TRANSFORM FEEDBACK BUFFER -

MODE
E GetProgramiv INTERLEAVED_-

ATTRIBS
Transform feedback mode
for the program 7.12

TRANSFORM FEEDBACK VARY-

INGS
Z+ GetProgramiv 0 No. of outputs to stream to

buffer object(s) 7.12

TRANSFORM FEEDBACK VARY-

ING MAX LENGTH
Z+ GetProgramiv 0

Max. transform feed-
back output variable name
length

7.12

-– Z+ GetTransform-
FeedbackVarying – Size of each transform

feedback output variable 11.1.2.1

-– Z+ GetTransform-
FeedbackVarying – Type of each transform

feedback output variable 11.1.2.1

-– 0+ × char
GetTransform-
FeedbackVarying – Name of each transform

feedback output variable 11.1.2.1

Table
21.23:Program

O
bjectState

(cont.)

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

469

Get value Type
Get
Command

Initial
Value Description Sec.

ACTIVE UNIFORM BLOCKS Z+ GetProgramiv 0 No. of active uniform
blocks in a program 7.6.2

ACTIVE UNIFORM BLOCK MAX -

NAME LENGTH
Z+ GetProgramiv 0 Length of longest active

uniform block name 7.6.2

UNIFORM TYPE 0 ∗ ×E GetActiveUniformsiv – Type of active uniform 7.6.2
UNIFORM SIZE 0 ∗ ×Z+ GetActiveUniformsiv – Size of active uniform 7.6.2
UNIFORM NAME LENGTH 0 ∗ ×Z+ GetActiveUniformsiv – Uniform name length 7.6.2
UNIFORM BLOCK INDEX 0 ∗ ×Z GetActiveUniformsiv – Uniform block index 7.6.2
UNIFORM OFFSET 0 ∗ ×Z GetActiveUniformsiv – Uniform buffer offset 7.6.2

Table
21.24:Program

O
bjectState

(cont.)

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

470

Get value Type
Get
Command

Initial
Value Description Sec.

UNIFORM ARRAY STRIDE 0 ∗ ×Z GetActiveUniformsiv – Uniform buffer array
stride 7.6.2

UNIFORM MATRIX STRIDE 0 ∗ ×Z GetActiveUniformsiv – Uniform buffer intra-
matrix stride 7.6.2

UNIFORM IS ROW MAJOR 0 ∗ ×B GetActiveUniformsiv – Whether uniform is a
row-major matrix 7.6.2

UNIFORM BLOCK BINDING Z+ GetActive-
UniformBlockiv 0

Uniform buffer binding
points associated with
the specified uniform
block

7.6.2

UNIFORM BLOCK DATA SIZE Z+ GetActive-
UniformBlockiv –

Size of the storage
needed to hold this
uniform block’s data

7.6.2

UNIFORM BLOCK NAME LENGTH Z+ GetActive-
UniformBlockiv – Uniform block name

length 7.6.2

UNIFORM BLOCK ACTIVE UNI-

FORMS
Z+ GetActive-

UniformBlockiv –
Count of active uniforms
in the specified uniform
block

7.6.2

UNIFORM BLOCK ACTIVE UNI-

FORM INDICES
n× Z+ GetActive-

UniformBlockiv –
Array of active uniform
indices of the specified
uniform block

7.6.2

UNIFORM BLOCK REFERENCED -

BY VERTEX SHADER
B

GetActive-
UniformBlockiv 0

True if uniform block
is actively referenced by
the vertex stage

7.6.2

UNIFORM BLOCK REFERENCED -

BY FRAGMENT SHADER
B

GetActive-
UniformBlockiv 0

True if uniform block
is actively referenced by
the fragment stage

7.6.2

Table
21.25:Program

O
bjectState

(cont.)

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

471

Get value Type
Get
Command

Initial
Value Description Sec.

TESS CONTROL OUTPUT VERTICES Z+ GetProgramiv 0 Output patch size for
tess. control shader 11.2.1

TESS GEN MODE E GetProgramiv QUADS
Base primitive type for
tess. prim. generator 11.2.2

TESS GEN SPACING E GetProgramiv EQUAL
Spacing of tess. prim.
generator edge subdivi-
sion

11.2.2

TESS GEN VERTEX ORDER E GetProgramiv CCW
Order of vertices in prim-
itives generated by tess.
primitive generator

11.2.2

TESS GEN POINT MODE B GetProgramiv FALSE
Tess. prim. generator
emits points? 11.2.2

ACTIVE ATOMIC COUNTER -

BUFFERS
Z+ GetProgramiv 0

No. of active atomic
counter buffers (AACBs)
used by a program

7.7

Table
21.26:Program

O
bjectState

(cont.)

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

472

Get value Type
Get
Command

Initial
Value Description Sec.

ACTIVE RESOURCES n× Z+ GetProgram-
Interfaceiv 0 No. of active resources

on an interface 7.3.1

MAX NAME LENGTH n× Z+ GetProgram-
Interfaceiv 0 Max. name length for ac-

tive resources 7.3.1

MAX NUM ACTIVE VARIABLES n× Z+ GetProgram-
Interfaceiv 0 Max. no. of active vari-

ables for active resources 7.3.1

Table
21.27:Program

Interface
State

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

473

Get value Type
Get
Command

Initial
Value Description Sec.

ACTIVE VARIABLES Z+ GetProgram-
Resourceiv - List of active variables

owned by active resource 7.3.1

ARRAY SIZE Z+ GetProgram-
Resourceiv - Active resource array

size 7.3.1

ARRAY STRIDE Z+ GetProgram-
Resourceiv - Active resource array

stride in memory 7.3.1

ATOMIC COUNTER BUFFER INDEX Z+ GetProgram-
Resourceiv - Index of atomic counter

buffer owning resource 7.3.1

BLOCK INDEX Z+ GetProgram-
Resourceiv - Index of interface block

owning resource 7.3.1

BUFFER BINDING Z+ GetProgram-
Resourceiv - Buffer binding assigned

to active resource 7.3.1

BUFFER DATA SIZE Z+ GetProgram-
Resourceiv - Min. buffer data size re-

quired for resource 7.3.1

IS ROW MAJOR Z+ GetProgram-
Resourceiv - Active resource stored as

a row major matrix? 7.3.1

LOCATION Z+ GetProgram-
Resourceiv - Location assigned to ac-

tive resource 7.3.1

MATRIX STRIDE Z+ GetProgram-
Resourceiv - Active resource matrix

stride in memory 7.3.1

Table
21.28:Program

O
bjectR

esource
State

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

474

Get value Type
Get
Command

Initial
Value Description Sec.

NAME LENGTH Z+ GetProgram-
Resourceiv - Length of active resource

name 7.3.1

NUM ACTIVE VARIABLES Z+ GetProgram-
Resourceiv - No. of active variables

owned by active resource 7.3.1

OFFSET Z+ GetProgram-
Resourceiv - Active resource offset in

memory 7.3.1

REFERENCED BY VERTEX SHADER Z+ GetProgram-
Resourceiv - Active resource used by

vertex shader? 7.3.1

REFERENCED BY TESS CONTROL -

SHADER
Z+ GetProgram-

Resourceiv - Active resource used by
tess. control shader? 7.3.1

REFERENCED BY TESS EVALUA-

TION SHADER
Z+ GetProgram-

Resourceiv - Active resource used by
tess. evaluation shader? 7.3.1

REFERENCED BY GEOMETRY -

SHADER
Z+ GetProgram-

Resourceiv - Active resource used by
geometry shader? 7.3.1

REFERENCED BY FRAGMENT -

SHADER
Z+ GetProgram-

Resourceiv - Active resource used by
fragment shader? 7.3.1

REFERENCED BY COMPUTE -

SHADER
Z+ GetProgram-

Resourceiv - Active resource used by
compute shader? 7.3.1

TOP LEVEL ARRAY SIZE Z+ GetProgram-
Resourceiv -

Array size of top level
shd. storage block mem-
ber

7.3.1

TOP LEVEL ARRAY STRIDE Z+ GetProgram-
Resourceiv -

Array stride of top level
shd. storage block mem-
ber

7.3.1

TYPE Z+ GetProgram-
Resourceiv - Active resource data type 7.3.1

Table
21.29:Program

O
bjectR

esource
State

(cont.)

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

475

Get value Type
Get
Command

Initial
Value Description Sec.

CURRENT VERTEX ATTRIB 16 ∗ ×R4 GetVertexAttribfv 0.0,0.0,0.0,1.0
Current generic vertex attribute val-
ues 10.2

Table
21.30:V

ertex
ShaderState

(notpartofprogram
objects)

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

476

Get value Type
Get
Command

Initial
Value Description Sec.

QUERY RESULT Z+ GetQueryObjectuiv 0 or FALSE Query object result 4.2.1
QUERY RESULT AVAILABLE B GetQueryObjectuiv FALSE Is the query object result available? 4.2.1
– S GetObjectLabel empty Debug label 18.9

Table
21.31:Q

uery
O

bjectState

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

477

Get value Type
Get
Command

Initial
Value Description Sec.

ATOMIC COUNTER BUFFER BINDING Z+ GetIntegerv 0
Current value of generic
atomic counter buffer
buffer

7.7

ATOMIC COUNTER BUFFER BINDING n× Z+ GetIntegeri v 0
Buffer object bound to
each atomic counter buffer
binding point

7.7

ATOMIC COUNTER BUFFER START n× Z+ GetInteger64i v 0
Start offset of binding
range for each atomic
counter buffer

7.7

ATOMIC COUNTER BUFFER SIZE n× Z+ GetInteger64i v 0
Size of binding range for
each atomic counter buffer 7.7

Table
21.32:A

tom
ic

C
ounterB

ufferB
inding

State

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

478

Get value Type
Get
Command

Initial
Value Description Sec.

IMAGE BINDING NAME 8 ∗ ×Z+ GetIntegeri v 0 Name of bound texture object 8.23
IMAGE BINDING LEVEL 8 ∗ ×Z+ GetIntegeri v 0 Level of bound texture object 8.23

IMAGE BINDING LAYERED 8 ∗ ×B GetBooleani v FALSE
Texture object bound with multiple
layers 8.23

IMAGE BINDING LAYER 8 ∗ ×Z+ GetIntegeri v 0
Layer of bound texture, if not lay-
ered 8.23

IMAGE BINDING ACCESS 8 ∗ ×E GetIntegeri v READ_ONLY
Read and/or write access for bound
texture 8.23

IMAGE BINDING FORMAT 8 ∗ ×Z+ GetIntegeri v R32UI
Format used for accesses to bound
texture 8.23

Table
21.33:Im

age
State

(state
perim

age
unit)

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

479

Get value Type
Get
Command

Initial
Value Description Sec.

SHADER STORAGE BUFFER BINDING Z+ GetIntegerv 0
Current value of generic
shader storage buffer bind-
ing

7.8

SHADER STORAGE BUFFER BINDING n× Z+ GetIntegeri v 0
Buffer object bound to
each shader storage buffer
binding point

7.8

SHADER STORAGE BUFFER START n× Z+ GetInteger64i v 0
Start offset of binding
range for each shader
storage buffer

7.8

SHADER STORAGE BUFFER SIZE n× Z+ GetInteger64i v 0
Size of binding range for
each shader storage buffer 7.8

Table
21.34:ShaderStorage

B
ufferB

inding
State

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

480

Get value Type
Get
Command

Initial
Value Description Sec.

TRANSFORM FEEDBACK BUFFER BINDING Z+ GetIntegerv 0
Buffer object bound to
generic bind point for
transform feedback

6.6

TRANSFORM FEEDBACK BUFFER BINDING n× Z+ GetIntegeri v 0
Buffer object bound to
each transform feedback
attribute stream

6.6

TRANSFORM FEEDBACK BUFFER START n× Z+ GetInteger64i v 0
Start offset of binding
range for each transform
feedback attrib. stream

6.6

TRANSFORM FEEDBACK BUFFER SIZE n× Z+ GetInteger64i v 0
Size of binding range for
each transform feedback
attrib. stream

6.6

TRANSFORM FEEDBACK PAUSED B GetBooleanv FALSE
Is transform feedback
paused on this object? 6.6

TRANSFORM FEEDBACK ACTIVE B GetBooleanv FALSE
Is transform feedback ac-
tive on this object? 6.6

– S GetObjectLabel empty Debug label 18.9

Table
21.35:Transform

Feedback
State

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

481

Get value Type
Get
Command

Initial
Value Description Sec.

UNIFORM BUFFER BINDING Z+ GetIntegerv 0

Uniform buffer object
bound to the context for
buffer object manipula-
tion

7.6.2

UNIFORM BUFFER BINDING n× Z+ GetIntegeri v 0
Uniform buffer object
bound to the specified
context binding point

7.6.2

UNIFORM BUFFER START n× Z+ GetInteger64i v 0 Start of bound uniform
buffer region 6.6

UNIFORM BUFFER SIZE n× Z+ GetInteger64i v 0 Size of bound uniform
buffer region 6.6

Table
21.36:U

niform
B

ufferB
inding

State

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

482

Get value Type
Get
Command

Initial
Value Description Sec.

OBJECT TYPE E GetSynciv SYNC_FENCE Type of sync object 4.1
SYNC STATUS E GetSynciv UNSIGNALED Sync object status 4.1
SYNC CONDITION E GetSynciv SYNC_GPU_COMMANDS_COMPLETE Sync object condition 4.1
SYNC FLAGS Z GetSynciv 0 Sync object flags 4.1
– S GetObjectPtrLabel empty Debug label 18.9

Table
21.37:Sync

(state
persync

object)

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

483

Get value Type
Get
Command

Initial
Value Description Sec.

GENERATE MIPMAP HINT E GetIntegerv DONT_CARE Mipmap generation hint 19.1

FRAGMENT SHADER DERIVATIVE HINT E GetIntegerv DONT_CARE
Fragment shader derivative accu-
racy hint 19.1

Table
21.38:H

ints

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

484

Get value Type
Get
Command

Initial
Value Description Sec.

DISPATCH INDIRECT BUFFER BINDING Z+ GetIntegerv 0 Indirect dispatch buffer binding 17

Table
21.39:C

om
pute

D
ispatch

State

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

485

Get value Type
Get
Command

Minimum
Value Description Sec.

SUBPIXEL BITS Z+ GetIntegerv 4
No. of bits of subpixel precision in
screen xw and yw

13

MAX ELEMENT INDEX Z+ GetInteger64v 224 − 1 Max. element index 10.5
MAX 3D TEXTURE SIZE Z+ GetIntegerv 256 Max. 3D texture image dimension 8.5
MAX TEXTURE SIZE Z+ GetIntegerv 2048 Max. 2D texture image dimension 8.5
MAX ARRAY TEXTURE LAYERS Z+ GetIntegerv 256 Max. no. of layers for texture arrays 8.5

MAX TEXTURE LOD BIAS R+ GetFloatv 2.0
Max. absolute texture level of detail
bias 8.14

MAX CUBE MAP TEXTURE SIZE Z+ GetIntegerv 2048
Max. cube map texture image di-
mension 8.5

MAX RENDERBUFFER SIZE Z+ GetIntegerv 2048
Max. width and height of render-
buffers 9.2.4

ALIASED POINT SIZE RANGE 2×R+ GetFloatv 1,1 Range (lo to hi) of point sizes 13.5
ALIASED LINE WIDTH RANGE 2×R+ GetFloatv 1,1 Range (lo to hi) of line widths 13.6

MULTISAMPLE LINE WIDTH RANGE 2×R+ GetFloatv 1,1
Range (lo to hi) of multisampled
line widths 13.6.4

MULTISAMPLE LINE WIDTH GRANULARITY R+ GetFloatv – Multisampled line width granularity 13.6.4
MAX DRAW BUFFERS Z+ GetIntegerv 4 Max. no. of active draw buffers 15.2.1
MAX FRAMEBUFFER WIDTH Z+ GetIntegerv 2048 † Max. width for framebuffer object 9.2
MAX FRAMEBUFFER HEIGHT Z+ GetIntegerv 2048 † Max. height for framebuffer object 9.2

MAX FRAMEBUFFER LAYERS Z+ GetIntegerv 256
Max. layer count for layered frame-
buffer object 9.2.1

MAX FRAMEBUFFER SAMPLES Z+ GetIntegerv 4 † Max. sample count for framebuffer
object 9.2

MAX COLOR ATTACHMENTS Z+ GetIntegerv 4
Max. no. of FBO attachment points
for color buffers 9.2.7

Table
21.40:Im

plem
entation

D
ependentV

alues
†

T
hese

lim
its

are
tied

to
the

values
of
M
A
X
_
T
E
X
T
U
R
E
_
S
I
Z
E

(forw
idth/height)and

M
A
X
_
S
A
M
P
L
E
S

(forsam
ples)respectively.

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

486

Get value Type
Get
Command

Minimum
Value Description Sec.

MIN FRAGMENT INTERPOLATION OFFSET R GetFloatv -0.5
Furthest negative offset
for interpolate-
AtOffset

14.1

MAX FRAGMENT INTERPOLATION OFFSET R GetFloatv +0.5
Furthest positive offset
for interpolate-
AtOffset

14.1

FRAGMENT INTERPOLATION OFFSET BITS Z+ GetIntegerv 4
Subpixel bits for
interpolate-
AtOffset

14.1

MAX VIEWPORT DIMS 2× Z+ GetIntegerv see 12.5.1
Max. viewport dimen-
sions 12.5.1

MAX SAMPLE MASK WORDS Z+ GetIntegerv 1
Max. no. of sample mask
words 13.8.3

MAX COLOR TEXTURE SAMPLES Z+ GetIntegerv 1
Max. no. of samples in
a color multisample tex-
ture†

13.8.3

MAX DEPTH TEXTURE SAMPLES Z+ GetIntegerv 1
Max. no. of samples in
a depth/stencil multisam-
ple texture†

13.8.3

MAX INTEGER SAMPLES Z+ GetIntegerv 1
Max. no. of samples in
integer format multisam-
ple buffers†

9.2.4

MAX SERVER WAIT TIMEOUT Z+ GetInteger64v 0
Max. WaitSync timeout
interval 4.1.1

LAYER PROVOKING VERTEX E GetIntegerv See sec. 11.3.4
Vertex convention fol-
lowed by gl_Layer 11.3.4

PRIMITIVE RESTART FOR PATCHES SUPPORTED B GetBooleanv –
Primitive restart support
for PATCHES 10.3.4

Table
21.41:Im

plem
entation

D
ependentV

alues
(cont.)

†
T

hese
queries

return
the

m
axim

um
no.ofsam

ples
forallinternalform

ats
required

to
supportm

ultisam
pled

rendering.

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

487

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX VERTEX ATTRIB RELATIVE OFFSET Z GetIntegerv 2047
Max. offset added to ver-
tex buffer binding offset 10.3

MAX VERTEX ATTRIB BINDINGS Z GetIntegerv 16
Max. no. of vertex
buffers 10.3

MAX VERTEX ATTRIB STRIDE Z GetIntegerv 2048
Max. vertex attribute
stride 10.3

MAX ELEMENTS INDICES Z+ GetIntegerv –
Recommended max. no.
of DrawRangeElements
indices

10.3

MAX ELEMENTS VERTICES Z+ GetIntegerv –
Recommended max. no.
of DrawRangeElements
vertices

10.3

MAX TEXTURE BUFFER SIZE Z+ GetIntegerv 65536
No. of addressable texels
for buffer textures 8.9

NUM COMPRESSED TEXTURE FORMATS Z+ GetIntegerv 10
No. of compressed tex-
ture formats 8.7

COMPRESSED TEXTURE FORMATS 10 ∗ ×Z+ GetIntegerv –
Enumerated compressed
texture formats 8.7

NUM PROGRAM BINARY FORMATS Z+ GetIntegerv 0
No. of program binary
formats 7.5

PROGRAM BINARY FORMATS 0 ∗ ×Z+ GetIntegerv –
Enumerated program bi-
nary formats 7.5

NUM SHADER BINARY FORMATS Z+ GetIntegerv 0
No. of shader binary for-
mats 7.2

SHADER BINARY FORMATS 0 ∗ ×Z+ GetIntegerv –
Enumerated shader bi-
nary formats 7.2

SHADER COMPILER B GetBooleanv –
Shader compiler sup-
ported, always TRUE 11.1

TEXTURE BUFFER OFFSET ALIGNMENT Z+ GetIntegerv 256† Min. required alignment
for texture buffer offsets 8.9

-– 2× 6× 2× Z+ GetShader-
PrecisionFormat – Shader data type ranges 7.12

-– 2× 6× Z+ GetShader-
PrecisionFormat –

Shader data type preci-
sions 7.12

Table
21.42:Im

plem
entation

D
ependentV

alues
(cont.)

†
T

he
value

of
T
E
X
T
U
R
E
_
B
U
F
F
E
R
_
O
F
F
S
E
T
_
A
L
I
G
N
M
E
N
T

is
the

m
axim

um
allow

ed,
notthe

m
inim

um
.

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

488

Get value Type
Get
Command

Minimum
Value Description Sec.

EXTENSIONS 0 ∗ ×S GetStringi –
Supported individual ex-
tension names 20.2

NUM EXTENSIONS Z+ GetIntegerv –
No. of individual exten-
sion names 20.2

MAJOR VERSION Z+ GetIntegerv 3
Major version no. sup-
ported 20.2

MINOR VERSION Z+ GetIntegerv –
Minor version no. sup-
ported 20.2

CONTEXT FLAGS Z+ GetIntegerv – Context flags 20.2
RENDERER S GetString – Renderer string 20.2

SHADING LANGUAGE VERSION S GetString –
Shading Language ver-
sion supported 20.2

VENDOR S GetString – Vendor string 20.2

VERSION S GetString –
OpenGL ES version sup-
ported 20.2

Table
21.43:Im

plem
entation

D
ependentV

ersion
and

E
xtension

Support

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

489

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX VERTEX ATTRIBS Z+ GetIntegerv 16
No. of active vertex at-
tributes 10.2

MAX VERTEX UNIFORM COMPONENTS Z+ GetIntegerv 1024
No. of components
for vertex shader uniform
variables

7.6

MAX VERTEX UNIFORM VECTORS Z+ GetIntegerv 256
No. of vectors for vertex
shader uniform variables 7.6

MAX VERTEX UNIFORM BLOCKS Z+ GetIntegerv 12
Max. no. of vertex uni-
form buffers per program 7.6.2

MAX VERTEX OUTPUT COMPONENTS Z+ GetIntegerv 64
Max. no. of components
of outputs written by a
vertex shader

11.1.2.1

MAX VERTEX TEXTURE IMAGE UNITS Z+ GetIntegerv 16
No. of texture image
units accessible by a ver-
tex shader

11.1.3.5

MAX VERTEX ATOMIC COUNTER BUFFERS Z+ GetIntegerv 0
No. of atomic counter
buffers accessed by a ver-
tex shader

7.7

MAX VERTEX ATOMIC COUNTERS Z+ GetIntegerv 0
No. of atomic coun-
ters accessed by a vertex
shader

7.7

MAX VERTEX SHADER STORAGE BLOCKS Z+ GetIntegerv 0
No. of shader storage
blocks accessed by a ver-
tex shader

7.8

Table
21.44:Im

plem
entation

D
ependentV

ertex
ShaderL

im
its

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

490

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX TESS GEN LEVEL Z+ GetIntegerv 64
Max. level supported by
tess. primitive generator 11.2.2

MAX PATCH VERTICES Z+ GetIntegerv 32 Max. patch size 10.1

MAX TESS CONTROL UNIFORM COMPONENTS Z+ GetIntegerv 1024
No. of words for tess.
control shader (TCS)
uniforms

11.2.1.1

MAX TESS CONTROL TEXTURE IMAGE UNITS Z+ GetIntegerv 16
No. of tex. image units
for TCS 11.1.3

MAX TESS CONTROL OUTPUT COMPONENTS Z+ GetIntegerv 64
No. components for TCS
per-vertex outputs 11.2.1.2

MAX TESS PATCH COMPONENTS Z+ GetIntegerv 120
No. components for TCS
per-patch outputs 11.2.1.2

MAX TESS CONTROL TOTAL OUTPUT COMPO-

NENTS
Z+ GetIntegerv 2048

Total no. components for
TCS per-patch outputs 11.2.1.2

MAX TESS CONTROL INPUT COMPONENTS Z+ GetIntegerv 64
No. components for TCS
per-vertex inputs 11.2.1.2

MAX TESS CONTROL UNIFORM BLOCKS Z+ GetIntegerv 12∗ No. of supported uni-
form blocks for TCS 7.6.2

MAX TESS CONTROL ATOMIC COUNTER BUFFERS Z+ GetIntegerv 0
No. of atomic counter
(AC) buffers accessed by
a TCS

7.7

MAX TESS CONTROL ATOMIC COUNTERS Z+ GetIntegerv 0
No. of ACs accessed by
a TCS 7.7

MAX TESS CONTROL SHADER STORAGE BLOCKS Z+ GetIntegerv 0
No. of shader storage
blocks accessed by a tess.
control shader

7.8

Table
21.45:Im

plem
entation

D
ependentTessellation

ShaderL
im

its

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

491

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX TESS EVALUATION UNIFORM COMPONENTS Z+ GetIntegerv 1024
No. of words for tess.
evaluation shader (TES)
uniforms

11.2.3.1

MAX TESS EVALUATION TEXTURE IMAGE UNITS Z+ GetIntegerv 16
No. of tex. image units
for TES 11.1.3

MAX TESS EVALUATION OUTPUT COMPONENTS Z+ GetIntegerv 64
No. components for TES
per-vertex outputs 11.2.3.2

MAX TESS EVALUATION INPUT COMPONENTS Z+ GetIntegerv 64
No. components for TES
per-vertex inputs 11.2.3.2

MAX TESS EVALUATION UNIFORM BLOCKS Z+ GetIntegerv 12∗ No. of supported uni-
form blocks for TES 7.6.2

MAX TESS EVALUATION ATOMIC COUNTER -

BUFFERS
Z+ GetIntegerv 0

No. of AC buffers ac-
cessed by a TES 11.1.3.6

MAX TESS EVALUATION ATOMIC COUNTERS Z+ GetIntegerv 0
No. of ACs accessed by
a TES 11.1.3.6

MAX TESS EVALUATION SHADER STORAGE -

BLOCKS
Z+ GetIntegerv 0

No. of shader storage
blocks accessed by a tess.
evaluation shader

7.8

Table
21.46:Im

plem
entation

D
ependentTessellation

ShaderL
im

its
(cont.)

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

492

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX GEOMETRY UNIFORM COMPONENTS Z+ GetIntegerv 1024
No. of components
for geometry shader (GS)
uniform variables

11.3.3

MAX GEOMETRY UNIFORM BLOCKS Z+ GetIntegerv 12∗ Max. no. of GS uniform
buffers per program 7.6.2

MAX GEOMETRY INPUT COMPONENTS Z+ GetIntegerv 64
Max. no. of components
of inputs read by a GS 11.3.4.3

MAX GEOMETRY OUTPUT COMPONENTS Z+ GetIntegerv 64
Max. no. of components
of outputs written by a
GS

11.3.4.4

MAX GEOMETRY OUTPUT VERTICES Z+ GetIntegerv 256
Max. no. of vertices that
any GS can emit 11.3.4

MAX GEOMETRY TOTAL OUTPUT COMPONENTS Z+ GetIntegerv 1024

Max. no. of total compo-
nents (all vertices) of ac-
tive outputs that a GS can
emit

11.3.4

MAX GEOMETRY TEXTURE IMAGE UNITS Z+ GetIntegerv 16
No. of texture image
units accessible by a GS 11.3.4

MAX GEOMETRY SHADER INVOCATIONS Z+ GetIntegerv 32
Max. supported GS invo-
cation count 11.3.4.2

MAX GEOMETRY ATOMIC COUNTER BUFFERS Z+ GetIntegerv 0
No. of atomic counter
buffers accessed by a GS 7.7

MAX GEOMETRY ATOMIC COUNTERS Z+ GetIntegerv 0
No. of atomic counters
accessed by a GS 11.1.3.6

MAX GEOMETRY SHADER STORAGE BLOCKS Z+ GetIntegerv 0
No. of shader storage
blocks accessed by a GS 7.8

Table
21.47:Im

plem
entation

D
ependentG

eom
etry

ShaderL
im

its

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

493

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX FRAGMENT UNIFORM COMPONENTS Z+ GetIntegerv 1024
No. of components for
fragment shader uniform
variables

14.1

MAX FRAGMENT UNIFORM VECTORS Z+ GetIntegerv 256
No. of vectors for
fragment shader uniform
variables

14.1

MAX FRAGMENT UNIFORM BLOCKS Z+ GetIntegerv 12
Max. no. of fragment
uniform buffers per pro-
gram

7.6.2

MAX FRAGMENT INPUT COMPONENTS Z+ GetIntegerv 60
Max. no. of components
of inputs read by a frag-
ment shader

14.2.2

MAX TEXTURE IMAGE UNITS Z+ GetIntegerv 16
No. of texture im-
age units accessible by a
fragment shader

11.1.3.5

MAX FRAGMENT ATOMIC COUNTER BUFFERS Z+ GetIntegerv 1
No. of atomic counter
buffers accessed by a
fragment shader

7.7

MAX FRAGMENT ATOMIC COUNTERS Z+ GetIntegerv 8
No. of atomic counters
accessed by a fragment
shader

7.7

MAX FRAGMENT SHADER STORAGE BLOCKS Z+ GetIntegerv 4
No. of shader stor-
age blocks accessed by a
fragment shader

7.8

MIN PROGRAM TEXTURE GATHER OFFSET Z GetIntegerv –
Min. texel offset for
textureGather

8.14

MAX PROGRAM TEXTURE GATHER OFFSET Z+ GetIntegerv –
Max. texel offset for
textureGather

8.14

MIN PROGRAM TEXEL OFFSET Z GetIntegerv -8
Min. texel offset allowed
in lookup 11.1.3.5

MAX PROGRAM TEXEL OFFSET Z GetIntegerv 7
Max. texel offset allowed
in lookup 11.1.3.5

Table
21.48:Im

plem
entation

D
ependentFragm

entShaderL
im

its

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

494

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX COMPUTE WORK GROUP COUNT 3× Z+ GetIntegeri v 65535

Max. no. of work groups
that may be dispatched
by a single dispatch com-
mand (per dimension)

17

MAX COMPUTE WORK GROUP SIZE 3× Z+ GetIntegeri v 128 (x, y), 64 (z)
Max. local size of a com-
pute work group (per di-
mension)

17

MAX COMPUTE WORK GROUP INVOCATIONS Z+ GetIntegerv 128

Max. total compute
shader (CS) invocations
in a single local work
group

17

MAX COMPUTE UNIFORM BLOCKS Z+ GetIntegerv 12
Max. no. of uniform
blocks per compute pro-
gram

11.1.3

MAX COMPUTE TEXTURE IMAGE UNITS Z+ GetIntegerv 16
Max. no. of texture im-
age units accessible by a
CS

11.1.3

MAX COMPUTE SHARED MEMORY SIZE Z+ GetIntegerv 16384

Max. total storage size of
all variables declared as
shared in all CSs linked
into a single program ob-
ject

17.1

MAX COMPUTE UNIFORM COMPONENTS Z+ GetIntegerv 1024
No. of components for
CS uniform variables 17.1

MAX COMPUTE ATOMIC COUNTER BUFFERS Z+ GetIntegerv 1
No. of atomic counter
buffers accessed by a CS 7.7

MAX COMPUTE ATOMIC COUNTERS Z+ GetIntegerv 8
No. of atomic counters
accessed by a CS 11.1.3

MAX COMBINED COMPUTE UNIFORM COMPO-

NENTS
Z+ GetIntegerv †

No. of words for CS
uniform variables in all
uniform blocks, includ-
ing the default

17.1

MAX COMPUTE SHADER STORAGE BLOCKS Z+ GetIntegerv 4
No. of shader stor-
age blocks accessed by a
compute shader

7.8

Table
21.49:Im

plem
entation

D
ependentC

om
pute

ShaderL
im

its
†

T
he

m
inim

um
value

is
M
A
X
_
C
O
M
P
U
T
E
_
U
N
I
F
O
R
M
_
B
L
O
C
K
S
×

M
A
X
_
U
N
I
F
O
R
M
_
B
L
O
C
K
_
S
I
Z
E

/4
+
M
A
X
_
C
O
M
P
U
T
E
_
U
N
I
F
O
R
M
_
C
O
M
P
O
N
E
N
T
S

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

495

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX UNIFORM BUFFER BINDINGS Z+ GetIntegerv 72
Max. no. of uniform
buffer binding points on
the context

7.6.2

MAX UNIFORM BLOCK SIZE Z+ GetInteger64v 16384
Max. size in basic ma-
chine units of a uniform
block

7.6.2

UNIFORM BUFFER OFFSET ALIGNMENT Z+ GetIntegerv 256†
Min. required alignment
for uniform buffer sizes
and offsets

7.6.2

MAX COMBINED UNIFORM BLOCKS Z+ GetIntegerv 60∗ Max. no. of uniform
buffers per program 7.6.2

MAX COMBINED VERTEX UNIFORM COMPO-

NENTS
Z+ GetInteger64v ‡

No. of words for vertex
shader uniform var. in all
uniform blocks (incl. de-
fault)

7.6.2

MAX COMBINED TESS CONTROL UNIFORM COM-

PONENTS
Z+ GetIntegerv †

No. of words for TCS
uniform var. in all uni-
form blocks (incl. de-
fault)

11.2.1.1

MAX COMBINED TESS EVALUATION UNIFORM -

COMPONENTS
Z+ GetIntegerv †

No. of words for TES
uniform var. in all uni-
form blocks (incl. de-
fault)

11.2.3.1

MAX COMBINED GEOMETRY UNIFORM COMPO-

NENTS
Z+ GetIntegerv †

No. of words for geome-
try shader uniform var. in
all uniform blocks (incl.
default)

7.6.2

MAX COMBINED FRAGMENT UNIFORM COMPO-

NENTS
Z+ GetInteger64v ‡

No. of words for frag-
ment shader uniform var.
in all uniform blocks
(incl. default)

7.6.2

Table
21.50:Im

plem
entation

D
ependentA

ggregate
ShaderL

im
its

†
T

he
value

of
U
N
I
F
O
R
M
_
B
U
F
F
E
R
_
O
F
F
S
E
T
_
A
L
I
G
N
M
E
N
T

is
the

m
axim

um
allow

ed,
notthe

m
inim

um
.

‡T
he

m
inim

um
value

foreach
stage

is
M
A
X
_
s
t
a
g
e
_
U
N
I
F
O
R
M
_
B
L
O
C
K
S
×

M
A
X
_
U
N
I
F
O
R
M
_
B
L
O
C
K
_
S
I
Z
E

/
4

+
M
A
X
_
s
t
a
g
e
_
U
N
I
F
O
R
M
_
C
O
M
P
O
N
E
N
T
S.T

he
lim

itis
totalled

foralluniform
variables

in
alluniform

blocks,including
the

default.

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

496

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX VARYING COMPONENTS Z+ GetIntegerv 60
No. of components for
output variables 11.1.2.1

MAX VARYING VECTORS Z+ GetIntegerv 15
No. of vectors for output
variables 11.1.2.1

MAX COMBINED TEXTURE IMAGE UNITS Z+ GetIntegerv 96
Total no. of texture units
accessible by the GL 11.1.3.5

MAX COMBINED SHADER OUTPUT RESOURCES Z+ GetIntegerv 4
Limit on active image
units, shader storage
blocks, and frag. outputs

8.23

MAX UNIFORM LOCATIONS Z+ GetIntegerv 1024
Max. no. of user-
assignable uniform loca-
tions

7.6

MAX ATOMIC COUNTER BUFFER BINDINGS Z+ GetIntegerv 1
Max. no. of atomic
counter buffer bindings 7.7

MAX ATOMIC COUNTER BUFFER SIZE Z+ GetIntegerv 32
Max. size in basic ma-
chine units of an atomic
counter buffer

7.7

MAX COMBINED ATOMIC COUNTER BUFFERS Z+ GetIntegerv 1
Max. no. of atomic
counter buffers per pro-
gram

7.7

MAX COMBINED ATOMIC COUNTERS Z+ GetIntegerv 8
Max. no. of atomic
counter uniforms per
program

7.7

Table
21.51:Im

plem
entation

D
ependentA

ggregate
ShaderL

im
its

(cont.)

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

497

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX IMAGE UNITS Z+ GetIntegerv 4
No. of units for image
load/store/atomics 8.23

MAX VERTEX IMAGE UNIFORMS Z+ GetIntegerv 0
No. of image variables in vertex
shaders 11.1.3

MAX TESS CONTROL IMAGE UNIFORMS Z+ GetIntegerv 0
No. of image variables in tess. con-
trol shaders 11.1.3.7

MAX TESS EVALUATION IMAGE UNIFORMS Z+ GetIntegerv 0
No. of image variables in tess. eval.
shaders 11.1.3.7

MAX GEOMETRY IMAGE UNIFORMS Z+ GetIntegerv 0
No. of image variables in geometry
shaders 11.1.3.7

MAX FRAGMENT IMAGE UNIFORMS Z+ GetIntegerv 4
No. of image variables in fragment
shaders 11.1.3

MAX COMPUTE IMAGE UNIFORMS Z+ GetIntegerv 4 No. of image variables in CSs 11.1.3
MAX COMBINED IMAGE UNIFORMS Z+ GetIntegerv 4 No. of image variables in all shaders 11.1.3

MAX SHADER STORAGE BUFFER BINDINGS Z+ GetIntegerv 4
Max. no. of shader storage buffer
bindings in the context 7.8

MAX SHADER STORAGE BLOCK SIZE Z+ GetInteger64v 227
Max. size in basic machine units of
a shader storage block 7.8

MAX COMBINED SHADER STORAGE BLOCKS Z+ GetIntegerv 4
No. of shader storage blocks ac-
cessed by a program 7.8

SHADER STORAGE BUFFER OFFSET ALIGNMENT Z+ GetIntegerv 256† Min. required alignment for shader
storage buffer binding offsets 7.8

Table
21.52:Im

plem
entation

D
ependentA

ggregate
ShaderL

im
its

(cont.)
†

T
he

value
of
S
H
A
D
E
R
_
S
T
O
R
A
G
E
_
B
U
F
F
E
R
_
O
F
F
S
E
T
_
A
L
I
G
N
M
E
N
T

is
the

m
axim

um
allow

ed,notthe
m

inim
um

.

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

498

Get value Type
Get
Command

Initial
Value Description Sec.

DEBUG CALLBACK FUNCTION Y GetPointerv NULL
The current debug output
callback function pointer 18.2

DEBUG CALLBACK USER PARAM Y GetPointerv NULL
The current debug output
callback user parameter 18.2

DEBUG LOGGED MESSAGES Z+ GetIntegerv 0
The no. of messages cur-
rently in the debug mes-
sage log

18.3

DEBUG NEXT LOGGED MESSAGE -

LENGTH
Z+ GetIntegerv 0

The string length of the
oldest debug message in
the debug message log

18.3

DEBUG OUTPUT SYNCHRONOUS B IsEnabled FALSE
The enabled state for
synchronous debug mes-
sage callbacks

18.8

DEBUG GROUP STACK DEPTH Z+ GetIntegerv 1 Debug group stack
pointer 18.6

DEBUG OUTPUT B IsEnabled
Depends
on the
context†

The enabled state for de-
bug output functionality 18

Table
21.53:D

ebug
O

utputState
†

T
he

initialvalue
of

D
E
B
U
G
_
O
U
T
P
U
T

is
T
R
U
E

in
a

debug
contextand

F
A
L
S
E

in
a

non-debug
context.

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

499

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX DEBUG MESSAGE LENGTH Z+ GetIntegerv 1

The max length of a de-
bug message string, in-
cluding its null termina-
tor

18.1

MAX DEBUG LOGGED MESSAGES Z+ GetIntegerv 1
The max no. of messages
stored in the debug mes-
sage log

18.3

MAX DEBUG GROUP STACK DEPTH Z+ GetIntegerv 64 Max. group stack depth 18.6

MAX LABEL LENGTH Z+ GetIntegerv 256
Max. length of a label
string 18.7

Table
21.54:Im

plem
entation

D
ependentD

ebug
O

utputState

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

500

Get value Type
Get
Command

Minimum
Value Description Sec.

MAX TRANSFORM FEEDBACK INTERLEAVED -

COMPONENTS
Z+ GetIntegerv 64

Max. no. of components
to write to a single buffer
in interleaved mode

12.1

MAX TRANSFORM FEEDBACK SEPARATE ATTRIBS Z+ GetIntegerv 4

Max. no. of separate
attributes or outputs that
can be captured in trans-
form feedback

12.1

MAX TRANSFORM FEEDBACK SEPARATE COMPO-

NENTS
Z+ GetIntegerv 4

Max. no. of components
per attribute or output in
separate mode

12.1

Table
21.55:Im

plem
entation

D
ependentTransform

Feedback
L

im
its

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

501

Get value Type
Get
Command

Minimum
Value Description Sec.

SAMPLE BUFFERS Z2 GetIntegerv 0
No. of multisample
buffers 13.4

SAMPLES Z+ GetIntegerv 0 Coverage mask size 13.4

MAX SAMPLES Z+ GetIntegerv 4

Max. no. of samples
supported for multisam-
pling for all internal for-
mats required to support
multisampled rendering.

9.2.4

x BITS Z+ GetIntegerv –

No. of bits in x color
buffer component. x
is one of RED, GREEN,
BLUE, ALPHA

9

DEPTH BITS Z+ GetIntegerv –
No. of depth buffer
planes 9

STENCIL BITS Z+ GetIntegerv – No. of stencil planes 9

IMPLEMENTATION COLOR READ TYPE E GetIntegerv –
Implementation pre-
ferred pixel type † 16.1

IMPLEMENTATION COLOR READ FORMAT E GetIntegerv –
Implementation pre-
ferred pixel format
†

16.1

SAMPLE POSITION n× 2×R[0,1] GetMultisamplefv impl-dependent Explicit sample positions 13.4

Table
21.56:Fram

ebufferD
ependentV

alues
†

T
his

state
is

queried
from

the
currently

bound
read

fram
ebuffer,ratherthan

the
draw

fram
ebuffer.

n
is

the
value

of
S
A
M
P
L
E
S.

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

502

Get value Type
Get
Command

Initial
Value Description Sec.

-– n× E GetError 0 Current error code(s) 2.3.1
-– n×B – FALSE True if there is a corresponding error 2.3.1
CURRENT QUERY 3× Z+ GetQueryiv 0 Active query object names 4.2.1

COPY READ BUFFER BINDING Z+ GetIntegerv 0
Buffer object bound to copy buffer
“read” bind point 6.5

COPY WRITE BUFFER BINDING Z+ GetIntegerv 0
Buffer object bound to copy buffer
“write” bind point 6.5

RESET NOTIFICATION STRATEGY Z2 GetIntegerv See sec. 2.3.2 Reset notification behavior 2.3.2

TEXTURE BUFFER BINDING Z+ GetIntegerv 0
Buffer object bound to generic tex-
ture buffer bind point 8.1

Table
21.57:M

iscellaneous

O
penG

L
E

S
3.2

(N
ovem

ber3,2016)

Appendix A

Invariance

The OpenGL ES specification is not pixel exact. It therefore does not guarantee an
exact match between images produced by different GL implementations. However,
the specification does specify exact matches, in some cases, for images produced
by the same implementation. The purpose of this appendix is to identify and pro-
vide justification for those cases that require exact matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of GL
commands. For any given GL and framebuffer state vector, and for any GL com-
mand, the resulting GL and framebuffer state must be identical whenever the com-
mand is executed on that initial GL and framebuffer state. This repeatability re-
quirement doesn’t apply when using shaders containing side effects (image stores,
image atomic operations, atomic counter operations, buffer variable stores, buffer
variable atomic operations), because these memory operations are not guaranteed
to be processed in a defined order.

One purpose of repeatability is avoidance of visual artifacts when a double-
buffered scene is redrawn. If rendering is not repeatable, swapping between two
buffers rendered with the same command sequence may result in visible changes
in the image. Such false motion is distracting to the viewer. Another reason for
repeatability is testability.

Repeatability, while important, is a weak requirement. Given only repeata-
bility as a requirement, two scenes rendered with one (small) polygon changed
in position might differ at every pixel. Such a difference, while within the law
of repeatability, is certainly not within its spirit. Additional invariance rules are
desirable to ensure useful operation.

503

A.2. MULTI-PASS ALGORITHMS 504

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such al-
gorithms render multiple times, each time with a different GL mode vector, to
eventually produce a result in the framebuffer. Examples of these algorithms in-
clude:

• “Erasing” a primitive from the framebuffer by redrawing it in a different
color.

• Using stencil operations to compute capping planes for stencil shadow vol-
umes.

On the other hand, invariance rules can greatly increase the complexity of high-
performance implementations of the GL. Even the weak repeatability requirement
significantly constrains a parallel implementation of the GL. Because GL imple-
mentations are required to implement ALL GL capabilities, not just a convenient
subset, those that utilize hardware acceleration are expected to alternate between
hardware and software modules based on the current GL mode vector. A strong
invariance requirement forces the behavior of the hardware and software modules
to be identical, something that may be very difficult to achieve (for example, if the
hardware does floating-point operations with different precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to port to
OpenGL ES.

A.3 Invariance Rules

For a given instantiation of an OpenGL ES rendering context:

Rule 1 For any given GL and framebuffer state vector, and for any given GL com-
mand, the resulting GL and framebuffer state must be identical each time the com-
mand is executed on that initial GL and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use of any
other state value is not affected by the change):

Required:

• Framebuffer contents (all bitplanes)

• The color buffers enabled for writing

OpenGL ES 3.2 (November 3, 2016)

A.3. INVARIANCE RULES 505

• Scissor parameters (other than enable)

• Writemasks (color, depth, stencil)

• Clear values (color, depth, stencil)

Strongly suggested:

• Stencil parameters (other than enable)

• Depth test parameters (other than enable)

• Blend parameters (other than enable)

• Pixel storage state

• Polygon offset parameters (other than enables, and except as they affect
the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state values
marked with • in rule 2.

Rule 3 The arithmetic of each per-fragment operation is invariant except with re-
spect to parameters that directly control it.

Corollary 2 Images rendered into different color buffers sharing the same frame-
buffer, either simultaneously or separately using the same command sequence, are
pixel identical.

Rule 4 The same vertex or fragment shader will produce the same result when
run multiple times with the same input. The wording ‘the same shader’ means a
program object that is populated with the same source strings, which are compiled
and then linked, possibly multiple times, and which program object is then executed
using the same GL state vector. Invariance is relaxed for shaders with side effects,
such as image stores, image atomic operations, or accessing atomic counters (see
section A.5).

Rule 5 All fragment shaders that either conditionally or unconditionally assign
gl_FragCoord.z to gl_FragDepth are depth-invariant with respect to each
other, for those fragments where the assignment to gl_FragDepth actually is
done.

If a sequence of GL commands specifies primitives to be rendered with shaders
containing side effects (image stores, image atomic operations, atomic counter op-
erations, buffer variable stores, buffer variable atomic operations), invariance rules

OpenGL ES 3.2 (November 3, 2016)

A.4. TESSELLATION INVARIANCE 506

are relaxed. In particular, rule 1, corollary 2, and rule 4 do not apply in the presence
of shader side effects.

The following weaker versions of rule 1 and rule 4 apply to GL commands
involving shader side effects:

Rule 6 For any given GL and framebuffer state vector, and for any given GL com-
mand, the contents of any framebuffer state not directly or indirectly affected by
results of shader image stores, image atomic operations, or atomic counter opera-
tions must be identical each time the command is executed on that initial GL and
framebuffer state.

Rule 7 The same vertex or fragment shader will produce the same result when run
multiple times with the same input as long as:

• shader invocations do not use image atomic operations or atomic counters;

• no framebuffer memory is written to more than once by image stores, unless
all such stores write the same value; and

• no shader invocation, or other operation performed to process the sequence
of commands, reads memory written to by an image store.

When any sequence of GL commands triggers shader invocations that perform
image stores, image atomic operations, atomic counter operations, buffer variable
stores, or buffer variable atomic operations), and subsequent GL commands read
the memory written by those shader invocations, these operations must be explic-
itly synchronized. For more details, see section 7.11.

A.4 Tessellation Invariance

When using a program containing tessellation evaluation shaders, the fixed-
function tessellation primitive generator consumes the input patch specified by an
application and emits a new set of primitives. The following invariance rules are
intended to provide repeatability guarantees. Additionally, they are intended to al-
low an application with a carefully crafted tessellation evaluation shader to ensure
that the sets of triangles generated for two adjacent patches have identical vertices
along shared patch edges, avoiding “cracks” caused by minor differences in the
positions of vertices along shared edges.

Rule 1 When processing two patches with identical outer and inner tessellation
levels, the tessellation primitive generator will emit an identical set of point, line,

OpenGL ES 3.2 (November 3, 2016)

A.4. TESSELLATION INVARIANCE 507

or triangle primitives as long as the active program used to process the patch prim-
itives has tessellation evaluation shaders specifying the same tessellation mode,
spacing, vertex order, and point mode input layout qualifiers. Two sets of primi-
tives are considered identical if and only if they contain the same number and type
of primitives and the generated tessellation coordinates for the vertex numbered m
of the primitive numbered n are identical for all values of m and n.

Rule 2 The set of vertices generated along the outer edge of the subdivided prim-
itive in triangle and quad tessellation, and the tessellation coordinates of each,
depends only on the corresponding outer tessellation level and the spacing input
layout qualifier in the tessellation evaluation shader of the active program.

Rule 3 The set of vertices generated when subdividing any outer primitive edge is
always symmetric. For triangle tessellation, if the subdivision generates a vertex
with tessellation coordinates of the form (0, x, 1−x), (x, 0, 1−x), or (x, 1−x, 0),
it will also generate a vertex with coordinates of exactly (0, 1−x, x), (1−x, 0, x),
or (1 − x, x, 0), respectively. For quad tessellation, if the subdivision generates
a vertex with coordinates of (x, 0) or (0, x), it will also generate a vertex with
coordinates of exactly (1−x, 0) or (0, 1−x), respectively. For isoline tessellation,
if it generates vertices at (0, x) and (1, x) where x is not zero, it will also generate
vertices at exactly (0, 1− x) and (1, 1− x), respectively.

Rule 4 The set of vertices generated when subdividing outer edges in triangular
and quad tessellation must be independent of the specific edge subdivided, given
identical outer tessellation levels and spacing. For example, if vertices at (x, 1 −
x, 0) and (1−x, x, 0) are generated when subdividing thew = 0 edge in triangular
tessellation, vertices must be generated at (x, 0, 1 − x) and (1 − x, 0, x) when
subdividing an otherwise identical v = 0 edge. For quad tessellation, if vertices
at (x, 0) and (1 − x, 0) are generated when subdividing the v = 0 edge, vertices
must be generated at (0, x) and (0, 1−x) when subdividing an otherwise identical
u = 0 edge.

Rule 5 When processing two patches that are identical in all respects enumerated
in rule 1 except for vertex order, the set of triangles generated for triangle and
quad tessellation must be identical except for vertex and triangle order. For each
triangle n1 produced by processing the first patch, there must be a triangle n2
produced when processing the second patch each of whose vertices has the same
tessellation coordinates as one of the vertices in n1.

Rule 6 When processing two patches that are identical in all respects enumerated
in rule 1 other than matching outer tessellation levels and/or vertex order, the set

OpenGL ES 3.2 (November 3, 2016)

A.5. ATOMIC COUNTER INVARIANCE 508

of interior triangles generated for triangle and quad tessellation must be identical
in all respects except for vertex and triangle order. For each interior triangle n1
produced by processing the first patch, there must be a triangle n2 produced when
processing the second patch each of whose vertices has the same tessellation co-
ordinates as one of the vertices in n1. A triangle produced by the tessellator is
considered an interior triangle if none of its vertices lie on an outer edge of the
subdivided primitive.

Rule 7 For quad and triangle tessellation, the set of triangles connecting an inner
and outer edge depends only on the inner and outer tessellation levels correspond-
ing to that edge and the spacing input layout qualifier.

Rule 8 The value of all defined components of gl_TessCoordwill be in the range
[0, 1]. Additionally, for any defined component x of gl_TessCoord, the results of
computing 1.0−x in a tessellation evaluation shader will be exact. Some floating-
point values in the range [0, 1] may fail to satisfy this property, but such values may
never be used as tessellation coordinate components.

A.5 Atomic Counter Invariance

When using a program containing atomic counters, the following invariance rules
are intended to provide repeatability guarantees but within certain constraints.

Rule 1 When a single shader type within a program accesses an atomic counter
with only atomicCounterIncrement, any individual shader invocation is guar-
anteed to get a unique value returned.

Corollary 1 Also holds true with atomicCounterDecrement.

Corollary 2 This does not hold true for atomicCounter.

Corollary 3 Repeatability is relaxed. While a unique value is returned to the
shader, even given the same initial state vector and buffer contents, it is not guar-
anteed that the same unique value will be returned for each individual invocation
of a shader (For example, on any single vertex, or any single fragment). It is wholly
the shader writer’s responsibility to respect this constraint.

Rule 2 When two or more shader types within a program access an atomic counter
with only atomicCounterIncrement, there is no repeatability of the ordering
of operations between stages. For example, some number of vertices may be pro-
cessed, then some number of fragments may be processed.

Corollary 4 This also holds true with atomicCounterDecrement and
atomicCounter.

OpenGL ES 3.2 (November 3, 2016)

A.6. WHAT ALL THIS MEANS 509

A.6 What All This Means

Hardware accelerated GL implementations are expected to default to software op-
eration when some GL state vectors are encountered. Even the weak repeatability
requirement means, for example, that OpenGL ES implementations cannot apply
hysteresis to this swap, but must instead guarantee that a given mode vector im-
plies that a subsequent command always is executed in either the hardware or the
software machine.

The stronger invariance rules constrain when the switch from hardware to soft-
ware rendering can occur, given that the software and hardware renderers are not
pixel identical. For example, the switch can be made when blending is enabled or
disabled, but it should not be made when a change is made to the blending param-
eters.

Because floating point values may be represented using different formats in
different renderers (hardware and software), many OpenGL ES state values may
change subtly when renderers are swapped. This is the type of state value change
that rule 1 in section A.3 seeks to avoid.

OpenGL ES 3.2 (November 3, 2016)

Appendix B

Corollaries

The following observations are derived from the body and the other appendixes of
the specification. Absence of an observation from this list in no way impugns its
veracity.

1. The error semantics of upward compatible OpenGL ES revisions may
change. Otherwise, only additions can be made to upward compatible re-
visions.

2. GL query commands are not required to satisfy the semantics of the Flush
or the Finish commands. All that is required is that the queried state be con-
sistent with complete execution of all previously executed GL commands.

3. Application specified line width must be returned as specified when queried.
Implementation-dependent clamping affects the values only while they are
in use.

4. The mask specified as the third argument to StencilFunc affects the operands
of the stencil comparison function, but has no direct effect on the update of
the stencil buffer. The mask specified by StencilMask has no effect on the
stencil comparison function; it limits the effect of the update of the stencil
buffer.

5. There is no atomicity requirement for OpenGL ES rendering commands,
even at the fragment level.

6. Because rasterization of polygons is point sampled, polygons that have no
area generate no fragments when they are rasterized, and the fragments gen-
erated by the rasterization of “narrow” polygons may not form a continuous
array.

510

511

7. OpenGL ES does not force left- or right-handedness on any of its coordinates
systems.

8. (No pixel dropouts or duplicates.) Let two polygons share an identical edge.
That is, there exist vertices A and B of an edge of one polygon, and vertices
C and D of an edge of the other polygon; the positions of vertex A and C
are identical; and the positions of vertex B and D are identical. Vertex po-
sitions are identical if the gl_Position values output by the vertex shader
are identical. Then, when the fragments produced by rasterization of both
polygons are taken together, each fragment intersecting the interior of the
shared edge is produced exactly once.

9. Dithering algorithms may be different for different components. In particu-
lar, alpha may be dithered differently from red, green, or blue, and an imple-
mentation may choose to not dither alpha at all.

OpenGL ES 3.2 (November 3, 2016)

Appendix C

Compressed Texture Image
Formats

The compressed texture formats used by OpenGL ES are described in the specif-
ically identified sections of the Khronos Data Format Specification, version 1.1,
available at URL

https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html
Unless otherwise described, the quantities encoded in these compressed for-

mats are treated as normalized, unsigned values.
Those formats listed as sRGB-encoded have in-memory representations of R,

G and B components which are nonlinearly-encoded as R′, G′, and B′; any al-
pha component is unchanged. As part of filtering, the nonlinear R′, G′, and B′

values are converted to linear R, G, and B components; any alpha component is
unchanged. The conversion between linear and nonlinear encoding is performed
as described in the KHR_DF_TRANSFER_SRGB section of the Khronos Data Format
Specification.

C.1 ASTC Compressed Texture Image Formats

ASTC formats are described in the “ASTC Compressed Texture Image Formats”
chapter of the Khronos Data Format Specification. The mapping between OpenGL
ES ASTC formats and that specification is shown in table C.1. Only the ASTC
LDR Profile modes are supported by OpenGL ES.

512

https://www.khronos.org/registry/dataformat/specs/1.1/dataformat.1.1.html

C.1. ASTC COMPRESSED TEXTURE IMAGE FORMATS 513

OpenGL ES format Compressed texel sRGB-encoded
block dimensions

COMPRESSED_RGBA_ASTC_4x4 4× 4

COMPRESSED_RGBA_ASTC_5x4 5× 4

COMPRESSED_RGBA_ASTC_5x5 5× 5

COMPRESSED_RGBA_ASTC_6x5 6× 5

COMPRESSED_RGBA_ASTC_6x6 6× 6

COMPRESSED_RGBA_ASTC_8x5 8× 5

COMPRESSED_RGBA_ASTC_8x6 8× 6

COMPRESSED_RGBA_ASTC_8x8 8× 8

COMPRESSED_RGBA_ASTC_10x5 10× 5

COMPRESSED_RGBA_ASTC_10x6 10× 6

COMPRESSED_RGBA_ASTC_10x8 10× 8

COMPRESSED_RGBA_ASTC_10x10 10× 10

COMPRESSED_RGBA_ASTC_12x10 12× 10

COMPRESSED_RGBA_ASTC_12x12 12× 12

COMPRESSED_SRGB8_ALPHA8_ASTC_4x4 4× 4 �
COMPRESSED_SRGB8_ALPHA8_ASTC_5x4 5× 4 �
COMPRESSED_SRGB8_ALPHA8_ASTC_5x5 5× 5 �
COMPRESSED_SRGB8_ALPHA8_ASTC_6x5 6× 5 �
COMPRESSED_SRGB8_ALPHA8_ASTC_6x6 6× 6 �
COMPRESSED_SRGB8_ALPHA8_ASTC_8x5 8× 5 �
COMPRESSED_SRGB8_ALPHA8_ASTC_8x6 8× 6 �
COMPRESSED_SRGB8_ALPHA8_ASTC_8x8 8× 8 �
COMPRESSED_SRGB8_ALPHA8_ASTC_10x5 10× 5 �
COMPRESSED_SRGB8_ALPHA8_ASTC_10x6 10× 6 �
COMPRESSED_SRGB8_ALPHA8_ASTC_10x8 10× 8 �
COMPRESSED_SRGB8_ALPHA8_ASTC_10x10 10× 10 �
COMPRESSED_SRGB8_ALPHA8_ASTC_12x10 12× 10 �
COMPRESSED_SRGB8_ALPHA8_ASTC_12x12 12× 12 �

Table C.1: Mapping of OpenGL ES ASTC formats to descriptions.

OpenGL ES 3.2 (November 3, 2016)

C.2. ETC COMPRESSED TEXTURE IMAGE FORMATS 514

OpenGL ES format Data Format Specification
description

COMPRESSED_R11_EAC Unsigned R11 EAC
COMPRESSED_SIGNED_R11_EAC Signed R11 EAC
COMPRESSED_RG11_EAC Unsigned RG11 EAC
COMPRESSED_SIGNED_RG11_EAC Signed RG11 EAC
COMPRESSED_RGB8_ETC2 RGB ETC2
COMPRESSED_SRGB8_ETC2 RGB ETC2 with sRGB encoding
COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2 RGB ETC2 with punchthrough

alpha
COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2 RGB ETC2 with punchthrough

alpha and sRGB encoding
COMPRESSED_RGBA8_ETC2_EAC RGBA ETC2
COMPRESSED_SRGB8_ALPHA8_ETC2_EAC RGBA ETC2 with sRGB encod-

ing

Table C.2: Mapping of OpenGL ES ETC formats to descriptions.

C.2 ETC Compressed Texture Image Formats

ETC formats are described in the “ETC2 Compressed Texture Image Formats”
chapter of the Khronos Data Format Specification. The mapping between OpenGL
ES ETC formats and that specification is shown in table C.2.

OpenGL ES 3.2 (November 3, 2016)

Appendix D

Version 3.0 and Before

OpenGL ES version 3.0, released on August 6, 2012, is the third revision since
the original version 1.0. OpenGL ES 3.0 is upward compatible with OpenGL ES
version 2.0, meaning that any program that runs with an OpenGL ES 2.0 imple-
mentation will also run unchanged with an OpenGL ES 3.0 implementation. Note
the subtle changes in runtime behavior between versions 2.0 and 3.0, documented
in Appendix G.2.

Following are brief descriptions of changes and additions to OpenGL ES 3.0.

D.1 New Features

New features in OpenGL ES 3.0 include:

• OpenGL Shading Language ES 3.00

• transform feedback 1 and 2 (with restrictions)

• uniform buffer objects including block arrays

• vertex array objects

• sampler objects

• sync objects and fences

• pixel buffer objects

• buffer subrange mapping

• buffer object to buffer object copies

515

D.1. NEW FEATURES 516

• boolean occlusion queries, including conservative mode

• instanced rendering, via shader variable and/or vertex attribute divisor

• multiple render targets

• 2D array and 3D textures

• simplified texture storage specification

• R and RG textures

• texture swizzles

• seamless cube maps

• non-power-of-two textures with full wrap mode support and mipmapping

• texture LOD clamps and mipmap level base offset and max clamp

• at least 32 textures, at least 16 each for fragment and vertex shaders

• 16-bit (with filtering) and 32-bit (without filtering) floating-point textures

• 32-bit, 16-bit, and 8-bit signed and unsigned integer renderbuffers, textures,
and vertex attributes

• 8-bit sRGB textures and framebuffers (without mixed RGB/sRGB render-
ing)

• 11/11/10 floating-point RGB textures

• shared exponent RGB 9/9/9/5 textures

• 10/10/10/2 unsigned normalized and unnormalized integer textures

• 10/10/10/2 signed and unsigned normalized vertex attributes

• 16-bit floating-point vertex attributes

• 8-bit-per-component signed normalized textures

• ETC2/EAC texture compression formats

• sized internal texture formats with minimum precision guarantees

• multisample renderbuffers

OpenGL ES 3.2 (November 3, 2016)

D.2. CHANGE LOG FOR 3.0.3 517

• 8-bit unsigned normalized renderbuffers

• depth textures and shadow comparison

• 24-bit depth renderbuffers and textures

• 24/8 depth/stencil renderbuffers and textures

• 32-bit depth and 32F/8 depth/stencil renderbuffers and textures

• stretch blits (with restrictions)

• framebuffer invalidation hints

• primitive restart with fixed index

• unsigned integer element indices with at least 24 usable bits

• draw command allowing specification of range of accessed elements

• ability to attach any mipmap level to a framebuffer object

• minimum/maximum blend equations

• program binaries, including querying binaries from linked GLSL programs

• mandatory online compiler

• non-square and transposable uniform matrices

• additional pixel store state

• indexed extension string queries

D.2 Change Log for 3.0.3

Changes since the 3.0.2 specification:

• Remove ”non-64-bit” from first sentence of section 6.1.2 (Bug 7895).

• Remove redundant reference to setting TEXTURE_IMMUTABLE_FORMAT and
TEXTURE_IMMUTABLE_LEVELS from the end of section 3.8.4 (Bug 9342).

• Clarify framebuffer attachment completeness rules with respect to the
FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL and mipmap complete-
ness (Bug 9689).

OpenGL ES 3.2 (November 3, 2016)

D.2. CHANGE LOG FOR 3.0.3 518

• Clarify active uniform enumeration rules (Bug 9797).

• Clarify behavior of mipmap completeness with unsized base internal formats
(Bug 9807).

• Introduce INVALID_VALUE error when BindBufferRange is called with a
negative offset (Bug 9873).

• Clarify that when DrawBuffers is called with 0 as the value of n, in the de-
fault framebuffer case INVALID_OPERATION is generated, and in the frame-
buffer object case, NONE is assigned to all draw buffers (Bug 10059).

• Allow alternate formulation of equation 3.21’s mipmap array selection (Bug
10119).

• Untangle ReadBuffer from ReadPixels and put it into its own section, while
clarifying the error conditions (Bug 10172).

• Specify that std140 and shared layout uniform blocks and their members
are always active (Bug 10182).

• Introduce missing INVALID_OPERATION error when BindAttribLocation
is called with a name that starts with the reserved "gl_" prefix (Bug 10271).

• Clarify return values from GetFramebufferAttachmentParameteriv of
NONE and LINEAR for FRAMEBUFFER_ATTACHMENT_COMPONENT_TYPE

and FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING, respectively, when
the attachment has not been initialized (Bug 10357).

• Fix description of fragment shader outputs to only require explicit output
variable bindings to fragment colors when there are more than one output
variable (Bug 10363).

• Clarify that ValidateProgram is only required to check for the errors de-
scribed in the Validation section, not all INVALID_OPERATION errors that
can be generated by rendering commands (Bug 10650).

• Clarify behavior of commands that don’t specify whether an error is gener-
ated when accessing a mapped buffer object (Bug 10684).

• Clarify that SAMPLE_BUFFERS and SAMPLES are framebuffer-dependent
state, and that SAMPLE_BUFFERS can only assume the values zero or one
(Bug 10689).

OpenGL ES 3.2 (November 3, 2016)

D.3. CHANGE LOG FOR 3.0.2 519

• Simplify description of multisample rasterization to specify it is in effect
when SAMPLE_BUFFERS is one, eliminating extraneous language about GL
contexts, EGL, etc. (Bug 10690).

• Clarify the type of stencil bits in Table 8.11 (Bug 10748).

• Clarify that writing different color values to the same image attached multi-
ple times is undefined (Bug 10983).

• Clean up description of FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER

query (Bug 11199).

• Clarify that samplers behave the same as textures, renderbuffers, and buffers
with respective to object name lifetimes (Bug 11374).

D.3 Change Log for 3.0.2

Changes since the 3.0.1 specification:

• Clarify BlitFramebuffer downsampling behavior for different types of sam-
ples (Bug 9690).

• Clarify that program object state queries return the state presently in effect,
which may be different than most recently set state (Bug 9702).

• Clarify that current vertex attributes are not program object state (Bug 9781).

• Clarify that integer state is undefined when set with out-of-range floating-
point values (Bug 9846).

• Clarify that Draw* commands are silently ignored when there is no current
program object, rather than it being an error condition (Bug 9879).

• Clarify that texel fetches are undefined when texel coordinates fall outside
the computed level of detail, not the specified level of detail (Bug 9891).

• Clarify which pixels are read and written by BlitFramebuffer (Bug 9946).

• Clarify that either truncation or rounding are acceptable when converting
from floating-point to normalized fixed-point (Bug 9976).

• Make the minification vs. magnification switch-over point always zero (Bug
9997).

OpenGL ES 3.2 (November 3, 2016)

D.4. CHANGE LOG FOR 3.0.1 520

• Clarify that DrawArrays transfers no elements when count is zero (Bug
10015).

• Tweak the language covering the conditions that can affect framebuffer com-
pleteness (Bug 10047).

• Remove language in Appendix D that preserves binding-related state after
an object is deleted and automatically unbound (Bug 10076).

• Remove language in Appendix D that implies that active transform feedback
objects can be deleted (Bug 10079).

D.4 Change Log for 3.0.1

Changes since the 3.0.0 specification:

• Remove the clamp on reference value for shadow maps with floating-point
depth formats (Bug 7975).

• Clarify GetFramebufferAttachmentParameteriv behavior for a few dif-
ferent cases (Bug 9170).

• Move description of level base and level max clamping for immutable tex-
tures to Mipmapping section (Bug 9342).

• Remove references to floating-point formats when describing BlitFrame-
buffer (Bug 9388).

• Remove PACK_IMAGE_HEIGHT and PACK_SKIP_IMAGES which have no
effect (Bug 9414).

• Require that Invalidate[Sub]Framebuffer accept DRAW_FRAMEBUFFER

and READ_FRAMEBUFFER (Bug 9421).

• Fix initial value of read buffer to be NONE if there is no default framebuffer
associated with the context (Bug 9473).

• Require that Invalidate[Sub]Framebuffer accept DEPTH_STENCIL_-

ATTACHMENT (Bug 9480).

• Require that GenerateMipmap throw INVALID_OPERATION for depth tex-
tures (Bug 9481).

OpenGL ES 3.2 (November 3, 2016)

D.4. CHANGE LOG FOR 3.0.1 521

• Clarify that a texture is incomplete if it has a depth component, no shadow
comparison, and linear filtering (also Bug 9481).

• Minor tweaks to description of RGB9_E5 (Bug 9486).

• Clarify behavior when drawing to an FBO with both NULL and non-NULL
attachments (Bug 9494).

• Clarify behavior of BindBufferBase (Bug 9513).

• Return to a clamp-on-specification behavior for ClearDepth and
DepthRange (Bug 9517).

• Eliminate references to programs without fragment shaders (Bug 9543).

• Move some uniform buffer state out of program object state tables (Bug
9566).

• Clarify that gl_VertexID is undefined if any client-side vertex arrays are
enabled (Bug 9603).

• Clarify that vertex attribute aliasing is not permitted in conjunction with
GLSL-ES 3.00 shaders (Bug 9609).

• Fix description of LINK_STATUS which was incorrectly specified to return
the compilation status (Bug 9698).

• Clarifications and clean up in query object language (Bug 9766).

• Clarify that mask may be zero for BlitFramebuffer indicating no action be
taken (Bug 9748).

• Clarify that arguments to TexSubImage* need not exactly match the values
passed to TexImage* (Bug 9750).

• Clarify that BindBufferRange only performs error checking of size and off-
set if buffer is not zero (Bug 9765).

• Fix minor typos and other minor tweaks to transform feedback description
(Bug 9842).

• Clarify that primitives collected with transform feedback must match (not
merely be compatible with) the transform feedback primitiveMode.

OpenGL ES 3.2 (November 3, 2016)

D.5. CREDITS AND ACKNOWLEDGEMENTS 522

• Clarify that only the
specified portion(s) (depth and/or stencil) of depth/stencil attachment may
be invalidated by Invalidate[Sub]Framebuffer.

• Remove references to FLOAT in table 3.14.

• Cleaned up index entries for state tables 6.13 and 6.35 which were overly
verbose.

• Added individual bookmarks to each state table in the PDF.

D.5 Credits and Acknowledgements

OpenGL ES 3.0 is the result of the contributions of many people and companies.
Members of the Khronos OpenGL ES Working Group during the development of
OpenGL ES 3.0, including the company that they represented at the time of their
contributions, follow. In addition, many people participated in developing desktop
OpenGL specifications and extensions on which the OpenGL ES 3.0 functionality
is based in large part; those individuals are listed in the respective specifications in
the OpenGL Registry.

Acorn Pooley, NVIDIA
Alberto Moreira, Qualcomm
Aleksandra Krstic, Qualcomm
Alex Eddy, Apple
Alon Or-Bach, Nokia
Andrzej Kacprowski, Intel
Arzhange Safdarzadeh, Intel
Aske Simon Christensen, ARM
Avi Shapira, Graphic Remedy
Barthold Lichtenbelt, NVIDIA
Ben Bowman, Imagination Technologies
Ben Brierton, Broadcom
Benj Lipchak, Apple
Benson Tao, Vivante
Bill Licea-Kane, AMD
Brent Insko, Intel
Brian Murray, Freescale
Bruce Merry, ARM
Carlos Santa, TI
Cass Everitt, Epic Games & NVIDIA
Cemil Azizoglu, TI
Chang-Hyo Yu, Samsung
Chris Dodd, NVIDIA
Chris Knox, NVIDIA

Chris Tserng, TI
Clay Montgomery, TI
Cliff Gibson, Imagination Technologies
Daniel Kartch, NVIDIA
Daniel Koch, Transgaming
Daoxiang Gong, Imagination Technologies
Dave Shreiner, ARM
David Garcia, AMD
David Jarmon, Vivante
Derek Cornish, Epic Games
Dominik Witczak, ARM & Mobica
Eben Upton, Broadcom
Ed Plowman, Intel & ARM
Eisaku Ohbuchi, DMP
Elan Lennard, ARM
Erik Faye-Lund, ARM
Georg Kolling, Imagination Technologies
Graeme Leese, Broadcom
Graham Connor, Imagination Technologies
Graham Sellers, AMD
Greg Roth, NVIDIA
Guillaume Portier, Hi
Guofang Jiao, Qualcomm
Hans-Martin Will, Vincent

OpenGL ES 3.2 (November 3, 2016)

D.5. CREDITS AND ACKNOWLEDGEMENTS 523

Hwanyong Lee, Huone
I-Gene Leong, NVIDIA
Ian Romanick, Intel
Ian South-Dickinson, NVIDIA
Ilan Aelion-Exch, Samsung
Inkyun Lee, Huone
Jacob Ström, Ericsson
James Adams, Broadcom
James Jones, Imagination Technologies
James McCombe, Imagination Technologies
Jamie Gennis, Google
Jan-Harald Fredriksen, ARM
Jani Vaisanen, Nokia
Jarkko Kemppainen, Symbio
Jauko Kylmaoja, Symbio
Jeff Bolz, NVIDIA
Jeff Leger, Qualcomm
Jeff Vigil, Qualcomm
Jeremy Sandmel, Apple
Jeremy Thorne, Broadcom
Jim Hauxwell, Broadcom
Jinsung Kim, Huone
Jiyoung Yoon, Huone
Jon Kennedy, 3DLabs
Jon Leech, Khronos
Jonathan Putsman, Imagination Technologies
Jørn Nystad, ARM
Jussi Rasanen, NVIDIA
Kalle Raita, drawElements
Kari Pulli, Nokia
Keith Whitwell, VMware
Kent Miller, Netlogic Microsystems
Kimmo Nikkanen, Nokia
Konsta Karsisto, Nokia
Krzysztof Kaminski, Intel
Kyle Haughey, Apple
Larry Seiler, Intel
Lars Remes, Symbio
Lee Thomason, Adobe
Lefan Zhong, Vivante
Luc Semeria, Apple
Marcus Lorentzon, Ericsson
Mark Butler, Imagination Technologies
Mark Callow, Hi
Mark Cresswell, Broadcom
Mark Snyder, Alt Software
Mark Young, AMD
Mathieu Robart, STM
Matt Russo, Matrox

Matthew Netsch, Qualcomm
Maurice Ribble, AMD & Qualcomm
Max Kazakov, DMP
Mika Pesonen, Nokia
Mike Cai, Vivante
Mike Weiblen, Zebra Imaging
Mila Smith, AMD
Nakhoon Baek, Kyungpook Univeristy
Nate Huang, NVIDIA
Neil Trevett, NVIDIA
Nelson Kidd, Intel
Nick Haemel, AMD & NVIDIA
Nick Penwarden, Epic Games
Niklas Smedberg, Epic Games
Nizar Romdan, ARM
Oliver Wohlmuth, Fujitsu
Pat Brown, NVIDIA
Paul Ruggieri, Qualcomm
Paul Wilkinson, Broadcom
Per Wennersten, Ericsson
Petri Talalla, Symbio
Phil Huxley, ZiiLabs
Philip Hatcher, Freescale
Piers Daniell, NVIDIA
Piotr Tomaszewski, Ericsson
Piotr Uminski, Intel
Rami Mayer, Samsung
Rauli Laatikainen, RightWare
Richard Schreyer, Apple
Rob Barris, NVIDIA
Rob Simpson, Qualcomm
Robert Simpson, AMD
Roj Langhi, Vivante
Rune Holm, ARM
Sami Kyostila, Nokia
Scott Bassett, Apple
Sean Ellis, ARM
Shereef Shehata, TI
Sila Kayo, Nokia
Slawomir Grajewski, Intel
Steve Hill, STM & Broadcom
Steven Olney, DMP
Suman Sharma, Intel
Tapani Palli, Nokia
Teemu Laakso, Symbio
Tero Karras, NVIDIA
Timo Suoranta, Imagination Technologies
Tom Cooksey, ARM
Tom McReynolds, NVIDIA

OpenGL ES 3.2 (November 3, 2016)

D.5. CREDITS AND ACKNOWLEDGEMENTS 524

Tom Olson, TI & ARM
Tomi Aarnio, Nokia
Tommy Asano, Takumi

Wes Bang, Nokia
Yanjun Zhang, Vivante
Yuan Wang, Imagination Technologies

The OpenGL ES Working Group gratefully acknowledges administrative sup-
port by the members of Gold Standard Group, including Andrew Riegel, Elizabeth
Riegel, Glenn Fredericks, and Michelle Clark, and technical support from James
Riordon, webmaster of Khronos.org and OpenGL.org.

OpenGL ES 3.2 (November 3, 2016)

Appendix E

Version 3.1

OpenGL ES version 3.1, released on March 17, 2014, is the fourth revision since
the original version 1.0. OpenGL ES 3.1 is upward compatible with OpenGL ES
version 3.0, meaning that any program that runs with an OpenGL ES 3.0 imple-
mentation will also run unchanged with an OpenGL ES 3.1 implementation.

Following are brief descriptions of changes and additions to OpenGL ES 3.1.

E.1 New Features

New features in OpenGL ES 3.1 include:

• Arrays of arrays (shading language only)

• Compute shaders

• Indirect draw commands (with draw parameters in buffer storage)

• Explicit uniform location

• Support for framebuffers with no attachments

• Program interface queries

• Atomic counters

• Shader bitfield operations (shading language only)

• Shader helper invocation (shading language only)

• Shader image load/store operations

525

E.2. CHANGE LOG FOR RELEASED SPECIFICATIONS 526

• Shader layout binding (shading language only)

• Shader storage buffer objects

• Separate shader objects

• Stencil texturing

• Texture gather operations

• Multisample formats for immutable textures

• Vertex attribute binding

E.2 Change Log for Released Specifications

Changes in the released Specification update of January 29, 2015

• Clean up error language around reuse of query objects in section 4.2 to make
clear that occlusion query objects may be specified and reused with any mix
of the two valid occlusion query targets (Bug 13342).

• Add columns to table 7.3 marking which types can be declared as vertex
attributes or returned by transform feedback (Bug 11553).

• Cosmetic edit to match GL spec language in section 7.6 (Bug 11192).

• Update minimum value of MAX_FRAGMENT_UNIFORM_VECTORS in ta-
ble 21.48 from 224 to 256, matching MAX_FRAGMENT_UNIFORM_-

COMPONENTS (Bug 12731).

• Restore description of MAX_UNIFORM_BLOCK_SIZE in section 7.6.2, which
was lost in the restructuring of the OpenGL ES 3.1 Specification, but change
behavior so that exceeding the limit will cause link failure, compared to may
cause link failure in the older language (Bug 12897).

• Fix OpenGL ES Shading Language Specification section reference in sec-
tion 7.10.

• Mark STENCIL_INDEX8 as a required renderbuffer format in table 8.11,
which also was lost in the restructuring (Bug 13085).

OpenGL ES 3.2 (November 3, 2016)

E.2. CHANGE LOG FOR RELEASED SPECIFICATIONS 527

• Rearrange descriptions of DrawArraysOneInstance, DrawElementsOne-
Instance, and the actual DrawElements* commands in section 10.5 to use
the term “vertex ID” when referring to the actual element index of an ele-
ment transferred to the GL, and make clear that the vertex ID does include
the basevertex value passed to the DrawElements*BaseVertex commands.
Add the baseinstance parameter consistently throughout these commands,
for consistency with similar language in the OpenGL 4.5 specification, but
make clear that its value is always zero in unextended OpenGL ES (Bug
12756).

Changes in the released Specification update of October 29, 2014

• Modify description of active resource list enumeration in section 7.3.1 to
treat only arrays of aggregate types as top-level arrays, and clarify how this
applies to GetProgramResourceiv queries TOP_LEVEL_ARRAY_SIZE and
TOP_LEVEL_ARRAY_STRIDE (Bug 11753).

• Restore language describing non-sequentiality of resource locations for con-
secutive active array elements in section 7.3.1 (Bug 12318).

• Restore fix in description of LINK_STATUS for GetProgramiv in sec-
tion 7.12 (Bug 9698).

• Clarify that filter state is ignored for multisample texture access in sec-
tions 8.8 and 11.1.3.3 (Bug 12171).

• Restore missing error for base internal format arguments to TexStor-
age2DMultisample in section 8.8 (Bug 12468).

• Add NEAREST_MIPMAP_NEAREST to the allowed filter modes for
STENCIL_INDEX textures in section 8.17 (Bug 12791).

• Clarify behavior of rendering to multiple framebuffer object attachments of
different sizes in section 9.2 (Bug 10403).

• Moved description of SAMPLE_BUFFERS and SAMPLE_BUFFERS from sec-
tion 9.4.2 to new section 9.2.3.1, and add a comment about the effective
value of these parameters for framebuffer objects other than the currently
bound draw framebuffer. Change references to these parameters accordingly
in sections 8.6, 13.4, 16.1.2, and 16.2.1 (Bug 12360).

• Clarify in section 11.1.3.2 that texel fetches are undefined when texel coor-
dinates fall outside the computed level of detail, not the specified level of
detail (Bug 9891).

OpenGL ES 3.2 (November 3, 2016)

E.2. CHANGE LOG FOR RELEASED SPECIFICATIONS 528

• Add description of conditions for which multisample texel fetch operations
are undefined in section 11.1.3.3 (Bug 12255).

• Clarify in section 11.1.3.11 that Draw* commands are silently ignored when
there is no current program object and no current program pipeline object,
rather than it being an error condition (Bug 9879).

• Make validation fail in section 11.1.3.11 when an empty program pipeline
object (one with no code for any shader stage) is current (Bug 12176).

• Remove redundant sentence fragment in section 13.7.4 (Bug 12726).

• Add missing error for invalid target argument to InvalidateSubFrame-
buffer in section 15.2.4 (Bug 12727).

• Increase minimum values of MAX_FRAGMENT_UNIFORM_COMPONENTS and
MAX_COMPUTE_UNIFORM_COMPONENTS to 1024 in tables 21.48 and 21.49,
respectively, for consistency with other shader stages (Bug 12731).

• Restore description of UNIFORM_BUFFER_OFFSET_ALIGNMENT in ta-
ble 21.50, and of SHADER_STORAGE_BUFFER_OFFSET_ALIGNMENT in ta-
ble 21.52 to refer to them as minimum required alignments, while the foot-
note in the caption continues to note that the numeric limits are the maximum
allowed values (Bug 11962).

Changes in the released Specification update of June 4, 2014:

• Fix minor typos and remove references to unsupported floating-point frame-
buffers in sections 2.1, 8.6, 9.1, 9.4.3, 15.1.5, and 16.1.3 (Bug 11899).

• Fix typo in description of BeginQuery in section 4.2 (Bug 11860), and
specify minimum query result size in section 4.2.1 as 32 bits for primitives-
written queries, and 1 bit for occlusion queries (Bug 11860).

• Fix error condition for UseProgram in section 7.3 (Bug 12281).

• Remove dangling references to setting an image uniform with Uniform* in
section 7.6.1 (Bug 11443).

• Update description of internal format determination for CopyTexImage2D
in section 8.6 (Bug 9807, comment 57).

• Update errors for TexStorage2DMultisample in section 8.8 to include an
appropriate subset of the generic errors for TexStorage* commands defined
in section 8.18, and remove redundant errors in section 8.18 (Bug 11937).

OpenGL ES 3.2 (November 3, 2016)

E.2. CHANGE LOG FOR RELEASED SPECIFICATIONS 529

• Change definition of the value returned from invalid image load operations in
section 8.23 to (0, 0, 0, x) where the A component is undefined (Bug 11182).

• Fix error condition for GetFramebufferAttachmentParameteriv in sec-
tion 9.2.3 (Bug 12180).

• Replace dangling reference to nonexistent FramebufferTexture3D in de-
scription of FramebufferTextureLayer in section 9.2.8 (Bug 11964).

• Remove bogus framebuffer completeness condition (left over from ES 3.0
spec) in section 9.4.2 (Bug 12273).

• Specify the values of gl_VertexID in the descriptions of drawing pseudo-
commands DrawArraysOneInstance and DrawElementsOneInstance in
section 10.5 (Bug 12202).

• Add missing 0 parameter for baseinstance parameter of pseudocode de-
scribing DrawArraysInstanced, DrawElements, and DrawElementsIn-
stanced in section 10.5 (Bug 11935).

• Add description of ELEMENT_ARRAY_BUFFER_BINDING. to section 10.6
(Bug 11042).

• Clarify description of BindAttribLocation in section 11.1.1 (Bug 12186).

• Remove spurious reference to nonexistent TEXTURE_2D_MULTISAMPLE_-
ARRAY in section 20.3.1 (Bug 12250).

• Fix get command for DEPTH_CLEAR_VALUE in table 21.14

• Reduce minimum value of MAX_COMPUTE_SHARED_MEMORY_SIZE from
32768 to 16384 and minimum value of MAX_COMPUTE_ATOMIC_-

COUNTER_BUFFERS from 8 to 1 in table 21.49 (Bugs 12028, 11944).

• Change values of UNIFORM_BUFFER_OFFSET_ALIGNMENT in table 21.50,
and of SHADER_STORAGE_BUFFER_OFFSET_ALIGNMENT in table 21.52 to
256, and make clear that these are maximum alignment values, not mini-
mums (Bug 11962).

• Use abbreviations “max.”, “min.”, and “no.” consistently in state tables in
place of “maximum”, “minimum”, and “number”.

Changes in the released Specification of March 17, 2014:

• Added new features as described in section E.1.

OpenGL ES 3.2 (November 3, 2016)

E.2. CHANGE LOG FOR RELEASED SPECIFICATIONS 530

• Restructure the Specification following similar restructuring of the OpenGL
4.3 specification. While much language has been moved around and many
new sections added, aside from new descriptions of objects and the pipeline,
actual language changes resulting from restructuring are relatively small and
are indentified. The restructuring includes several bugfixes initially done
in the GL specification but applicable to the ES specification as well. Ad-
ditional changes to more closely match the current OpenGL specification
include:

– Minor language tweaks throughout for greater consistency and clarity.

– Moved errors for (almost) all commands into explicit Errors blocks,
including adding previously-implicit errors such as INVALID_VALUE
for negative sizei parameters, as described in section 2.3.1. While
the Error blocks are marked as changes, in almost all cases these are
existing errors that have been collected in a single place for each com-
mand, rather than new errors (despite the color coding in the version of
the specification document showing changes). Phrasing is changed to
a consistent “An errorname error is generated if condition.”

– Add table 7.1 of shader types and refer to it from elsewhere in the spec
instead of enumerating all shader types repeatedly.

– Reorganized description of VertexAttrib*Format in section 10.3 to
more closely match the OpenGL specification.

• Change definition of API data types in section 2.2 and table 2.2 to require
exact, rather than minimum bit widths.

• Modify language in section 5.1.2 so that binding-related state is restored to
default values after automatic unbinds.

• Restructure description of queries for indexed buffer bindings in sec-
tion 6.6.1 following GL spec, and remove redundant descriptions of these
queries and related errors from sections 6.1.1, 7.6.3, 7.7.2, 7.8, and 12.1.2.

• Add minor spec clarifications from OpenGL spec for ProgramParameteri
and DeleteProgram in section 7.3, DeleteProgramPipelines and Active-
ShaderProgram in section 7.4, GetUniformLocation in section 7.6, and
Uniform* in section 7.6.1.

• Add missing errors for TexParameter* (see section 8.10) and GetTexPa-
rameter* (see section 8.11).

OpenGL ES 3.2 (November 3, 2016)

E.2. CHANGE LOG FOR RELEASED SPECIFICATIONS 531

• Change formal parameter names for GetTexParameter* and GetTexLevel-
Parameter* (see section 8.11) from value and data to pname and params,
following the OpenGL headers and man pages. Change generated errors for
GetTexLevelParameter* for consistency with other commands and with
OpenGL.

• Add subsection headings in section 8.11 and simplify active texture effects
on queries by reference from section 8.11.1 to section 2.2.2.

• Define behavior of GetTexLevelParameter* in section 8.11 for queries of
multisample state from non-multisampled textures.

• Change rounding mode for layer numbers of array textures in section 8.14.2
to prefer round-to-nearest-even, while still allowing old spec behavior.

• Add description of DEPTH_STENCIL_TEXTURE_MODE in section 8.19, and
correct its type in table 21.10.

• Restructure error condition for FramebufferParameteri in section 9.2.1 to
avoid ambiguity.

• Define GetFramebufferAttachmentParameteriv in section 9.2.3 to return
NONE when querying the object type of depth or stencil attachments, the
default framebuffer is bound, and the corresponding buffer of the default
framebuffer has zero bits.

• Rearrange language describing integer handling in section 10.3 to differ-
entiate between behaviors actually labelled in table 10.2 and sub-behaviors
depending on the normalized argument.

• Set the vertex attribute array pointer state explicitly in the pseudocode for
VertexAttrib*Pointer in section 10.3.1, and remove VERTEX_BINDING_-
OFFSET from the vertex array object state which is looked up via the vertex
attribute binding by GetVertexAttrib* in section 10.6.

• Remove redundant non-local errors applying to indirect commands from sec-
tion 10.3.9, as they are now described with each command.

• Minor clarifications to descriptions of DrawArraysIndirect and DrawEle-
mentsIndirect in section 10.5.

• Use instancecount as the formal parameter name for commands DrawAr-
raysInstanced, DrawElementsInstanced, DrawElementsInstancedBa-
seVertex, and DrawElementsInstancedBaseVertex in section 10.5, instead
of instanceCount or primCount, for consistency with OpenGL.

OpenGL ES 3.2 (November 3, 2016)

E.3. CREDITS AND ACKNOWLEDGEMENTS 532

• Add errors for DrawArraysIndirect and DrawElementsIndirect in sec-
tion 10.5 when the default vertex array object is bound.

• Clean up validation language in section 11.1.3.11 to more closely match the
GL spec and remove inconsistencies about which active program objects are
required.

• Add missing language about stencil textures in section 14.2.1 (duplicated
from vertex shader language).

• Remove erroneous reference to “depth bounds test” from section 13.8.

• Rewrite description of GetInternalformativ in section 20.3 to properly ac-
count for different limits on integer, depth, color, and other internal format
samples.

• Change error for invalid mode* parameters to BlendEquation* in sec-
tion 15.1.5.1 to INVALID_ENUM.

• Fix error for invalid blending function arguments in section 15.1.5.2 to
INVALID_ENUM.

• Replace Znumber type fields in state tables with E for enumerated state, fol-
lowing GL spec.

• Change default value of SAMPLE_MASK_VALUE in table 21.8 to match GL
spec and make it clear that all bits of each words are set.

• Increased number of texture bindings from 32 to 48 in table 21.9.

E.3 Credits and Acknowledgements

OpenGL ES 3.1 is the result of the contributions of many people and companies.
Members of the Khronos OpenGL ES Working Group during the development of
OpenGL ES 3.1, including the company that they represented at the time of their
contributions, follow. Some major contributions made by individuals are listed
together with their name.

In addition, many people participated in developing desktop OpenGL specifi-
cations and extensions on which the OpenGL ES 3.1 functionality is based in large
part; those individuals are listed in the respective specifications in the OpenGL
Registry.

OpenGL ES 3.2 (November 3, 2016)

E.3. CREDITS AND ACKNOWLEDGEMENTS 533

Adrian Bucur, Samsung
Alex Chalfin, AMD
Alon Or-bach, Samsung
Anssi Kalliolahti, NVIDIA
Antti Tirronen, Qualcomm
Aras Pranckevicius, Unity
Ari Hirvonen, NVIDIA
Barthold Lichtenbelt, NVIDIA
Benj Lipchak, Apple
Benji Bowman, Imagination Technologies
Bill Licea-Kane, Qualcomm (framebuffer -

no attachments, shader atomic counters,
shader image load/store, texture gather)

Boguslaw Kowalik, Intel
Bruce Merry
Cass Everitt, NVIDIA
Chris Dodd, NVIDIA
Christophe Riccio, Unity
Daniel Koch, NVIDIA (compute shader, pro-

gram interface query, sample shading,
shader bitfield operations, shader multi-
sample interpolation)

Dominik Witczak, Mobica
Eric Boumaour, AMD
Eric Werness, NVIDIA
Evan Hart, AMD
Fred Liao, Mediatek
Graeme Leese, Broadcom (arrays of arrays)
Graham Connor, Imagination Technologies
Graham Sellers, AMD
Greg Roth, NVIDIA (separate shader objects)
Guangli Li, Marvell
Ian Romanick, Intel
Ian Stewart, NVIDIA
James Helferty, NVIDIA
Jan-Harald Fredriksen, ARM (vertex attrib

binding)
Janusz Sobczak, Mobica
Jarkko Pöyry, drawElements
Jason Green, Transgaming
Jeff Bolz, NVIDIA
Jeff Gilbert, Mozilla
Jesse Hall, Google
John Kessenich
John Rosasco, Google
Jon Leech (OpenGL ES API Specification ed-

itor)

Jonas Gustavsson, Sony Mobile
Kalle Raita, drawElements
Karol B Gasinski, Intel
Kathleen Mattson, Miller and Mattson
Kenneth Russell, Google
Klaus Gerlicher, NVIDIA
Krzysztof Kaminski, Intel
Kulin Seth, Qualcomm
Lijun Qu, AMD
Mark Adams, NVIDIA
Mark Callow, Artspark
Mark Ellison, Mobica
Mark Kilgard, NVIDIA
Mathias Heyer, NVIDIA (texture STENCIL8

internal formats)
Maurice Ribble, Qualcomm (stencil texturing)
Members of the Khronos OpenGL ARB

Working Group
Michael Chock, NVIDIA
Murat Balci, AMD
Neil Trevett, NVIDIA
Nick Haemel, NVIDIA
Nick Hoath, Imagination Technologies (tex-

ture storage multisample)
Nick Penwarden, Epic Games
Pat Brown, NVIDIA (shader helper invoca-

tion, shader layout binding, shader stor-
age buffer objects)

Pierre Boudier, NVIDIA
Piers Daniell, NVIDIA
Piotr Czubak, Intel
Pyry Haulos, drawElements
Rik Cabanier, Adobe
Rob Barris, NVIDIA
Robert Simpson, Qualcomm (OpenGL ES

Shading Language Specification editor)
Robert Tray, NVIDIA
Sean Ellis, ARM
Season Li, NVIDIA
Slawomir Cygan, Intel (explicit uniform loca-

tion)
Slawomir Grajewski, Intel
Timo Suoranta, Broadcom (draw indirect)
Tobias Hector, Imagination Technologies
Tom Olson, ARM (Khronos OpenGL ES

Working Group chair)
Yanjun Zhang, Vivante

OpenGL ES 3.2 (November 3, 2016)

E.3. CREDITS AND ACKNOWLEDGEMENTS 534

The OpenGL ES Working Group gratefully acknowledges administrative sup-
port by the members of Gold Standard Group, including Andrew Riegel, Elizabeth
Riegel, Glenn Fredericks, and Michelle Clark, and technical support from James
Riordon, webmaster of Khronos.org and OpenGL.org.

OpenGL ES 3.2 (November 3, 2016)

Appendix F

Version 3.2

OpenGL ES version 3.2, released on August 10, 2015, is the fifth revision since
the original version 1.0. OpenGL ES 3.2 is upward compatible with OpenGL ES
version 3.1, meaning that any program that runs with an OpenGL ES 3.1 imple-
mentation will also run unchanged with an OpenGL ES 3.2 implementation.

Following are brief descriptions of changes and additions to OpenGL ES 3.2.

F.1 New Features

New features in OpenGL ES 3.2 include:

• Almost all features of the Android extension pack, incorporating by refer-
ence all of the following features - with the exception of the sRGB decode
features of EXT_texture_sRGB_decode

• Advanced blend equations.

• Copying subregions between image objects

• Supporting blending on a per-draw-buffer basis

• Debug messages

• Geometry shaders

• Miscellaneous new shader functionality

• ASTC texture compression (LDR profile only)

• Primitive bounding boxes

535

F.2. CHANGE LOG FOR RELEASED SPECIFICATIONS 536

• Shader image atomic operations

• Shader interface blocks

• Shader multisample interpolation control

• Sample shading control

• Sample variables

• Texture buffer objects

• Texture border color

• Texture cube map arrays

• Tessellation shaders

• STENCIL8 texture formats

• Texture multisample 2D arrays

and also include the following features, which are not part of the Android extension
pack.

• Draw calls specifying a base vertex parameter

• Floating-point framebuffers

• Robust buffer access control

• Support for querying CONTEXT_FLAGS, as needed by debug and robust
buffer access functionality.

• Support for querying MULTISAMPLE_LINE_WIDTH_RANGE and
MULTISAMPLE_LINE_WIDTH_GRANULARITY (see section 13.6.4). Note
that these are different query and enum values than desktop GL’s SMOOTH_-
LINE_WIDTH_*, which remain unsupported (Bug 13828).

F.2 Change Log for Released Specifications

Changes in the released Specification of November 3, 2016:

• Create new list of valid query targets in table 4.2, and refer to it from the er-
rors section of BeginQuery and EndQuery in section 4.2, and GetQueryiv
in section 4.2.1 (Bug 15979).

OpenGL ES 3.2 (November 3, 2016)

F.2. CHANGE LOG FOR RELEASED SPECIFICATIONS 537

• Document MapBufferRange behavior when MAP_UNSYNCHRONIZED_-

BIT is used in conjunction with either MAP_INVALIDATE_BUFFER_BIT or
MAP_INVALIDATE_RANGE_BIT in section 6.3 (Bug 15631).

• Document the error generated when loading image uniforms with Uniform*
in section 7.6.1 (Bug 11443).

• Allow either implementation-dependent conversion from texture source in-
ternal format to destination effective internal format for *TexSubImage*
operations, or errors, in sections 8.5 and 8.6 (Bug 7110).

• Clarify in sections 9.2.4 and 20.3 that the internalformat argument
of RenderbufferStorageMultisample and GetInternalformativ, respec-
tively, must be sized, (Bug 15912).

• Add constraint on level for FramebufferTexture2D and FramebufferTex-
tureLayer in section 9.2.8, and restructured the complete set of constraints
(Bug 15946).

• Fix constraint on layer for FramebufferTextureLayer in section 9.2.8 (Bug
15968).

• Clarify behavior when a fragment shader has fewer outputs than framebuffer
color attachments in section 14.2.3 and for DrawBuffers in section 15.2.1
(Bug 13825).

• Attempt to rotate landscape-format state table pages when being displayed -
this is dependent on the PDF reader (Bug 11976).

Changes in the released Specification of June 15, 2016:

• Specify that queries returning unsigned integers will clamp negative state
values in section 2.2.2 (Bug 14444).

• Add transform feedback objects to the list of objects whose deletion causes
automatic unbinding in section 5.1.2, and described the unbinding behavior
for DeleteTransformFeedbacks in section 12.1.1 (Bug 14375).

• Use consistent phrasing of “has/has been linked successfully” to describe the
link status of programs where relevant in the descriptions of conditions for
LinkProgram and UseProgram in section 7.3, GetProgramResourceLo-
cation* in section 7.3.1.1, UseProgramStages and ActiveShaderProgram
in section 7.4, GetProgramBinary in section 7.5, ProgramUniform* in

OpenGL ES 3.2 (November 3, 2016)

F.2. CHANGE LOG FOR RELEASED SPECIFICATIONS 538

section 7.6.1, GetProgramiv in section 7.12, GetAttribLocation in sec-
tion 11.1.1, and GetFragDataLocation and GetFragDataIndex in sec-
tion 14.2.3.

This replaces a variety of previous usages including the rather wordy “has
not been linked, or was linked unsuccessfully” (Bug 8640).

• Add language to GetProgramResourceiv in section 7.3.1.1 specifying the
returned block index when the interface block is declared as an array of block
instances, and clarify the definition of active uniform blocks in section 7.6
(Bug 11938).

• Add tessellation and geometry shader bits to valid bits for the UseProgram-
Stages stages parameter in section 7.4.

• Clarify shader interface matching rules in section 7.4.1 so that there is no
match in the case where name, type and qualification match, but one variable
has a location qualifier and the other does not (Bug 13613).

• Add clarification on the method for specifying more than 32 texture units to
ActiveTexture in section 8 (Bug 15774).

• Cleanup description of levelbase and levelmax in sections 8.10 and 8.14.3
(Bug 15813).

• Require cube map array texture support for ETC2 format textures in ta-
ble 8.17 (Bug 14713).

• Add image size operations to the description of format mismatch behavior
for BindImageTexture in section 8.23 (Bug 15531).

• Do not allow multisample textures to be bound as images by BindImage-
Texture in section 8.23 (Bug 15818).

• Specify that the COLOR_ATTACHMENTm tokens are defined for m in the
range [0, 31] in section 9.2, and specify that INVALID_OPERATION er-
rors are generated for valid COLOR_ATTACHMENTm tokens where m is
outside the range of valid color attachments for the commands Get-
FramebufferAttachmentParameteriv (section 9.2.3), FramebufferRen-
derbuffer (section 9.2.7), FramebufferTexture and FramebufferTex-
ture2D (section 9.2.8), DrawBuffers (section 15.2.1), InvalidateSub-
Framebuffer (section 15.2.4), and ReadBuffer (section 16.1.1 (Bug 13858)

• Add an error when an invalid target argument to BindRenderbuffer is
passed, in section 9.2.4 (Bug 14283).

OpenGL ES 3.2 (November 3, 2016)

F.2. CHANGE LOG FOR RELEASED SPECIFICATIONS 539

• Specify that BindVertexBuffer can accept existing buffer object names in
section 10.3.1 (Bug 15252).

• Change incorrect reference of “atomic counters” to “image units” in sec-
tion 11.1.3.7.

• Remove description of OpenGL ES Shading Language as not supporting
multi-dimensional arrays as shader inputs and outputs from sections 11.2.1.2
and 11.2.3.3 (Bug 13824).

• Specify in section 11.3.1 that the mode parameter used for validating geom-
etry shaders depends on whether or not a tessellation evaluation shader is
active (Bug 14141).

• Remove unusable bool and bvec* types from table 12.2 (Bug 15023).

• Remove “or has been re-linked” clause from the non-local error for Resume-
TransformFeedback defined in section 12.1.2 (Bugs 15414, 15415).

• Update description of polygon associated data interpolation for flat shad-
ing in section 13.7.1 (Bug 15785).

• Update the description of gl_SampleMaskIn in section 14.2.2 and gl_-

SampleMask in section 14.2.3 to refer to the maximum number of sam-
ples supported for any renderable internal format, and make corresponding
changes to the definitions of the MAX_*_SAMPLES queries in table 21.41 and
MAX_SAMPLES in table 21.56 (Bug 15122).

• Remove references to signed normalized color buffers in section 15.1.5 (Bug
14364).

• Restore ability of CopyImageSubData in section 16.2 to copy between non-
overlapping regions of the same buffer, while still not allowing BlitFrame-
buffer to blit between the same source and destination framebuffer (Bug
15739).

• Specify in sections 16.2 and 16.2.1 that pixel copy operations generate an er-
ror when attempting to copy between identical source and destination buffers
(Bug 15739). This behavior was consciously chosen in OpenGL ES 3.0
and differs from OpenGL, which allows such copies and makes them well-
defined if the source and destination regions do not overlap.

• Add an INVALID_OPERATION error for CopyImageSubData in sec-
tion 16.2.2 when the source and destination buffers are identical, to match
BlitFramebuffer (Bug 15739).

OpenGL ES 3.2 (November 3, 2016)

F.2. CHANGE LOG FOR RELEASED SPECIFICATIONS 540

• Reduce minimum value of MAX_TESS_CONTROL_TOTAL_OUTPUT_-

COMPONENTS from 4096 to 2048 in table 21.45 (Bug 12823).

• Rewrite appendix C to refer to the Khronos Data Format Specification for
the definition of formats (Bug 15253).

• Specify that only the ASTC LDR Profile modes are supported in section C.1
(Feedback from Jan-Harald).

Changes in the released Specification of August 10, 2015:

• Added new features as described in section F.1.

• Changed name of formal parameter of SamplerParameter*v in section 8.2
to params (Bug 14158).

• Add multisample texture targets to those supporting depth and stencil texture
formats in section 8.5 (Bug 14158).

• Drop bogus reference to PROXY texture target in section 8.5.3 (Bug 14183).

• Correct command name from TextureParameterI*v to TexParameterI*v
in section 8.10 (Bug 14158).

• Add missing parameter range error for TEXTURE_BASE_LEVEL and
TEXTURE_MAX_LEVEL pnames to TexParameter* in section 8.10 (Bug
14157).

• Add missing parameter validation errors for FramebufferTexture2D in sec-
tion 9.2.8 (Bug 14157).

• Expand language about interpolated outputs in section 11.1.2.1 to match GL
spec (Bug 14158).

• Clarify that the primitive ID counters for tessellation control, geometry,
and fragment shaders are reset to zero after each instance drawn, in sec-
tions 11.2.1.2, 11.3.4.3, and 14.2.2 (Bug 14024).

• Remove redundant non-local errors for mode validation in drawing com-
mands in section 12.1.2 (now subsumed by table 12.1), and for feedback
buffer overflow detection (very difficult when using geometry shaders) (Bug
14158).

OpenGL ES 3.2 (November 3, 2016)

F.3. CREDITS AND ACKNOWLEDGEMENTS 541

• Introduce upstream shader terminology for transform feedback, and correct
description of when variables written by transform feedback are undefined
in section 12.1.2, to account for both geometry and tessellation shader stages
(Bug 14157).

• Fix language in section 13.5 to indicate that only the vertex shader can write
gl_PointSize (Bug 14157).

• Change require minimum value from 128 to 64 for MAX_TESS_CONTROL_-
OUTPUT_COMPONENTS and MAX_TESS_CONTROL_INPUT_COMPONENTS in
table 21.45, MAX_TESS_EVALUATION_OUTPUT_COMPONENTS and MAX_-

TESS_EVALUATION_INPUT_COMPONENTS in table 21.46, and MAX_-

GEOMETRY_OUTPUT_COMPONENTS in table 21.47 (Bug 12823).

• Fix minimum values for MAX_FRAGMENT_ATOMIC_COUNTER_BUFFERS,
MAX_FRAGMENT_ATOMIC_COUNTERS and MAX_FRAGMENT_SHADER_-

STORAGE_BLOCKS in table 21.48, and MAX_FRAGMENT_IMAGE_UNIFORMS

in table 21.52 (Bug 14157).

F.3 Credits and Acknowledgements

OpenGL ES 3.2 is the result of the contributions of many people and companies.
Members of the Khronos OpenGL ES Working Group during the development of
OpenGL ES 3.2, including the company that they represented at the time of their
contributions, follow. Some major contributions made by individuals are listed
together with their name.

In addition, many people participated in developing desktop OpenGL specifi-
cations and extensions on which the OpenGL ES 3.2 functionality is based in large
part; those individuals are listed in the respective specifications in the OpenGL
Registry.

Alon Or-bach, Samsung
Andrew Garrard, Samsung
Andrew Garrard, Samsung
Antti Tirronen, Qualcomm
Barthold Lichtenbelt, NVIDIA
Benji Bowman, Imagination Technologies
Bill Licea-Kane, Qualcomm
Cass Everitt, Oculus
Christophe Riccio, Unity
Christopher Gautier, ARM
Daniel Kartch, NVIDIA

Daniel Koch, NVIDIA (Detailed specification
review)

Dominik Witczak, Samsung
Etay Meiri, Intel
Fred Liao, Mediatek
Geoff Lang, Google
Graeme Leese, Broadcom (Detailed specifica-

tion review)
Graham Connor, Imagination Technologies
Graham Sellers, AMD
Greg Roth, NVIDIA

OpenGL ES 3.2 (November 3, 2016)

F.3. CREDITS AND ACKNOWLEDGEMENTS 542

Ian Romanick, Intel
Iliyan Dinev, Imagination Technologies
James Jones, NVIDIA
Jan-Harald Fredriksen, ARM (Detailed speci-

fication review)
Jarkko Pöyry, Google
Jeff Bolz, NVIDIA
Jeff Gilbert, Mozilla
Jesse Hall, Google
John Kessenich
Jon Leech (OpenGL ES API Specification ed-

itor)
Jonas Gustavsson, Sony Mobile
Jonathan Putsman, Imagination Technologies
Jun Wang, Imagination Technologies
Kalle Raita, Google
Kathleen Mattson, Miller & Mattson
Mark Adams, NVIDIA
Mark Callow
Mathias Heyer, NVIDIA (Detailed specifica-

tion review)
Maurice Ribble, Qualcomm
Neil Trevett, NVIDIA

Olli Etuaho, NVIDIA
Pat Brown, NVIDIA
Patrick Doane, Blizzard
Peter Deayton, Mediatek
Piers Daniell, NVIDIA
Pyry Haulos, Google
Robert Simpson, Qualcomm (OpenGL ES

Shading Language Specification editor)
Robert Stepinski, Transgaming
Sawato Shusaku, DMP Inc.
Shannon Woods, Google
Slawomir Cygan, Intel
Slawomir Grajewski, Intel
Steve Hill, Broadcom
Tobias Hector, Imagination Technologies
Tom Olson, ARM (Khronos OpenGL ES

Working Group chair)
Wayne Lister, Imagination Technologies
Weifeng Zhang, Qualcomm
Xi Ma Chen, NVIDIA
Yanjun Zhang, Vivante
Zeppelin Zhu, Vivante

The OpenGL ES Working Group gratefully acknowledges administrative sup-
port by the members of Gold Standard Group, including Andrew Riegel, Elizabeth
Riegel, Emily Stearns, Glenn Fredericks, and Michelle Clark, and technical sup-
port from James Riordon, webmaster of Khronos.org and OpenGL.org.

OpenGL ES 3.2 (November 3, 2016)

Appendix G

Backwards Compatibility

The OpenGL ES 3.1 API is backward compatible with OpenGL ES 2.0. It accepts
all of the same commands and their arguments, including the same token values.
This appendix describes OpenGL ES 3.1 features that were carried forward from
OpenGL ES 2.0 solely to maintain backward compatibility as well as those that
have changed in behavior relative to OpenGL ES 2.0.

G.1 Legacy Features

The following features are present to maintain backward compatibility with
OpenGL ES 2.0, but their use is not recommended as it is likely for these features
to be removed in a future version.

• Fixed-point (16.16) vertex attributes

• Application-chosen object names (those not generated via Gen* or Create*)

• Client-side vertex arrays (those not stored in buffer objects)

• Luminance, alpha, and luminance alpha formats

• Queryable shader range and precision (GetShaderPrecisionFormat)

• Old-style non-indexed extensions query

• Vector-wise uniform limits

• Default vertex array object

543

G.2. DIFFERENCES IN RUNTIME BEHAVIOR 544

G.2 Differences in Runtime Behavior

The following behaviors are different in OpenGL ES 3.1 than they were in OpenGL
ES 2.0.

• OpenGL ES 3.1 requires that all cube map filtering be seamless. OpenGL ES
2.0 specified that a single cube map face be selected and used for filtering.
See section 8.13.1.

• OpenGL ES 3.1 specifies a zero-preserving mapping when converting back
and forth between signed normalized fixed-point values and floating-point
values. OpenGL ES 2.0 specified a mapping by which zeros are not pre-
served. See section 2.3.5.

• OpenGL ES 3.1 requires that framebuffer objects not be shared between con-
texts. OpenGL ES 2.0 left it undefined whether framebuffer objects could be
shared. See chapter 5.

OpenGL ES 3.2 (November 3, 2016)

Index

x BITS, 501

ACTIVE ATOMIC COUNTER -
BUFFERS, 129, 471

ACTIVE ATTRIBUTE MAX -
LENGTH, 128, 468

ACTIVE ATTRIBUTES, 128, 467
ACTIVE PROGRAM, 130, 465
ACTIVE RESOURCES, 82, 83, 472
ACTIVE TEXTURE, 13, 138, 140,

190, 454
ACTIVE UNIFORM BLOCK -

MAX NAME LENGTH, 128,
469

ACTIVE UNIFORM BLOCKS, 128,
469

ACTIVE UNIFORM MAX LENGTH,
128, 467

ACTIVE UNIFORMS, 128, 467
ACTIVE VARIABLES, 85, 86, 107,

473
ActiveShaderProgram, 96, 108, 530,

537
ActiveTexture, 119, 138, 538
ALIASED LINE WIDTH RANGE,

357, 485
ALIASED POINT SIZE RANGE,

356, 485
ALL BARRIER BITS, 124, 126
ALL SHADER BITS, 95
ALPHA, 149, 151, 159, 160, 169, 171,

188, 211, 372, 373, 387, 455,

456, 461, 501
ALPHA BITS, 252
ALREADY SIGNALED, 35
ALWAYS, 188, 213, 381, 382, 458
ANY SAMPLES PASSED, 39, 41, 42,

382, 383
ANY SAMPLES PASSED -

CONSERVATIVE, 39, 41, 42,
382, 383

ARRAY BUFFER, 52, 270, 274
ARRAY BUFFER BINDING, 274,

449
ARRAY SIZE, 85, 86, 105, 290, 295,

473
ARRAY STRIDE, 85, 87, 105, 112,

473
ATOMIC COUNTER BARRIER BIT,

124, 126
ATOMIC -

COUNTER BUFFER, 52, 53,
79, 81, 83–86, 106, 116

ATOMIC COUNTER BUFFER -
BINDING, 64, 477

ATOMIC COUNTER BUFFER IN-
DEX, 86, 87, 473

ATOMIC COUNTER BUFFER SIZE,
64, 477

ATOMIC COUNTER BUFFER -
START, 64, 477

atomic uint, 91, 116
atomicCounter, 508
atomicCounterDecrement, 508

545

INDEX 546

atomicCounterIncrement, 508
ATTACHED SHADERS, 128, 131, 466
AttachShader, 71

BACK, 230, 233, 363, 381, 395–398,
401, 405, 406, 452

barrier, 312, 313
BeginQuery, 39, 40, 40–42, 344, 382,

528, 536
BeginTransformFeedback, 338, 339,

340, 342
BindAttribLocation, 100, 288, 288, 290,

518, 529
BindBuffer, 25, 50, 51, 51, 53, 187, 268,

275
BindBufferBase, 53, 53, 63, 343, 521
BindBufferRange, 45, 53, 53, 54, 63,

115, 116, 118, 343, 518, 521
BindFramebuffer, 224, 225, 227, 250
BindImageTexture, 45, 215, 216, 217,

221, 255, 538
binding, 118
BindProgramPipeline, 76, 94, 94–96,

130, 306, 343
BindRenderbuffer, 234, 234, 235, 538
BindSampler, 25, 141, 141, 143
BindTexture, 119, 138, 139, 139, 140
BindTransformFeedback, 337, 337, 338
BindVertexArray, 276, 277
BindVertexBuffer, 268, 268, 274, 539
BLEND, 383, 384, 393, 458
BLEND COLOR, 458
BLEND DST ALPHA, 458
BLEND DST RGB, 458
BLEND EQUATION ALPHA, 458
BLEND EQUATION RGB, 458
BLEND SRC ALPHA, 458
BLEND SRC RGB, 458
blend support, 392
blend support all equations, 392

BlendBarrier, 392
BlendColor, 386, 392
BlendEquation, 384, 384
BlendEquationi, 384, 384
BlendEquationSeparate, 384, 384
BlendEquationSeparatei, 384, 384
BlendFunc, 386, 387
BlendFunci, 386, 387
BlendFuncSeparate, 386, 387
BlendFuncSeparatei, 387, 387
BlitFramebuffer, 23, 353, 392, 405, 411,

412, 519–521, 539
BLOCK INDEX, 85, 87, 105, 473
BLUE, 188, 211, 372, 455, 456, 461,

501
BLUE BITS, 252
BOOL, 89
bool, 89, 111, 112, 341, 539
BOOL VEC2, 89
BOOL VEC3, 89
BOOL VEC4, 89
boolean, 109
BUFFER, 431
BUFFER ACCESS FLAGS, 52, 55, 58,

60, 450
BUFFER BINDING, 85, 87, 107, 473
BUFFER DATA SIZE, 86, 87, 107,

116, 473
BUFFER MAP LENGTH, 52, 55, 58,

60, 450
BUFFER MAP OFFSET, 52, 55, 58,

60, 450
BUFFER MAP POINTER, 52, 55, 58,

60, 62, 63, 450
BUFFER MAPPED, 52, 55, 58, 60, 450
BUFFER SIZE, 52, 55, 56, 59, 118,

184, 185, 450
BUFFER UPDATE BARRIER BIT,

124
BUFFER USAGE, 52, 55, 57, 450

OpenGL ES 3.2 (November 3, 2016)

INDEX 547

BUFFER VARIABLE, 80, 85, 86, 88
BufferData, 47, 54, 55, 60
BufferSubData, 47, 56, 122, 125
bvec*, 539
bvec2, 89, 109, 341
bvec3, 89, 341
bvec4, 89, 341
BYTE, 147, 148, 150, 221, 266, 269,

410

callback, 426
CCW, 129, 362, 363, 452, 471
ccw, 315
centroid, 371
centroid in, 371
CHANGED ITEMS, 39–42, 58, 110,

159, 174, 236, 241–243, 376,
396, 442, 444

CHANGED ITEMS (OLD), 12, 13, 45,
74–76, 79, 82, 87, 93, 95–97,
99, 101, 103, 110, 128, 138,
177, 189, 202, 215, 217, 218,
226, 232, 234, 239–241, 268,
291, 302, 310, 311, 325, 327,
337, 341, 343, 364, 374, 375,
377, 383, 397, 403, 406, 411,
412, 418, 486, 490, 501, 512

CheckFramebufferStatus, 250, 251, 251
CLAMP TO BORDER, 188, 194, 197
CLAMP TO EDGE, 188, 193, 197, 412
Clear, 24, 254, 351, 399, 400–402
ClearBuffer{if ui}v, 400
ClearBufferfi, 401, 401, 402
ClearBufferfv, 400–402
ClearBufferiv, 400–402
ClearBufferuiv, 400–402
ClearColor, 399, 401
ClearDepth, 401, 521
ClearDepthf, 400
ClearStencil, 400, 401

ClientWaitSync, 33, 34, 35, 35–37, 45
coherent, 125
COLOR, 401–403
COLOR ATTACHMENTm, 538
COLOR ATTACHMENT0, 226, 397,

405
COLOR BUFFER BIT, 399, 402, 411,

413
COLOR CLEAR VALUE, 459
COLOR WRITEMASK, 398, 459
COLORBURN, 389
COLORDODGE, 389
ColorMask, 397, 398, 399
ColorMaski, 398, 398
COMMAND BARRIER BIT, 123
COMPARE REF TO TEXTURE, 188,

212
COMPILE STATUS, 69, 71, 78, 127,

464
CompileShader, 69, 69, 376
COMPRESSED R11 EAC, 177, 416,

417, 514
COMPRESSED RG11 EAC, 177, 416,

417, 514
COMPRESSED RGB8 ETC2, 177,

416, 417, 514
COMPRESSED RGB8 -

PUNCHTHROUGH AL-
PHA1 ETC2, 177, 416, 417,
514

COMPRESSED RGBA8 ETC2 EAC,
177, 416, 417, 514

COMPRESSED RGBA ASTC 10x10,
178, 418, 513

COMPRESSED RGBA ASTC 10x5,
177, 417, 513

COMPRESSED RGBA ASTC 10x6,
177, 417, 513

COMPRESSED RGBA ASTC 10x8,
178, 417, 513

OpenGL ES 3.2 (November 3, 2016)

INDEX 548

COMPRESSED RGBA ASTC 12x10,
178, 418, 513

COMPRESSED RGBA ASTC 12x12,
178, 418, 513

COMPRESSED RGBA ASTC 4x4,
177, 417, 513

COMPRESSED RGBA ASTC 5x4,
177, 417, 513

COMPRESSED RGBA ASTC 5x5,
177, 417, 513

COMPRESSED RGBA ASTC 6x5,
177, 417, 513

COMPRESSED RGBA ASTC 6x6,
177, 417, 513

COMPRESSED RGBA ASTC 8x5,
177, 417, 513

COMPRESSED RGBA ASTC 8x6,
177, 417, 513

COMPRESSED RGBA ASTC 8x8,
177, 417, 513

COMPRESSED SIGNED R11 EAC,
177, 416, 417, 514

COMPRESSED SIGNED RG11 EAC,
177, 416, 417, 514

COMPRESSED SRGB8 ALPHA8 -
ASTC 10x10, 178, 214, 418,
513

COMPRESSED SRGB8 AL-
PHA8 ASTC 10x5, 178, 214,
417, 513

COMPRESSED SRGB8 AL-
PHA8 ASTC 10x6, 178, 214,
417, 513

COMPRESSED SRGB8 AL-
PHA8 ASTC 10x8, 178, 214,
417, 513

COMPRESSED SRGB8 ALPHA8 -
ASTC 12x10, 178, 214, 418,
513

COMPRESSED SRGB8 ALPHA8 -
ASTC 12x12, 178, 214, 418,
513

COMPRESSED SRGB8 ALPHA8 -
ASTC 4x4, 178, 214, 417, 513

COMPRESSED SRGB8 ALPHA8 -
ASTC 5x4, 178, 214, 417, 513

COMPRESSED SRGB8 ALPHA8 -
ASTC 5x5, 178, 214, 417, 513

COMPRESSED SRGB8 ALPHA8 -
ASTC 6x5, 178, 214, 417, 513

COMPRESSED SRGB8 ALPHA8 -
ASTC 6x6, 178, 214, 417, 513

COMPRESSED SRGB8 ALPHA8 -
ASTC 8x5, 178, 214, 417, 513

COMPRESSED SRGB8 ALPHA8 -
ASTC 8x6, 178, 214, 417, 513

COMPRESSED SRGB8 ALPHA8 -
ASTC 8x8, 178, 214, 417, 513

COMPRESSED SRGB8 AL-
PHA8 ETC2 EAC, 177, 214,
416, 417, 514

COMPRESSED SRGB8 ETC2, 177,
214, 416, 417, 514

COMPRESSED SRGB8 -
PUNCHTHROUGH AL-
PHA1 ETC2, 177, 214, 416,
417, 514

COMPRESSED TEXTURE FOR-
MATS, 176, 487

CompressedTexImage, 181
CompressedTexImage2D, 176, 179, 180
CompressedTexImage3D, 176, 178–

181
CompressedTexSubImage2D, 180, 180,

181
CompressedTexSubImage3D, 180, 180,

181
COMPUTE SHADER, 68, 420, 465
COMPUTE SHADER BIT, 95

OpenGL ES 3.2 (November 3, 2016)

INDEX 549

COMPUTE WORK GROUP SIZE,
129, 130, 421, 466

CONDITION SATISFIED, 35
CONSTANT ALPHA, 387
CONSTANT COLOR, 387
CONTEXT FLAG DEBUG BIT, 423,

441
CONTEXT FLAG ROBUST AC-

CESS BIT, 441
CONTEXT FLAGS, 273, 423, 441,

488, 536
CONTEXT LOST, 14, 15, 17
COPY READ BUFFER, 52, 61
COPY READ BUFFER BINDING,

502
COPY WRITE BUFFER, 52, 61
COPY WRITE BUFFER BINDING,

502
CopyBufferSubData, 61
CopyImageSubData, 414, 414–418, 539
CopyTexImage, 169
CopyTexImage2D, 168, 174–176, 202,

528
CopyTexImage3D, 174
CopyTexSubImage2D, 173, 173, 175,

176
CopyTexSubImage3D, 173, 173–176
Create*, 543
CreateProgram, 25, 71
CreateShader, 67, 68
CreateShaderProgramv, 77, 77, 78
CULL FACE, 363, 452
CULL FACE MODE, 452
CullFace, 363, 363, 366
CURRENT PROGRAM, 466
CURRENT QUERY, 42, 502
CURRENT VERTEX ATTRIB, 285,

475
CW, 129, 363
cw, 315

DARKEN, 389
DEBUG CALLBACK FUNCTION,

427, 433, 440, 498
DEBUG CALLBACK USER -

PARAM, 433, 440, 498
DEBUG GROUP STACK DEPTH,

498
DEBUG LOGGED MESSAGES, 427,

498
DEBUG NEXT LOGGED MES-

SAGE LENGTH, 427, 498
DEBUG OUTPUT, 423, 427–429, 498
DEBUG OUTPUT SYNCHRONOUS,

432, 433, 498
DEBUG SEVERITY HIGH, 425
DEBUG SEVERITY LOW, 425, 426
DEBUG SEVERITY MEDIUM, 425
DEBUG SEVERITY NOTIFICA-

TION, 425, 430
DEBUG SOURCE API, 16, 424
DEBUG SOURCE APPLICATION,

424, 429, 430
DEBUG SOURCE OTHER, 424
DEBUG SOURCE SHADER COM-

PILER, 424
DEBUG SOURCE THIRD PARTY,

424, 429, 430
DEBUG SOURCE WINDOW SYS-

TEM, 424
DEBUG TYPE DEPRECATED BE-

HAVIOR, 425
DEBUG TYPE ERROR, 16, 425
DEBUG TYPE MARKER, 425
DEBUG TYPE OTHER, 425
DEBUG TYPE PERFORMANCE,

425
DEBUG TYPE POP GROUP, 425, 430
DEBUG TYPE PORTABILITY, 425
DEBUG TYPE PUSH GROUP, 425,

430

OpenGL ES 3.2 (November 3, 2016)

INDEX 550

DEBUG TYPE UNDEFINED BE-
HAVIOR, 425

DebugMessageCallback, 426, 427, 433
DebugMessageControl, 426, 428
DebugMessageInsert, 429, 429
DECR, 381
DECR WRAP, 381
DELETE STATUS, 70, 127, 464, 466
DeleteBuffers, 25, 45, 50, 51, 268
DeleteFramebuffers, 227
DeleteProgram, 77, 77, 530
DeleteProgramPipelines, 93, 95, 96,

130, 306, 530
DeleteQueries, 40, 40
DeleteRenderbuffers, 45, 235, 250
DeleteSamplers, 142, 143
DeleteShader, 70, 70
DeleteSync, 34, 35, 38
DeleteTextures, 45, 140, 216, 250
DeleteTransformFeedbacks, 45, 336,

338, 537
DeleteVertexArrays, 276, 277
DEPTH, 230, 231, 233, 401–403, 456,

461
DEPTH24 STENCIL8, 148, 164
DEPTH32F STENCIL8, 148, 164
DEPTH ATTACHMENT, 226, 239,

248, 403
DEPTH BITS, 252, 501
DEPTH BUFFER BIT, 399, 402, 411,

413, 414
DEPTH CLEAR VALUE, 459, 529
DEPTH COMPONENT, 148, 151, 158,

159, 164, 188, 211, 212, 247,
300, 407, 455

DEPTH COMPONENT16, 148, 164
DEPTH COMPONENT24, 148, 164
DEPTH COMPONENT32F, 148, 164
DEPTH FUNC, 458
DEPTH RANGE, 451

DEPTH STENCIL, 148, 151, 154,
156–159, 164, 205, 206, 212,
239, 244, 247, 300, 301, 401–
403, 407

DEPTH STENCIL ATTACHMENT,
231, 233, 239, 244, 403, 520

DEPTH STENCIL -
TEXTURE MODE, 188, 205,
206, 211, 212, 300, 301, 455,
531

DEPTH TEST, 382, 458
DEPTH WRITEMASK, 459
DepthFunc, 382
DepthMask, 398, 399
DepthRange, 521
DepthRangef, 12, 13, 347
DetachShader, 72
dFdx, 436
dFdy, 436
DIFFERENCE, 389
Disable, 272, 351, 355, 363, 366, 368,

380, 382, 383, 394, 423, 432,
439

Disablei, 383, 384
DisableVertexAttribArray, 271, 285
DISPATCH INDIRECT BUFFER, 52,

123, 275, 421
DISPATCH INDIRECT BUFFER -

BINDING, 484
DispatchCompute, 420, 421
DispatchComputeIndirect, 123, 275,

421
DITHER, 394, 458
do, 313
DONT CARE, 428, 429, 436, 437, 483
Draw*, 519, 528
DRAW BUFFERi, 460
DRAW FRAMEBUFFER, 224, 225,

227, 228, 230, 232, 238–241,
251, 402, 403, 411, 459, 520

OpenGL ES 3.2 (November 3, 2016)

INDEX 551

DRAW FRAMEBUFFER BINDING,
201, 227, 252, 253, 395, 396,
459

DRAW INDIRECT BUFFER, 52, 123,
275, 279, 284, 422

DRAW INDIRECT BUFFER BIND-
ING, 449

DrawArrays, 256, 258, 272, 277, 278,
278, 303

DrawArraysIndirect, 275, 279, 279,
531, 532

DrawArraysIndirectCommand, 279
DrawArraysInstanced, 278, 278, 279,

282, 529, 531
DrawArraysOneInstance, 277, 278, 529
DrawBuffer, 394, 399, 402
DrawBuffers, 395, 395–397, 518, 537,

538
DrawElements, 120, 272, 274, 275, 277,

281, 282, 529
DrawElementsBaseVertex, 275, 283
DrawElementsIndirect, 275, 283, 284,

531, 532
DrawElementsIndirectCommand, 284
DrawElementsInstanced, 272, 274, 275,

281, 529, 531
DrawElementsInstancedBaseVertex,

275, 283, 531
DrawElementsOneInstance, 280, 280,

281, 283, 529
DrawRangeElements, 272, 274, 275,

282, 283, 487
DrawRangeElementsBaseVertex, 275,

283, 283
DST ALPHA, 387
DST COLOR, 387
DYNAMIC COPY, 52, 55
DYNAMIC DRAW, 52, 55
DYNAMIC READ, 52, 55

early fragment tests, 377
ELEMENT ARRAY BARRIER BIT,

123
ELEMENT AR-

RAY BUFFER, 52, 123, 274,
275, 284, 286

ELEMENT ARRAY BUFFER BIND-
ING, 286, 448, 529

Enable, 272, 351, 355, 363, 366, 368,
380, 382, 383, 394, 423, 432,
439

Enablei, 383, 384
EnableVertexAttribArray, 271, 277, 285
EndPrimitive, 254
EndQuery, 41, 41, 382, 536
EndTransformFeedback, 47, 48, 338,

338, 339, 342
EQUAL, 129, 188, 213, 381, 382, 471
equal spacing, 315, 321
EXCLUSION, 389
EXT texture sRGB decode, 535
EXTENSIONS, 440–442, 488

FALSE, 10, 12, 38, 41, 42, 51, 52, 55,
60, 69, 70, 73, 76–78, 94, 99,
100, 108, 109, 127–129, 134,
135, 140, 143, 211, 215–218,
227, 232, 235, 244, 267, 273,
277, 285, 304, 305, 337, 351,
369, 373, 383, 423, 428, 432,
439, 448–450, 452, 453, 455,
456, 458, 460, 461, 464–466,
471, 476, 478, 480, 498, 502

FASTEST, 436, 437
FenceSync, 25, 33, 33, 34, 37, 38, 47
Finish, 18, 18, 33, 47, 510
FIRST VERTEX CONVENTION, 333
FIXED, 267
flat, 329, 344, 364, 539

OpenGL ES 3.2 (November 3, 2016)

INDEX 552

FLOAT, 89, 147, 148, 150, 192, 219–
221, 231, 267, 286, 407, 409,
410, 448, 522

float, 89, 111, 112, 289, 341
FLOAT 32 UNSIGNED INT 24 8 -

REV, 148, 150, 152–155
FLOAT MAT2, 89
FLOAT MAT2x3, 89
FLOAT MAT2x4, 89
FLOAT MAT3, 89
FLOAT MAT3x2, 89
FLOAT MAT3x4, 89
FLOAT MAT4, 89
FLOAT MAT4x2, 89
FLOAT MAT4x3, 89
FLOAT UNSIGNED INT, 155
FLOAT VEC2, 89
FLOAT VEC3, 89
FLOAT VEC4, 89
Flush, 18, 18, 37, 510
FlushMappedBufferRange, 47, 58, 59,

59
for, 313
FRACTIONAL EVEN, 129
fractional even spacing, 315
FRACTIONAL ODD, 129
fractional odd spacing, 315
FRAGMENT INTERPO-

LATION OFFSET BITS, 371,
486

FRAGMENT SHADER, 68, 133, 465
FRAGMENT SHADER BIT, 95, 96
FRAGMENT SHADER DERIVA-

TIVE HINT, 436, 483
FRAMEBUFFER, 225, 228, 230, 232,

238–241, 251, 402, 403, 431
FRAMEBUFFER ALPHA SIZE, 170
FRAMEBUFFER ATTACHMENT x -

SIZE, 461

FRAMEBUFFER ATTACHMENT -
ALPHA SIZE, 231

FRAMEBUFFER ATTACHMENT -
BLUE SIZE, 231

FRAMEBUFFER ATTACHMENT -
COLOR ENCODING, 170,
172, 231, 385, 393, 412, 461,
518

FRAMEBUFFER ATTACHMENT -
COMPONENT TYPE, 231,
233, 461, 518

FRAMEBUFFER ATTACHMENT -
DEPTH SIZE, 231

FRAMEBUFFER ATTACHMENT -
GREEN SIZE, 231

FRAMEBUFFER ATTACH-
MENT LAYERED, 232, 244,
461

FRAMEBUFFER ATTACHMENT -
OBJECT NAME, 231–233,
238, 244, 248, 461

FRAMEBUFFER ATTACH-
MENT OBJECT TYPE, 231–
233, 238, 244, 247, 248, 253,
461

FRAMEBUFFER ATTACHMENT -
RED SIZE, 231

FRAMEBUFFER ATTACHMENT -
STENCIL SIZE, 231

FRAMEBUFFER ATTACHMENT -
TEXTURE -
CUBE MAP FACE, 232, 244,
461

FRAMEBUFFER ATTACHMENT -
TEXTURE LAYER, 232, 243,
244, 253, 461, 519

FRAMEBUFFER ATTACHMENT -
TEXTURE LEVEL, 201, 232,
244, 246, 461, 517

OpenGL ES 3.2 (November 3, 2016)

INDEX 553

FRAMEBUFFER BARRIER BIT, 124,
126

FRAMEBUFFER BINDING, 227
FRAMEBUFFER BLUE SIZE, 170
FRAMEBUFFER COMPLETE, 251
FRAMEBUFFER DEFAULT, 231
FRAMEBUFFER DEFAULT FIXED -

SAMPLE LOCATIONS, 228,
230, 460

FRAMEBUFFER DEFAULT -
HEIGHT, 228, 230, 249, 460

FRAMEBUFFER DEFAULT LAY-
ERS, 228, 230, 460

FRAMEBUFFER DE-
FAULT SAMPLES, 228, 230,
460

FRAMEBUFFER DEFAULT WIDTH,
228, 230, 249, 460

FRAMEBUFFER GREEN SIZE, 170
FRAMEBUFFER INCOMPLETE AT-

TACHMENT, 249
FRAMEBUFFER INCOMPLETE DI-

MENSIONS, 248
FRAMEBUFFER INCOMPLETE -

LAYER TARGETS, 250
FRAMEBUFFER INCOMPLETE -

MISSING ATTACHMENT,
249

FRAMEBUFFER INCOMPLETE -
MULTISAMPLE, 249

FRAMEBUFFER RED SIZE, 170
FRAMEBUFFER UNDEFINED, 249
FRAMEBUFFER UNSUPPORTED,

249, 250
FramebufferParameteri, 227, 230, 531
FramebufferRenderbuffer, 238, 238,

239, 250, 538
FramebufferTexture, 45, 240, 243, 244,

538

FramebufferTexture2D, 241, 242–244,
537, 538, 540

FramebufferTextureLayer, 242, 244,
529, 537

FRONT, 363, 381, 398
FRONT AND BACK, 363, 381, 398
FRONT FACE, 452
FrontFace, 362, 363, 373
FUNC ADD, 386, 393, 458
FUNC REVERSE SUBTRACT, 386
FUNC SUBTRACT, 386
fwidth, 436

Gen*, 543
GenBuffers, 25, 50, 50, 51, 268
GENERATE MIPMAP HINT, 436,

483
GenerateMipmap, 203, 520
GenFramebuffers, 224, 226, 226, 227
GenProgramPipelines, 93, 93–96, 130,

306
GenQueries, 39, 39, 40
GenRenderbuffers, 234, 235, 235
GenSamplers, 141, 141–144
GenTextures, 139, 139, 140
GenTransformFeedbacks, 336, 336–338
GenVertexArrays, 276, 276, 277
GEOMETRY INPUT TYPE, 128, 129,

327, 468
GEOMETRY OUTPUT TYPE, 128,

129, 329, 468
GEOMETRY SHADER, 68, 326, 465
GEOMETRY SHADER BIT, 95
GEOMETRY SHADER INVOCA-

TIONS, 128, 129, 468
GEOMETRY VERTICES OUT, 128,

129, 329, 332, 468
GEQUAL, 188, 213, 381, 382
GetActiveAttrib, 290, 291, 468
GetActiveUniform, 104, 109, 467

OpenGL ES 3.2 (November 3, 2016)

INDEX 554

GetActiveUniformBlockiv, 106, 107,
470

GetActiveUniformBlockName, 106
GetActiveUniformsiv, 105, 105, 469,

470
GetAttachedShaders, 130, 466
GetAttribLocation, 288, 291, 468, 538
GetBooleani v, 398, 439, 459, 478
GetBooleanv, 12, 273, 398, 438, 445,

453, 459, 480, 486, 487
GetBufferParameteri64v, 62, 450
GetBufferParameteriv, 62, 450
GetBufferPointerv, 62, 62, 450
GetDebugMessageLog, 427, 433, 433,

434
GetError, 13, 14, 17, 502
GetFloatv, 9, 12, 348, 355, 438, 445,

451–453, 458, 459, 485, 486
GetFragDataIndex, 538
GetFragDataLocation, 376, 538
GetFramebufferAttachmentParameteriv,

230, 231, 252, 461, 518, 520,
529, 531, 538

GetFramebufferParameteriv, 230, 460
GetGraphicsResetStatus, 16, 16, 17
GetInteger64i v, 63, 439, 448, 477,

479–481
GetInteger64v, 12, 36, 281, 438, 445,

485, 486, 495, 497
GetIntegeri v, 63, 369, 393, 421, 439,

448, 453, 458, 477–481, 494
GetIntegerv, 12, 13, 17, 102, 111, 114–

117, 138, 141, 227, 233, 234,
273, 282, 286, 333, 393, 396,
397, 405, 407, 408, 421, 438,
441, 445, 447–449, 451, 452,
454, 458–460, 463, 466, 477,
479–481, 483–502

GetInternalformativ, 183, 236, 442, 532,
537

GetMultisamplefv, 298, 353, 354, 501
GetnUniformfv, 134
GetnUniformiv, 134
GetnUniformuiv, 134
GetObjectLabel, 434, 435, 448, 450,

455, 457, 461, 462, 464–466,
476, 480

GetObjectPtrLabel, 435, 482
GetPointerv, 433, 440, 498
GetProgramBinary, 99, 99, 100, 466,

537
GetProgramInfoLog, 75, 100, 131, 131,

466
GetProgramInterfaceiv, 82, 84, 472
GetProgramiv, 73, 99, 100, 127, 127,

131, 295, 305, 308, 327, 329,
332, 421, 466–469, 471, 527,
538

GetProgramPipelineInfoLog, 131, 132,
465

GetProgramPipelineiv, 130, 131, 306,
465

GetProgramResourceIndex, 83
GetProgramResourceiv, 85, 85, 86, 105,

107, 112, 116, 473, 474, 527,
538

GetProgramResourceLocation, 92, 92,
93

GetProgramResourceName, 84
GetQueryiv, 42, 502, 536
GetQueryObjectuiv, 17, 42, 476
GetRenderbufferParameteriv, 237, 253,

462
GetSamplerParameter, 144, 457
GetSamplerParameterfv, 457
GetSamplerParameterI{i ui}v, 144
GetSamplerParameterIiv, 144
GetSamplerParameterIuiv, 12, 144
GetSamplerParameteriv, 457
GetShaderInfoLog, 69, 131, 131, 464

OpenGL ES 3.2 (November 3, 2016)

INDEX 555

GetShaderiv, 69, 70, 126, 131, 132, 464
GetShaderPrecisionFormat, 69, 133,

487, 543
GetShaderSource, 132, 464
GetString, 440, 441, 442, 488
GetStringi, 441, 488
GetSynciv, 17, 34, 38, 38, 482
GetTexLevelParameter, 191, 191, 456
GetTexLevelParameteriv, 456
GetTexParameter, 190, 207, 220, 455
GetTexParameterfv, 455
GetTexParameterI, 190
GetTexParameterIiv, 190
GetTexParameterIuiv, 190
GetTexParameteriv, 455
GetTransformFeedbackVarying, 295,

468
GetUniform, 467
GetUniformBlockIndex, 106
GetUniformfv, 133
GetUniformIndices, 104
GetUniformiv, 134
GetUniformLocation, 104, 119, 120,

467, 530
GetUniformuiv, 134
GetVertexAttribfv, 284, 285, 475
GetVertexAttribIiv, 284, 285
GetVertexAttribIuiv, 284, 285
GetVertexAttribiv, 284, 285, 448
GetVertexAttribPointerv, 285, 448
gl , 82
gl BoundingBox, 311, 312, 324, 351
gl BoundingBox[0], 351
gl BoundingBox[1], 351
gl FragColor, 375, 376, 396
gl FragCoord, 373
gl FragCoord.z, 505
gl FragData, 396
gl FragData[n], 375, 376
gl FragDepth, 375, 376, 505

gl FrontFacing, 373
gl in, 309, 310, 323, 324
gl in[], 330
gl InstanceID, 278, 281, 291, 303
gl InvocationID, 308, 310, 312, 330
gl Layer, 254, 332, 333, 486
gl MaxPatchVertices, 309, 310, 324,

325
gl NumSamples, 374
gl NumWorkGroups, 421
gl out, 311
gl PatchVerticesIn, 310, 324
gl PerVertex, 98
gl PointCoord, 356
gl PointSize, 303, 356, 541
gl Position, 293, 303, 310, 311, 324,

325, 330, 332, 347, 511
gl PrimitiveID, 310, 324, 332, 373
gl PrimitiveIDIn, 331
gl SampleID, 374
gl SampleMask, 375, 539
gl SampleMaskIn, 374, 539
gl SamplePosition, 374
gl TessCoord, 314, 324, 508
gl TessLevelInner, 311, 312, 324, 325
gl TessLevelInner[1], 324
gl TessLevelOuter, 311, 312, 324, 325
gl TessLevelOuter[2], 324
gl TessLevelOuter[3], 324
gl VertexID, 278, 280, 291, 303, 374,

521, 529
GREATER, 188, 213, 381, 382
GREEN, 188, 211, 372, 455, 456, 461,

501
GREEN BITS, 252
GUILTY CONTEXT RESET, 16

HALF FLOAT, 147, 148, 150, 221, 267,
409, 410

HARDLIGHT, 389

OpenGL ES 3.2 (November 3, 2016)

INDEX 556

HIGH FLOAT, 133
HIGH INT, 133
highp, 340
Hint, 436
HSL COLOR, 391
HSL HUE, 391
HSL LUMINOSITY, 391
HSL SATURATION, 391

if, 79, 313
iimage2D, 91
iimage2DArray, 91
iimage3D, 91
iimageBuffer, 91
iimageCube, 91
iimageCubeArray, 91
image2D, 91
image2DArray, 91
image3D, 91
IMAGE 2D, 91
IMAGE 2D ARRAY, 91
IMAGE 3D, 91
IMAGE BINDING ACCESS, 478
IMAGE BINDING FORMAT, 478
IMAGE BINDING LAYER, 478
IMAGE BINDING LAYERED, 478
IMAGE BINDING LEVEL, 478
IMAGE BINDING NAME, 478
IMAGE BUFFER, 91
IMAGE CUBE, 91
IMAGE CUBE MAP ARRAY, 91
IMAGE FORMAT COMPATIBIL-

ITY BY CLASS, 220
IMAGE FORMAT COMPATIBIL-

ITY BY SIZE, 220
IMAGE FORMAT COMPATIBIL-

ITY TYPE, 190, 220
imageBuffer, 91
imageCube, 91
imageCubeArray, 91

IMPLEMENTATION COLOR -
READ FORMAT, 252, 407,
408, 501

IMPLEMENTATION COLOR -
READ TYPE, 252, 407, 408,
501

in, 324
INCR, 381
INCR WRAP, 381
INFO LOG LENGTH, 127, 128, 130,

131, 464–466
INNOCENT CONTEXT RESET, 16
INT, 89, 147, 148, 150, 168, 192, 219,

221, 231, 266, 269, 407, 410
int, 89, 111, 112, 341
INT 2 10 10 10 REV, 267, 268, 273
INT IMAGE 2D, 91
INT IMAGE 2D ARRAY, 91
INT IMAGE 3D, 91
INT IMAGE BUFFER, 91
INT IMAGE CUBE, 91
INT IMAGE CUBE MAP ARRAY, 91
INT SAMPLER 2D, 90
INT SAMPLER 2D ARRAY, 90
INT SAMPLER 2D MULTISAMPLE,

90
INT SAMPLER 2D MULTISAM-

PLE ARRAY, 90
INT SAMPLER 3D, 90
INT SAMPLER BUFFER, 90
INT SAMPLER CUBE, 90
INT SAMPLER CUBE MAP AR-

RAY, 90
INT VEC2, 89
INT VEC3, 89
INT VEC4, 89
INTERLEAVED ATTRIBS, 128, 136,

294, 295, 342, 468
interpolateAtCentroid, 371
interpolateAtOffset, 371, 486

OpenGL ES 3.2 (November 3, 2016)

INDEX 557

interpolateAtSample, 371
INVALID ENUM, 14, 15, 34, 38, 40–

43, 53, 54, 56, 59, 62, 63, 68,
71, 77, 78, 83–85, 92, 93, 101,
127, 129, 130, 133, 138, 139,
143–145, 166, 170, 179–181,
183, 184, 189–192, 204, 208–
210, 217, 225, 228, 230, 232–
234, 236, 238–242, 251, 264,
268, 278, 281, 285, 294, 338,
339, 354, 363, 384, 388, 397,
402, 403, 406, 413, 418, 428–
431, 435, 437, 439–442, 444,
532

INVALID FRAMEBUFFER OPERA-
TION, 15, 175, 252, 413

INVALID INDEX, 84
INVALID OPERATION, 15, 40, 41,

43, 53, 56, 59, 60, 62, 63, 69–
72, 74–77, 83–85, 92, 93, 95,
96, 99, 101, 109, 110, 115,
119, 127, 129–132, 134, 139,
142–144, 149, 152, 153, 158,
165, 172, 175, 179–184, 189,
204, 208–210, 217, 226, 229–
231, 233, 236, 238–243, 268–
272, 277, 279, 284, 290, 291,
294, 304–307, 327, 333, 337–
340, 342, 343, 377, 384, 391,
392, 397, 403, 406, 408, 409,
411, 413, 414, 418, 419, 421,
422, 428, 518, 520, 538, 539

INVALID VALUE, 14, 15, 34–36, 38–
40, 50, 51, 54, 56, 59–61, 63,
68–72, 74, 75, 77, 78, 83–85,
92–96, 99, 101, 109, 110, 115,
124, 126, 127, 129, 131–134,
139–143, 145, 165–167, 170,
172–175, 179–181, 183, 184,
189, 192, 208, 216, 217, 227,

228, 235, 236, 240, 242, 243,
264, 266–272, 276, 278, 280,
282, 284–286, 290, 291, 294,
305, 336, 337, 348, 354, 357,
368, 369, 384, 397–399, 402,
403, 413, 418, 419, 421, 422,
428–430, 432, 434, 435, 439,
440, 442, 444, 518, 530

Invalidate[Sub]Framebuffer, 520, 522
InvalidateFramebuffer, 404
InvalidateSubFramebuffer, 402, 403,

528, 538
INVERT, 381
IS PER PATCH, 86, 87
IS ROW MAJOR, 85, 87, 105, 473
isampler2D, 90
isampler2DArray, 90
isampler2DMS, 90
isampler2DMSArray, 90
isampler3D, 90
isamplerBuffer, 90
isamplerCube, 90
isamplerCubeArray, 90
IsBuffer, 51, 51
IsEnabled, 393, 439, 439, 445, 449, 452,

453, 458, 498
IsEnabledi, 384, 393, 439, 440, 458
IsFramebuffer, 227, 227
ISOLINES, 129
isolines, 313, 321, 324
IsProgram, 77, 77
IsProgramPipeline, 94, 94
IsQuery, 42, 42
IsRenderbuffer, 235, 235
IsSampler, 141, 143, 143
IsShader, 70, 70
IsSync, 38, 38
IsTexture, 140, 140
IsTransformFeedback, 337, 337
IsVertexArray, 277, 277

OpenGL ES 3.2 (November 3, 2016)

INDEX 558

ivec2, 89, 341
ivec3, 89, 341
ivec4, 89, 219, 341

KEEP, 381, 458

LAST VERTEX CONVENTION, 333
LAYER PROVOKING VERTEX, 333,

486
layout, 82, 87, 111, 113, 116–118, 219,

307, 311, 313, 315, 327, 329,
330, 377, 421

LEQUAL, 188, 211, 213, 381, 382, 455,
457

LESS, 188, 213, 381, 382, 458
LIGHTEN, 389
LINE LOOP, 258, 328, 333, 339
LINE STRIP, 128, 258, 328, 333, 339
LINE STRIP ADJACENCY, 260, 328,

333
LINE WIDTH, 452
LINEAR, 170, 172, 188, 194, 198, 199,

201, 203, 204, 206, 211, 231,
232, 246, 298, 412–414, 455,
457, 518

LINEAR MIPMAP LINEAR, 188,
201, 203, 246

LINEAR MIPMAP NEAREST, 188,
201, 203, 246

LINES, 128, 258, 328, 333, 338, 339
lines, 327
LINES ADJACENCY, 128, 260, 328,

333
lines adjacency, 328
LineWidth, 357
LINK STATUS, 73, 99, 100, 128, 466,

521, 527
LinkProgram, 71, 73, 74–76, 80, 81, 97,

100, 114, 119, 127, 288, 290,
292, 294, 303, 332, 343, 537

LOCATION, 86, 87, 92, 473
location, 82, 97, 538
LOSE CONTEXT ON RESET, 17
LOW FLOAT, 133
LOW INT, 133
lowp, 340
LUMINANCE, 149, 151, 157, 159, 160,

169, 171, 373
LUMINANCE ALPHA, 149, 151, 157,

159, 160, 169, 171, 373

main, 313
MAJOR VERSION, 441, 488
MAP FLUSH EXPLICIT BIT, 58–60
MAP INVAL-

IDATE BUFFER BIT, 58, 59,
537

MAP INVALIDATE RANGE BIT,
57–59, 537

MAP READ BIT, 57–59
MAP UNSYNCHRONIZED BIT, 58,

59, 537
MAP WRITE BIT, 57–59
MapBuffer, 343
MapBufferRange, 53, 56, 57, 57–59,

268, 343, 537
matC, 112
matCxR, 112
mat2, 89, 289, 341
mat2x3, 89, 289, 341
mat2x4, 89, 289, 341
mat3, 89, 109, 289, 341
mat3x2, 89, 289, 341
mat3x4, 89, 289, 341
mat4, 89, 289, 341
mat4x2, 89, 289, 341
mat4x3, 89, 289, 341
MATRIX STRIDE, 85, 88, 105, 112,

473
MAX, 386

OpenGL ES 3.2 (November 3, 2016)

INDEX 559

MAX 3D TEXTURE SIZE, 165, 191,
242, 243, 485

MAX ARRAY TEXTURE LAYERS,
166, 183, 243, 485

MAX ATOMIC COUNTER -
BUFFER BINDINGS, 64,
116, 496

MAX ATOMIC COUNTER -
BUFFER SIZE, 496

MAX COLOR ATTACHMENTS, 224,
233, 239–242, 251, 395, 397,
403, 406, 485

MAX COLOR TEXTURE SAM-
PLES, 443, 486

MAX COMBINED ATOMIC -
COUNTER BUFFERS, 116,
496

MAX COMBINED ATOMIC COUN-
TERS, 301, 496

MAX COMBINED COMPUTE UNI-
FORM COMPONENTS, 102,
494

MAX COMBINED FRAGMENT -
UNIFORM COMPONENTS,
102, 495

MAX COMBINED GEOMETRY -
UNIFORM COMPONENTS,
102, 495

MAX COMBINED IMAGE UNI-
FORMS, 302, 497

MAX COMBINED SHADER -
OUTPUT RESOURCES, 221,
496

MAX COMBINED SHADER STOR-
AGE BLOCKS, 118, 303,
305, 497

MAX COMBINED TESS CON-
TROL UNI-
FORM COMPONENTS, 102,
495

MAX COMBINED TESS EVALUA-
TION UNI-
FORM COMPONENTS, 102,
495

MAX COMBINED TEXTURE IM-
AGE UNITS, 109, 138, 142,
299, 496

MAX COMBINED UNIFORM -
BLOCKS, 111, 114, 495

MAX COMBINED VERTEX UNI-
FORM COMPONENTS, 102,
495

MAX COMPUTE ATOMIC -
COUNTER BUFFERS, 116,
494, 529

MAX COMPUTE ATOMIC COUN-
TERS, 301, 494

MAX COMPUTE IMAGE UNI-
FORMS, 302, 497

MAX COMPUTE SHADER STOR-
AGE BLOCKS, 118, 302, 494

MAX COMPUTE SHARED MEM-
ORY SIZE, 422, 494, 529

MAX COMPUTE TEXTURE IM-
AGE UNITS, 299, 494

MAX COMPUTE UNIFORM -
BLOCKS, 111, 494

MAX COMPUTE UNI-
FORM COMPONENTS, 102,
494, 528

MAX COMPUTE WORK GROUP -
COUNT, 421, 494

MAX COMPUTE WORK GROUP -
INVOCATIONS, 421, 494

MAX COMPUTE WORK GROUP -
SIZE, 421, 494

MAX CUBE MAP TEXTURE SIZE,
166, 191, 241, 485

MAX DEBUG GROUP STACK -
DEPTH, 430, 499

OpenGL ES 3.2 (November 3, 2016)

INDEX 560

MAX DEBUG LOGGED MES-
SAGES, 427, 499

MAX DEBUG MESSAGE LENGTH,
426, 429, 430, 499

MAX DEPTH TEXTURE SAMPLES,
443, 486

MAX DRAW BUFFERS, 384, 396–
398, 402, 485

MAX ELEMENT INDEX, 281, 485
MAX ELEMENTS INDICES, 282,

487
MAX ELEMENTS VERTICES, 282,

487
MAX FRAGMENT ATOMIC -

COUNTER BUFFERS, 116,
493, 541

MAX FRAGMENT ATOMIC COUN-
TERS, 301, 493, 541

MAX FRAGMENT IMAGE UNI-
FORMS, 302, 497, 541

MAX FRAGMENT -
INPUT COMPONENTS, 375,
493

MAX FRAGMENT INTERPOLA-
TION OFFSET, 371, 486

MAX FRAGMENT SHADER STOR-
AGE BLOCKS, 118, 302,
493, 541

MAX FRAGMENT UNIFORM -
BLOCKS, 111, 493

MAX FRAGMENT UNI-
FORM COMPONENTS, 102,
493, 526, 528

MAX FRAGMENT UNIFORM VEC-
TORS, 102, 493, 526

MAX FRAME-
BUFFER HEIGHT, 228, 248,
485

MAX FRAMEBUFFER LAYERS,
228, 248, 485

MAX FRAMEBUFFER SAMPLES,
228, 248, 485

MAX FRAMEBUFFER WIDTH, 228,
248, 485

MAX GEOMETRY ATOMIC -
COUNTER BUFFERS, 116,
492

MAX GEOMETRY ATOMIC COUN-
TERS, 301, 492

MAX GEOMETRY IMAGE UNI-
FORMS, 302, 497

MAX GEOMETRY -
INPUT COMPONENTS, 331,
492

MAX GEOMETRY OUTPUT COM-
PONENTS, 332, 492, 541

MAX GEOMETRY OUTPUT VER-
TICES, 332, 492

MAX GEOMETRY SHADER INVO-
CATIONS, 492

MAX GEOMETRY SHADER STOR-
AGE BLOCKS, 118, 302, 492

MAX GEOMETRY TEXTURE IM-
AGE UNITS, 299, 492

MAX GEOMETRY TOTAL OUT-
PUT COMPONENTS, 332,
492

MAX GEOMETRY UNIFORM -
BLOCKS, 111, 492

MAX GEOMETRY UNI-
FORM COMPONENTS, 102,
492

MAX IMAGE UNITS, 119, 215, 217,
497

MAX INTEGER SAMPLES, 237, 443,
486

MAX LABEL LENGTH, 432, 499
MAX NAME LENGTH, 83, 84, 472
MAX NUM ACTIVE VARIABLES,

83, 472

OpenGL ES 3.2 (November 3, 2016)

INDEX 561

MAX PATCH VERTICES, 264, 490
MAX PROGRAM TEXEL OFFSET,

195, 493
MAX PROGRAM TEXTURE -

GATHER OFFSET, 195, 201,
493

MAX RENDERBUFFER SIZE, 236,
485

MAX SAMPLE MASK WORDS,
369, 453, 486

MAX SAMPLES, 237, 374, 375, 443,
485, 501, 539

MAX SERVER WAIT TIMEOUT, 36,
486

MAX SHADER STORAGE -
BLOCK SIZE, 117, 497

MAX SHADER STORAGE -
BUFFER BINDINGS, 64, 497

MAX TESS CONTROL ATOMIC -
COUNTER BUFFERS, 115,
490

MAX TESS CONTROL ATOMIC -
COUNTERS, 301, 490

MAX TESS CONTROL IMAGE -
UNIFORMS, 302, 497

MAX TESS CONTROL -
INPUT COMPONENTS, 310,
490, 541

MAX TESS CONTROL OUTPUT -
COMPONENTS, 312, 490,
541

MAX TESS CONTROL SHADER -
STORAGE BLOCKS, 117,
302, 490

MAX TESS CONTROL TEXTURE -
IMAGE UNITS, 299, 490

MAX TESS CONTROL TOTAL -
OUTPUT COMPONENTS,
312, 490, 540

MAX TESS CONTROL UNIFORM -
BLOCKS, 111, 490

MAX TESS CONTROL UNI-
FORM COMPONENTS, 102,
490

MAX TESS EVALUATION -
ATOMIC COUNTER -
BUFFERS, 115, 491

MAX TESS EVALUATION -
ATOMIC COUNTERS, 301,
491

MAX TESS EVALUATION IMAGE -
UNIFORMS, 302, 497

MAX TESS EVALUATION -
INPUT COMPONENTS, 325,
491, 541

MAX TESS EVALUATION OUT-
PUT COMPONENTS, 326,
491, 541

MAX TESS EVALUATION -
SHADER STORAGE -
BLOCKS, 118, 302, 491

MAX TESS EVALUATION TEX-
TURE IMAGE UNITS, 299,
491

MAX TESS EVALUATION UNI-
FORM BLOCKS, 111, 491

MAX TESS EVALUATION UNI-
FORM COMPONENTS, 102,
491

MAX TESS GEN LEVEL, 315, 490
MAX TESS PATCH COMPONENTS,

312, 325, 490
MAX TEXTURE BUFFER SIZE,

185, 487
MAX TEXTURE IMAGE UNITS,

299, 493
MAX TEXTURE LOD BIAS, 195,

485

OpenGL ES 3.2 (November 3, 2016)

INDEX 562

MAX TEXTURE SIZE, 166, 183, 191,
241, 243, 485

MAX TRANSFORM FEEDBACK -
INTERLEAVED COMPO-
NENTS, 295, 500

MAX TRANSFORM FEEDBACK -
SEPARATE ATTRIBS, 64,
294, 342, 500

MAX TRANSFORM FEEDBACK -
SEPARATE COMPONENTS,
295, 500

MAX UNIFORM BLOCK SIZE, 111,
494, 495, 526

MAX UNIFORM BUFFER BIND-
INGS, 64, 115, 495

MAX UNIFORM LOCATIONS, 103,
496

MAX VARYING COMPONENTS,
293, 496

MAX VARYING VECTORS, 293, 496
MAX VERTEX ATOMIC -

COUNTER BUFFERS, 115,
489

MAX VERTEX ATOMIC COUN-
TERS, 301, 489

MAX VERTEX ATTRIB BINDINGS,
269, 271, 286, 487

MAX VERTEX ATTRIB RELA-
TIVE OFFSET, 268, 487

MAX VERTEX ATTRIB STRIDE,
269, 270, 487

MAX VERTEX ATTRIBS, 264–267,
269, 271, 272, 285, 286, 290,
292, 489

MAX VERTEX IMAGE UNIFORMS,
302, 497

MAX VERTEX OUTPUT COMPO-
NENTS, 293, 311, 312, 325,
326, 331, 332, 375, 489

MAX VERTEX SHADER STOR-
AGE BLOCKS, 117, 302, 489

MAX VERTEX TEXTURE IMAGE -
UNITS, 299, 489

MAX VERTEX UNIFORM -
BLOCKS, 111, 489

MAX VERTEX UNI-
FORM COMPONENTS, 102,
489

MAX VERTEX UNIFORM VEC-
TORS, 102, 489

MAX VIEWPORT DIMS, 348, 404,
486

MEDIUM FLOAT, 133
MEDIUM INT, 133
mediump, 340
MemoryBarrier, 122, 125, 126
memoryBarrier, 121, 122, 125
MemoryBarrierByRegion, 125, 126
MIN, 386
MIN FRAGMENT INTERPOLA-

TION OFFSET, 371, 486
MIN PROGRAM TEXEL OFFSET,

195, 493
MIN PROGRAM TEXTURE -

GATHER OFFSET, 195, 201,
493

MIN SAMPLE SHADING VALUE,
355, 453

MINOR VERSION, 441, 488
MinSampleShading, 355
MIRRORED REPEAT, 188, 197
MULTIPLY, 389
MULTISAMPLE LINE WIDTH -

GRANULARITY, 362, 485,
536

MULTISAMPLE LINE WIDTH -
RANGE, 362, 485, 536

OpenGL ES 3.2 (November 3, 2016)

INDEX 563

NAME LENGTH, 86, 88, 105, 107,
474

NEAREST, 188, 193, 197, 199, 201,
203–206, 212, 246, 298, 412,
413

NEAREST MIPMAP -
LINEAR, 188, 201, 203, 211,
246, 457

NEAREST MIPMAP NEAREST, 188,
201, 202, 206, 212, 246, 527

NEVER, 188, 213, 381, 382
NICEST, 436, 437
NO ERROR, 14, 16, 17
NO RESET NOTIFICATION, 17
NONE, 175, 188, 192, 206, 211, 212,

231, 233, 244, 247, 300, 380,
391, 394–397, 401, 402, 405,
408, 455–457, 461, 518, 520,
531

NOTEQUAL, 188, 213, 381, 382
NULL, 426, 434, 435, 448, 450, 498,

521
NUM ACTIVE VARIABLES, 85, 86,

88, 107, 474
NUM COMPRESSED TEXTURE -

FORMATS, 176, 487
NUM EXTENSIONS, 442, 488
NUM PROGRAM BINARY FOR-

MATS, 100, 487
NUM SAMPLE COUNTS, 443
NUM SAMPLES COUNTS, 444
NUM SHADER BINARY FOR-

MATS, 66, 70, 487

OBJECT TYPE, 34, 38, 482
ObjectLabel, 431, 432, 434
ObjectPtrLabel, 432
OFFSET, 86, 88, 105, 474
ONE, 188, 372, 386, 387, 393, 458

ONE MINUS CONSTANT ALPHA,
387

ONE MINUS CONSTANT COLOR,
387

ONE MINUS DST ALPHA, 387
ONE MINUS DST COLOR, 387
ONE MINUS SRC ALPHA, 387
ONE MINUS SRC COLOR, 387
out, 311
OUT OF MEMORY, 14, 15, 208
OVERLAY, 389

PACK ALIGNMENT, 407, 463
PACK IMAGE HEIGHT, 520
PACK ROW LENGTH, 407, 463
PACK SKIP IMAGES, 520
PACK SKIP PIXELS, 407, 463
PACK SKIP ROWS, 407, 463
patch, 87, 308
patch in, 325
patch out, 312
PATCH VERTICES, 264, 447
PATCHES, 263, 273, 307, 486
PatchParameteri, 264
PauseTransformFeedback, 339, 340
PIXEL BUFFER BARRIER BIT, 123
PIXEL PACK BUFFER, 52, 123, 145,

406
PIXEL PACK BUFFER BINDING,

410, 463
PIXEL UNPACK BUFFER, 52, 123,

145
PIXEL UNPACK BUFFER BIND-

ING, 149, 176, 463
PixelStorei, 144, 145, 145, 407, 419
point mode, 315
POINTS, 128, 258, 327, 328, 333, 338,

339
points, 327
POLYGON OFFSET FACTOR, 452

OpenGL ES 3.2 (November 3, 2016)

INDEX 564

POLYGON OFFSET FILL, 366, 452
POLYGON OFFSET UNITS, 452
PolygonOffset, 365
PopDebugGroup, 430, 430
PRIMITIVE BOUNDING BOX, 311,

451
PRIMITIVE RESTART FIXED IN-

DEX, 272, 449
PRIMITIVE RESTART FOR -

PATCHES SUPPORTED,
273, 486

PrimitiveBoundingBox, 351
PRIMITIVES GENERATED, 39, 344
PROGRAM, 431
PROGRAM BINARY FORMATS,

100, 487
PROGRAM BINARY LENGTH, 99,

466
PROGRAM BINARY RE-

TRIEVABLE HINT, 76, 77,
100, 129, 466

PROGRAM INPUT, 79, 82, 85, 86, 92,
290, 291

PROGRAM OUTPUT, 80, 82, 85, 86,
92, 376, 377

PROGRAM PIPELINE, 431
PROGRAM PIPELINE BINDING,

466
PROGRAM SEPARABLE, 76–78, 96,

129, 304, 466
ProgramBinary, 75, 76, 99, 100, 127,

343
ProgramParameteri, 76, 100, 530
ProgramUniform, 110
ProgramUniform{1234}ui, 110
ProgramUniform{1234}uiv, 110
ProgramUniformMatrix{234}, 110
ProgramUniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3},

110
PushDebugGroup, 430, 430

QUADS, 129, 471
quads, 313, 315, 318, 324
QUERY, 431
QUERY RESULT, 43, 476
QUERY RESULT AVAILABLE, 17,

42, 43, 476

R11F G11F B10F, 147, 160, 162, 417
R16F, 148, 162, 171, 186, 417
R16I, 148, 162, 186, 417
R16UI, 148, 162, 186, 417
R32F, 148, 162, 171, 186, 219, 221,

237, 417, 443
r32f, 219
R32I, 148, 162, 186, 219, 221, 417
r32i, 219
R32UI, 148, 162, 186, 219, 221, 417,

478
r32ui, 219
R8, 148, 162, 171, 186, 417, 456
R8 SNORM, 148, 162, 417
R8I, 148, 162, 186, 417
R8UI, 148, 162, 186, 417
RASTERIZER DISCARD, 252, 351,

452
READ BUFFER, 405, 460
READ FRAMEBUFFER, 224, 225,

227, 228, 230, 232, 238–241,
251, 402, 403, 411, 459, 520

READ FRAMEBUFFER BINDING,
175, 227, 252, 408, 409, 459

READ ONLY, 216, 478
READ WRITE, 216
ReadBuffer, 395, 405, 419, 538
ReadnPixels, 407, 408
ReadPixels, 123, 144, 153, 168, 219,

220, 252, 254, 343, 405, 406,
407, 407–409

RED, 148, 151, 159, 162, 177, 188, 192,
211, 221, 372, 373, 408, 411,

OpenGL ES 3.2 (November 3, 2016)

INDEX 565

455, 456, 461, 501
RED BITS, 252
RED INTEGER, 148, 151, 221
REFERENCED BY -

COMPUTE SHADER, 86, 88,
474

REFERENCED BY FRAG-
MENT SHADER, 86, 88, 107,
474

REFERENCED BY GEOM-
ETRY SHADER, 86, 88, 107,
474

REFERENCED BY TESS -
CONTROL SHADER, 86, 88,
107, 474

REFERENCED BY TESS EVALUA-
TION SHADER, 86, 88, 107,
474

REFERENCED BY VERTEX -
SHADER, 86, 88, 107, 474

ReleaseShaderCompiler, 69, 69
RENDERBUFFER, 231, 232, 234–239,

253, 415, 418, 431, 442, 443,
459

RENDERBUFFER ALPHA SIZE,
237, 462

RENDERBUFFER BINDING, 234,
459

RENDERBUFFER BLUE SIZE, 237,
462

RENDERBUFFER DEPTH SIZE,
238, 462

RENDERBUFFER GREEN SIZE,
237, 462

RENDERBUFFER HEIGHT, 236, 237,
462

RENDERBUFFER INTERNAL FOR-
MAT, 236, 237, 462

RENDERBUFFER RED SIZE, 237,
462

RENDERBUFFER SAMPLES, 233,
236, 237, 249, 462

RENDERBUFFER STENCIL SIZE,
238, 462

RENDERBUFFER WIDTH, 236, 237,
462

RenderbufferStorage, 236, 236
RenderbufferStorage*, 250
RenderbufferStorageMultisample, 228,

235, 236, 537
renderbuffertarget, 238
RENDERER, 440, 441, 488
REPEAT, 188, 197, 211, 457
REPLACE, 381
RESET NOTIFICATION STRATEGY,

17, 502
ResumeTransformFeedback, 338, 339,

340, 343, 539
RG, 148, 151, 159, 162, 163, 177, 373,

408, 411
RG16, 417
RG16F, 148, 162, 171, 186, 417
RG16I, 148, 162, 186, 417
RG16UI, 148, 163, 186, 417
RG32F, 148, 162, 171, 186, 237, 416,

443
RG32I, 148, 163, 186, 416
RG32UI, 148, 163, 186, 416
RG8, 148, 162, 171, 186, 417
RG8 SNORM, 148, 162, 417
RG8I, 148, 162, 186, 417
RG8UI, 148, 162, 186, 417
RG INTEGER, 148, 151
RGB, 147, 149, 151, 154, 156, 159–

163, 169, 171, 177, 247, 373,
387, 408, 409, 411

RGB10 A2, 147, 162, 170, 407, 417
RGB10 A2UI, 147, 162, 417
RGB16F, 147, 162, 171, 416
RGB16I, 147, 163, 416

OpenGL ES 3.2 (November 3, 2016)

INDEX 566

RGB16UI, 147, 163, 416
RGB32F, 147, 162, 171, 186, 416
RGB32I, 148, 163, 186, 416
RGB32UI, 148, 163, 186, 416
RGB565, 147, 160, 162, 171
RGB5 A1, 147, 160, 162, 171
RGB8, 147, 160, 162, 171, 417
RGB8 SNORM, 147, 162, 417
RGB8I, 147, 163, 417
RGB8UI, 147, 163, 417
RGB9 E5, 147, 160, 162, 175, 213,

417, 521
RGB INTEGER, 147, 148, 151
RGBA, 147, 149, 151, 154, 156, 159,

160, 162, 163, 168, 169, 171,
177, 178, 211, 219–221, 247,
373, 407, 408, 456

RGBA10 A2, 171
RGBA16F, 147, 162, 171, 186, 219,

221, 237, 416, 443
rgba16f, 219
RGBA16I, 147, 163, 186, 219, 221, 416
rgba16i, 219
RGBA16UI, 147, 163, 186, 219, 221,

416
rgba16ui, 219
RGBA32F, 147, 162, 171, 186, 219,

220, 237, 416, 443
rgba32f, 219
RGBA32I, 147, 163, 186, 219, 221, 416
rgba32i, 219
RGBA32UI, 147, 163, 186, 219, 221,

416
rgba32ui, 219
RGBA4, 147, 160, 162, 171, 462
RGBA8, 147, 160, 162, 171, 186, 219,

221, 417
rgba8, 219
RGBA8 SNORM, 147, 162, 219, 221,

417

rgba8 snorm, 219
RGBA8I, 147, 163, 186, 219, 221, 417
rgba8i, 219
RGBA8UI, 147, 163, 186, 219, 221,

417
rgba8ui, 219
RGBA INTEGER, 147, 151, 154, 168,

219, 221, 407

sample, 371, 374
sample in, 354, 371
SAMPLE ALPHA TO COVERAGE,

378, 380, 453
SAMPLE BUFFERS, 121, 176, 233,

234, 353–356, 361, 366, 368,
371, 378, 394, 399, 408, 413,
501, 518, 519, 527

SAMPLE COVERAGE, 368, 374, 453
SAMPLE COVERAGE INVERT, 368,

369, 453
SAMPLE COVERAGE VALUE, 368,

369, 453
SAMPLE MASK, 368, 374, 453
SAMPLE MASK VALUE, 13, 368,

369, 453, 532
SAMPLE POSITION, 353, 354, 501
SAMPLE SHADING, 355, 453
SampleCoverage, 369
SampleMaski, 369
SAMPLER, 431
sampler*, 119
sampler*Shadow, 300
sampler2D, 89, 119
sampler2DArray, 90
sampler2DArrayShadow, 90
sampler2DMS, 90
sampler2DMSArray, 90
sampler2DShadow, 89
sampler3D, 89
SAMPLER 2D, 89

OpenGL ES 3.2 (November 3, 2016)

INDEX 567

SAMPLER 2D ARRAY, 90
SAMPLER 2D ARRAY SHADOW,

90
SAMPLER 2D MULTISAMPLE, 90
SAMPLER 2D MULTISAMPLE AR-

RAY, 90
SAMPLER 2D SHADOW, 89
SAMPLER 3D, 89
SAMPLER BINDING, 141, 454
SAMPLER BUFFER, 90
SAMPLER CUBE, 89
SAMPLER CUBE MAP ARRAY, 90
SAMPLER CUBE MAP ARRAY -

SHADOW, 90
SAMPLER CUBE SHADOW, 90
samplerBuffer, 90
samplerCube, 89
samplerCubeArray, 90
samplerCubeArrayShadow, 90
samplerCubeShadow, 90
SamplerParameter, 142
SamplerParameterI{i ui}v, 142
SamplerParameterIiv, 142
SamplerParameterIuiv, 142
SamplerParameteriv, 142
SAMPLES, 183, 233, 234, 353–355,

443, 444, 501, 518
Scissor, 367
SCISSOR BOX, 458
SCISSOR TEST, 368, 458
SCREEN, 389
SEPARATE ATTRIBS, 128, 294, 295,

342
SHADER, 431
SHADER BINARY FORMATS, 70,

71, 487
SHADER COMPILER, 66, 487
SHADER IMAGE ACCESS BAR-

RIER BIT, 123, 125, 126

SHADER SOURCE LENGTH, 127,
132, 464

SHADER STORAGE BARRIER BIT,
124, 126

SHADER STORAGE BLOCK, 80, 83,
85, 86

SHADER STORAGE BUFFER, 52,
53, 118

SHADER STORAGE BUFFER -
BINDING, 64, 479

SHADER STORAGE BUFFER OFF-
SET ALIGNMENT, 64, 497,
528, 529

SHADER STORAGE BUFFER SIZE,
64, 479

SHADER STORAGE BUFFER -
START, 64, 479

SHADER TYPE, 127, 134, 464
ShaderBinary, 70, 71
ShaderSource, 68, 68, 69, 132
SHADING LANGUAGE VERSION,

440, 441, 488
shared, 101, 422, 518
SHORT, 147, 148, 150, 221, 266, 269,

410
SIGNALED, 17, 34, 38
SIGNED NORMALIZED, 192, 231
SOFTLIGHT, 389
SRC ALPHA, 387
SRC ALPHA SATURATE, 387
SRC COLOR, 387
SRGB, 170, 172, 231, 385, 393, 412
SRGB8, 147, 162, 214, 417
SRGB8 ALPHA8, 147, 162, 214, 417
SRGB ALPHA8, 172
STACK OVERFLOW, 15, 430
STACK UNDERFLOW, 15, 430
STATIC COPY, 52, 55
STATIC DRAW, 52, 55, 450
STATIC READ, 52, 55

OpenGL ES 3.2 (November 3, 2016)

INDEX 568

std140, 101, 113, 114, 117, 518
std430, 114, 117
STENCIL, 230, 231, 233, 401–403,

456, 461
STENCIL8, 536
STENCIL ATTACHMENT, 226, 239,

248, 403
STENCIL BACK FAIL, 458
STENCIL BACK FUNC, 458
STENCIL BACK PASS DEPTH -

FAIL, 458
STENCIL BACK PASS DEPTH -

PASS, 458
STENCIL BACK REF, 458
STENCIL BACK VALUE MASK, 458
STENCIL BACK WRITEMASK, 459
STENCIL BITS, 252, 501
STENCIL BUFFER BIT, 399, 402,

412–414
STENCIL CLEAR VALUE, 459
STENCIL FAIL, 458
STENCIL FUNC, 458
STENCIL INDEX, 148, 151, 158, 159,

164, 188, 205, 206, 212, 247,
301, 407, 527

STENCIL INDEX8, 148, 164, 526
STENCIL PASS DEPTH FAIL, 458
STENCIL PASS DEPTH PASS, 458
STENCIL REF, 458
STENCIL TEST, 380, 458
STENCIL VALUE MASK, 458
STENCIL WRITEMASK, 13, 459
StencilFunc, 380, 381, 382, 510
StencilFuncSeparate, 380, 381
StencilMask, 398, 398, 399, 510
StencilMaskSeparate, 398, 398, 399
StencilOp, 380, 381
StencilOpSeparate, 380, 381
STREAM COPY, 52, 55
STREAM DRAW, 52, 54

STREAM READ, 52, 55
SUBPIXEL BITS, 485
switch, 313
SYNC, 435
SYNC CONDITION, 34, 38, 482
SYNC FENCE, 34, 38, 482
SYNC FLAGS, 34, 38, 482
SYNC FLUSH COMMANDS BIT,

35–37
SYNC GPU COMMANDS COM-

PLETE, 34, 38, 482
SYNC STATUS, 17, 34, 38, 482

TESS CONTROL OUTPUT VER-
TICES, 129, 308, 471

TESS CONTROL SHADER, 68, 308,
465

TESS CONTROL SHADER BIT, 95
TESS EVALUATION SHADER, 68,

321, 465
TESS EVALUATION SHADER BIT,

95
TESS GEN MODE, 129, 130, 471
TESS GEN POINT MODE, 129, 130,

471
TESS GEN SPACING, 129, 130, 471
TESS GEN VERTEX ORDER, 129,

130, 471
TexBuffer, 185
TexBufferRange, 184
texelFetch, 297
TexImage, 138, 174
TexImage*, 170, 521
TexImage*D, 144
TexImage2D, 145, 163, 166, 166–169,

173, 176, 180, 202, 219
TexImage2DMultisample, 182
TexImage3D, 145, 157, 158, 163, 165–

167, 173, 176, 180, 202
TexParameter, 47, 138, 142, 187

OpenGL ES 3.2 (November 3, 2016)

INDEX 569

TexParameterI, 187
TexParameterIiv, 187
TexParameterIuiv, 187
TexParameteriv, 187
TexStorage2D, 208
TexStorage2DMultisample, 182, 228,

527, 528
TexStorage3D, 209
TexStorage3DMultisample, 182, 182,

183
TexSubImage, 123, 174
TexSubImage*, 521
TexSubImage*D, 144
TexSubImage2D, 145, 173, 173, 175,

180
TexSubImage3D, 145, 173, 173, 174,

180, 220
TEXTURE, 231, 232, 244, 431
TEXTURE0, 138, 454
TEXTURE31, 138
TEXTURE x SIZE, 456
TEXTURE x TYPE, 456
TEXTURE xD, 454
TEXTURE 2D, 119, 138, 158, 166,

168, 170, 173, 179, 181, 187,
190, 191, 203, 204, 208, 209,
217, 241, 242

TEXTURE 2D ARRAY, 139, 157, 158,
173, 179, 181, 187, 190, 191,
203, 204, 209, 210, 217, 454

TEXTURE 2D MULTISAMPLE, 139,
158, 182, 187, 189–191, 217,
241, 242, 442, 443, 454

TEXTURE 2D MULTISAMPLE AR-
RAY, 139, 158, 182, 187, 189–
191, 217, 442, 443, 454

TEXTURE 3D, 139, 157, 173, 179,
181, 187, 190, 191, 203, 204,
209, 210, 217

TEXTURE ALPHA SIZE, 192

TEXTURE ALPHA TYPE, 191
TEXTURE BASE LEVEL,

188–190, 207, 211, 246, 455,
540

TEXTURE BINDING xD, 454
TEXTURE BINDING 2D ARRAY,

454
TEXTURE BINDING 2D MULTI-

SAMPLE, 454
TEXTURE BINDING 2D MULTI-

SAMPLE ARRAY, 454
TEXTURE BINDING BUFFER, 454
TEXTURE BINDING CUBE MAP,

454
TEXTURE BINDING CUBE MAP -

ARRAY, 454
TEXTURE BLUE SIZE, 192
TEXTURE BLUE TYPE, 191
TEXTURE BORDER COLOR, 142–

144, 187–190, 198, 211, 455,
457

TEXTURE BUFFER, 52, 139, 184,
187, 191, 217, 415, 418, 454

TEXTURE BUFFER BINDING, 502
TEXTURE BUFFER DATA STORE -

BINDING, 456
TEXTURE BUFFER OFFSET, 456
TEXTURE BUFFER OFFSET -

ALIGNMENT, 184, 487
TEXTURE BUFFER SIZE, 456
TEXTURE COMPARE FUNC, 188,

211, 212, 455, 457
TEXTURE COMPARE MODE,

188, 206, 211, 212, 300, 455,
457

TEXTURE COMPRESSED, 456
TEXTURE CUBE MAP, 139, 158,

166, 167, 187, 190, 191, 203,
204, 208, 209, 217, 454

OpenGL ES 3.2 (November 3, 2016)

INDEX 570

TEXTURE CUBE MAP ARRAY, 139,
157, 158, 164, 165, 167, 173,
179, 181, 187, 190, 191, 203,
204, 209, 210, 217, 454

TEXTURE CUBE MAP NEGA-
TIVE X, 193, 216

TEXTURE CUBE MAP NEGA-
TIVE Y, 193, 216

TEXTURE CUBE MAP NEGA-
TIVE Z, 193, 216

TEXTURE CUBE MAP POSITIVE -
X, 193, 216

TEXTURE CUBE MAP POSITIVE -
Y, 193, 216

TEXTURE CUBE MAP POSITIVE -
Z, 193, 216

TEXTURE DEPTH, 192, 456
TEXTURE DEPTH SIZE, 192
TEXTURE DEPTH TYPE, 191
TEXTURE FETCH BARRIER BIT,

123, 126
TEXTURE FIXED SAMPLE -

LOCATIONS, 183, 192, 249,
456

TEXTURE GREEN SIZE, 192
TEXTURE GREEN TYPE, 191
TEXTURE HEIGHT, 182, 183, 192,

456
TEXTURE IMMUTABLE FORMAT,

184, 190, 207, 211, 455, 517
TEXTURE IMMUTABLE LEVELS,

189, 190, 202, 207, 211, 241,
242, 455, 517

TEXTURE INTERNAL FORMAT,
183, 192, 456

TEXTURE MAG FILTER, 188, 204,
211, 212, 455, 457

TEXTURE MAX LEVEL, 188, 189,
207, 211, 246, 455, 540

TEXTURE MAX LOD, 188, 189, 211,
455, 457

TEXTURE MIN FILTER, 141, 188,
197, 198, 201, 204, 206, 211,
212, 246, 455, 457

TEXTURE MIN LOD, 188, 189, 211,
455, 457

TEXTURE RED SIZE, 192
TEXTURE RED TYPE, 191
TEXTURE SAMPLES, 182, 183, 192,

233, 249, 456
TEXTURE SHARED SIZE, 192, 456
TEXTURE STENCIL SIZE, 192
TEXTURE SWIZZLE A, 188, 211,

372, 455
TEXTURE SWIZZLE B, 188, 211,

372, 455
TEXTURE SWIZZLE G, 188, 211,

372, 455
TEXTURE SWIZZLE R, 188, 211,

372, 455
TEXTURE UPDATE BARRIER BIT,

123
TEXTURE WIDTH, 182, 183, 192,

456
TEXTURE WRAP R, 188, 197, 455,

457
TEXTURE WRAP S, 188, 197, 455,

457
TEXTURE WRAP T, 188, 197, 455,

457
textureGather, 195, 199, 200, 493
textureGatherOffset, 199
textureGatherOffsets, 199
textureSize, 299
TIMEOUT EXPIRED, 35
TIMEOUT IGNORED, 36
TOP LEVEL ARRAY SIZE, 86, 88,

474, 527

OpenGL ES 3.2 (November 3, 2016)

INDEX 571

TOP LEVEL ARRAY STRIDE, 86,
88, 474, 527

TRANSFORM FEEDBACK, 337, 338,
431

TRANSFORM FEEDBACK ACTIVE,
480

TRANSFORM FEEDBACK BAR-
RIER BIT, 124

TRANSFORM FEEDBACK BIND-
ING, 451

TRANSFORM FEED-
BACK BUFFER, 52, 53, 340,
343

TRANSFORM FEEDBACK -
BUFFER BINDING, 64, 480

TRANSFORM FEEDBACK -
BUFFER MODE, 128, 468

TRANSFORM FEEDBACK -
BUFFER SIZE, 64, 480

TRANSFORM FEEDBACK -
BUFFER START, 64, 480

TRANSFORM FEEDBACK -
PAUSED, 480

TRANSFORM FEEDBACK -
PRIMITIVES WRITTEN, 39,
42, 344

TRANSFORM FEED-
BACK VARYING, 80–83, 85,
86, 295, 296

TRANSFORM FEEDBACK VARY-
ING MAX LENGTH, 128,
468

TRANSFORM FEED-
BACK VARYINGS, 128, 295,
468

TransformFeedbackVaryings, 80, 81,
83, 294, 294, 295, 342

TRIANGLE FAN, 260, 264, 328, 333,
339

TRIANGLE STRIP, 128, 259, 264,
328, 333, 339, 468

TRIANGLE STRIP -
ADJACENCY, 263, 264, 328,
334

TRIANGLES, 128, 129, 260, 264, 328,
333, 338, 339, 468

triangles, 313, 315, 316, 328
TRIANGLES ADJACENCY, 128, 262,

264, 328, 334
triangles adjacency, 328
TRUE, 10, 12, 17, 38, 42, 51, 52, 58, 60,

66, 69–71, 73, 76–78, 94, 100,
109, 127–129, 140, 143, 183,
184, 207, 215, 217, 218, 227,
232, 235, 244, 249, 267, 273,
277, 285, 305, 337, 368, 369,
373, 383, 398, 423, 428, 439,
456, 458, 459, 487, 498

TYPE, 86, 89, 105, 290, 295, 474

uimage2D, 91
uimage2DArray, 91
uimage3D, 91
uimageBuffer, 91
uimageCube, 91
uimageCubeArray, 91
uint, 89, 111, 112, 116, 341
UNDEFINED VERTEX, 333
UNIFORM, 79, 82, 85, 86, 88, 92, 104,

105
Uniform, 9
Uniform1f, 10
Uniform1i, 10
Uniform2f, 10
Uniform2i, 10
Uniform3f, 10
Uniform3i, 10
Uniform4f, 9, 10
Uniform4i, 10

OpenGL ES 3.2 (November 3, 2016)

INDEX 572

UNIFORM ARRAY STRIDE, 105,
116, 470

UNIFORM BARRIER BIT, 123, 126
UNIFORM BLOCK, 79, 83, 85, 86,

105, 106
UNIFORM BLOCK ACTIVE UNI-

FORM INDICES, 107, 470
UNIFORM BLOCK ACTIVE UNI-

FORMS, 107, 470
UNIFORM BLOCK BINDING, 107,

470
UNIFORM BLOCK DATA SIZE, 107,

115, 470
UNIFORM BLOCK INDEX, 105, 469
UNIFORM BLOCK NAME -

LENGTH, 107, 470
UNIFORM BLOCK REFERENCED -

BY FRAGMENT SHADER,
107, 470

UNIFORM BLOCK REFERENCED -
BY GEOMETRY SHADER,
107

UNIFORM BLOCK REFERENCED -
BY TESS CONTROL -
SHADER, 107

UNIFORM BLOCK REFERENCED -
BY TESS EVALUATION -
SHADER, 107

UNIFORM BLOCK REFERENCED -
BY VERTEX SHADER, 107,
470

UNIFORM BUFFER, 52, 53, 114
UNIFORM BUFFER BINDING, 64,

481
UNIFORM BUFFER OFFSET -

ALIGNMENT, 64, 495, 528,
529

UNIFORM BUFFER SIZE, 64, 481
UNIFORM BUFFER START, 64, 481

UNIFORM IS ROW MAJOR, 105,
470

UNIFORM MATRIX STRIDE, 105,
470

UNIFORM NAME LENGTH, 105,
469

UNIFORM OFFSET, 105, 469
UNIFORM SIZE, 105, 469
UNIFORM TYPE, 105, 469
Uniform{1234}{if ui}, 106
Uniform{1234}{if ui}v, 108
UniformBlockBinding, 114, 115
UniformMatrix2x4fv, 108
UniformMatrix3fv, 109
UniformMatrix{234}fv, 108
UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv,

108
UNKNOWN CONTEXT RESET, 16
UnmapBuffer, 47, 50, 55, 58, 60, 60
UNPACK ALIGNMENT, 145, 152,

158, 463
UNPACK IMAGE HEIGHT, 145, 158,

463
UNPACK ROW LENGTH, 145, 152,

158, 463
UNPACK SKIP IMAGES, 145, 158,

166, 463
UNPACK SKIP PIXELS, 145, 152,

463
UNPACK SKIP ROWS, 145, 152, 463
UNSIGNALED, 34, 38, 482
UNSIGNED BYTE, 147–150, 160,

168, 221, 266, 269, 272, 280,
281, 407, 410

UNSIGNED INT, 89, 147, 148, 150,
155, 168, 192, 219, 221, 231,
266, 269, 272, 280, 281, 407,
410

UNSIGNED INT 10F 11F -
11F REV, 147, 150, 154–156,

OpenGL ES 3.2 (November 3, 2016)

INDEX 573

409, 410
UNSIGNED INT 24 8, 148, 150, 154,

155
UNSIGNED INT 2 10 10 10 REV,

147, 150, 154, 155, 168, 267,
268, 273, 407, 410

UNSIGNED INT 5 9 9 9 REV, 147,
150, 154–156, 161

UNSIGNED INT ATOMIC -
COUNTER, 91

UNSIGNED INT IMAGE 2D, 91
UNSIGNED INT IMAGE 2D AR-

RAY, 91
UNSIGNED INT IMAGE 3D, 91
UNSIGNED INT IMAGE BUFFER,

91
UNSIGNED INT IMAGE CUBE, 91
UNSIGNED INT IMAGE CUBE -

MAP ARRAY, 91
UNSIGNED INT SAMPLER 2D, 90
UNSIGNED INT SAMPLER 2D AR-

RAY, 90
UNSIGNED INT SAMPLER 2D -

MULTISAMPLE, 90
UNSIGNED INT SAMPLER 2D -

MULTISAMPLE ARRAY, 90
UNSIGNED INT SAMPLER 3D, 90
UNSIGNED INT SAMPLER -

BUFFER, 90
UNSIGNED INT SAMPLER CUBE,

90
UNSIGNED INT SAMPLER CUBE -

MAP ARRAY, 90
UNSIGNED INT VEC2, 89
UNSIGNED INT VEC3, 89
UNSIGNED INT VEC4, 89
UNSIGNED NORMALIZED, 192, 231
UNSIGNED SHORT, 147, 148, 150,

154, 221, 266, 269, 272, 280,
281, 410

UNSIGNED SHORT 4 4 -
4 4, 147, 149, 150, 154, 160,
410

UNSIGNED SHORT 5 5 -
5 1, 147, 149, 150, 154, 160,
410

UNSIGNED SHORT 5 6 5, 147, 149,
150, 154, 160, 410

usampler2D, 90
usampler2DArray, 90
usampler2DMS, 90
usampler2DMSArray, 90
usampler3D, 90
usamplerBuffer, 90
usamplerCube, 90
usamplerCubeArray, 90
UseProgram, 75, 75, 76, 94, 108, 304–

306, 343, 528, 537
UseProgramStages, 76, 95, 95, 129,

304, 343, 537, 538
uvec2, 89, 341
uvec3, 89, 341
uvec4, 89, 219, 341

VALIDATE STATUS, 128, 130, 305,
306, 465, 466

ValidateProgram, 128, 305, 305, 518
ValidateProgramPipeline, 130, 306
vec2, 89, 289, 341
vec3, 89, 289, 341
vec4, 89, 109, 113, 114, 219, 289, 311,

341
VENDOR, 440, 441, 488
VERSION, 440, 441, 488
VERTEX ARRAY, 431
VERTEX ARRAY BINDING, 13, 279,

284, 285, 449
VERTEX ATTRIB ARRAY BAR-

RIER BIT, 123

OpenGL ES 3.2 (November 3, 2016)

INDEX 574

VERTEX ATTRIB ARRAY BUFFER,
123

VERTEX ATTRIB ARRAY -
BUFFER BINDING, 274,
285, 448

VERTEX ATTRIB ARRAY DIVI-
SOR, 285, 448

VERTEX ATTRIB ARRAY EN-
ABLED, 285, 448

VERTEX ATTRIB ARRAY INTE-
GER, 285, 448

VERTEX ATTRIB ARRAY NOR-
MALIZED, 285, 448

VERTEX ATTRIB -
ARRAY POINTER, 270, 286,
448

VERTEX ATTRIB ARRAY SIZE,
285, 448

VERTEX ATTRIB ARRAY STRIDE,
270, 285, 448

VERTEX ATTRIB ARRAY TYPE,
285, 448

VERTEX ATTRIB BINDING, 285,
448

VERTEX ATTRIB RELATIVE OFF-
SET, 285, 448

VERTEX BINDING BUFFER, 285,
448

VERTEX BINDING DIVISOR, 285,
448

VERTEX BINDING OFFSET, 448,
531

VERTEX BINDING STRIDE, 270,
448

VERTEX SHADER, 68, 133, 465
VERTEX SHADER BIT, 95
VertexAttribBinding, 269, 270, 274
VertexAttribDivisor, 271, 277, 278, 280
VertexAttribFormat, 266, 267, 269, 285
VertexAttribI4, 265

VertexAttribIFormat, 266, 267, 269,
285

VertexAttribIPointer, 267, 270
VertexAttribPointer, 267, 269, 274, 277
VertexBindingDivisor, 271
vertices, 308
VIEW CLASS 128 BITS, 416
VIEW CLASS 16 BITS, 417
VIEW CLASS 24 BITS, 417
VIEW CLASS 32 BITS, 417
VIEW CLASS 48 BITS, 416
VIEW CLASS 64 BITS, 416
VIEW CLASS 8 BITS, 417
VIEW CLASS 96 BITS, 416
VIEW CLASS ASTC 10x10 RGBA,

418
VIEW CLASS ASTC 10x5 RGBA,

417
VIEW CLASS ASTC 10x6 RGBA,

417
VIEW CLASS ASTC 10x8 RGBA,

417
VIEW CLASS ASTC 12x10 RGBA,

418
VIEW CLASS ASTC 12x12 RGBA,

418
VIEW CLASS ASTC 4x4 RGBA, 417
VIEW CLASS ASTC 5x4 RGBA, 417
VIEW CLASS ASTC 5x5 RGBA, 417
VIEW CLASS ASTC 6x5 RGBA, 417
VIEW CLASS ASTC 6x6 RGBA, 417
VIEW CLASS ASTC 8x5 RGBA, 417
VIEW CLASS ASTC 8x6 RGBA, 417
VIEW CLASS ASTC 8x8 RGBA, 417
VIEW CLASS EAC R11, 417
VIEW CLASS EAC RG11, 417
VIEW CLASS ETC2 EAC RGBA,

417
VIEW CLASS ETC2 RGB, 417
VIEW CLASS ETC2 RGBA, 417

OpenGL ES 3.2 (November 3, 2016)

INDEX 575

VIEWPORT, 451
Viewport, 347

WAIT FAILED, 35
WaitSync, 33–35, 36, 36, 37, 45, 47,

486
while, 313
WRITE ONLY, 216

ZERO, 188, 372, 381, 386, 387, 393,
458

OpenGL ES 3.2 (November 3, 2016)

	1 Introduction
	1.1 Formatting of the OpenGL ES Specification
	1.1.1 Formatting of Changes

	1.2 What is the OpenGL ES Graphics System?
	1.3 Programmer's View of OpenGL ES
	1.4 Implementor's View of OpenGL ES
	1.5 Our View
	1.6 Related APIs
	1.6.1 OpenGL ES Shading Language
	1.6.2 WebGL
	1.6.3 Window System Bindings
	1.6.4 OpenCL

	1.7 Filing Bug Reports

	2 OpenGL ES Fundamentals
	2.1 OpenGL ES Fundamentals
	2.2 Command Syntax
	2.2.1 Data Conversion For State-Setting Commands
	2.2.2 Data Conversions For State Query Commands

	2.3 Command Execution
	2.3.1 Errors
	2.3.2 Graphics Reset Recovery
	2.3.3 Flush and Finish
	2.3.4 Numeric Representation and Computation
	2.3.5 Fixed-Point Data Conversions

	2.4 Rendering Commands
	2.5 Context State
	2.5.1 Generic Context State Queries

	2.6 Objects and the Object Model
	2.6.1 Object Management
	2.6.2 Buffer Objects
	2.6.3 Shader Objects
	2.6.4 Program Objects
	2.6.5 Program Pipeline Objects
	2.6.6 Texture Objects
	2.6.7 Sampler Objects
	2.6.8 Renderbuffer Objects
	2.6.9 Framebuffer Objects
	2.6.10 Vertex Array Objects
	2.6.11 Transform Feedback Objects
	2.6.12 Query Objects
	2.6.13 Sync Objects

	3 Dataflow Model
	4 Event Model
	4.1 Sync Objects and Fences
	4.1.1 Waiting for Sync Objects
	4.1.2 Signaling
	4.1.3 Sync Object Queries

	4.2 Query Objects and Asynchronous Queries
	4.2.1 Query Object Queries

	5 Shared Objects and Multiple Contexts
	5.1 Object Deletion Behavior
	5.1.1 Side Effects of Shared Context Destruction
	5.1.2 Automatic Unbinding of Deleted Objects
	5.1.3 Deleted Object and Object Name Lifetimes

	5.2 Sync Objects and Multiple Contexts
	5.3 Propagating Changes to Objects
	5.3.1 Determining Completion of Changes to an object
	5.3.2 Definitions
	5.3.3 Rules

	6 Buffer Objects
	6.1 Creating and Binding Buffer Objects
	6.1.1 Binding Buffer Objects to Indexed Targets

	6.2 Creating and Modifying Buffer Object Data Stores
	6.3 Mapping and Unmapping Buffer Data
	6.3.1 Unmapping Buffers
	6.3.2 Effects of Mapping Buffers on Other GL Commands

	6.4 Effects of Accessing Outside Buffer Bounds
	6.5 Copying Between Buffers
	6.6 Buffer Object Queries
	6.6.1 Indexed Buffer Object Limits and Binding Queries

	6.7 Buffer Object State

	7 Programs and Shaders
	7.1 Shader Objects
	7.2 Shader Binaries
	7.3 Program Objects
	7.3.1 Program Interfaces

	7.4 Program Pipeline Objects
	7.4.1 Shader Interface Matching
	7.4.2 Program Pipeline Object State

	7.5 Program Binaries
	7.6 Uniform Variables
	7.6.1 Loading Uniform Variables In The Default Uniform Block
	7.6.2 Uniform Blocks
	7.6.3 Uniform Buffer Object Bindings

	7.7 Atomic Counter Buffers
	7.7.1 Atomic Counter Buffer Object Storage
	7.7.2 Atomic Counter Buffer Bindings

	7.8 Shader Buffer Variables and Shader Storage Blocks
	7.9 Samplers
	7.10 Images
	7.11 Shader Memory Access
	7.11.1 Shader Memory Access Ordering
	7.11.2 Shader Memory Access Synchronization

	7.12 Shader, Program, and Program Pipeline Queries
	7.13 Required State

	8 Textures and Samplers
	8.1 Texture Objects
	8.2 Sampler Objects
	8.3 Sampler Object Queries
	8.4 Pixel Rectangles
	8.4.1 Pixel Storage Modes and Pixel Buffer Objects
	8.4.2 Transfer of Pixel Rectangles

	8.5 Texture Image Specification
	8.5.1 Required Texture Formats
	8.5.2 Encoding of Special Internal Formats
	8.5.3 Texture Image Structure

	8.6 Alternate Texture Image Specification Commands
	8.6.1 Texture Copying Feedback Loops

	8.7 Compressed Texture Images
	8.8 Multisample Textures
	8.9 Buffer Textures
	8.10 Texture Parameters
	8.11 Texture Queries
	8.11.1 Active Texture
	8.11.2 Texture Parameter Queries
	8.11.3 Texture Level Parameter Queries

	8.12 Depth Component Textures
	8.13 Cube Map Texture Selection
	8.13.1 Seamless Cube Map Filtering

	8.14 Texture Minification
	8.14.1 Scale Factor and Level of Detail
	8.14.2 Coordinate Wrapping and Texel Selection
	8.14.3 Mipmapping
	8.14.4 Manual Mipmap Generation

	8.15 Texture Magnification
	8.16 Combined Depth/Stencil Textures
	8.17 Texture Completeness
	8.17.1 Effects of Sampler Objects on Texture Completeness
	8.17.2 Effects of Completeness on Texture Application
	8.17.3 Effects of Completeness on Texture Image Specification

	8.18 Immutable-Format Texture Images
	8.19 Texture State
	8.20 Texture Comparison Modes
	8.20.1 Depth Texture Comparison Mode

	8.21 sRGB Texture Color Conversion
	8.22 Shared Exponent Texture Color Conversion
	8.23 Texture Image Loads and Stores
	8.23.1 Image Unit Queries

	9 Framebuffers and Framebuffer Objects
	9.1 Framebuffer Overview
	9.2 Binding and Managing Framebuffer Objects
	9.2.1 Framebuffer Object Parameters
	9.2.2 Attaching Images to Framebuffer Objects
	9.2.3 Framebuffer Object Queries
	9.2.4 Renderbuffer Objects
	9.2.5 Required Renderbuffer Formats
	9.2.6 Renderbuffer Object Queries
	9.2.7 Attaching Renderbuffer Images to a Framebuffer
	9.2.8 Attaching Texture Images to a Framebuffer

	9.3 Feedback Loops Between Textures and the Framebuffer
	9.3.1 Rendering Feedback Loops
	9.3.2 Texture Copying Feedback Loops

	9.4 Framebuffer Completeness
	9.4.1 Framebuffer Attachment Completeness
	9.4.2 Whole Framebuffer Completeness
	9.4.3 Required Framebuffer Formats
	9.4.4 Effects of Framebuffer Completeness on Framebuffer Operations
	9.4.5 Effects of Framebuffer State on Framebuffer Dependent Values

	9.5 Mapping between Pixel and Element in Attached Image
	9.6 Conversion to Framebuffer-Attachable Image Components
	9.7 Conversion to RGBA Values
	9.8 Layered Framebuffers

	10 Vertex Specification and Drawing Commands
	10.1 Primitive Types
	10.1.1 Points
	10.1.2 Line Strips
	10.1.3 Line Loops
	10.1.4 Separate Lines
	10.1.5 Triangle Strips
	10.1.6 Triangle Fans
	10.1.7 Separate Triangles
	10.1.8 Lines with Adjacency
	10.1.9 Line Strips with Adjacency
	10.1.10 Triangles with Adjacency
	10.1.11 Triangle Strips with Adjacency
	10.1.12 Separate Patches
	10.1.13 General Considerations For Polygon Primitives

	10.2 Current Vertex Attribute Values
	10.2.1 Current Generic Attributes
	10.2.2 Vertex Attribute Queries
	10.2.3 Required State

	10.3 Vertex Arrays
	10.3.1 Specifying Arrays for Generic Vertex Attributes
	10.3.2 Vertex Attribute Divisors
	10.3.3 Transferring Array Elements
	10.3.4 Primitive Restart
	10.3.5 Robust Buffer Access
	10.3.6 Packed Vertex Data Formats
	10.3.7 Vertex Arrays in Buffer Objects
	10.3.8 Array Indices in Buffer Objects
	10.3.9 Indirect Commands in Buffer Objects

	10.4 Vertex Array Objects
	10.5 Drawing Commands Using Vertex Arrays
	10.6 Vertex Array and Vertex Array Object Queries
	10.7 Required State

	11 Programmable Vertex Processing
	11.1 Vertex Shaders
	11.1.1 Vertex Attributes
	11.1.2 Vertex Shader Variables
	11.1.3 Shader Execution

	11.2 Tessellation
	11.2.1 Tessellation Control Shaders
	11.2.2 Tessellation Primitive Generation
	11.2.3 Tessellation Evaluation Shaders

	11.3 Geometry Shaders
	11.3.1 Geometry Shader Input Primitives
	11.3.2 Geometry Shader Output Primitives
	11.3.3 Geometry Shader Variables
	11.3.4 Geometry Shader Execution Environment

	12 Fixed-Function Vertex Post-Processing
	12.1 Transform Feedback
	12.1.1 Transform Feedback Objects
	12.1.2 Transform Feedback Primitive Capture

	12.2 Primitive Queries
	12.3 Flatshading
	12.4 Primitive Clipping
	12.4.1 Clipping Shader Outputs

	12.5 Coordinate Transformations
	12.5.1 Controlling the Viewport

	13 Fixed-Function Primitive Assembly and Rasterization
	13.1 Discarding Primitives Before Rasterization
	13.2 Primitive Bounding Box
	13.3 Invariance
	13.4 Multisampling
	13.4.1 Sample Shading

	13.5 Points
	13.5.1 Basic Point Rasterization
	13.5.2 Point Multisample Rasterization

	13.6 Line Segments
	13.6.1 Basic Line Segment Rasterization
	13.6.2 Other Line Segment Features
	13.6.3 Line Rasterization State
	13.6.4 Line Multisample Rasterization

	13.7 Polygons
	13.7.1 Basic Polygon Rasterization
	13.7.2 Depth Offset
	13.7.3 Polygon Multisample Rasterization
	13.7.4 Polygon Rasterization State

	13.8 Early Per-Fragment Tests
	13.8.1 Pixel Ownership Test
	13.8.2 Scissor Test
	13.8.3 Multisample Fragment Operations
	13.8.4 The Early Fragment Test Qualifier

	14 Programmable Fragment Processing
	14.1 Fragment Shader Variables
	14.2 Shader Execution
	14.2.1 Texture Access
	14.2.2 Shader Inputs
	14.2.3 Shader Outputs
	14.2.4 Early Fragment Tests

	15 Writing Fragments and Samples to the Framebuffer
	15.1 Per-Fragment Operations
	15.1.1 Alpha To Coverage
	15.1.2 Stencil Test
	15.1.3 Depth Buffer Test
	15.1.4 Occlusion Queries
	15.1.5 Blending
	15.1.6 sRGB Conversion
	15.1.7 Dithering
	15.1.8 Additional Multisample Fragment Operations

	15.2 Whole Framebuffer Operations
	15.2.1 Selecting Buffers for Writing
	15.2.2 Fine Control of Buffer Updates
	15.2.3 Clearing the Buffers
	15.2.4 Invalidating Framebuffer Contents

	16 Reading and Copying Pixels
	16.1 Reading Pixels
	16.1.1 Selecting Buffers for Reading
	16.1.2 ReadPixels
	16.1.3 Obtaining Pixels from the Framebuffer
	16.1.4 Conversion of RGBA values
	16.1.5 Final Conversion
	16.1.6 Placement in Pixel Pack Buffer or Client Memory

	16.2 Copying Pixels
	16.2.1 Blitting Pixel Rectangles
	16.2.2 Copying Between Images

	16.3 Pixel Draw and Read State

	17 Compute Shaders
	17.1 Compute Shader Variables

	18 Debug Output
	18.1 Debug Messages
	18.2 Debug Message Callback
	18.3 Debug Message Log
	18.4 Controlling Debug Messages
	18.5 Externally Generated Messages
	18.6 Debug Groups
	18.7 Debug Labels
	18.8 Asynchronous and Synchronous Debug Output
	18.9 Debug Output Queries

	19 Special Functions
	19.1 Hints

	20 Context State Queries
	20.1 Simple Queries
	20.2 Pointer, String, and Related Context Queries
	20.3 Internal Format Queries
	20.3.1 Internal Format Query Parameters

	21 State Tables
	21.2 Current Values and Associated Data
	21.3 Vertex Array Object State
	21.4 Vertex Array Data (not in vertex array objects)
	21.5 Buffer Object State
	21.6 Transformation State
	21.7 Rasterization
	21.8 Multisampling
	21.9 Textures (selector, state per texture unit)
	21.10 Textures (state per texture object)
	21.11 Textures (state per texture image)
	21.12 Textures (state per sampler object)
	21.13 Pixel Operations
	21.14 Framebuffer Control
	21.15 Framebuffer (state per framebuffer object)
	21.16 Framebuffer (state per attachment point)
	21.17 Renderbuffer (state per renderbuffer object)
	21.18 Pixels
	21.19 Shader Object State
	21.20 Program Pipeline Object State
	21.21 Program Object State
	21.22 Program Object State (cont.)
	21.23 Program Object State (cont.)
	21.24 Program Object State (cont.)
	21.25 Program Object State (cont.)
	21.26 Program Object State (cont.)
	21.27 Program Interface State
	21.28 Program Object Resource State
	21.29 Program Object Resource State (cont.)
	21.30 Vertex Shader State (not part of program objects)
	21.31 Query Object State
	21.32 Atomic Counter Buffer Binding State
	21.33 Image State (state per image unit)
	21.34 Shader Storage Buffer Binding State
	21.35 Transform Feedback State
	21.36 Uniform Buffer Binding State
	21.37 Sync (state per sync object)
	21.38 Hints
	21.39 Compute Dispatch State
	21.40 Implementation Dependent Values
	21.41 Implementation Dependent Values (cont.) purple These queries return the maximum no. of samples for all internal formats required to support multisampled rendering.
	21.42 Implementation Dependent Values (cont.)
	21.43 Implementation Dependent Version and Extension Support
	21.44 Implementation Dependent Vertex Shader Limits
	21.45 Implementation Dependent Tessellation Shader Limits
	21.46 Implementation Dependent Tessellation Shader Limits (cont.)
	21.47 Implementation Dependent Geometry Shader Limits
	21.48 Implementation Dependent Fragment Shader Limits
	21.49 Implementation Dependent Compute Shader Limits
	21.50 Implementation Dependent Aggregate Shader Limits
	21.51 Implementation Dependent Aggregate Shader Limits (cont.)
	21.52 Implementation Dependent Aggregate Shader Limits (cont.)
	21.53 Debug Output State
	21.54 Implementation Dependent Debug Output State
	21.55 Implementation Dependent Transform Feedback Limits
	21.56 Framebuffer Dependent Values
	21.57 Miscellaneous

	A Invariance
	A.1 Repeatability
	A.2 Multi-pass Algorithms
	A.3 Invariance Rules
	A.4 Tessellation Invariance
	A.5 Atomic Counter Invariance
	A.6 What All This Means

	B Corollaries
	C Compressed Texture Image Formats
	C.1 ASTC Compressed Texture Image Formats
	C.2 ETC Compressed Texture Image Formats

	D Version 3.0 and Before
	D.1 New Features
	D.2 Change Log for 3.0.3
	D.3 Change Log for 3.0.2
	D.4 Change Log for 3.0.1
	D.5 Credits and Acknowledgements

	E Version 3.1
	E.1 New Features
	E.2 Change Log for Released Specifications
	E.3 Credits and Acknowledgements

	F Version 3.2
	F.1 New Features
	F.2 Change Log for Released Specifications
	F.3 Credits and Acknowledgements

	G Backwards Compatibility
	G.1 Legacy Features
	G.2 Differences in Runtime Behavior

	Index

