The OpenGL® Graphics System:

A Specification
(Version 4.2 (Core Profile) - April 27, 2012)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2-4.2): Jon Leech
Editor (version 2.0): Pat Brown

Copyright (© 2006-2012 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary
to the Khronos Group, Inc. It or any components may not be reproduced, repub-
lished, distributed, transmitted, displayed, broadcast or otherwise exploited in any
manner without the express prior written permission of Khronos Group. You may
use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the
receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor
or Adopter member of Khronos to copy and redistribute UNMODIFIED versions
of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version
of the API is used whenever possible. Such distributed specification may be re-
formatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A link
to the current version of this specification on the Khronos Group web-site should
be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or war-
ranties, express or implied, regarding this specification, including, without limita-
tion, any implied warranties of merchantability or fitness for a particular purpose
or non-infringement of any intellectual property. Khronos Group makes no, and
expressly disclaims any, warranties, express or implied, regarding the correctness,
accuracy, completeness, timeliness, and reliability of the specification. Under no
circumstances will the Khronos Group, or any of its Promoters, Contributors or
Members or their respective partners, officers, directors, employees, agents or rep-
resentatives be liable for any damages, whether direct, indirect, special or conse-
quential damages for lost revenues, lost profits, or otherwise, arising from or in
connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trade-
mark, and OpenGL ES is a trademark, of Silicon Graphics International.

Contents

1 Introduction 1
1.1 Formatting of the OpenGL Specification 1
1.2 What is the OpenGL Graphics System? 1
1.3 Programmer’s View of OpenGL 1
1.4 Implementor’s View of OpenGL 2
1.5 OurView e 2
1.6 The DeprecationModel 3
1.7 Companion Documents 3

1.7.1 OpenGL Shading Language 3
1.7.2 Window System Bindings 3
2 OpenGL Operation 5
2.1 OpenGL Fundamentals 5
2.1.1 Numeric Computation 7
2.1.2 Fixed-Point Data Conversions 11
22 GLStateo 12
2.2.1 Shared ObjectState 13
23 GLCommand Syntax 13
2.3.1 Data Conversion For State-Setting Commands 15
24 BasicGLOperation 17
25 GLErors 19
2.6 Primitives and Vertices Lo 20
2.6.1 Primitive Types 22
2.7 Vertex Specification Lo 28
2.8 Vertex Arrays e e 30
2.8.1 Transferring Array Elements 33
2.8.2 Packed Vertex Data Formats 34
2.8.3 Drawing Commands 34
2.9 BufferObjects. 42

CONTENTS ii

2.10
2.11

2.12

2.13

2.14

2.15
2.16
2.17

2.9.1 Creating and Binding Buffer Objects 43
2.9.2 Creating Buffer Object Data Stores 45
2.9.3 Mapping and Unmapping BufferData 47
2.9.4 Effects of Accessing Outside Buffer Bounds 52
2.9.5 Copying Between Buffers 52
2.9.6 Vertex Arrays in Buffer Objects 53
2.9.7 Array Indices in Buffer Objects 53
2.9.8 Indirect Commands in Buffer Objects 54
2.99 Buffer ObjectState 55
Vertex Array Objects 55
Vertex Shaders 56
2.11.1 ShaderObjects 57
2.11.2 Loading Shader Binaries 59
2.11.3 Program Objects 60
2.11.4 Program Pipeline Objects 65
2.11.5 Program Binaries 71
2.11.6 Vertex Attributes 72
2.11.7 Uniform Variables 77
2.11.8 Subroutine Uniform Variables 99
2.11.9 Samplers 102
2.11.10Images e 103
2.11.11 Output Variables 103
2.11.12 Shader Execution 107
2.11.13 Shader Memory Access 116
2.11.14Required State 121
Tessellation 123
2.12.1 Tessellation Control Shaders 124
2.12.2 Tessellation Primitive Generation 130
2.12.3 Tessellation Evaluation Shaders 138
Geometry Shaders 143
2.13.1 Geometry Shader Input Primitives 144
2.13.2 Geometry Shader Output Primitives 145
2.13.3 Geometry Shader Variables 146
2.13.4 Geometry Shader Execution Environment 147
Coordinate Transformations 153
2.14.1 Controlling the Viewport 153
Asynchronous Queries L Lo 156
Conditional Rendering 159
Transform Feedback, 160
2.17.1 Transform Feedback Objects 160

OpenGL 4.2 (Core Profile) - April 27, 2012

CONTENTS

3

2.17.2
2.17.3

Transform Feedback Primitive Capture
Transform Feedback Draw Operations

2.18 Primitive Queries
2.19 Flatshading
2.20 Primitive Clipping o

2.20.1 Clipping Shader Outputs
Rasterization
3.1 Discarding Primitives Before Rasterization
32 Invariance
33 Antialiasing
3.3.1 Multisampling
34 Pointso
3.4.1 Basic Point Rasterization
3.4.2 Point Rasterization State
3.4.3 Point Multisample Rasterization
3.5 Line Segments
3.5.1 Basic Line Segment Rasterization
3.5.2 Other Line Segment Features
3.5.3 Line Rasterization State
3.5.4 Line Multisample Rasterization
3.6 Polygons
3.6.1 Basic Polygon Rasterization
3,62 Antialiasing
3.6.3 Options Controlling Polygon Rasterization
3.64 DepthOffset
3.6.5 Polygon Multisample Rasterization
3.6.6 Polygon Rasterization State
3.7 PixelRectangles.,
3.7.1 Pixel Storage Modes and Pixel Buffer Objects
3.7.2 Transfer of Pixel Rectangles
3.8 Early Per-Fragment Tests
39 Texturing e e
39.1 TextureObjects
39.2 SamplerObjects
3.9.3 Texture Image Specification
3.9.4 Alternate Texture Image Specification Commands
3.9.5 Compressed Texture Images
3.9.6 Multisample Textures
39.7 BufferTextures

OpenGL 4.2 (Core Profile) - April 27, 2012

iii

162
166
167
168
169
171

CONTENTS v

3.9.8 Texture Parameters 240

3.9.9 Depth Component Textures 243
3.9.10 Cube Map Texture Selection 243
3.9.11 Texture Minification 245
3.9.12 Texture Magnification 254
3.9.13 Combined Depth/Stencil Textures 255
3.9.14 Texture Completeness 255
3.9.15 Texture State and Proxy State 257
3.9.16 Immutable-Format Texture Images 259
3.9.17 Texture Comparison Modes 263
3.9.18 sRGB Texture Color Conversion 263
3.9.19 Shared Exponent Texture Color Conversion 264
3.9.20 Texture Image Loads and Stores 265

3.10 Fragment Shaders 272
3.10.1 Shader Variables 273
3.10.2 Shader Execution 274

3.11 Aantialiasing Application 282
3.12 Multisample PointFade 282
4 Per-Fragment Operations and the Framebuffer 283
4.1 Per-Fragment Operations 284
4.1.1 Pixel OwnershipTest 285

412 ScissorTesto 285

4.1.3 Multisample Fragment Operations 287

414 Stencil Test 289

415 DepthBufferTest. 291

4.1.6 Occlusion Queries 291

417 Blending 292

418 sRGBConversion 299
419 Dithering 299
4.1.10 Logical Operation 300
4.1.11 Additional Multisample Fragment Operations 301

4.2 Whole Framebuffer Operations 302
4.2.1 Selecting Buffers for Writing 302

4.2.2 Fine Control of Buffer Updates 306

423 Clearing the Buffers 308

4.3 Reading and Copying Pixels 310
43.1 ReadingPixels 310

432 CopyingPixels L. 317

433 Pixel Draw/Read State 320

OpenGL 4.2 (Core Profile) - April 27, 2012

CONTENTS v
4.4 Framebuffer Objects 320
4.4.1 Binding and Managing Framebuffer Objects 321
4.4.2 Attaching Images to Framebuffer Objects 324
4.4.3 Feedback Loops Between Textures and the Framebuffer 332
444 Framebuffer Completeness 335
4.4.5 Effects of Framebuffer State on Framebuffer Dependent
Values 339
4.4.6 Mapping between Pixel and Element in Attached Image 340
447 Layered Framebuffers 341
5 Special Functions 343
5.1 TimerQueries 343
5.2 FlushandFinish. 344
5.3 SyncObjectsandFences 344
5.3.1 Waiting for Sync Objects 346
532 Signalling 348
54 Hints. 349
6 State and State Requests 350
6.1 QueryingGL State 350
6.1.1 SimpleQueries 350
6.1.2 DataConversions 351
6.1.3 Enumerated Queries 352
6.14 TextureQueries 354
6.1.5 Sampler Queries 357
6.1.6 String Querieso 358
6.1.7 Asynchronous Queries 359
6.1.8 Sync Object Queries 361
6.1.9 Buffer Object Queries 362
6.1.10 Vertex Array Object Queries 364
6.1.11 Transform Feedback Queries 364
6.1.12 Shader and Program Queries 364
6.1.13 Framebuffer Object Queries 373
6.1.14 Renderbuffer Object Queries 375
6.1.15 Internal Format Queries 376
6.2 StateTables 377
A Invariance 439
A.l1 Repeatability 439
A.2 Multi-pass Algorithms 440

OpenGL 4.2 (Core Profile) - April 27, 2012

CONTENTS vi

A3 InvarianceRules. 440
A.4 Tessellation Invariance 442
A.5 Atomic Counter Invariance 444
A6 What All ThisMeans 445
B Corollaries 446
C Compressed Texture Image Formats 448
C.1 RGTC Compressed Texture Image Formats 448
C.1.1 Format COMPRESSED_RED_RGTC1 449
C.1.2 Format COMPRESSED_SIGNED_RED_RGTC1l 450
C.1.3 Format COMPRESSED_RG_RGTC2 v v v v v 450
C.1.4 Format COMPRESSED_SIGNED_RG_RGTIC2 451
C.2 BPTC Compressed Texture Image Formats 451
C.2.1 Formats COMPRESSED_RGBA_BPTC_UNORM and
COMPRESSED_SRGB_ALPHA_BPTC_UNORM 452
C.2.2 Formats COMPRESSED_RGB_BPTC_SIGNED_FLOAT and
COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT 458
D Shared Objects and Multiple Contexts 462
D.1 Object Deletion Behavior 462
D.1.1 Side Effects of Shared Context Destruction 462
D.1.2 Automatic Unbinding of Deleted Objects 463
D.1.3 Deleted Object and Object Name Lifetimes 463
D.2 Sync Objects and Multiple Contexts 464
D.3 Propagating Changes to Objects 464
D.3.1 Determining Completion of Changes to an object 465
D.3.2 Definitions 465
D33 Rules 466
E Profiles and the Deprecation Model 468
E.1 Core and Compatibility Profiles 469
E.2 Deprecated and Removed Features 469
E.2.1 Deprecated But Still Supported Features 469
E.2.2 Removed Features 470
F Version 3.0 and Before 475
F1 NewPFeatures 475
FE2 Deprecation Model 476
F3 ChangedTokens 477

OpenGL 4.2 (Core Profile) - April 27, 2012

CONTENTS vii

F4 Changelog 477
E5 Credits and Acknowledgements 479
G Version 3.1 482
G.1 NewPFeatures 482
G.2 DeprecationModel oL 483
G3 Changelog 483
G.4 Credits and Acknowledgements 484
H Version 3.2 487
H.1 NewPFeatures 487
H.2 Deprecation Model 488
H.3 ChangedTokens 488
H4 Changelog, 489
H.5 Credits and Acknowledgements 491
I Version 3.3 493
I.1 NewPFeatures 493
1.2 DeprecationModel 494
I3 Changelog 495
1.4 Credits and Acknowledgements 495
J Version 4.0 497
JJ1 NewPFeatures 497
J.2 Deprecation Model 499
J3 Changelog 499
J.4 Credits and Acknowledgements 499
K Version 4.1 502
K.1 NewPFeatures 502
K.2 Deprecation Model 503
K3 ChangedTokens. 503
K4 Changelog 503
K.5 Credits and Acknowledgements 503
L Version 4.2 506
L.1 NewPFeatures 506
L.2 Deprecation Model 507
L3 ChangedTokens, . 507
L4 Changelog 508
L.5 Credits and Acknowledgements 516

OpenGL 4.2 (Core Profile) - April 27, 2012

CONTENTS viii

M Extension Registry, Header Files, and ARB Extensions 518
M.1 Extension Registry, 518
M.2 HeaderFiles 518
M.3 ARBExtensions. 519

M.3.1 Naming Conventions 519
M.3.2 Promoting Extensions to Core Features 520
M.3.3 Multitexture 520
M.34 Transpose Matrix 520
M.3.,5 Multisample 520
M.3.6 Texture Add EnvironmentMode 521
M.3.7 CubeMap Textures 521
M.3.8 Compressed Textures 521
M.39 Texture BorderClamp 521
M.3.10 Point Parameters 521
M.3.11 VertexBlend oo 521
M.3.12 Matrix Palette L. 521
M.3.13 Texture Combine Environment Mode 522
M.3.14 Texture Crossbar Environment Mode 522
M.3.15 Texture Dot3 Environment Mode 522
M.3.16 Texture Mirrored Repeat 522
M.3.17 Depth Texture 522
M3.d8 Shadow 522
M.3.19 Shadow Ambient 522
M.3.20 Window Raster Position 522
M.3.21 Low-Level Vertex Programming 523
M.3.22 Low-Level Fragment Programming 523
M.3.23 Buffer Objects 523
M.3.24 Occlusion Queries 523
M.3.25 Shader Objects, 523
M.3.26 High-Level Vertex Programming 523
M.3.27 High-Level Fragment Programming 523
M.3.28 OpenGL Shading Language 524
M.3.29 Non-Power-Of-Two Textures 524
M.3.30 Point Sprites 524
M.3.31 Fragment Program Shadow 524
M.3.32 Multiple Render Targets 524
M.3.33 Rectangular Textures 524
M.3.34 Floating-Point Color Buffers 525
M.3.35 Half-Precision Floating Point 525
M.3.36 Floating-Point Textures 525

OpenGL 4.2 (Core Profile) - April 27, 2012

CONTENTS ix

M.3.37 Pixel Buffer Objects 525
M.3.38 Floating-Point Depth Buffers 526
M.3.39 Instanced Rendering 526
M.3.40 Framebuffer Objects 526
M.3.41 sRGB Framebuffers 526
M.3.42 Geometry Shaders 526
M.3.43 Half-Precision Vertex Data 527
M.3.44 Instanced Rendering 527
M.3.45 Flexible Buffer Mapping 527
M.3.46 Texture Buffer Objects 527
M.3.47 RGTC Texture Compression Formats 527
M.3.48 One- and Two-Component Texture Formats 527
M.3.49 Vertex Array Objects 528
M.3.50 Versioned Context Creation 528
M.3.51 Uniform Buffer Objects 528
M.3.52 Restoration of features removed from OpenGL 3.0 528
M.3.53 Fast Buffer-to-Buffer Copies 529
M.3.54 Shader Texture Level of Detail Control 529
M.3.55 Depth Clamp Control 529
M.3.56 Base Vertex Offset Drawing Commands 529
M.3.57 Fragment Coordinate Convention Control 529
M.3.58 Provoking Vertex Control 529
M.3.59 SeamlessCube Maps 530
M.3.60 Fence Sync Objects 530
M.3.61 Multisample Textures 530
M.3.62 BGRA Attribute Component Ordering 530
M.3.63 Per-Buffer Blend Control 530
M.3.64 Sample Shading Control 530
M.3.65 Cube Map Array Textures 531
M.3.66 Texture Gather 531
M.3.67 Texture Level-Of-Detail Queries 531
M.3.68 Profiled Context Creation 531
M.3.69 Shading Language Include 531
M.3.70 BPTC texture compression 532
M.3.71 Extended Blend Functions 532
M.3.72 Explicit Attribute Location 532
M.3.73 Boolean Occlusion Queries 532
M.3.74 Sampler Objects, 532
M.3.75 Shader Bit Encoding, 532
M.3.76 RGB10A2 Integer Textures 533

OpenGL 4.2 (Core Profile) - April 27, 2012

CONTENTS X

M.3.77 Texture Swizzle 533
M.3.78 Timer Queries, 533
M.3.79 Packed 2.10.10.10 Vertex Formats 533
M.3.80 Draw Indirect Lo 533
M.3.81 GPU Shader5 Miscellaneous Functionality 533
M.3.82 Double-Precision Floating-Point Shader Support 533
M.3.83 Shader Subroutines 0. 534
M.3.84 Tessellation Shaders 534
M.3.85 RGB32 Texture Buffer Objects 534
M.3.86 Transform Feedback2 534
M.3.87 Transform Feedback 3 534
M.3.88 OpenGL ES 2.0 Compatibility 534
M.3.89 Program Binary Support L. 534
M.3.90 Separate Shader Objects 535
M.3.91 Shader Precision Restrictions 535
M.3.92 Double Precision Vertex Shader Inputs 535
M.3.93 Viewport Arrays Lo 535
M.3.94 Robust Context Creation 535
M.3.95 OpenCL Event Sharing 535
M.3.96 Debug Output Notification 536
M.3.97 Context Robustness 536
M.3.98 Shader Stencil Export, 536
M.3.99 Base Instanced Rendering 536
M.3.1000penGL Shading Language 4.20 Feature Pack 536
M.3.101Instanced Transform Feedback 536
M.3.10XCompressed Texture Pixel Storage 537
M.3.10onservative Depth, 537
M.3.104Internal Format Query 537
M.3.10Map Buffer Alignment 537
M.3.1065hader Atomic Counters 537
M.3.10Shader Image Load/Store 537
M.3.108hading Language Packing 538
M.3.109%Texture Storage oo 538

OpenGL 4.2 (Core Profile) - April 27, 2012

List of Figures

2.1
2.2
23
24
25
2.6
2.7
2.8
29
2.10

3.1
32
33
34
35
3.6
3.7
3.8

4.1
4.2

Block diagramofthe GL.
Vertex processing and primitive assembly.
Triangle strips, fans, and independent triangles.
Lines with adjacency.
Triangles with adjacency.
Triangle strips with adjacency.
Domain parameterization for tessellation.
Inner triangle tessellation.
Inner quad tessellation.
Isoline tessellation.

Rasterization. L L
Visualization of Bresenham’s algorithm.
Rasterization of non-antialiased wide lines.
The region used in rasterizing an antialiased line segment.

Transfer of pixel rectangles.
Selecting a subimage fromanimage
A texture image and the coordinates used to accessit.
Example of the components returned for textureGather.

Per-fragment operations. oL
Operation of ReadPixels.

X1

20

List of Tables

2.1
2.2
23
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15

3.1
32
33
34
3.5
3.6

3.7
3.8
39
3.10
3.11

GL command suffixes 14
GL datatypes e 16
Summary of GL errors 20
Triangles generated by triangle strips with adjacency. 27
Vertex array sizes (values per vertex) and data types 31
Packed component layout for non-BGRA formats. 35
Packed component layout for BGRA format. 35
Buffer object binding targets. 43
Buffer object parameters and their values. 44
Buffer object initial state. oL 47
Buffer object state set by MapBufferRange. 50
Scalar and vector vertex attribute types 74
OpenGL Shading Language type tokens 88
Transform feedback modes 163
Provoking vertex selection. L. 169
PixelStore parameters. 192
Pixeldatatypes. 195
Pixel data formats. o 196
Swap Bytes bitordering., 196
Packed pixel formats. oL oo 199
UNSIGNED_BYTE formats. Bit numbers are indicated for each

COMPONENL. . « . v v v v e v e e e e e e e e e et e 200
UNSIGNED_SHORT formats 201
UNSIGNED_INT formats 202
FLOAT_UNSIGNED_INT formats 203
Packed pixel field assignments. 204
Conversion from RGBA, depth, and stencil pixel components to

internal texture components. 213

Xii

LIST OF TABLES

3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

321

3.22

3.23

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.10
4.11
4.12

5.1
52

6.1
6.2
6.3
6.4
6.5
6.6

Sized internal color formats.
Sized internal depth and stencil formats.
Generic and specific compressed internal formats.
Internal formats for buffer textures
Texture parameters and their values.
Selection of cube map images.
Texel location wrap mode application.
Depth texture comparison functions.
Mapping of image load, store, and atomic texel coordinate compo-
nents to texel numbers. Lo oL
Supported image unit formats, with equivalent format layout qual-
fflers.
Texel sizes, compatibility classes, and pixel format/type combina-
tions for each image format.
Correspondence of filtered texture components to texture base
COMPONENLS. . .« v v v v v v e e e e e e e e e e e

RGB and Alpha blend equations.
Blending functions. L L L Lo
Arguments to LogicOp and their corresponding operations.
Buffer selection for the default framebuffer
Buffer selection for a framebuffer object
DrawBuffers buffer selection for the default framebuffer
PixelStore parameters.
ReadPixels GL data types and reversed component conversion for-

Correspondence of renderbuffer sized to base internal formats. . .
Framebuffer attachment points.
Layer numbers for cube map texture faces.

Initial properties of a sync object created with FenceSync.
Hint targets and descriptions

Texture, table, and filter return values.
Contextprofilebits
State Variable Types
Current Values and Associated Data
Vertex Array Object State (cont.)
Vertex Array Object State (cont.)

OpenGL 4.2 (Core Profile) - April 27, 2012

LIST OF TABLES Xiv

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24

6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45

Vertex Array Data (not in Vertex Array objects) 382
Buffer Object State 383
Transformationstate 384
Coloring e 385
Rasterization 386
Rasterization (cont.) 387
Multisampling 388
Textures (state per texture unit 389
Textures (state per texture unit (cont.) 390
Textures (state per texture object) 391
Textures (state per texture image) 392
Textures (state per sampler object) 393
Texture Environment and Generation 394
Pixel Operations 395
Pixel Operations (cont.) 396
Framebuffer Control 397
Framebuffer (state per target binding point) 398
Framebuffer (state per framebuffer object)

T This state is queried from the currently bound read framebuffer.399
Framebuffer (state per attachment point) 400
Renderbuffer (state per target and binding point) 401
Renderbuffer (state per renderbuffer object) 402
Pixels 403
Pixels(cont.) 404
Shader Object State 405
Program Pipeline Object State 406
Program Object State 407
Program Object State (cont.) 408
Program Object State (cont.) 409
Program Object State (cont.) 410
Program Object State (cont.) 411
Program Object State (cont.) 412
Program Object State (cont.) 413
Program Object State (cont.) 414
Vertex and Geometry Shader State 415
Query Object State 416
Image State (state per image unit) 417
Transform Feedback State 418
Atomic Counter Stateo 419
Sync (state per syncobject) 420

OpenGL 4.2 (Core Profile) - April 27, 2012

LIST OF TABLES XV

6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57

6.58
6.59
6.60
6.61
6.62
6.63

C.1
C2
C3
C4
C5
C.6
C.7
C38

F1

H.1

K.1

L.1

Hints. 421
Implementation Dependent Values 422
Implementation Dependent Values (cont.) 423
Implementation Dependent Values (cont.) 424
Implementation Dependent Version and Extension Support 425
Implementation Dependent Vertex Shader Limits 426
Implementation Dependent Tessellation Shader Limits 427
Implementation Dependent Geometry Shader Limits 428
Implementation Dependent Fragment Shader Limits 429
Implementation Dependent Aggregate Shader Limits 430
Implementation Dependent Aggregate Shader Limits (cont.) . . . 431

Implementation Dependent Aggregate Shader Limits (cont.)
T The minimum value for each stage is
MAX_stage UNIFORM_BLOCKS X MAX_UNIFORM_BLOCK_SIZE

/ 4 +MAX_stage_UNIFORM_COMPONENTS 432
Implementation Dependent Values (cont.) 433
Implementation Dependent Values (cont.) 434
Internal Format Dependent Values 435
Implementation Dependent Transform Feedback Limits 436
Framebuffer Dependent Values 437
Miscellaneous 438
Mode-dependent BPTC parameters 454
Partition table for 2 subset 455
Partition table for 3subset 456

Anchor index values for the second subset of two-subset partitioning457
Anchor index values for the second subset of three-subset partitioning457
Anchor index values for the third subset of three-subset partitioning 457

Endpoint and partition parameters for block modes 460
Block formats for block modes 461
New tokennames 477
New tokennames 489
New tokennames 503
New tokennames 508

OpenGL 4.2 (Core Profile) - April 27, 2012

Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it acts, and
what is required to implement it. We assume that the reader has at least a rudi-
mentary understanding of computer graphics. This means familiarity with the es-
sentials of computer graphics algorithms as well as familiarity with basic graphics
hardware and associated terms.

1.1 Formatting of the OpenGL Specification
1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is a software interface to graphics hard-
ware. The interface consists of a set of several hundred procedures and functions
that allow a programmer to specify the objects and operations involved in produc-
ing high-quality graphical images, specifically color images of three-dimensional
objects.

Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls pertain to drawing objects such as points, lines, and polygons,
but the way that some of this drawing occurs (such as when antialiasing is enabled)
relies on the existence of a framebuffer. Further, some of OpenGL is specifically
concerned with framebuffer manipulation.

1.3 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
geometric objects in two or three dimensions, together with commands that control
how these objects are rendered into the framebuffer.

1.4. IMPLEMENTOR’S VIEW OF OPENGL 2

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
an OpenGL context and associate it with the window. Once a context is allocated,
the programmer is free to issue OpenGL commands. Some calls are used to draw
simple geometric objects (i.e. points, line segments, and polygons), while others
affect the rendering of these primitives including how they are lit or colored and
how they are mapped from the user’s two- or three-dimensional model space to
the two-dimensional screen. There are also calls to effect direct control of the
framebuffer, such as reading and writing pixels.

1.4 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that affect the operation of
graphics hardware. If the hardware consists only of an addressable framebuffer,
then OpenGL must be implemented almost entirely on the host CPU. More typi-
cally, the graphics hardware may comprise varying degrees of graphics accelera-
tion, from a raster subsystem capable of rendering two-dimensional lines and poly-
gons to sophisticated floating-point processors capable of transforming and com-
puting on geometric data. The OpenGL implementor’s task is to provide the CPU
software interface while dividing the work for each OpenGL command between
the CPU and the graphics hardware. This division must be tailored to the available
graphics hardware to obtain optimum performance in carrying out OpenGL calls.

OpenGL maintains a considerable amount of state information. This state con-
trols how objects are drawn into the framebuffer. Some of this state is directly
available to the user: he or she can make calls to obtain its value. Some of it, how-
ever, is visible only by the effect it has on what is drawn. One of the main goals of
this Specification is to make OpenGL state information explicit, to elucidate how
it changes, and to indicate what its effects are.

1.5 Our View

We view OpenGL as a pipeline having some programmable stages and some state-
driven stages that control a set of specific drawing operations. This model should
engender a specification that satisfies the needs of both programmers and imple-
mentors. It does not, however, necessarily provide a model for implementation. An
implementation must produce results conforming to those produced by the speci-
fied methods, but there may be ways to carry out a particular computation that are
more efficient than the one specified.

OpenGL 4.2 (Core Profile) - April 27, 2012

1.6. THE DEPRECATION MODEL 3

1.6 The Deprecation Model

Features marked as deprecated in one version of the Specification are expected to
be removed in a future version, allowing applications time to transition away from
use of deprecated features. The deprecation model is described in more detail,
together with a summary of the commands and state deprecated from this version
of the API, in appendix E.

1.7 Companion Documents

1.7.1 OpenGL Shading Language

This Specification should be read together with a companion document titled The
OpenGL Shading Language. The latter document (referred to as the OpenGL Shad-
ing Language Specification hereafter) defines the syntax and semantics of the pro-
gramming language used to write vertex and fragment shaders (see sections 2.11
and 3.10). These sections may include references to concepts and terms (such as
shading language variable types) defined in the companion document.

OpenGL 4.2 implementations are guaranteed to support version 4.20 of the
OpenGL Shading Language. All references to sections of that specification refer to
version 4.20. The latest supported version of the shading language may be queried
as described in section 6.1.5.

The core profile of OpenGL 4.2 is also guaranteed to support all previous ver-
sions of the OpenGL Shading Language back to version 1.40. In some implemen-
tations the core profile may also support earlier versions of the Shading Language,
and may support compatibility profile versions of the Shading Language, although
errors will be generated when using language features not supported by the core
profile APL

1.7.2 Window System Bindings

OpenGL requires a companion API to create and manage graphics contexts, win-
dows to render into, and other resources beyond the scope of this Specification.
There are several such APIs supporting different operating and window systems.

OpenGL Graphics with the X Window System, also called the “GLX Specifica-
tion”, describes the GLX API for use of OpenGL in the X Window System. It is
primarily directed at Linux and Unix systems, but GLX implementations also exist
for Microsoft Windows, MacOS X, and some other platforms where X is avail-
able. The GLX Specification is available in the OpenGL Extension Registry (see
appendix M).

OpenGL 4.2 (Core Profile) - April 27, 2012

1.7. COMPANION DOCUMENTS 4

The WGL API supports use of OpenGL with Microsoft Windows. WGL is
documented in Microsoft’s MSDN system, although no full specification exists.

Several APIs exist supporting use of OpenGL with Quartz, the MacOS X win-
dow system, including CGL, AGL, and NSOpenGLView. These APIs are docu-
mented on Apple’s developer website.

The Khronos Native Platform Graphics Interface or “EGL Specification” de-
scribes the EGL API for use of OpenGL ES on mobile and embedded devices.
EGL implementations may be available supporting OpenGL as well. The EGL
Specification is available in the Khronos Extension Registry at URL

http://www.khronos.org/registry/egl

OpenGL 4.2 (Core Profile) - April 27, 2012

http://www.khronos.org/registry/egl

Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the “GL”) is concerned only with rendering into a frame-
buffer (and reading values stored in that framebuffer). There is no support for
other peripherals sometimes associated with graphics hardware, such as mice and
keyboards. Programmers must rely on other mechanisms to obtain user input.

The GL draws primitives subject to a number of selectable modes and shader
programs. Each primitive is a point, line segment, or polygon. Each mode may
be changed independently; the setting of one does not affect the settings of oth-
ers (although many modes may interact to determine what eventually ends up in
the framebuffer). Modes are set, primitives specified, and other GL operations
described by sending commands in the form of function or procedure calls.

Primitives are defined by a group of one or more vertices. A vertex defines
a point, an endpoint of an edge, or a corner of a polygon where two edges meet.
Data such as positional coordinates, colors, normals, texture coordinates, etc. are
associated with a vertex and each vertex is processed independently, in order, and
in the same way. The only exception to this rule is if the group of vertices must
be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping
depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all
previously invoked GL commands, except where explicitly specified otherwise. In

2.1. OPENGL FUNDAMENTALS 6

general, the effects of a GL. command on either GL modes or the framebuffer must
be complete before any subsequent command can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a com-
mand are interpreted when that command is received. Even if the command re-
quires a pointer to data, those data are interpreted when the call is made, and any
subsequent changes to the data have no effect on the GL (unless the same pointer
is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of parameters of application-defined shader
programs performing transformation, lighting, texturing, and shading operations,
as well as built-in functionality such as antialiasing and texture filtering. It does not
provide a means for describing or modeling complex geometric objects. Another
way to describe this situation is to say that the GL provides mechanisms to de-
scribe how complex geometric objects are to be rendered rather than mechanisms
to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer as the client. In this sense, the GL is “network-transparent.” A server
may maintain a number of GL contexts, each of which is an encapsulation of cur-
rent GL state. A client may choose to connect to any one of these contexts. Issuing
GL commands when the program is not connected to a context results in undefined
behavior.

The GL interacts with two classes of framebuffers: window system-provided
and application-created. There is at most one window system-provided framebuffer
at any time, referred to as the default framebuffer. Application-created frame-
buffers, referred to as framebuffer objects, may be created as desired. These two
types of framebuffer are distinguished primarily by the interface for configuring
and managing their state.

The effects of GL commands on the default framebuffer are ultimately con-
trolled by the window system, which allocates framebuffer resources, determines
which portions of the default framebuffer the GL may access at any given time, and
communicates to the GL how those portions are structured. Therefore, there are
no GL commands to initialize a GL context or configure the default framebuffer.
Similarly, display of framebuffer contents on a physical display device (including
the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by the GL.

Allocation and configuration of the default framebuffer occurs outside of the
GL in conjunction with the window system, using companion APIs described in
section 1.7.2.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.1. OPENGL FUNDAMENTALS 7

Allocation and initialization of GL contexts is also done using these companion
APIs. GL contexts can typically be associated with different default framebuffers,
and some context state is determined at the time this association is performed.

It is possible to use a GL context without a default framebuffer, in which case
a framebuffer object must be used to perform all rendering. This is useful for
applications needing to perform offscreen rendering.

The GL is designed to be run on a range of graphics platforms with varying
graphics capabilities and performance. To accommodate this variety, we specify
ideal behavior instead of actual behavior for certain GL operations. In cases where
deviation from the ideal is allowed, we also specify the rules that an implemen-
tation must obey if it is to approximate the ideal behavior usefully. This allowed
variation in GL behavior implies that two distinct GL implementations may not
agree pixel for pixel when presented with the same input even when run on identi-
cal framebuffer configurations.

Finally, command names, constants, and types are prefixed in the GL (by gl,
GL_, and GL, respectively in C) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Numeric Computation

The GL must perform a number of floating-point operations during the course of
its operation.

Implementations will normally perform computations in floating-point, and
must meet the range and precision requirements defined under “’Floating-Point
Computation” below.

These requirements only apply to computations performed in GL operations
outside of shader execution, such as texture image specification and per-fragment
operations. Range and precision requirements during shader execution differ and
are as specified by the OpenGL Shading Language Specification.

In some cases, the representation and/or precision of operations is implicitly
limited by the specified format of vertex, texture, or renderbuffer data consumed
by the GL. Specific floating-point formats are described later in this section.

Floating-Point Computation

We do not specify how floating-point numbers are to be represented, or the
details of how operations on them are performed.

We require simply that numbers’ floating-point parts contain enough bits and
that their exponent fields are large enough so that individual results of floating-
point operations are accurate to about 1 part in 10°. The maximum representable

OpenGL 4.2 (Core Profile) - April 27, 2012

2.1. OPENGL FUNDAMENTALS 8

magnitude for all floating-point values must be at least 232, 2 -0 = 0 -z = 0 for
any non-infinitt and non-NaNz. 1 -2 =z-1=2. 2+0=0+2 = 2. 0° =
1. (Occasionally further requirements will be specified.) Most single-precision
floating-point formats meet these requirements.

The special values Inf and —Inf encode values with magnitudes too large to
be represented; the special value NaN encodes “Not A Number” values resulting
from undefined arithmetic operations such as 8. Implementations are permitted,
but not required, to support Infs and NaN's in their floating-point computations.

Any representable floating-point value is legal as input to a GL command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

16-Bit Floating-Point Numbers

A 16-bit floating-point number has a 1-bit sign (.5), a 5-bit exponent (£), and a
10-bit mantissa (M). The value V' of a 16-bit floating-point number is determined
by the following:

(—1)% x 0.0, E=0,M=0
(—1)% x 271 x A% E=0,M+#0
V=9(-DSx2E 5 (1+45), 0<E<31
(—1)% x Inf, E=31,M=0
NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 16-bit integer NV, then

g {N mod 65536J
32768

B {N mod 32768J
1024

M = N mod 1024.

Any representable 16-bit floating-point value is legal as input to a GL command
that accepts 16-bit floating-point data. The result of providing a value that is not a
floating-point number (such as Inf or NaV) to such a command is unspecified, but
must not lead to GL interruption or termination. Providing a denormalized number
or negative zero to GL must yield predictable results.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.1. OPENGL FUNDAMENTALS 9

Unsigned 11-Bit Floating-Point Numbers

An unsigned 11-bit floating-point number has no sign bit, a 5-bit exponent (F),
and a 6-bit mantissa (M). The value V' of an unsigned 11-bit floating-point number
is determined by the following:

(0.0, E=0,M=0
—14 M _
271 % &, E=0,M+#0
V=928 x (1+8), 0<E<31
Inf, E=31,M=0
NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 11-bit integer IV, then

|3
64
M = N mod 64.

When a floating-point value is converted to an unsigned 11-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 65024 (the maximum finite representable unsigned 11-bit
floating-point value) are converted to 65024. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NalV.

Any representable unsigned 11-bit floating-point value is legal as input to a
GL command that accepts 11-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

Unsigned 10-Bit Floating-Point Numbers

An unsigned 10-bit floating-point number has no sign bit, a 5-bit exponent (F),
and a 5-bit mantissa (M). The value V' of an unsigned 10-bit floating-point number
is determined by the following:

OpenGL 4.2 (Core Profile) - April 27, 2012

2.1. OPENGL FUNDAMENTALS 10

0.0, E=0,M=0
- M
271 x &, E=0,M+#0
V=392 (1+23), 0<E<31
Inf, E=31,M=0
NaN, E=31,M=#0

If the floating-point number is interpreted as an unsigned 10-bit integer IV, then

p=|N
32
M = N mod 32.

When a floating-point value is converted to an unsigned 10-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 64512 (the maximum finite representable unsigned 10-bit
floating-point value) are converted to 64512. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NalV.

Any representable unsigned 10-bit floating-point value is legal as input to a
GL command that accepts 10-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

Fixed-Point Computation

Vertex attributes may be specified using a 32-bit two’s-complement signed rep-
resentation with 16 bits to the right of the binary point (fraction bits).

General Requirements

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified re-
sult but must not lead to GL interruption or termination.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.1. OPENGL FUNDAMENTALS 11

2.1.2 Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are repre-
sented as integers, they are often (but not always) considered to be normalized.
Normalized integer values are treated specially when being converted to and from
floating-point values, and are usually referred to as normalized fixed-point. Such
values are always either signed or unsigned.

In the remainder of this section, b denotes the bit width of the fixed-point in-
teger representation. When the integer is one of the types defined in table 2.2, b
is the minimum required bit width of that type. When the integer is a texture or
renderbuffer color or depth component (see section 3.9.3), b is the number of bits
allocated to that component in the internal format of the texture or renderbuffer.
When the integer is a framebuffer color or depth component (see section 4), b is
the number of bits allocated to that component in the framebuffer. For framebuffer
and renderbuffer A components, b must be at least 2 if the buffer does not contain
an A component, or if there is only 1 bit of A in the buffer.

The signed and unsigned fixed-point representations are assumed to be b-bit
binary twos-complement integers and binary unsigned integers, respectively. The
signed fixed-point representation may be treated in one of two ways, as discussed
below.

All the conversions described below are performed as defined, even if the im-
plemented range of an integer data type is greater than the minimum required range.

Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0, 1].
The conversion from an unsigned normalized fixed-point value c to the correspond-
ing floating-point value f is defined as

Cc

Signed normalized fixed-point integers represent numbers in the range [—1, 1].
The conversion from a signed normalized fixed-point value c to the corresponding
floating-point value f is performed using

c
Only the range [—2*~1 4 1,2°=1 — 1] is used to represent signed fixed-point

values in the range [—1, 1]. For example, if b = 8, then the integer value -127 cor-
responds to -1.0 and the value 127 corresponds to 1.0. Note that while zero can be

OpenGL 4.2 (Core Profile) - April 27, 2012

2.2. GL STATE 12

exactly expressed in this representation, one value (-128 in the example) is outside
the representable range, and must be clamped before use. This equation is used ev-
erywhere that signed normalized fixed-point values are converted to floating-point,
including for all signed normalized fixed-point parameters in GL commands, such
as vertex attribute values', as well as for specifying texture or framebuffer values
using signed normalized fixed-point.

Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned nor-
malized fixed-point value c is defined by first clamping f to the range [0, 1], then
computing

f=rx2-1. (2.3)

1’ is then cast to an unsigned binary integer value with exactly b bits.

The conversion from a floating-point value f to the corresponding signed nor-
malized fixed-point value ¢ is performed by clamping f to the range [—1, 1], then
computing

fl=fx @t -1). (2.4)

After conversion, f’ is then cast to a signed two’s-complement binary integer
value with exactly b bits.

This equation is used everywhere that floating-point values are converted to
signed normalized fixed-point, including when querying floating-point state (see
section 6) and returning integers”, as well as for specifying signed normalized tex-
ture or framebuffer values using floating-point.

2.2 GL State

The GL maintains considerable state. This document enumerates each state vari-
able and describes how each variable can be changed. For purposes of discussion,
state variables are categorized somewhat arbitrarily by their function. Although we

! This is a behavior change in OpenGL 4.2. In previous versions, a different conversion for
signed normalized values was used in which -128 mapped to -1.0, 127 mapped to 1.0, and 0.0 was
not exactly representable.

2 This is a behavior change in OpenGL 4.2. In previous versions, a different conversion for
signed normalized values was used in which -128 mapped to -1.0, 127 mapped to 1.0, and 0.0 was
not exactly representable.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.3. GL COMMAND SYNTAX

describe the operations that the GL performs on the framebuffer, the framebuffer
is not a part of GL state.

We distinguish two types of state. The first type of state, called GL server
state, resides in the GL server. The majority of GL state falls into this category.
The second type of state, called GL client state, resides in the GL client. Unless
otherwise specified, all state referred to in this document is GL server state; GL
client state is specifically identified. Each instance of a GL context implies one
complete set of GL server state; each connection from a client to a server implies
a set of both GL client state and GL server state.

While an implementation of the GL may be hardware dependent, this discus-
sion is independent of the specific hardware on which a GL is implemented. We are
therefore concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

2.2.1 Shared Object State

It is possible for groups of contexts to share certain state. Enabling such sharing
between contexts is done through window system binding APIs such as those de-
scribed in section 1.7.2. These APIs are responsible for creation and management
of contexts, and not discussed further here. More detailed discussion of the behav-
ior of shared objects is included in appendix D. Except as defined in this appendix,
all state in a context is specific to that context only.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands perform
the same operation but differ in how arguments are supplied to them. To conve-
niently accommodate this variation, we adopt a notation for describing commands
and their arguments.

GL commands are formed from a name which may be followed, depending on
the particular command, by a sequence of characters describing a parameter to the
command. If present, a digit indicates the required length (number of values) of the
indicated type. Next, a string of characters making up one of the type descriptors
from table 2.1 indicates the specific size and data type of parameter values. A
final v character, if present, indicates that the command takes a pointer to an array
(a vector) of values rather than a series of individual arguments. Two specific
examples are:

void Uniform4f(int location, £loat v0, float vl,
float v2, float v3);

OpenGL 4.2 (Core Profile) - April 27, 2012

13

2.3. GL COMMAND SYNTAX

Type Descriptor | Corresponding GL Type

b byte
S short
i int
i64 int64
f float
d double
ub ubyte
us ushort
ui uint
ui64 uint64

Table 2.1: Correspondence of command suffix type descriptors to GL argument
types. Refer to table 2.2 for definitions of the GL types.

and
void GetFloatv(enum value, float *data);

These examples show the ANSI C declarations for these commands. In general,
a command declaration has the form?

rtype Name{e1234}{e¢ b s ii64 f d ub us ui ui64}{ev}
([args,] Targl, ..., TargN [, args]) ;

rtype is the return type of the function. The braces ({}) enclose a series of type
descriptors (see table 2.1), of which one is selected. e indicates no type descriptor.
The arguments enclosed in brackets ([args ,] and [, args]) may or may not be
present. The /N arguments argl through arg/N have type T, which corresponds to
one of the type descriptors indicated in table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then V is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only arg/ is present and it is an array of N values of
the indicated type.
For example,

void Uniform{1234}{if}(int location, T value);

3The declarations shown in this document apply to ANSI C. Languages such as C++ and Ada
that allow passing of argument type information admit simpler declarations and fewer entry points.

OpenGL 4.2 (Core Profile) - April 27, 2012

14

2.3. GL COMMAND SYNTAX 15

indicates the eight declarations

void Uniformli(int location, int value);

void Uniform1f(int location, float value);

void Uniform2i(int location, int v0, int vl);

void Uniform2f(int location, £loat v0, float vl);

void Uniform3i(int location, int v0, int vI, int v2);

void Uniform3f(int location, £loat vl, float v2,
float v2);

void Uniformdi(int location, int v0, int vI, int v2,
int v3);

void Uniformdf(int location, £loat v0, float vl,
float v2, float v3);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of the GL data types summarized in table 2.2, or pointers to one of these
types. Since many GL operations represent bitfields within these types, transfer
blocks of data in these types to graphics hardware which uses the same data types,
or otherwise requires these sizes, it is not possible to implement the GL API on an
architecture which cannot satisfy the exact bit width requirements in table 2.2.

The types clampf and clampd are no longer used, replaced by float
and double respectively together with specification language requiring param-
eter clamping”.

2.3.1 Data Conversion For State-Setting Commands

Many GL commands specify a value or values to which GL state of a specific type
(boolean, enum, integer, or floating-point) is to be set. When multiple versions of
such a command exist, using the type descriptor syntax described above, any such
version may be used to set the state value. When state values are specified using
a different parameter type than the actual type of that state, data conversions are
performed as follows:

e When the type of internal state is boolean, zero integer or floating-point val-
ues are converted to FALSE and non-zero values are converted to TRUE.

e When the type of internal state is integer or enum, boolean values of FALSE
and TRUE are converted to 0 and 1, respectively. Floating-point values are
rounded to the nearest integer.

* These changes are completely backwards-compatible and will eventually be propagated to man
pages and header files as well.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.3. GL COMMAND SYNTAX 16

GL Type Description
Bit Width

boolean 1 or more | Boolean

byte 8 Signed twos complement binary inte-
ger

ubyte 8 Unsigned binary integer

char 8 Characters making up strings

short 16 Signed twos complement binary inte-
ger

ushort 16 Unsigned binary integer

int 32 Signed twos complement binary inte-
ger

uint 32 Unsigned binary integer

fixed 32 Signed 2’s complement 16.16 scaled
integer

int64 64 Signed twos complement binary inte-
ger

uint64 64 Unsigned binary integer

sizei 32 Non-negative binary integer size

enum 32 Enumerated binary integer value

intptr ptrbits Signed twos complement binary inte-
ger

sizeiptr | ptrbits Non-negative binary integer size

sync ptrbits Sync object handle (see section 5.3)

bitfield 32 Bit field

half 16 Half-precision floating-point value
encoded in an unsigned scalar

float 32 Floating-point value

clampf 32 Floating-point value clamped to [0, 1]

double 64 Floating-point value

clampd 64 Floating-point value clamped to [0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation must use exactly the number of
bits indicated in the table to represent a GL type.

ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr, sizeiptr, and sync must be sufficiently large as to store any
address.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.4. BASIC GL OPERATION 17

e When the type of internal state is floating-point, boolean values of FALSE
and TRUE are converted to 0.0 and 1.0, respectively. Integer values are con-
verted to floating-point.

For commands taking arrays of the specified type, these conversions are per-
formed for each element of the passed array.

Each command following these conversion rules refers back to this section.
Some commands have additional conversion rules specific to certain state values
and data types, which are described following the reference.

Validation of values performed by state-setting commands is performed after
conversion, unless specified otherwise for a specific command.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL on the
left. Some commands specify geometric objects to be drawn while others control
how the objects are handled by the various stages. Commands are effectively sent
through a processing pipeline.

The first stage operates on geometric primitives described by vertices: points,
line segments, and polygons. In this stage vertices may be transformed and lit, fol-
lowed by assembly into geometric primitives, which may optionally be used by the
next stage, geometry shading, to generate new primitives. The final resulting prim-
itives are clipped to a clip volume in preparation for the next stage, rasterization.
The rasterizer produces a series of framebuffer addresses and values using a two-
dimensional description of a point, line segment, or polygon. Each fragment so
produced is fed to the next stage that performs operations on individual fragments
before they finally alter the framebuffer. These operations include conditional up-
dates into the framebuffer based on incoming and previously stored depth values
(to effect depth buffering), blending of incoming fragment colors with stored col-
ors, as well as masking and other logical operations on fragment values.

Finally, values may also be read back from the framebuffer or copied from one
portion of the framebuffer to another. These transfers may include some type of
decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.4. BASIC GL OPERATION

18

Transform

1

Figure 2.1. Block diagram of the GL.

<
h Feedback
A
Vertex Vertex Geometry
Data Shading and Shading and Fragmentd
——epp] Per-Vertex =P Primitive Rasterization =1 “C an ffer
Operations Assembly Operations
A \ t *
Texture
Memory
A
Pixel
IData N pixel | g
Pack/Unpack|

OpenGL 4.2 (Core Profile) - April 27, 2012

2.5. GL ERRORS 19

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO_ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO_ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO_ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set, results of
GL operation are undefined only if OUT_OF_MEMORY has occurred. In other cases,
the command generating the error is ignored so that it has no effect on GL state or
framebuffer contents. Except where otherwise noted, if the generating command
returns a value, it returns zero. If the generating command modifies values through
a pointer argument, no change is made to these values. These error semantics
apply only to GL errors, not to system errors such as memory access errors. This
behavior is the current behavior; the action of the GL in the presence of errors is
subject to change.

Several error generation conditions are implicit in the description of every GL
command:

e If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, the
error INVALID_ENUM is generated. This is the case even if the argument is
a pointer to a symbolic constant, if the value pointed to is not allowable for
the given command.

e If a negative number is provided where an argument of type sizei or
sizeiptr is specified, the error INVALID_VALUE is generated.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.6. PRIMITIVES AND VERTICES

20

Error

Description

Offending com-
mand ignored?

INVALID_ENUM enum argument out of range Yes
INVALID_VALUE Numeric argument out of range | Yes
INVALID_OPERATION Operation illegal in current state | Yes

INVALID_FRAMEBUFFER_OPERATION || Framebuffer object is not com- | Yes
plete

OUT_OF_MEMORY Not enough memory left to exe- | Unknown

cute command

Table 2.3: Summary of GL errors

o If memory is exhausted as a side effect of the execution of a command, the
error OUT_OF_MEMORY may be generated.

Otherwise, errors are generated only for conditions that are explicitly described in
this specification.

2.6 Primitives and Vertices

In the GL, most geometric objects are drawn by specifying a series of generic
attribute sets using DrawArrays or one of the other drawing commands defined in
section 2.8.3. Points, lines, polygons, and a variety of related geometric objects
(see section 2.6.1) can be drawn in this way.

Each vertex is specified with one or more generic vertex attributes. Each at-
tribute is specified with one, two, three, or four scalar values. Generic vertex
attributes can be accessed from within vertex shaders (section 2.11) and used to
compute values for consumption by later processing stages.

The methods by which generic attributes are sent to the GL, as well as how
attributes are used by vertex shaders to generate vertices mapped to the two-
dimensional screen, are discussed later.

Before vertex shader execution, the state required by a vertex is its generic
vertex attributes. Vertex shader execution processes vertices producing a homoge-
neous vertex position and any outputs explicitly written by the vertex shader.

Figure 2.2 shows the sequence of operations that builds a primitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed,
it is clipped to a clip volume. This may alter the primitive by altering vertex
coordinates and vertex shader outputs. In the case of line and polygon primi-

OpenGL 4.2 (Core Profile) - April 27, 2012

2.6. PRIMITIVES AND VERTICES

21

Coordinates
Point, . .
Vertex Shaded Line Segment, or E‘:::;:;Ir::g;
Shader Vertices Triangle or Triangle
Execution (Primitive) cliopin
Assembly pping
Varying o o
Outputs
Generic Primitive type
Vertex (from DrawArrays or
Attributes

DrawElements mode)

Figure 2.2. Vertex processing and primitive assembly.

Rasterization

OpenGL 4.2 (Core Profile) - April 27, 2012

2.6. PRIMITIVES AND VERTICES 22

tives, clipping may insert new vertices into the primitive. The vertices defining a
primitive to be rasterized have output variables associated with them.

2.6.1 Primitive Types

A sequence of vertices is passed to the GL using DrawArrays or one of the other
drawing commands defined in section 2.8.3. There is no limit to the number of
vertices that may be specified, other than the size of the vertex arrays. The mode
parameter of these commands determines the type of primitives to be drawn using
the vertices. The types, and the corresponding mode parameters, are:

Points
A series of individual points may be specified with mode POINTS. Each vertex
defines a separate point.

Line Strips

A series of one or more connected line segments may be specified with mode
LINE_STRIP. In this case, the first vertex specifies the first segment’s start point
while the second vertex specifies the first segment’s endpoint and the second seg-
ment’s start point. In general, the ith vertex (for 7 > 1) specifies the beginning of
the ith segment and the end of the ¢ — 1st. The last vertex specifies the end of the
last segment. If only one vertex is specified, then no primitive is generated.

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

Line Loops

Line loops may be specified with mode LINE_LOOP. Loops are the same as
line strips except that a final segment is added from the final specified vertex to the
first vertex. The required state consists of the processed first vertex, in addition to
the state required for line strips.

Separate Lines

Individual line segments, each specified by a pair of vertices, may be speci-
fied with mode LINES. The first two vertices passed define the first segment, with
subsequent pairs of vertices each defining one more segment. If the number of
specified vertices is odd, then the last one is ignored. The state required is the same
as for line strips but it is used differently: a processed vertex holding the first vertex
of the current segment, and a boolean flag indicating whether the current vertex is
odd or even (a segment start or end).

OpenGL 4.2 (Core Profile) - April 27, 2012

2.6. PRIMITIVES AND VERTICES 23

NN

1 3

(@) (b) ()

Figure 2.3. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices in order within the vertex arrays. Note
that in (a) and (b) triangle edge ordering is determined by the first triangle, while in
(c) the order of each triangle’s edges is independent of the other triangles.

Triangle Strips

A triangle strip is a series of triangles connected along shared edges, and may
be specified with mode TRIANGLE_STRIP. In this case, the first three vertices
define the first triangle (and their order is significant). Each subsequent vertex
defines a new triangle using that point along with two vertices from the previous
triangle. If fewer than three vertices are specified, no primitive is produced. See
figure 2.3.

The required state consists of a flag indicating if the first triangle has been
completed, two stored processed vertices, (called vertex A and vertex B), and a
one bit pointer indicating which stored vertex will be replaced with the next vertex.
The pointer is initialized to point to vertex A. Each successive vertex toggles the
pointer. Therefore, the first vertex is stored as vertex A, the second stored as vertex
B, the third stored as vertex A, and so on. Any vertex after the second one sent
forms a triangle from vertex A, vertex B, and the current vertex (in that order).

Triangle Fans

A triangle fan is the same as a triangle strip with one exception: each vertex
after the first always replaces vertex B of the two stored vertices. A triangle fan
may be specified with mode TRIANGLE_FAN.

Separate Triangles
Separate triangles are specified with mode TRIANGLES. In this case, The 3i +

OpenGL 4.2 (Core Profile) - April 27, 2012

2.6. PRIMITIVES AND VERTICES 24

@ ---O—0O @

@ ---O—D - ®

O ---O—O—O—O O

Figure 2.4. Lines with adjacency (a) and line strips with adjacency (b). The vertices
connected with solid lines belong to the main primitives; the vertices connected by
dashed lines are the adjacent vertices that may be used in a geometry shader.

1st, 37 + 2nd, and 3¢ 4 3rd vertices (in that order) determine a triangle for each
t=0,1,...,n— 1, where there are 3n + k vertices drawn. k is either O, 1, or 2; if
k is not zero, the final k vertices are ignored. For each triangle, vertex A is vertex
31 and vertex B is vertex 37 + 1. Otherwise, separate triangles are the same as a
triangle strip.

Lines with Adjacency

Lines with adjacency are independent line segments where each endpoint has
a corresponding adjacent vertex that can be accessed by a geometry shader (sec-
tion 2.13). If a geometry shader is not active, the adjacent vertices are ignored.
They are generated with mode LINES_ADJACENCY.

A line segment is drawn from the 47+ 2nd vertex to the 47 4 3rd vertex for each
i =20,1,...,n — 1, where there are 4n + k vertices passed. k is either 0, 1, 2, or
3; if k is not zero, the final k vertices are ignored. For line segment 7, the 47 4 1st
and 4¢ + 4th vertices are considered adjacent to the 47 4 2nd and 4¢ + 3rd vertices,
respectively (see figure 2.4).

Line Strips with Adjacency

OpenGL 4.2 (Core Profile) - April 27, 2012

2.6. PRIMITIVES AND VERTICES 25

Figure 2.5. Triangles with adjacency. The vertices connected with solid lines be-
long to the main primitive; the vertices connected by dashed lines are the adjacent
vertices that may be used in a geometry shader.

Line strips with adjacency are similar to line strips, except that each line seg-
ment has a pair of adjacent vertices that can be accessed by a geometry shader. If a
geometry shader is not active, the adjacent vertices are ignored. They are generated
with mode LINE_STRIP_ADJACENCY.

A line segment is drawn from the ¢ 4+ 2nd vertex to the 7 + 3rd vertex for each
t=20,1,...,n — 1, where there are n + 3 vertices passed. If there are fewer than
four vertices, all vertices are ignored. For line segment ¢, the ¢ + 1st and ¢ + 4th
vertex are considered adjacent to the 7 4 2nd and 7 4 3rd vertices, respectively (see
figure 2.4).

Triangles with Adjacency

Triangles with adjacency are similar to separate triangles, except that each tri-
angle edge has an adjacent vertex that can be accessed by a geometry shader. If a
geometry shader is not active, the adjacent vertices are ignored. They are generated
with mode TRIANGLES_ADJACENCY.

The 67 + 1st, 6¢ + 3rd, and 67 + 5th vertices (in that order) determine a triangle
for each ¢ = 0,1,...,n — 1, where there are 6n + k vertices passed. k is either
0, 1, 2, 3, 4, or 5; if k is non-zero, the final k vertices are ignored. For triangle i,
the 7 + 2nd, 7 + 4th, and ¢ 4 6th vertices are considered adjacent to edges from the
1 + 1st to the 7 + 3rd, from the ¢ + 3rd to the ¢ + 5th, and from the ¢ + 5th to the

OpenGL 4.2 (Core Profile) - April 27, 2012

2.6. PRIMITIVES AND VERTICES 26

Figure 2.6. Triangle strips with adjacency. The vertices connected with solid lines
belong to the main primitives; the vertices connected by dashed lines are the adja-
cent vertices that may be used in a geometry shader.

1 + 1st vertices, respectively (see figure 2.5).

Triangle Strips with Adjacency

Triangle strips with adjacency are similar to triangle strips, except that each line
triangle edge has an adjacent vertex that can be accessed by a geometry shader. If a
geometry shader is not active, the adjacent vertices are ignored. They are generated
with mode TRIANGLE_STRIP_ADJACENCY.

In triangle strips with adjacency, n triangles are drawn where there are 2(n +
2) + k vertices passed. k is either O or 1; if & is 1, the final vertex is ignored. If
there are fewer than 6 vertices, the entire primitive is ignored. Table 2.4 describes
the vertices and order used to draw each triangle, and which vertices are considered
adjacent to each edge of the triangle (see figure 2.6).

OpenGL 4.2 (Core Profile) - April 27, 2012

2.6. PRIMITIVES AND VERTICES 27

Primitive Vertices Adjacent Vertices
Primitive Ist [2nd | 3rd | 122 | 23 | 3/1
only 4 =0,n=1) 1 3 5 2 6 4
first (¢ = 0) 1 3 5 2 7 4
middle (¢ odd) 2043 | 2¢0+1 | 264+5 | 2¢0—1 | 2i+4 | 2047
middle (¢ even) 2041 | 2¢04+3 | 26+5 | 2¢0—1 | 20+7 | 2044
last(=mn—1,70dd) | 2¢0+3 | 20+1|20+5|20—1|20+4]|2i+6
last(t=mn—1,7even) | 20+1 | 20+3 | 20+5 | 20—1 | 20+6 | 21 +4

Table 2.4: Triangles generated by triangle strips with adjacency. Each triangle
is drawn using the vertices whose numbers are in the Ist, 2nd, and 3rd columns
under primitive vertices, in that order. The vertices in the 1/2, 2/3, and 3/1 columns
under adjacent vertices are considered adjacent to the edges from the first to the
second, from the second to the third, and from the third to the first vertex of the
triangle, respectively. The six rows correspond to six cases: the first and only
triangle (i = 0,n = 1), the first triangle of several (i = 0,n > 0), “odd” middle
triangles (i = 1,3,5...), “even” middle triangles (i = 2,4,6,...), and special
cases for the last triangle, when ¢ is either even or odd. For the purposes of this
table, the first vertex passed is numbered 1 and the first triangle is numbered 0.

Separate Patches

A patch is an ordered collection of vertices used for primitive tessellation (sec-
tion 2.12). The vertices comprising a patch have no implied geometric ordering.
The vertices of a patch are used by tessellation shaders and a fixed-function tes-
sellator to generate new point, line, or triangle primitives. Separate patches are
generated with mode PATCHES.

Each patch in the series has a fixed number of vertices, which is specified by
calling

void PatchParameteri(enum pname, int value);

with pname set to PATCH_VERTICES. The error INVALID_VALUE is generated
if value is less than or equal to zero or is greater than the implementation-dependent
maximum patch size (the value of MAX_PATCH_VERTICES). The patch size is ini-
tially three vertices.

If the number of vertices in a patch is given by v, the vi + 1st through vi 4 vth
vertices (in that order) determine a patch for each ¢ = 0,1,...n — 1, where there
are vn + k vertices. k is in the range [0, v — 1]; if k is not zero, the final k vertices
are ignored.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.7. VERTEX SPECIFICATION 28

General Considerations For Polygon Primitives

Depending on the current state of the GL, a polygon primitive generated from a
drawing command with mode TRIANGLE_FAN, TRIANGLE_STRIP, TRIANGLES,
TRIANGLES_ADJACENCY, or TRIANGLE_STRIP_ADJACENCY may be rendered in
one of several ways, such as outlining its border or filling its interior. The order
of vertices in such a primitive is significant in polygon rasterization and fragment
shading (see sections 3.6.1 and 3.10.2).

2.7 Vertex Specification

Vertex shaders (see section 2.11) access an array of 4-component generic vertex
attributes . The first slot of this array is numbered O, and the size of the array is
specified by the implementation-dependent constant MAX_VERTEX_ATTRIBS.

Current generic attribute values define generic attributes for a vertex when a
vertex array defining that data is not enabled, as described in section 2.8. The cur-
rent values of a generic shader attribute declared as a floating-point scalar, vector,
or matrix may be changed at any time by issuing one of the commands

void VertexAttrib{1234}{sfd}(uint index, T values);
void VertexAttrib{123}{sfd}v(uint index, const
T values);
void VertexAttrib4{bsifd ub us ui}v(uint index, const
T values);
void VertexAttribdNub(uint index, T values);
void VertexAttrib4N{bsi ub us ui}v(uint index, const
T values);
void VertexAttribI{1234}{i ui}(uint index, T values);
void VertexAttribI{1234}{i ui}v(uint index, const
T values);
void VertexAttribI4{b s ub us}v(uint index, const
T values);
void VertexAttribL{1234}d(uint index, T values);
void VertexAttribL{1234}dv(uint index, T values);
void VertexAttribP{1234}ui (uint index, enum
type, boolean normalized, uint value) ;
void VertexAttribP{1234}uiv (uint index, enum
type, boolean normalized, const uint *value) ;

The VertexAttrib4N* commands specify fixed-point values that are converted

OpenGL 4.2 (Core Profile) - April 27, 2012

2.7. VERTEX SPECIFICATION 29

to a normalized [0, 1] or [—1, 1] range as described in equations 2.1 and 2.2, re-
spectively.

The VertexAttribI* commands specify signed or unsigned fixed-point values
that are stored as signed or unsigned integers, respectively. Such values are referred
to as pure integers.

The VertexAttribL* commands specify double-precision values that will be
stored as double-precision values.

The VertexAttribP* commands specify up to four attribute component val-
ues packed into a single natural type type as described in section 2.8.2. type
must be INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV, speci-
fying signed or unsigned data respectively. The first one (z), two (z,y), three
(x,y, z), or four (z,y, z, w) components of the packed data are consumed by Ver-
texAttribP1ui, VertexAttribP2ui, VertexAttribP3ui, and VertexAttribP4ui, re-
spectively. If normalized is TRUE, signed or unsigned components are converted
to floating-point by normalizing to [—1, 1] or [0, 1] respectively. If normalized is
false, components are cast directly to floating-point. For VertexAttribP*uiv, value
contains the address of a single uint containing the packed attribute components.

All other VertexAttrib* commands specify values that are converted directly
to the internal floating-point representation.

The resulting value(s) are loaded into the generic attribute at slot index, whose
components are named x, y, z, and w. The VertexAttrib1* family of commands
sets the x coordinate to the provided single argument while setting y and z to 0 and
w to 1. Similarly, VertexAttrib2* commands set x and y to the specified values,
z to 0 and w to 1; VertexAttrib3* commands set x, y, and z, with w set to 1, and
VertexAttrib4* commands set all four coordinates.

The VertexAttrib* entry points may also be used to load shader attributes de-
clared as a floating-point matrix. Each column of a matrix takes up one generic
4-component attribute slot out of the MAX_VERTEX_ATTRIBS available slots. Ma-
trices are loaded into these slots in column major order. Matrix columns are loaded
in increasing slot numbers.

For all VertexAttrib* commands, the error INVALID_VALUE is generated if
index is greater than or equal to the value of MAX_VERTEX_ATTRIBS.

When values for a vertex shader attribute variable are sourced from a current
generic attribute value, the attribute must be specified by a command compatible
with the data type of the variable. The values loaded into a shader attribute variable
bound to generic attribute index are undefined if the current value for attribute index
was not specified by

o VertexAttrib[1234]* or VertexAttribP*, for single-precision floating-point
scalar, vector, and matrix types

OpenGL 4.2 (Core Profile) - April 27, 2012

2.8. VERTEX ARRAYS 30

o VertexAttribI[1234]i or VertexAttribI[1234]iv, for signed integer scalar
and vector types

o VertexAttribI[1234]Jui or VertexAttribI[1234]uiv, for unsigned integer
scalar and vector types

e VertexAttribL*, for double-precision floating-point scalar and vector types.

The state required to support vertex specification consists of the value of
MAX_VERTEX_ATTRIBS four-component vectors to store generic vertex attributes.
The initial values for all generic vertex attributes are (0.0, 0.0, 0.0, 1.0).

2.8 Vertex Arrays

Vertex data are placed into arrays that are stored in the server’s address space (de-
scribed in section 2.9). Blocks of data in these arrays may then be used to specify
multiple geometric primitives through the execution of a single GL command. The
client may specify up to the value of MAX_VERTEX_ATTRIBS arrays to store one
or more generic vertex attributes. The commands

void VertexAttribPointer(uint index, int size, enum type,
boolean normalized, sizei stride, const
void *pointer);

void VertexAttribIPointer(uint index, int size, enum type,
sizei stride, const void *pointer); void
VertexAttribLPointer(uint index, int size, enum type,
sizei stride, const void *pointer);

describe the locations and organizations of these arrays. For each command, fype
specifies the data type of the values stored in the array. size indicates the num-
ber of values per vertex that are stored in the array as well as their component
ordering. Table 2.5 indicates the allowable values for size and type . For
type the values BYTE, SHORT, INT, FIXED, FLOAT, HALF_FLOAT, and DOUBLE
indicate types byte, short, int, fixed, float, half, and double, re-
spectively; the values UNSTIGNED_BYTE, UNSIGNED_SHORT, and UNSIGNED_INT
indicate types ubyte, ushort, and uint, respectively; and the values INT_2_ -
10_10_10_REV and UNSIGNED_INT_2_10_10_10_REV, indicating respectively
four signed or unsigned elements packed into a single uint, both correspond to
the term packed in that table.

An INVALID_VALUE error is generated if size is not one of the values allowed
in table 2.5 for the corresponding command.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.8. VERTEX ARRAYS 31
Sizes and
Component Integer

Command Ordering Handling | Types

VertexAttribPointer 1,2, 3,4, BGRA | flag byte, ubyte, short,
ushort, int, uint,
fixed, float, half,
double, packed

VertexAttribIPointer 1,2,3,4 integer byte, ubyte, short,
ushort, int, uint

VertexAttribLPointer 1,2,3,4 n/a double

Table 2.5: Vertex array sizes (values per vertex) and data types. The “Integer Han-
dling” column indicates how fixed-point data types are handled: “integer” means
that they remain as integer values, and “flag” means that they are either converted
to floating-point directly, or converted by normalizing to [0, 1] (for unsigned types)
or [—1,1] (for signed types), depending on the setting of the normalized flag in
VertexAttribPointer. If size is BGRA, vertex array values are always normalized,
irrespective of the “normalize” table entry. packed is not a GL type, but indicates
commands accepting multiple components packed into a single uint.

An INVALID_OPERATION error is generated under any of the following con-

ditions:

e if no vertex array object is currently bound (see section 2.10);

e size is BGRA and fype is not UNSIGNED_BYTE, INT_2_10_10_10_REV or

UNSIGNED_INT 2 10_10_10_REV;

e fype is INT_2_10_10_10_REV or UNSIGNED_INT_2_ 10_10_10_REV,
and size 1s neither 4 or BGRA;

e size 1S BGRA and normalized is FALSE;

e any of the *Pointer commands specifying the location and organization of
vertex array data are called while zero is bound to the ARRAY_BUFFER
buffer object binding point (see section 2.9.6), and the pointer argument is

not NULL.

The index parameter in the VertexAttrib*Pointer commands identifies the
generic vertex attribute array being described. The error INVALID_VALUE is gen-
erated if index is greater than or equal to the value of MAX_VERTEX_ATTRIBS.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.8. VERTEX ARRAYS 32

Generic attribute arrays with integer fype arguments can be handled in one of three
ways: converted to float by normalizing to [0, 1] or [—1, 1] as described in equa-
tions 2.1 and 2.2, respectively; converted directly to float, or left as integers. Data
for an array specified by VertexAttribPointer will be converted to floating-point
by normalizing if normalized is TRUE, and converted directly to floating-point oth-
erwise. Data for an array specified by VertexAttribIPointer will always be left as
integer values; such data are referred to as pure integers. Data for an array speci-
fied by VertexAttribLPointer must be specified as double-precision floating-point
values. An INVALID_ENUM error will be generated by VertexAttribLPointer if
type is not DOUBLE.

The one, two, three, or four values in an array that correspond to a single ver-
tex comprise an array element. When size is BGRA, it indicates four values. The
values within each array element are stored sequentially in memory. However, if
size is BGRA, the first, second, third, and fourth values of each array element are
taken from the third, second, first, and fourth values in memory respectively. If
stride is specified as zero, then array elements are stored sequentially as well. The
error INVALID_VALUE is generated if stride is negative. Otherwise pointers to the
ith and (i + 1)st elements of an array differ by stride basic machine units (typi-
cally unsigned bytes), the pointer to the (i 4+ 1)st element being greater. For each
command, pointer specifies the offset within a buffer of the first value of the first
element of the array being specified.

When values for a vertex shader attribute variable are sourced from an enabled
generic vertex attribute array, the array must be specified by a command compat-
ible with the data type of the variable. The values loaded into a shader attribute
variable bound to generic attribute index are undefined if the array for index was
not specified by:

o VertexAttribPointer, for single-precision floating-point scalar, vector, and
matrix types

e VertexAttribIPointer with fype BYTE, SHORT, or INT for signed integer
scalar and vector types

e VertexAttribIPointer with fype UNSIGNED_BYTE, UNSIGNED_SHORT, Or
UNSIGNED_INT for unsigned integer scalar and vector types

e VertexAttribLPointer, for double-precision floating-point scalar and vector
types.

An individual generic vertex attribute array is enabled or disabled by calling
one of

OpenGL 4.2 (Core Profile) - April 27, 2012

2.8. VERTEX ARRAYS 33

void EnableVertexAttribArray(uint index);
void DisableVertexAttribArray(uint index);

where index identifies the generic vertex attribute array to enable or disable.

An INVALID_VALUE error is generated if index is greater than or equal to
MAX_VERTEX_ATTRIBS.

An INVALID_OPERATION error is generated if no vertex array object is
bound.

The command

void VertexAttribDivisor(uint index, uint divisor);

modifies the rate at which generic vertex attributes advance when rendering multi-
ple instances of primitives in a single draw call. If divisor is zero, the attribute at
slot index advances once per vertex. If divisor is non-zero, the attribute advances
once per divisor instances of the primitives being rendered. An attribute is referred
to as instanced if its divisor value is non-zero.

An INVALID_VALUE error is generated if index is greater than or equal to the
value of MAX_VERTEX_ATTRIBS.

An INVALID_OPERATION error is generated if no vertex array object is
bound.

2.8.1 Transferring Array Elements

When an array element ¢ is transferred to the GL by DrawArrays, DrawElements,
or the other Draw* commands described below, each generic attribute is expanded
to four components. If size is one then the z component of the attribute is specified
by the array; the y, z, and w components are implicitly set to 0, 0, and 1, respec-
tively. If size is two then the x and y components of the attribute are specified by
the array; the z and w components are implicitly set to 0 and 1, respectively. If size
is three then z, ¥y, and z are specified, and w is implicitly set to 1. If size is four
then all components are specified.
Primitive restarting is enabled or disabled by calling one of the commands

void Enable(enum farget);
and
void Disable(enum rarget);

with target PRIMITIVE_RESTART. The command

OpenGL 4.2 (Core Profile) - April 27, 2012

2.8. VERTEX ARRAYS 34

void PrimitiveRestartIndex(uint index);

specifies a vertex array element that is treated specially when primitive restarting
is enabled. This value is called the primitive restart index. ~ When one of the
Draw* commands transfers a set of generic attribute array elements to the GL, if
the index within the vertex arrays corresponding to that set is equal to the primitive
restart index, then the GL does not process those elements as a vertex. Instead,
it is as if the drawing command ended with the immediately preceding transfer,
and another drawing command is immediately started with the same parameters,
but only transferring the immediately following element through the end of the
originally specified elements.

When one of the *BaseVertex drawing commands specified in section 2.8.3 is
used, the primitive restart comparison occurs before the basevertex offset is added
to the array index.

2.8.2 Packed Vertex Data Formats

UNSIGNED_INT_2_10_10_10_REVand INT_2_10_10_10_REV vertex data for-
mats describe packed, 4 component formats stored in a single 32-bit word.

For the UNSIGNED_INT_2_10_10_10_REV vertex data format, the first (x),
second (y), and third (2) components are represented as 10-bit unsigned integer
values and the fourth (w) component is represented as a 2-bit unsigned integer
value.

For the INT_2_10_10_10_REV vertex data format, the x, y and z compo-
nents are represented as 10-bit signed two’s complement integer values and the w
component is represented as a 2-bit signed two’s complement integer value.

The normalized value is used to indicate whether to normalize the data to [0, 1]
(for unsigned types) or [—1, 1] (for signed types). During normalization, the con-
version rules specified in equations 2.1 and 2.2 are followed.

Tables 2.6 and 2.7 describe how these components are laid out in a 32-bit word.

2.8.3 Drawing Commands

The command

void DrawArraysOnelnstance(enum mode, int first,
sizei count, int instance, uint baseinstance);

does not exist in the GL, but is used to describe functionality in the rest of this
section. This command constructs a sequence of geometric primitives by transfer-
ring elements first through first + count — 1 of each enabled non-instanced array

OpenGL 4.2 (Core Profile) - April 27, 2012

2.8. VERTEX ARRAYS 35

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

] : : :

Table 2.6: Packed component layout for non-BGRA formats. Bit numbers are indi-
cated for each component.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0

(v] : y :

Table 2.7: Packed component layout for BGRA format. Bit numbers are indicated
for each component.

to the GL. mode specifies what kind of primitives are constructed, as defined in
section 2.6.1. If mode is not a valid primitive type, an INVALID_ENUM error is
generated. If count is negative, an INVALID_VALUE error is generated.

The value of instance may be read by a vertex shader as g1_InstancelID, as
described in section 2.11.12.

If an enabled vertex attribute array is instanced (it has a non-zero divisor as
specified by VertexAttribDivisor), the element that is transferred to the GL, for
all vertices, is given by

mstance .
—— | 4+ baseinstance
divisor

If an array corresponding to a generic attribute required by a vertex shader is
not enabled, then the corresponding element is taken from the current generic at-
tribute state (see section 2.7). Otherwise, if an array is enabled, the corresponding
current generic attribute value is unaffected by the execution of DrawArraysOne-
Instance.

If no vertex array object is bound (see section 2.10), an INVALID_OPERATION
error is generated.

Specifying first < 0 results in undefined behavior. Generating the error
INVALID_VALUE is recommended in this case.

The command

void DrawArrays(enummode, int first, sizei count);

is equivalent to the command sequence

OpenGL 4.2 (Core Profile) - April 27, 2012

2.8. VERTEX ARRAYS 36

DrawArraysOnelnstance (mode, first, count, 0, 0);
The command

void DrawArraysInstancedBaselnstance(enum mode,
int first, sizei count, sizei primcount,
uint baseinstance);

behaves identically to DrawArrays except that primcount instances of the range of
elements are executed and the value of instance advances for each iteration. Those
attributes that have positive values for divisor, as specified by VertexAttribDivi-
sor, advance once every divisor instances. Additionally, the first element within
those instanced vertex attributes is specified in baseinstance.
DrawArraysInstancedBaselnstance has the same effect as:

if (mode, count, or primcount is invalid)
generate appropriate error
else {
for (1 = 0; i < primcount; i++) {
DrawArraysOnelnstance (mode, first, count, i,
baseinstance) ;

}

The command

void DrawArraysInstanced(enum mode, int first,
sizei count, sizei primcount);

is equivalent to the command sequence
DrawArraysInstancedBaselnstance (mode, first, count, primcount,
The command

void DrawArraysIndirect(enum mode, const
void *indirect);

has the same effect as:

OpenGL 4.2 (Core Profile) - April 27, 2012

0);

2.8. VERTEX ARRAYS 37

typedef struct {
uint count;
uint primCount;
uint first;
uint baselInstance;
} DrawArraysIndirectCommand;

DrawArraysIndirectCommand xcmd =
(DrawArraysIndirectCommand =) indirect;

DrawArraysInstancedBaselnstance (mode, cmd->first, cmd->count,
cmd->primCount, cmd->baselnstance);

Unlike DrawArraysInstanced, first is unsigned and cannot cause an error. An
INVALID_OPERATION error is generated if zero is bound to DRAW_INDIRECT_—
BUFFER.

All elements of DrawArraysIndirectCommand are tightly packed 32 bit val-
ues.

The command

void MultiDrawArrays(enum mode, const int *first,
const sizei *count, sizei primcount);

behaves identically to DrawArraysInstanced except that primcount separate
ranges of elements are specified instead, all elements are treated as though they
are not instanced, and the value of instance remains zero. It has the same effect
as:

if (mode or primcount is invalid)
generate appropriate error
else {
for (1 = 0; i < primcount; i++) {
if (count[i] > 0)
DrawArraysOnelnstance (mode, first[i], count[i],
0, 0);

}

The command

void DrawElementsOnelnstance(enum mode, sizei count,
enum type, const void *indices, int instance,
uint baseinstance);

OpenGL 4.2 (Core Profile) - April 27, 2012

2.8. VERTEX ARRAYS 38

does not exist in the GL, but is used to describe functionality in the rest of this
section. This command constructs a sequence of geometric primitives by suc-
cessively transferring the count elements whose indices are stored in the currently
bound element array buffer (see section 2.9.7) at the offset defined by indices to
the GL. The ith element transferred by DrawElementsOnelnstance will be taken
from element indices[t] of each enabled non-instanced array. fype must be one of
UNSIGNED_BYTE, UNSIGNED_SHORT, or UNSIGNED_INT, indicating that the in-
dex values are of GL type ubyte, ushort, or uint respectively. mode specifies
what kind of primitives are constructed, as defined in section 2.6.1.

The value of instance may be read by a vertex shader as g1_InstanceID, as
described in section 2.11.12.

If no vertex array object is bound (see section 2.10), an INVALID_OPERATION
error is generated.

If an enabled vertex attribute array is instanced (it has a non-zero attribute
divisor as specified by VertexAttribDivisor), the element that is transferred to the
GL is given by:

instance
divisor

J + baseinstance

If an array corresponding to a generic attribute required by a vertex shader is not
enabled, then the corresponding element is taken from the current generic attribute
state (see section 2.7). Otherwise, if an array is enabled, the corresponding cur-
rent generic attribute value is unaffected by the execution of DrawElementsOne-
Instance.

The command

void DrawElements(enum mode, sizei count, enum type,
const void *indices);

behaves identically to DrawElementsOnelnstance with the instance and basein-
stance parameters set to zero; the effect of calling

DrawElements (mode, count, type, indices) ;
is equivalent to the command sequence:

if (mode, count or type is invalid)
generate appropriate error
else
DrawElementsOnelnstance (mode, count, type, indices, 0, 0);

OpenGL 4.2 (Core Profile) - April 27, 2012

2.8. VERTEX ARRAYS 39

The command

void DrawElementsInstancedBaselnstance(enum mode,
sizei count, enum type, const void *indices,
sizei primcount, uint baseinstance);

behaves identically to DrawElements except that primcount instances of the set
of elements are executed and the value of instance advances between each set.
Instanced attributes are advanced as they do during execution of DrawArraysIn-
stancedBaselInstace, and baseinstance has the same effect. It has the same effect
as:

if (mode, count, type, or primcount is invalid)
generate appropriate error
else {
for (int i = 0; 1 < primcount; i++) {
DrawElementsOnelnstance (mode, count, type, indices, i,
baseinstance) ;

}

The command

void MultiDrawElements(enum mode, const
sizei *count, enumtype, const void * const *indices,
sizei primcount);

behaves identically to DrawElementsInstanced except that primcount separate
sets of elements are specified instead, all elements are treated as though they are
not instanced, and the value of instance remains zero. It has the same effect as:

if (mode, count, primcount, or type is invalid)
generate appropriate error
else {
for (int 1 = 0; 1 < primcount; i++)
DrawElementsOnelnstance (mode, count[i], type,
indices[1], 0, 0);

}

The command

OpenGL 4.2 (Core Profile) - April 27, 2012

2.8. VERTEX ARRAYS 40

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enumtype, const
void *indices);

is a restricted form of DrawElements. mode, count, type, and indices match the
corresponding arguments to DrawElements, with the additional constraint that all
index values identified by indices must lie between start and end inclusive.

Implementations denote recommended maximum amounts of vertex and index
data, which may be queried by calling GetIntegerv with the symbolic constants
MAX_ELEMENTS_VERTICES and MAX_ELEMENTS_INDICES. If end — start + 1
is greater than the value of MAX_ELEMENTS_VERTICES, or if count is greater than
the value of MAX_ELEMENTS_INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start, end] be
referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

The error INVALID_VALUE is generated if end < start. Invalid mode, count,
or type parameters generate the same errors as would the corresponding call to
DrawElements. It is an error for index values (other than the primitive restart
index, when primitive restart is enabled) to lie outside the range [start,end)],
but implementations are not required to check for this. Such indices will cause
implementation-dependent behavior.

The commands

void DrawElementsBaseVertex(enum mode, sizei count,
enum type, const void *indices, int basevertex);
void DrawRangeElementsBaseVertex(enum mode,
uint start, uint end, sizei count, enumtype, const
void *indices, int basevertex);
void DrawElementsInstancedBaseVertex(enum mode,
sizei count, enumtype, const void *indices,
sizei primcount, int basevertex);
void DrawElementsInstancedBaseVertexBaselnstance(
enummode, sizei count, enumtype, const
void *indices, sizei primcount, int basevertex,
uint baseinstance);

are equivalent to the commands with the same base name (without the BaseVertex
suffix), except that the ith element transferred by the corresponding draw call will
be taken from element indices[i| + basevertex of each enabled array. If the result-
ing value is larger than the maximum value representable by type, it should behave

OpenGL 4.2 (Core Profile) - April 27, 2012

2.8. VERTEX ARRAYS 41

as if the calculation were upconverted to 32-bit unsigned integers (with wrapping
on overflow conditions). The operation is undefined if the sum would be negative
and should be handled as described in section 2.9.4. For DrawRangeElementsBa-
seVertex, the index values must lie between start and end inclusive, prior to adding
the basevertex offset. Index values lying outside the range [start, end] are treated
in the same way as DrawRangeElements.

For DrawElementsInstancedBase VertexBaselnstance, baseinstance is used
to offset the element from which instanced vertex attributes (those with a non-zero
divisor as specified by VertexAttribDivisor) are taken.

The command

void DrawElementsIndirect(enum mode, enum type, const
void *indirect);

has the same effect as:

typedef struct {
uint count;
uint primCount;
uint firstIndex;
int baseVertex;
uint baselInstance;
} DrawElementsIndirectCommand;

if (no element array buffer is bound) {

generate appropriate error
} else {

DrawElementsIndirectCommand *cmd =
(DrawElementsIndirectCommand =*)indirect;

DrawElementsInstancedBase VertexBaseIlnstance (mode,
cmd—->count, type,
cmd->firstIndex x size-of-type,
cmd->primCount, cmd->baseVertex,
cmd->baselInstance) ;

}

An INVALID_OPERATION error is generated if zero is bound to DRAW_-
INDIRECT_BUFFER, or if no element array buffer is bound.

All elements of DrawElementsIndirectCommand are tightly packed.

The command

OpenGL 4.2 (Core Profile) - April 27, 2012

2.9. BUFFER OBJECTS 42

void MultiDrawElementsBaseVertex(enum mode, const
sizei *count, enumtype, const void * const *indices,
sizei primcount, const int *basevertex);

behaves identically to DrawElementsBaseVertex, except that primcount separate
lists of elements are specified instead. It has the same effect as:

if (mode or primcount is invalid)
generate appropriate error
else {
for (int 1 = 0; 1 < primcount; i++)
if (count[i] > 0)
DrawElementsBaseVertex (mode, count[i], type,
indices[1], basevertex[i]);

If the number of supported generic vertex attributes (the value of MAX_-
VERTEX_ATTRIBS) is n, then the state required to implement vertex arrays con-
sists of n boolean values, n memory pointers, n integer stride values, n symbolic
constants representing array types, n integers representing values per element, n
boolean values indicating normalization, n boolean values indicating whether the
attribute values are pure integers, n integers representing vertex attribute divisors,
and an unsigned integer representing the restart index.

In the initial state, the boolean values are each false, the memory pointers are
each NULL, the strides are each zero, the array types are each FLOAT, the integers
representing values per element are each four, the normalized and pure integer flags
are each false, the divisors are each zero, and the restart index is zero.

2.9 Buffer Objects

The GL uses many types of data supplied by the client. Some of this data must be
stored in server memory, and it is usually desirable to store other types of frequently
used client data, such as vertex array and pixel data, in server memory even if the
option to store it in client memory exists. Buffer objects provide a mechanism to
allocate, initialize, and render from such memory.

The command

void GenBuffers(sizei n, uint *buffers);

OpenGL 4.2 (Core Profile) - April 27, 2012

2.9. BUFFER OBJECTS

43

Target name Purpose Described in section(s) ‘
ARRAY_BUFFER Vertex attributes 2.9.6
ATOMIC_COUNTER_BUFFER Atomic counter storage 2.11.7
COPY_READ_BUFFER_BINDING | Buffer copy source 2.9.5
COPY_WRITE_BUFFER_BINDING | Buffer copy destination 2.9.5
DRAW_INDIRECT_BUFFER Indirect command arguments | 2.9.8
ELEMENT_ARRAY_ BUFFER Vertex array indices 2.9.7
PIXEL_PACK_BUFFER Pixel read target 43.1,6.1
PIXEL_UNPACK_BUFFER Texture data source 3.7
TEXTURE_BUFFER Texture data buffer 3.9.7
TRANSFORM_FEEDBACK_BUFFER | Transform feedback buffer 2.17
UNIFORM_BUFFER Uniform block storage 2.11.7

Table 2.8: Buffer object binding targets.

returns n previously unused buffer object names in buffers.

These names are

marked as used, for the purposes of GenBuffers only, but they acquire buffer state
only when they are first bound with BindBuffer (see below), just as if they were

unused.

Buffer objects are deleted by calling

void DeleteBuffers(sizei n, const uint *buffers);

buffers contains n names of buffer objects to be deleted. After a buffer object

is deleted it has no contents, and its name is again unused.

Unused names in

buffers that have been marked as used for the purposes of GenBuffers are marked
as unused again. Unused names in buffers are silently ignored, as is the value zero.

2.9.1 Creating and Binding Buffer Objects

A buffer object is created by binding a name returned by GenBuffers to a buffer
target. The binding is effected by calling

void BindBuffer(enum target, uint buffer);

target must be one of the targets listed in table 2.8. If the buffer object named buffer
has not been previously bound, the GL creates a new state vector, initialized with
a zero-sized memory buffer and comprising all the state and with the same initial

values listed in table 2.9.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.9. BUFFER OBJECTS 44

Name Type Initial Value Legal Values

BUFFER_SIZE int64 0 any non-negative integer

BUFFER_USAGE enum STATIC_DRAW | STREAM_DRAW, STREAM_READ,
STREAM_COPY, STATIC_DRAW,
STATIC_READ, STATIC_COPY,
DYNAMIC_DRAW, DYNAMIC_READ,
DYNAMIC_COPY

BUFFER_ACCESS enum READ_WRITE | READ_ONLY, WRITE_ONLY,
READ_WRITE

BUFFER_ACCESS_FLAGS | int 0 See section 2.9.3

BUFFER_MAPPED boolean FALSE TRUE, FALSE

BUFFER_MAP_POINTER | void* NULL address

BUFFER_MAP_OFFSET int64 0 any non-negative integer

BUFFER_MAP_LENGTH int64 0 any non-negative integer

Table 2.9: Buffer object parameters and their values.

Buffer objects created by binding a name returned by GenBuffers to any of
the valid rargets are formally equivalent, but the GL may make different choices
about storage location and layout based on the initial binding.

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding to target is broken.

BindBuffer fails and an INVALID_OPERATION error is generated if buffer is
not zero or a name returned from a previous call to GenBuffers, or if such a name
has since been deleted with DeleteBuffers.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object. Operations on the target also affect any
other bindings of that object.

If a buffer object is deleted while it is bound, all bindings to that object in
the current context (i.e. in the thread that called DeleteBuffers) are reset to zero.
Bindings to that buffer in other contexts are not affected, and the deleted buffer
may continue to be used at any places it remains bound or attached, as described
in appendix D.1.

Initially, each buffer object target is bound to zero. There is no buffer object
corresponding to the name zero, so client attempts to modify or query buffer object
state for a target bound to zero generate an INVALID_OPERATION error.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.9. BUFFER OBJECTS 45

Binding Buffer Objects to Indexed Targets

Buffer objects may be bound to indexed targets by calling one of the commands

void BindBufferRange(enum target, uint index,
uint buffer, intptr offset, sizeiptr size);
void BindBufferBase(enum farget, uint index, uint buffer);

target must be one of ATOMIC_COUNTER_BUFFER, TRANSFORM_FEEDBACK_-
BUFFER or UNIFORM_BUFFER. Additional language specific to each target is in-
cluded in sections referred to for each target in table 2.8.

Each target represents an indexed array of buffer object binding points, as well
as a single general binding point that can be used by other buffer object manipu-
lation functions (e.g. BindBuffer, MapBuffer). Both commands bind the buffer
object named by buffer to both the general binding point, and to the binding point
in the array given by index. If the binds are successful no change is made to the
state of the bound buffer object, and any previous bindings to the general binding
point or to the binding point in the array are broken.

The error INVALID_VALUE is generated if index is greater than or equal to the
number of farget-specific indexed binding points.

For BindBufferRange, offser specifies a starting offset into the buffer object
buffer, and size specifies the amount of data that can be read from the buffer object
while used as an indexed target. Both offset and size are in basic machine units. The
error INVALID_VALUE is generated if size is less than or equal to zero. Additional
errors may be generated if offser violates target-specific alignment requirements.

BindBufferBase binds the entire buffer, even when the size of the buffer is
changed after the binding is established. It is equivalent to calling BindBuffer-
Range with offset zero, while size is determined by the size of the bound buffer at
the time the binding is used.

Regardless of the size specified with BindBufferRange, or indirectly with
BindBufferBase, the GL will never read or write beyond the end of a bound buffer.
In some cases this constraint may result in visibly different behavior when a buffer
overflow would otherwise result, such as described for transform feedback opera-
tions in section 2.17.2.

2.9.2 Creating Buffer Object Data Stores

The data store of a buffer object is created and initialized by calling

void BufferData(enum target, sizeiptr size, const
void *data, enum usage);

OpenGL 4.2 (Core Profile) - April 27, 2012

2.9. BUFFER OBJECTS 46

with farget set to one of the targets listed in table 2.8, size set to the size of the data
store in basic machine units, and data pointing to the source data in client memory.
If data is non-NULL, then the source data is copied to the buffer object’s data store.
If data is NULL, then the contents of the buffer object’s data store are undefined.

usage is specified as one of nine enumerated values, indicating the expected
application usage pattern of the data store. The values are:

STREAM DRAW The data store contents will be specified once by the application,
and used at most a few times as the source for GL drawing and image speci-
fication commands.

STREAM_READ The data store contents will be specified once by reading data from
the GL, and queried at most a few times by the application.

STREAM_copPY The data store contents will be specified once by reading data from
the GL, and used at most a few times as the source for GL drawing and image
specification commands.

STATIC_DRAW The data store contents will be specified once by the application,
and used many times as the source for GL drawing and image specification
commands.

STATIC_READ The data store contents will be specified once by reading data from
the GL, and queried many times by the application.

STATIC_COPY The data store contents will be specified once by reading data from
the GL, and used many times as the source for GL drawing and image spec-
ification commands.

DYNAMIC_DRAW The data store contents will be respecified repeatedly by the ap-
plication, and used many times as the source for GL drawing and image
specification commands.

DYNAMIC_READ The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMIC_coPY The data store contents will be respecified repeatedly by reading
data from the GL, and used many times as the source for GL drawing and
image specification commands.

usage is provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.9. BUFFER OBJECTS 47

Name Value
BUFFER_SIZE size
BUFFER_USAGE usage
BUFFER_ACCESS READ_WRITE
BUFFER_ACCESS_FLAGS | 0
BUFFER_MAPPED FALSE
BUFFER_MAP_POINTER | NULL
BUFFER_MAP_OFFSET 0
BUFFER_MAP_LENGTH 0

Table 2.10: Buffer object initial state.

BufferData deletes any existing data store, and sets the values of the buffer
object’s state variables as shown in table 2.10.

Clients must align data elements consistent with the requirements of the client
platform, with an additional base-level requirement that an offset within a buffer to
a datum comprising /V basic machine units be a multiple of N.

If the GL is unable to create a data store of the requested size, the error OUT_ -
OF_MEMORY is generated.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the command

void BufferSubData(enum farget, intptr offset,
sizeiptr size, const void *data);

with target set to one of the targets listed in table 2.8. offset and size indicate the
range of data in the buffer object that is to be replaced, in terms of basic machine
units. data specifies a region of client memory size basic machine units in length,
containing the data that replace the specified buffer range. An INVALID_VALUE
error is generated if offset or size is less than zero or if offset + size is greater than
the value of BUFFER_SIZE. An INVALID_OPERATION error is generated if any
part of the specified buffer range is mapped with MapBufferRange or MapBuffer
(see section 2.9.3).

2.9.3 Mapping and Unmapping Buffer Data

All or part of the data store of a buffer object may be mapped into the client’s
address space by calling

OpenGL 4.2 (Core Profile) - April 27, 2012

2.9. BUFFER OBJECTS 48

void *MapBufferRange(enum target, intptr offset,
sizeiptr length, bitfield access);

with farget set to one of the targets listed in table 2.8. offset and length indicate the
range of data in the buffer object that is to be mapped, in terms of basic machine
units. access is a bitfield containing flags which describe the requested mapping.
These flags are described below.

If no error occurs, a pointer to the beginning of the mapped range is returned
once all pending operations on that buffer have completed, and may be used to
modify and/or query the corresponding range of the buffer, according to the fol-
lowing flag bits set in access:

e MAP_READ_BIT indicates that the returned pointer may be used to read
buffer object data. No GL error is generated if the pointer is used to query
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

e MAP_WRITE_BIT indicates that the returned pointer may be used to modify
buffer object data. No GL error is generated if the pointer is used to modify
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

If no error occurs, the pointer value returned by MapBufferRange must re-
flect an allocation aligned to the value of MIN_MAP_BUFFER_ALIGNMENT basic
machine units. Subtracting offset basic machine units from the returned pointer
will always produce a multiple of the value of MIN_MAP_BUFFER_ALIGNMENT.

Pointer values returned by MapBufferRange may not be passed as parameter
values to GL commands. For example, they may not be used to specify array
pointers, or to specify or query pixel or texture image data; such actions produce
undefined results, although implementations may not check for such behavior for
performance reasons.

Mappings to the data stores of buffer objects may have nonstandard perfor-
mance characteristics. For example, such mappings may be marked as uncacheable
regions of memory, and in such cases reading from them may be very slow. To en-
sure optimal performance, the client should use the mapping in a fashion consistent
with the values of BUFFER_USAGE and access. Using a mapping in a fashion in-
consistent with these values is liable to be multiple orders of magnitude slower
than using normal memory.

The following optional flag bits in access may be used to modify the mapping:

e MAP_INVALIDATE_RANGE_BIT indicates that the previous contents of the
specified range may be discarded. Data within this range are undefined with

OpenGL 4.2 (Core Profile) - April 27, 2012

2.9. BUFFER OBJECTS 49

the exception of subsequently written data. No GL error is generated if sub-
sequent GL operations access unwritten data, but the result is undefined and
system errors (possibly including program termination) may occur. This flag
may not be used in combination with MAP_READ_BIT.

e MAP_INVALIDATE_ BUFFER_BIT indicates that the previous contents of the
entire buffer may be discarded. Data within the entire buffer are undefined
with the exception of subsequently written data. No GL error is generated if
subsequent GL operations access unwritten data, but the result is undefined
and system errors (possibly including program termination) may occur. This
flag may not be used in combination with MAP_READ_BIT.

e MAP_FLUSH_EXPLICIT_BIT indicates that one or more discrete subranges
of the mapping may be modified. When this flag is set, modifications to
each subrange must be explicitly flushed by calling FlushMappedBuffer-
Range. No GL error is set if a subrange of the mapping is modified and
not flushed, but data within the corresponding subrange of the buffer are un-
defined. This flag may only be used in conjunction with MAP_WRITE_BIT.
When this option is selected, flushing is strictly limited to regions that are
explicitly indicated with calls to FlushMappedBufferRange prior to un-
map; if this option is not selected UnmapBuffer will automatically flush the
entire mapped range when called.

e MAP_UNSYNCHRONIZED_BIT indicates that the GL should not attempt to
synchronize pending operations on the buffer prior to returning from Map-
BufferRange. No GL error is generated if pending operations which source
or modify the buffer overlap the mapped region, but the result of such previ-
ous and any subsequent operations is undefined.

A successful MapBufferRange sets buffer object state values as shown in ta-
ble 2.11.

Errors

If an error occurs, MapBufferRange returns a NULL pointer.

An INVALID_VALUE error is generated if offset or length is negative, if offset+
length is greater than the value of BUFFER_SIZE, or if access has any bits set other
than those defined above.

An INVALID_OPERATION error is generated for any of the following condi-
tions:

e [ength is zero.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.9. BUFFER OBJECTS 50

Name Value
BUFFER_ACCESS Depends on access'
BUFFER_ACCESS_FLAGS | access
BUFFER_MAPPED TRUE
BUFFER_MAP_POINTER | pointer to the data store
BUFFER_MAP_OFFSET offset
BUFFER_MAP_LENGTH length

Table 2.11: Buffer object state set by MapBufferRange.

! BUFFER_ACCESS is set to READ_ONLY, WRITE_ONLY, or READ_WRITE if access
& (MAP_READ_BIT|MAP_WRITE_BIT) is respectively MAP_READ_BIT, MAP_-
WRITE_BIT, Or MAP_READ_BIT|MAP_WRITE_BIT.

The buffer is already in a mapped state.

Neither MAP_ READ_BIT nor MAP_WRITE_BIT is set.

MAP_READ_BIT is set and any of MAP_ INVALIDATE_RANGE_BIT, MAP_-—
INVALIDATE_BUFFER_BIT, or MAP_ UNSYNCHRONIZED_BIT is set.

MAP_FLUSH_EXPLICIT_BIT is setand MAP_WRITE_BIT is not set.

An OUT_OF_MEMORY error is generated if MapBufferRange fails because
memory for the mapping could not be obtained.

No error is generated if memory outside the mapped range is modified or
queried, but the result is undefined and system errors (possibly including program
termination) may occur.

The entire data store of a buffer object can be mapped into the client’s address
space by calling

void *MapBuffer(enum farget, enum access);

MapBuffer is equivalent to calling MapBufferRange with the same target, offset
of zero, length equal to the value of BUFFER_SIZE, and the access bitfield
value passed to MapBufferRange equal to

e MAP_READ_BIT, if mbaccess is READ_ONLY
e MAP_WRITE_BIT, if mbaccess is WRITE_ONLY

e MAP_READ_BIT|MAP_WRITE_BIT, if mbaccess is READ_WRITE

OpenGL 4.2 (Core Profile) - April 27, 2012

2.9. BUFFER OBJECTS 51

where mbaccess is the value of the access enum parameter passed to MapBuffer.

The pointer value returned by MapBuffer must be aligned to the value of
MIN_MAP_BUFFER_ALIGNMENT basic machine units.

INVALID_ENUM is generated if access is not one of the values described above.
Other errors are generated as described above for MapBufferRange.

If a buffer is mapped with the MAP_FLUSH_EXPLICIT_BIT flag, modifications
to the mapped range may be indicated by calling

void FlushMappedBufferRange(enum rarget, intptr offset,
sizeiptr length);

with target set to one of the targets listed in table 2.8. offset and length indi-
cate a modified subrange of the mapping, in basic machine units. The specified
subrange to flush is relative to the start of the currently mapped range of buffer.
FlushMappedBufferRange may be called multiple times to indicate distinct sub-
ranges of the mapping which require flushing.

Errors

An INVALID_VALUE error is generated if offset or length is negative, or if
offset + length exceeds the size of the mapping.

An INVALID_OPERATION error is generated if zero is bound to target.

An INVALID_OPERATION error is generated if the buffer bound to rarget is
not mapped, or is mapped without the MAP_FLUSH_EXPLICIT_BIT flag.

Unmapping Buffers

After the client has specified the contents of a mapped buffer range, and before the
data in that range are dereferenced by any GL commands, the mapping must be
relinquished by calling

boolean UnmapBuffer(enum rarget);

with target set to one of the targets listed in table 2.8. Unmapping a mapped buffer
object invalidates the pointer to its data store and sets the object’s BUFFER_—
MAPPED, BUFFER_MAP_POINTER, BUFFER_ACCESS_FLAGS, BUFFER_MAP_ -
OFFSET, and BUFFER_MAP_ LENGTH state variables to the initial values shown in
table 2.10.

UnmapBuffer returns TRUE unless data values in the buffer’s data store have
become corrupted during the period that the buffer was mapped. Such corruption
can be the result of a screen resolution change or other window system-dependent

OpenGL 4.2 (Core Profile) - April 27, 2012

2.9. BUFFER OBJECTS 52

event that causes system heaps such as those for high-performance graphics mem-
ory to be discarded. GL implementations must guarantee that such corruption can
occur only during the periods that a buffer’s data store is mapped. If such corrup-
tion has occurred, UnmapBuffer returns FALSE, and the contents of the buffer’s
data store become undefined.

If the buffer data store is already in the unmapped state, UnmapBuffer returns
FALSE, and an INVALID_OPERATION error is generated. However, unmapping
that occurs as a side effect of buffer deletion or reinitialization is not an error.

Effects of Mapping Buffers on Other GL Commands

Most, but not all GL commands will detect attempts to read data from a mapped
buffer object. When such an attempt is detected, an INVALID_OPERATION error
will be generated. Any command which does not detect these attempts, and per-
forms such an invalid read, has undefined results and may result in GL interruption
or termination.

2.9.4 Effects of Accessing Outside Buffer Bounds

Most, but not all GL commands operating on buffer objects will detect attempts to
read from or write to a location in a bound buffer object at an offset less than zero,
or greater than or equal to the buffer’s size. When such an attempt is detected, a
GL error will be generated. Any command which does not detect these attempts,
and performs such an invalid read or write, has undefined results, and may result
in GL interruption or termination.

2.9.5 Copying Between Buffers

All or part of the data store of a buffer object may be copied to the data store of
another buffer object by calling

void CopyBufferSubData(enum readtarget, enum writetarget,
intptr readoffset, intptr writeoffset, sizeiptr size);

with readtarget and writetarget each set to one of the targets listed in table 2.8.
While any of these targets may be used, the COPY_READ_BUFFER_BINDING and
COPY_WRITE_BUFFER_BINDING targets are provided specifically for copies, so
that they can be done without affecting other buffer binding targets that may be
in use. writeoffset and size specify the range of data in the buffer object bound to
writetarget that is to be replaced, in terms of basic machine units. readoffset and

OpenGL 4.2 (Core Profile) - April 27, 2012

2.9. BUFFER OBJECTS 53

size specify the range of data in the buffer object bound to readtarget that is to be
copied to the corresponding region of writetarget.

An INVALID_VALUE error is generated if any of readoffset, writeoffset, or size
are negative, if readoffset + size exceeds the size of the buffer object bound to
readtarget, or if writeoffset + size exceeds the size of the buffer object bound to
writetarget.

An INVALID_VALUE error is generated if the same buffer object is bound to
both readtarget and writetarget, and the ranges [readoffset, readoffset + size) and
[writeoffset, writeoffset + size) overlap.

An INVALID_OPERATION error is generated if zero is bound to readtarget or
writetarget.

An INVALID_OPERATION error is generated if the buffer objects bound to
either readtarget or writetarget are mapped.

2.9.6 Vertex Arrays in Buffer Objects

Blocks of vertex array data are stored in buffer objects with the same format and
layout options described in section 2.8. A buffer object binding point is added to
the client state associated with each vertex array type. The commands that specify
the locations and organizations of vertex arrays copy the buffer object name that is
bound to ARRAY_BUFFER to the binding point corresponding to the vertex array of
the type being specified. For example, the VertexAttribPointer command copies
the value of ARRAY_BUFFER_BINDING (the queriable name of the buffer binding
corresponding to the target ARRAY_BUFFER) to the client state variable VERTEX_ —
ATTRIB_ARRAY_BUFFER_BINDING for the specified index.

Rendering commands DrawArrays, and the other drawing commands defined
in section 2.8.3 operate as previously defined, where data for enabled generic at-
tribute arrays are sourced from buffer objects. When an array is sourced from a
buffer object, the pointer value of that array is used to compute an offset, in basic
machine units, into the data store of the buffer object. This offset is computed by
subtracting a NULL pointer from the pointer value, where both pointers are treated
as pointers to basic machine units.

If any enabled array’s buffer binding is zero when DrawArrays or one of the
other drawing commands defined in section 2.8.3 is called, the result is undefined.

2.9.7 Array Indices in Buffer Objects

Blocks of array indices are stored in buffer objects in the formats described by the
type parameter of DrawElements (see section 2.8.3).

OpenGL 4.2 (Core Profile) - April 27, 2012

2.9. BUFFER OBJECTS 54

A buffer object is bound to ELEMENT_ARRAY_BUFFER by calling BindBuffer
with target set to ELEMENT_ARRAY_BUFFER, and buffer set to the name of the
buffer object. If no corresponding buffer object exists, one is initialized as defined
in section 2.9.

DrawElements, DrawRangeElements, and DrawElementsInstanced source
their indices from the buffer object whose name is bound to ELEMENT -
ARRAY_BUFFER, using their indices parameters as offsets into the buffer ob-
ject in the same fashion as described in section 2.9.6. DrawElementsBaseV-
ertex, DrawRangeElementsBaseVertex, and DrawElementsInstancedBaseVer-
tex also source their indices from that buffer object, adding the basevertex offset to
the appropriate vertex index as a final step before indexing into the vertex buffer;
this does not affect the calculation of the base pointer for the index array. Finally,
MultiDrawElements and MultiDrawElementsBaseVertex also source their in-
dices from that buffer object, using its indices parameter as a pointer to an ar-
ray of pointers that represent offsets into the buffer object. If zero is bound to
ELEMENT_ARRAY_BUFFER, the result of these drawing commands is undefined.

In some cases performance will be optimized by storing indices and array data
in separate buffer objects, and by creating those buffer objects with the correspond-
ing binding points.

2.9.8 Indirect Commands in Buffer Objects

Arguments to DrawArraysIndirect and DrawElementsIndirect commands are
stored in buffer objects in the formats described in section 2.8.3 for the
DrawArraysIndirectCommand and DrawElement sIndirectCommand struc-
tures, respectively.

A buffer object is bound to DRAW_INDIRECT_BUFFER by calling BindBuffer
with farget set to DRAW_INDIRECT_BUFFER, and buffer set to the name of the
buffer object. If no corresponding buffer object exists, one is initialized as defined
in section 2.9.

DrawArraysIndirect and DrawElementsIndirect source their arguments
from the buffer object whose name is bound to DRAW_INDIRECT_BUFFER, using
their indirect parameters as offsets into the buffer object in the same fashion as
described in section 2.9.6. An INVALID_OPERATION error is generated if these
commands source data beyond the end of the buffer object, if zero is bound to
DRAW_INDIRECT_BUFFER, or if indirect is not aligned to a multiple of the size,
in basic machine units, of uint.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.10. VERTEX ARRAY OBJECTS 55

2.9.9 Buffer Object State

The state required to support buffer objects consists of binding names for each of
the buffer targets in table 2.8, and for each of the indexed buffer targets in sec-
tion 2.9.1. Additionally, each vertex array has an associated binding so there is a
buffer object binding for each of the vertex attribute arrays. The initial values for
all buffer object bindings is zero.

The state of each buffer object consists of a buffer size in basic machine units, a
usage parameter, an access parameter, a mapped boolean, two integers for the offset
and size of the mapped region, a pointer to the mapped buffer (NULL if unmapped),
and the sized array of basic machine units for the buffer data.

2.10 Vertex Array Objects

The buffer objects that are to be used by the vertex stage of the GL are collected
together to form a vertex array object. All state related to the definition of data
used by the vertex processor is encapsulated in a vertex array object.

The name space for vertex array objects is the unsigned integers, with zero
reserved by the GL.

The command

void GenVertexArrays(sizei n, uint *arrays);

returns n previous unused vertex array object names in arrays. These names are
marked as used, for the purposes of GenVertexArrays only, but they acquire array
state only when they are first bound.

Vertex array objects are deleted by calling

void DeleteVertexArrays(sizei n, const uint *arrays);

arrays contains n names of vertex array objects to be deleted. Once a vertex array
object is deleted it has no contents and its name is again unused. If a vertex array
object that is currently bound is deleted, the binding for that object reverts to zero
and no vertex array object is bound. Unused names in arrays that have been
marked as used for the purposes of GenVertexArrays are marked as unused again.
Unused names in arrays are silently ignored, as is the value zero.

A vertex array object is created by binding a name returned by GenVertexAr-
rays with the command

void BindVertexArray(uint array);

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 56

array is the vertex array object name. The resulting vertex array object is a new
state vector, comprising all the state and with the same initial values listed in ta-
bles 6.5 and 6.6.

BindVertexArray may also be used to bind an existing vertex array object.
If the bind is successful no change is made to the state of the bound vertex array
object, and any previous binding is broken.

The currently bound vertex array object is used for all commands which modify
vertex array state, such as VertexAttribPointer and EnableVertexAttribArray;
all commands which draw from vertex arrays, such as DrawArrays and DrawEle-
ments; and all queries of vertex array state (see chapter 6).

In the initial GL state, or when the current vertex array binding is zero as a
result of BindVertexArray or a side effect of Delete VertexArrays, no vertex array
object is bound, and commands which modify, draw from, or query vertex array
state will fail and generate an INVALID_OPERATION error.

Bind VertexArray fails and an INVALID_OPERATION error is generated if ar-
ray is not zero or a name returned from a previous call to GenVertexArrays, or if
such a name has since been deleted with DeleteVertexArrays.

2.11 Vertex Shaders

Vertex shaders describe the operations that occur on vertex values and their asso-
ciated data.

A vertex shader is an array of strings containing source code for the operations
that are meant to occur on each vertex that is processed. The language used for
vertex shaders is described in the OpenGL Shading Language Specification.

To use a vertex shader, shader source code is first loaded into a shader object
and then compiled. A shader object corresponds to a stage in the rendering pipeline
referred to as its shader stage or type. Alternatively, pre-compiled shader binary
code may be directly loaded into a shader object. A GL implementation must
support shader compilation (the boolean value SHADER_COMPILER must be TRUE).
If the integer value of NUM_SHADER_BINARY_FORMATS is greater than zero, then
shader binary loading is supported.

One or more vertex shader objects are attached to a program object. The pro-
gram object is then linked, which generates executable code from all the compiled
shader objects attached to the program. Alternatively, pre-compiled program bi-
nary code may be directly loaded into a program object (see section 2.11.5).

When program objects are bound to a shader stage, they become the current
program object for that stage. When the current program object for the vertex stage
includes a vertex shader, it is considered the active program object for the vertex

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 57

stage. The current program object for all stages may be set at once using a single
unified program object, or the current program object may be set for each stage
individually using a separable program object where different separable program
objects may be current for other stages. The set of separable program objects
current for all stages are collected in a program pipeline object that must be bound
for use. When a linked program object is made active for the vertex stage, the
executable code for the vertex shaders it contains is used to process vertices.

In addition to vertex shaders, tessellation control shaders, tessellation evalu-
ation shaders, geometry shaders and fragment shaders can be created, compiled,
and linked into program objects. Tessellation control and evaluation shaders are
used to control the operation of the tessellator, and are described in section 2.12.
Geometry shaders affect the processing of primitives assembled from vertices (see
section 2.13). Fragment shaders affect the processing of fragments during raster-
ization (see section 3.10). A single program object can contain all of vertex, tes-
sellation control, tessellation evaluation, geometry, and fragment shaders, or any
subset thereof.

When the program object currently in use for the vertex stage includes a vertex
shader, its vertex shader is considered active and is used to process vertices. If the
current vertex stage program object has no vertex shader, or no program object is
current for the vertex stage, the results of vertex shader execution are undefined.

A vertex shader can reference a number of variables as it executes. Vertex
attributes are the per-vertex values specified in section 2.7. Uniforms are per-
program variables that are constant during program execution. Samplers are a spe-
cial form of uniform used for texturing (section 3.9). OQutput variables hold the
results of vertex shader execution that are used later in the pipeline. Each of these
variable types is described in more detail below.

2.11.1 Shader Objects

The source code that makes up a program that gets executed by one of the pro-
grammable stages is encapsulated in one or more shader objects.

The name space for shader objects is the unsigned integers, with zero reserved
for the GL. This name space is shared with program objects. The following sections
define commands that operate on shader and program objects by name. Commands
that accept shader or program object names will generate the error INVALID_—
VALUE if the provided name is not the name of either a shader or program object
and INVALID_OPERATION if the provided name identifies an object that is not the
expected type.

To create a shader object, use the command

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS

uint CreateShader(enum type);

The shader object is empty when it is created. The fype argument specifies the type
of shader object to be created. For vertex shaders, type must be VERTEX_SHADER.
A non-zero name that can be used to reference the shader object is returned. If an
error occurs, zero will be returned.

The command

void ShaderSource(uint shader, sizei count, const
char * const *string, const int *length);

loads source code into the shader object named shader. string is an array of count
pointers to optionally null-terminated character strings that make up the source
code. The length argument is an array with the number of chars in each string (the
string length). If an element in length is negative, its accompanying string is null-
terminated. If length is NULL, all strings in the string argument are considered null-
terminated. The ShaderSource command sets the source code for the shader to
the text strings in the string array. If shader previously had source code loaded into
it, the existing source code is completely replaced. Any length passed in excludes
the null terminator in its count.

The strings that are loaded into a shader object are expected to form the source
code for a valid shader as defined in the OpenGL Shading Language Specification.

Once the source code for a shader has been loaded, a shader object can be
compiled with the command

void CompileShader(uint shader);

Each shader object has a boolean status, COMPILE_STATUS, that is modified as
a result of compilation. This status can be queried with GetShaderiv (see sec-
tion 6.1.12). This status will be set to TRUE if shader was compiled without errors
and is ready for use, and FALSE otherwise. Compilation can fail for a variety of
reasons as listed in the OpenGL Shading Language Specification. If Compile-
Shader failed, any information about a previous compile is lost. Thus a failed
compile does not restore the old state of shader.

Changing the source code of a shader object with ShaderSource does not
change its compile status or the compiled shader code.

Each shader object has an information log, which is a text string that is over-
written as a result of compilation. This information log can be queried with Get-
ShaderInfolLog to obtain more information about the compilation attempt (see
section 6.1.12).

OpenGL 4.2 (Core Profile) - April 27, 2012

58

2.11. VERTEX SHADERS 59

An INVALID_OPERATION error is generated if shader is not the name of a
valid shader object generated by CreateShader.
Resources allocated by the shader compiler may be released with the command

void ReleaseShaderCompiler(void);

This is a hint from the application, and does not prevent later use of the shader
compiler. If shader source is loaded and compiled after ReleaseShaderCompiler
has been called, CompileShader must succeed provided there are no errors in the
shader source.

The range and precision for different numeric formats supported by the shader
compiler may be determined with the command GetShaderPrecisionFormat (see
section 6.1.12).

Shader objects can be deleted with the command

void DeleteShader(uint shader);

If shader is not attached to any program object, it is deleted immediately. Oth-
erwise, shader is flagged for deletion and will be deleted when it is no longer
attached to any program object. If an object is flagged for deletion, its boolean
status bit DELETE_STATUS is set to true. The value of DELETE_STATUS can be
queried with GetShaderiv (see section 6.1.12). DeleteShader will silently ignore
the value zero.

2.11.2 Loading Shader Binaries

Precompiled shader binaries may be loaded with the command

void ShaderBinary(sizei count, const uint *shaders,
enum binaryformat, const void *binary, sizei length);

shaders contains a list of count shader object handles. Each handle refers to a
unique shader type (vertex shader or fragment shader). binary points to length
bytes of pre-compiled binary shader code in client memory, and binaryformat de-
notes the format of the pre-compiled code.

The binary image will be decoded according to the extension specification
defining the specified binaryformat. OpenGL defines no specific binary formats,
but does provide a mechanism to obtain token values for such formats provided
by extensions. The number of shader binary formats supported can be obtained by
querying the value of NUM_SHADER_BINARY_FORMATS. The list of specific binary

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 60

formats supported can be obtained by querying the value of SHADER_BINARY_—
FORMATS.

Depending on the types of the shader objects in shaders, ShaderBinary will
individually load binary vertex or fragment shaders, or load an executable binary
that contains an optimized pair of vertex and fragment shaders stored in the same
binary.

An INVALID_ENUM error is generated if binaryformat is not a supported format
returned in SHADER_BINARY_ FORMATS. An INVALID_VALUE error is generated
if the data pointed to by binary does not match the specified binaryformat. Addi-
tional errors corresponding to specific binary formats may be generated as specified
by the extensions defining those formats. An INVALID_OPERATION error is gen-
erated if more than one of the handles refers to the same type of shader (vertex or
fragment shader.)

If ShaderBinary fails, the old state of shader objects for which the binary was
being loaded will not be restored.

Note that if shader binary interfaces are supported, then a GL implementation
may require that an optimized pair of vertex and fragment shader binaries that were
compiled together be specified to LinkProgram. Not specifying an optimized pair
may cause LinkProgram to fail.

2.11.3 Program Objects

The shader objects that are to be used by the programmable stages of the GL are
collected together to form a program object. The programs that are executed by
these programmable stages are called executables. All information necessary for
defining an executable is encapsulated in a program object. A program object is
created with the command

uint CreateProgram(void);

Program objects are empty when they are created. A non-zero name that can be
used to reference the program object is returned. If an error occurs, zero will be
returned.

To attach a shader object to a program object, use the command

void AttachShader(uint program, uint shader);

The error INVALID_OPERATION is generated if shader is already attached to pro-
gram.

Shader objects may be attached to program objects before source code has
been loaded into the shader object, or before the shader object has been compiled.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 61

Multiple shader objects of the same type may be attached to a single program
object, and a single shader object may be attached to more than one program object.
To detach a shader object from a program object, use the command

void DetachShader(uint program, uint shader);

The error INVALID_OPERATION is generated if shader is not attached to program.
If shader has been flagged for deletion and is not attached to any other program
object, it is deleted.

In order to use the shader objects contained in a program object, the program
object must be linked. The command

void LinkProgram(uint program);

will link the program object named program. Each program object has a boolean
status, LINK_STATUS, that is modified as a result of linking. This status can be
queried with GetProgramiv (see section 6.1.12). This status will be set to TRUE if
a valid executable is created, and FALSE otherwise.

Linking can fail for a variety of reasons as specified in the OpenGL Shading
Language Specification, as well as any of the following reasons:

e One or more of the shader objects attached to program are not compiled
successfully.

e More active uniform or active sampler variables are used in program than
allowed (see sections 2.11.7,2.11.9, and 2.13.3).

e The program object contains objects to form a tessellation control shader
(see section 2.12.1), and

— the program is not separable and contains no objects to form a vertex
shader;

— the output patch vertex count is not specified in any compiled tessella-
tion control shader object; or

— the output patch vertex count is specified differently in multiple tessel-
lation control shader objects.

e The program object contains objects to form a tessellation evaluation shader
(see section 2.12.3), and

— the program is not separable and contains no objects to form a vertex
shader;

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 62

— the tessellation primitive mode is not specified in any compiled tessel-
lation evaluation shader object; or

— the tessellation primitive mode, spacing, vertex order, or point mode is
specified differently in multiple tessellation evaluation shader objects.

e The program object contains objects to form a geometry shader (see sec-
tion 2.13), and

— the program is not separable and contains no objects to form a vertex
shader;

— the input primitive type, output primitive type, or maximum output ver-
tex count is not specified in any compiled geometry shader object; or

— the input primitive type, output primitive type, or maximum output ver-
tex count is specified differently in multiple geometry shader objects.

If LinkProgram failed, any information about a previous link of that program
object is lost. Thus, a failed link does not restore the old state of program.

When successfully linked program objects are used for rendering operations,
they may access GL state and interface with other stages of the GL pipeline through
active variables and active interface blocks. The GL provides various commands
allowing applications to enumerate and query properties of active variables and in-
terface blocks for a specified program. If one of these commands is called with a
program for which LinkProgram succeeded, the information recorded when the
program was linked is returned. If one of these commands is called with a program
for which LinkProgram failed, no error is generated unless otherwise noted. Im-
plementations may return information on variables and interface blocks that would
have been active had the program been linked successfully. In cases where the link
failed because the program required too many resources, these commands may
help applications determine why limits were exceeded. However, the information
returned in this case is implementation-dependent and may be incomplete. If one
of these commands is called with a program for which LinkProgram had never
been called, no error will be generated unless otherwise noted, and the program
object is considered to have no active variables or interface blocks.

Each program object has an information log that is overwritten as a result of a
link operation. This information log can be queried with GetProgramInfoLog to
obtain more information about the link operation or the validation information (see
section 6.1.12).

If a program has been successfully linked by LinkProgram or ProgramBi-
nary (see section 2.11.5), it can be made part of the current rendering state for all
shader stages with the command

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 63

void UseProgram(uint program);

If program is non-zero, this command will make program the current program ob-
ject. This will install executable code as part of the current rendering state for each
shader stage present when the program was last successfully linked. If UsePro-
gram is called with program set to zero, then there is no current program object.
If program has not been successfully linked, the error INVALID_OPERATION is
generated and the current rendering state is not modified.

While a program object is in use, applications are free to modify attached
shader objects, compile attached shader objects, attach additional shader objects,
and detach shader objects. These operations do not affect the link status or exe-
cutable code of the program object.

The executable code for an individual shader stage is taken from the current
program for that stage. If there is a current program object established by Use-
Program, that program is considered current for all stages. Otherwise, if there is
a bound program pipeline object (see section 2.11.4), the program bound to the
appropriate stage of the pipeline object is considered current. If there is no current
program object or bound program pipeline object, no program is current for any
stage. The current program for a stage is considered active if it contains executable
code for that stage; otherwise, no program is considered active for that stage. If
there is no active program for the vertex or fragment shader stages, the results of
vertex and/or fragment processing will be undefined. However, this is not an error.
If there is no active program for the tessellation control, tessellation evaluation, or
geometry shader stages, those stages are ignored.

If LinkProgram or ProgramBinary successfully re-links a program object
that is active for any shader stage, then the newly generated executable code will
be installed as part of the current rendering state for all shader stages where the
program is active. Additionally, the newly generated executable code is made part
of the state of any program pipeline for all stages where the program is attached.

If a program object that is active for any shader stage is re-linked unsuccess-
fully, the link status will be set to FALSE, but existing executables and associated
state will remain part of the current rendering state until a subsequent call to Use-
Program, UseProgramsStages, or BindProgramPipeline removes them from use.
If such a program is attached to any program pipeline object, the existing executa-
bles and associated state will remain part of the program pipeline object until a
subsequent call to UseProgramStages removes them from use. An unsuccessfully
linked program may not be made part of the current rendering state by UsePro-
gram or added to program pipeline objects by UseProgramStages until it is suc-
cessfully re-linked. If such a program was attached to a program pipeline at the
time of a failed link, its existing executable may still be made part of the current

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 64

rendering state indirectly by BindProgramPipeline.
To set a program object parameter, call

void ProgramParameteri(uint program, enum pname,
int value);

pname identifies which parameter to set for program. value holds the value
being set.

If pname is PROGRAM_SEPARABLE, value must be TRUE or FALSE, and indi-
cates whether program can be bound for individual pipeline stages using UsePro-
gramStages after it is next linked. Other legal values for pname and value are
discussed in section 2.11.5.

Program objects can be deleted with the command

void DeleteProgram(uint program);

If program is not current for any GL context, is not the active program for any pro-
gram pipeline object, and is not the current program for any stage of any program
pipeline object, it is deleted immediately. Otherwise, program is flagged for dele-
tion and will be deleted after all of these conditions become true. When a program
object is deleted, all shader objects attached to it are detached. DeleteProgram
will silently ignore the value zero.

The command

uint CreateShaderProgramv(enum type, sizei count,
const char * const *strings);

creates a stand-alone program from an array of null-terminated source code strings
for a single shader type. CreateShaderProgramv is equivalent to the following
command sequence:

const uint shader = CreateShader (type) ;
if (shader) {
ShaderSource (shader, count, strings, NULL);
CompileShader (shader) ;
const uint program =
if (program) {
int compiled = FALSE;
GetShaderiv (shader, COMPILE_STATUS, &compiled);
ProgramParameteri (program, PROGRAM_SEPARABLE, TRUE) ;
if (compiled) {

CreateProgram () ;

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 65

AttachShader (program, shader);
LinkProgram (program) ;
DetachShader (program, shader) ;
¥
append-shader-info-log-to-program-info-log
}
DeleteShader (shader) ;
return program;
} else {
return 0;
}

The program may not actually link if the output variables in the shader attached
to the final stage of the linked program take up too many locations. If this situation
arises, the info log may explain this.

Because no shader is returned by CreateShaderProgramv and the shader that
is created is deleted in the course of the command sequence, the info log of the
shader object is copied to the program so the shader’s failed info log for the failed
compilation is accessible to the application.

2.11.4 Program Pipeline Objects

Instead of packaging all shader stages into a single program object, shader types
might be contained in multiple program objects each consisting of part of the com-
plete pipeline. A program object may even contain only a single shader stage.
This facilitates greater flexibility when combining different shaders in various ways
without requiring a program object for each combination.

Program bindings associating program objects with shader types are collected
to form a program pipeline object.

The command

void GenProgramPipelines(sizei n, uint *pipelines);

returns n previously unused program pipeline object names in pipelines. These
names are marked as used, for the purposes of GenProgramPipelines only, but
they acquire state only when they are first bound.

Program pipeline objects are deleted by calling

void DeleteProgramPipelines(sizei n, const
uint *pipelines);

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 66

pipelines contains n names of program pipeline objects to be deleted. Once a
program pipeline object is deleted, it has no contents and its name becomes un-
used. If an object that is currently bound is deleted, the binding for that object
reverts to zero and no program pipeline object becomes current. Unused names in
pipelines that have been marked as used for the purposes of GenProgramPipelines
are marked as unused again. Unused names in pipelines are silently ignored, as is
the value zero.

A program pipeline object is created by binding a name returned by GenPro-
gramPipelines with the command

void BindProgramPipeline(uint pipeline);

pipeline is the program pipeline object name. The resulting program pipeline
object is a new state vector, comprising all the state and with the same initial values
listed in table 6.31.

BindProgramPipeline may also be used to bind an existing program pipeline
object. If the bind is successful, no change is made to the state of the bound
program pipeline object, and any previous binding is broken. If BindPro-
gramPipeline is called with pipeline set to zero, then there is no current program
pipeline object.

If no current program object has been established by UseProgram, the pro-
gram objects used for each shader stage and for uniform updates are taken from
the bound program pipeline object, if any. If there is a current program object
established by UseProgram, the bound program pipeline object has no effect on
rendering or uniform updates. When a bound program pipeline object is used for
rendering, individual shader executables are taken from its program objects as de-
scribed in the discussion of UseProgram in section 2.11.3).

BindProgramPipeline fails and an INVALID_OPERATION error is gener-
ated if pipeline is not zero or a name returned from a previous call to Gen-
ProgramPipelines, or if such a name has since been deleted with DeletePro-
gramPipelines.

The executables in a program object associated with one or more shader stages
can be made part of the program pipeline state for those shader stages with the
command:

void UseProgramStages(uint pipeline, bitfield stages,
uint program);

where pipeline is the program pipeline object to be updated, stages is the bitwise
OR of accepted constants representing shader stages, and program is the program

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 67

object from which the executables are taken. The bits set in stages indicate the
program stages for which the program object named by program becomes cur-
rent. These stages may include tessellation control, tessellation evaluation, ver-
tex, geometry, or fragment indicated by TESS_CONTROL_SHADER_BIT, TESS_-—
EVALUATION_SHADER_BIT, VERTEX_SHADER_BIT, GEOMETRY_ SHADER_BIT,
or FRAGMENT_SHADER_BIT respectively. The constant ALL_SHADER BITS in-
dicates program is to be made current for all shader stages.

If program refers to a program object with a valid shader attached for an indi-
cated shader stage, this call installs the executable code for that stage in the indi-
cated program pipeline object state. If UseProgramsStages is called with program
set to zero or with a program object that contains no executable code for the given
stages, it is as if the pipeline object has no programmable stage configured for the
indicated shader stages. If stages is not the special value ALL_SHADER BITS, and
has a bit set that is not recognized, the error INVALID_VALUE is generated. If the
program object named by program was linked without the PROGRAM_SEPARABLE
parameter set, or was not linked successfully, the error INVALID_OPERATION is
generated and the corresponding shader stages in the pipeline program pipeline
object are not modified.

If pipeline is a name that has been generated (without subsequent deletion)
by GenProgramPipelines, but refers to a program pipeline object that has not
been previously bound, the GL first creates a new state vector in the same man-
ner as when BindProgramPipeline creates a new program pipeline object. If
pipeline is not a name returned from a previous call to GenProgramPipelines or if
such a name has since been deleted by DeleteProgramPipelines, an INVALID_-
OPERATION error is generated.

The command

void ActiveShaderProgram(uint pipeline, uint program);

sets the linked program named by program to be the active program (discussed
later in the secion 2.14.4) for the program pipeline object pipeline . If program
has not been successfully linked, the error INVALID_OPERATION is generated and
active program is not modified.

If pipeline is a name that has been generated (without subsequent deletion)
by GenProgramPipelines, but refers to a program pipeline object that has not
been previously bound, the GL first creates a new state vector in the same man-
ner as when BindProgramPipeline creates a new program pipeline object. If
pipeline is not a name returned from a previous call to GenProgramPipelines or if
such a name has since been deleted by DeleteProgramPipelines, an INVALID_-
OPERATION error is generated.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 68

Shader Interface Matching

When linking a non-separable program object with multiple shader types, the out-
puts of one stage form an interface with the inputs of the next stage. These inputs
and outputs must typically match in name, type, and qualification. When both sides
of an interface are contained in the same program object, LinkProgram will detect
mismatches on an interface and generate link errors.

When multiple shader stages are active, the outputs of one stage form an in-
terface with the inputs of the next stage. At each such interface, shader inputs are
matched up against outputs from the previous stage:

e An output block is considered to match an input block in the subsequent
shader if the two blocks have the same block name, and the members of the
block match exactly in name, type, qualification, and declaration order.

e An output variable is considered to match an input variable in the subequent
shader if:

— the two variables match in name, type, and qualification; or

— the two variables are declared with the same location layout qualifier
and match in type and qualification.

Variables or block members declared as structures are considered to match
in type if and only if structure members match in name, type, qualification, and
declaration order. Variables or block members declared as arrays are considered
to match in type only if both declarations specify the same element type and array
size. The rules for determining if variables or block members match in qualification
are found in the OpenGL Shading Language Specification.

Tessellation control shader per-vertex output variables and blocks and tessella-
tion control, tessellation evaluation, and geometry shader per-vertex input variables
and blocks are required to be declared as arrays, with each element representing
input or output values for a single vertex of a multi-vertex primitive. For the pur-
poses of interface matching, such variables and blocks are treated as though they
were not declared as arrays.

For program objects containing multiple shaders, LinkProgram will check for
mismatches on interfaces between shader stages in the program being linked and
generate a link error if a mismatch is detected. A link error will be generated if any
statically referenced input variable or block does not have a matching output. If
either shader redeclares the built-in array g1_ClipDistance[], the array must
have the same size in both shaders.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 69

With separable program objects, interfaces between shader stages may involve
the outputs from one program object and the inputs from a second program object.
For such interfaces, it is not possible to detect mismatches at link time, because the
programs are linked separately. When each such program is linked, all inputs or
outputs interfacing with another program stage are treated as active. The linker will
generate an executable that assumes the presence of a compatible program on the
other side of the interface. If a mismatch between programs occurs, no GL error
will be generated, but some or all of the inputs on the interface will be undefined.

At an interface between program objects, the set of inputs and outputs are con-
sidered to match exactly if and only if:

e Every declared input block or variable must have a matching output, as de-
scribed above.

e There are no output blocks or user-defined output variables declared without
a matching input block or variable declaration.

When the set of inputs and outputs on an interface between programs matches
exactly, all inputs are well-defined unless the corresponding outputs were not writ-
ten in the previous shader. However, any mismatch between inputs and outputs
results in all inputs being undefined except for cases noted below. Even if an in-
put has a corresponding output that matches exactly, mismatches on other inputs
or outputs may adversely affect the executable code generated to read or write the
matching variable.

The inputs and outputs on an interface between programs need not match ex-
actly when input and output location qualifiers (sections 4.3.8.1 and 4.3.8.2 of the
OpenGL Shading Language Specification) are used. When using location quali-
fiers, any input with an input location qualifier will be well-defined as long as the
other program writes to a matching output, as described above. The names of
variables need not match when matching by location.

Additionally, scalar and vector inputs with location layout qualifiers will be
well-defined if there is a corresponding output satisfying all of the following con-
ditions:

e the input and output match exactly in qualification, including in the location
layout qualifier;

e the output is a vector with the same basic component type and has more
components than the input; and

e the common component type of the input and output is int, uint, or float
(scalars and vectors with double component type are excluded).

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS

In this case, the components of the input will be taken from the first components
of the matching output, and the extra components of the output will be ignored.

To use any built-in input or output in the gl_PerVertex block in separable
program objects, shader code must redeclare that block prior to use. A separable
program will fail to link if:

e it contains multiple shaders of a single type with different redeclarations of
this built-in block; or

e any shader uses a built-in block member not found in the redeclaration of
that block.

There is one exception to this rule described below.

As described above, an exact interface match requires matching built-in input
and output blocks. At an interface between two non-fragment shader stages, the
gl_PerVertex input and output blocks are considered to match if and only if the
block members members match exactly in name, type, qualification, and declara-
tion order. At an interface involving the fragment shader stage, the presence or
absence of any built-in output does not affect interface matching.

Built-in inputs or outputs not found in blocks do not affect interface match-
ing. Any such built-in inputs are well-defined unless they are derived from built-in
outputs not written by the previous shader stage.

Program Pipeline Object State

The state required to support program pipeline objects consists of a single binding
name of the current program pipeline object. This binding is initially zero indicat-
ing no program pipeline object is bound.

The state of each program pipeline object consists of:

e Six unsigned integers (initially all zero) are required to hold each respective
name of the current vertex stage program, current geometry stage program,
current fragment stage program, current tessellation control stage program,
current tessellation evaluation stage program, and active program respec-
tively.

e A boolean holding the status of the last validation attempt, initially false.
e An array of type char containing the information log, initially empty.

e An integer holding the length of the information log.

OpenGL 4.2 (Core Profile) - April 27, 2012

70

2.11. VERTEX SHADERS 71

2.11.5 Program Binaries

The command

void GetProgramBinary(uint program, sizei bufSize,
sizei *length, enum *binaryFormat, void *binary);

returns a binary representation of the program object’s compiled and linked exe-
cutable source, henceforth referred to as its program binary. The maximum number
of bytes that may be written into binary is specified by bufSize. If bufSize is less
than the number of bytes in the program binary, then an INVALID_OPERATION
error is generated. Otherwise, the actual number of bytes written into binary is
returned in length and its format is returned in binaryFormat. 1f length is NULL,
then no length is returned.

The number of bytes in the program binary can be queried by calling Get-
Programiv with pname PROGRAM_BINARY_LENGTH. When a program object’s
LINK_STATUS is FALSE, its program binary length is zero, and a call to GetPro-
gramBinary will generate an INVALID_OPERATION error.

The command

void ProgramBinary(uint program, enum binaryFormat,
const void *binary, sizei length);

loads a program object with a program binary previously returned from GetPro-
gramBinary. This is useful for future instantiations of the GL to avoid online com-
pilation, while still using OpenGL Shading Language source shaders as a portable
initial format. binaryFormat and binary must be those returned by a previous
call to GetProgramBinary, and length must be the length of the program binary
as returned by GetProgramBinary or GetProgramiv with pname PROGRAM_-
BINARY_LENGTH. The program binary will fail, setting the LINK_STATUS of pro-
gram to FALSE, if these conditions are not met.

A program binary may also fail if the implementation determines that there has
been a change in hardware or software configuration from when the program bi-
nary was produced such as having been compiled with an incompatible or outdated
version of the compiler. In this case the application should fall back to providing
the original OpenGL Shading Language source shaders, and perhaps again retrieve
the program binary for future use.

A program object’s program binary is replaced by calls to LinkProgram or
ProgramBinary. Where linking success or failure is concerned, ProgramBinary
can be considered to perform an implicit linking operation. LinkProgram and
ProgramBinary both set the program object’s LINK_STATUS to TRUE or FALSE,

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 72

as queried with GetProgramiv, to reflect success or failure and update the infor-
mation log, queried with GetProgramInfoL.og, to provide details about warnings
Or erTors.

A successful call to ProgramBinary will reset all uniform variables to their
initial values. The initial value is either the value of the variable’s initializer as
specified in the original shader source, or zero if no initializer was present.

Additionally, all vertex shader input and fragment shader output assignments
that were in effect when the program was linked before saving are restored when
ProgramBinary is called successfully.

If ProgramBinary failed, any information about a previous link or load of that
program object is lost. Thus, a failed load does not restore the old state of program.
The failure does not alter other program state not affected by linking such as the
attached shaders, and the vertex attribute and fragment data location bindings as
set by BindAttribLocation and BindFragDatal.ocation.

OpenGL defines no specific binary formats, but does provide a mechanism
to obtain token values for such formats provided by extensions. The number of
program binary formats supported can be obtained by querying the value of NUM_ -
PROGRAM_BINARY_FORMATS. The list of specific binary formats supported can be
obtained by querying the value of PROGRAM_BINARY_FORMATS. The binaryFor-
mat returned by GetProgramBinary must be present in this list.

Any program binary retrieved using GetProgramBinary and submitted using
ProgramBinary under the same configuration must be successful. Any programs
loaded successfully by ProgramBinary must be run properly with any legal GL
state vector. If an implementation needs to recompile or otherwise modify pro-
gram executables based on GL state outside the program, GetProgramBinary is
required to save enough information to allow such recompilation. To indicate that
a program binary is likely to be retrieved, ProgramParameteri should be called
with pname PROGRAM_BINARY_RETRIEVABLE_HINT and value GI_TRUE. This
setting will not be in effect until the next time LinkProgram or ProgramBinary
has been called successfully. Additionally, GetProgramBinary calls may be de-
ferred until after using the program with all non-program state vectors that it is
likely to encounter. Such deferral may allow implementations to save additional
information in the program binary that would minimize recompilation in future
uses of the program binary.

2.11.6 Vertex Attributes

Vertex shaders can define named attribute variables, which are bound to the generic
vertex attributes that are set by VertexAttrib*. This binding can be specified by
the application before the program is linked, or automatically assigned by the GL

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 73

when the program is linked.

When an attribute variable declared using one of the scalar or vector data types
enumerated in table 2.12 is bound to a generic attribute index i, its value(s) are
taken from the components of generic attribute i. Scalars are extracted from the x
component; two-, three-, and four-component vectors are extracted from the (x, y),
(x,y,2), or (x,y, z, w) components, respectively.

When an attribute variable is declared as a mat2, mat3x2 or mat4x2, its ma-
trix columns are taken from the (z, y) components of generic attributes ¢ and i + 1
(mat2, dmat2), from attributes ¢ through ¢ + 2 (mat3x2), or from attributes ¢
through ¢ + 3 (mat 4x2). When an attribute variable is declared as a mat2x3, mat3
or mat 4x3, its matrix columns are taken from the (x, y, z) components of generic
attributes ¢ and ¢ + 1 (mat2x3), from attributes ¢ through ¢ + 2 (mat3), or from
attributes ¢ through ¢ + 3 (mat4x3). When an attribute variable is declared as a
mat2x4, mat3x4 or mat 4, its matrix columns are taken from the (xz,y, z, w) com-
ponents of generic attributes ¢ and ¢ + 1 (mat2x4), from attributes ¢ through ¢ + 2
(mat3x4), or from attributes ¢ through ¢ + 3 (mat4). When an attribute vari-
able is declared as a double-precision matrix (dmat2, dmat3, dmat4, dmat2x3,
dmat2x4, dmat3x2, dmat3x4, dmat4x2, dmat4x3), its matrix columns are
taken from the same generic attributes as the equivalent single-precision matrix
type, with values specified using the VertexAttribL* or VertexAttribLPointer
commands.

For the 64-bit double precision types listed in table 2.12, no default attribute
values are provided if the values of the vertex attribute variable are specified with
fewer components than required for the attribute variable. For example, the fourth
component of a variable of type dvec4 will be undefined if specified using Ver-
texAttribL3dyv, or using a vertex array specified with VertexAttribLPointer and
a size of three.

A generic attribute variable is considered active if it is determined by the com-
piler and linker that the attribute may be accessed when the shader is executed.
Attribute variables that are declared in a vertex shader but never used will not
count as active vertex attributes. In cases where the compiler and linker cannot
make a conclusive determination, an attribute will be considered active. A pro-
gram object will fail to link if the number of active vertex attributes exceeds
MAX_VERTEX_ATTRIBS. For the purposes of this comparison, attribute variables
of the type dvec3, dvec4, dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3,
and dmat 4 may count as consuming twice as many attributes as equivalent single-
precision types. While these types use the same number of generic attributes
as their single-precision equivalents, implementations are permitted to consume
two single-precision vectors of internal storage for each three- or four-component
double-precision vector.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 74

Data type | Command

int VertexAttribI1i
ivec?2 VertexAttribI2i
ivec3 VertexAttribI3i
ivec4 VertexAttribldi
uint VertexAttribI1ui
uvec?2 VertexAttribI2ui
uvec3 VertexA ttribI3ui
uvecid VertexA ttribI4ui

float VertexAttribl*
vec?2 VertexAttrib2*
vec3 VertexAttrib3*
vec4 VertexAttrib4*

double VertexAttribL1d
dvec?2 VertexAttribL2d
dvec3 VertexAttribL.3d
dvec4 VertexAttribL4d

Table 2.12: Scalar and vector vertex attribute types and VertexAttrib* commands
used to set the values of the corresponding generic attribute.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 75

To determine the set of active vertex attributes used by a program, and to de-
termine their types, use the command:

void GetActiveAttrib(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

This command provides information about the attribute selected by index. An in-
dex of 0 selects the first active attribute, and an index of the value of ACTIVE_-
ATTRIBUTES minus one selects the last active attribute. The value of ACTIVE_-
ATTRIBUTES can be queried with GetProgramiv (see section 6.1.12). If index is
greater than or equal to ACTIVE_ATTRIBUTES, the error INVALID_VALUE is gen-
erated. Note that index simply identifies a member in a list of active attributes, and
has no relation to the generic attribute that the corresponding variable is bound to.

The parameter program is the name of a program object for which the com-
mand LinkProgram or ProgramBinary has been issued in the past. It is not
necessary for program to have been linked successfully. The link could have failed
because the number of active attributes exceeded the limit.

The name of the selected attribute is returned as a null-terminated string in
name. The actual number of characters written into name, excluding the null termi-
nator, is returned in length. If length is NULL, no length is returned. The maximum
number of characters that may be written into name, including the null termina-
tor, is specified by bufSize. The returned attribute name must be the name of a
generic attribute. The length of the longest attribute name in program is given by
ACTIVE_ATTRIBUTE_MAX_ LENGTH, which can be queried with GetProgramiv
(see section 6.1.12).

For the selected attribute, the type of the attribute is returned into type. The
size of the attribute is returned into size. The value in size is in units of the type
returned in fype. The type returned can be any of the types whose “Attrib” column
is checked in table 2.13.

If an error occurred, the return parameters length, size, type and name will be
unmodified.

After a program object has been linked successfully, the bindings of attribute
variable names to indices can be queried. The command

int GetAttribLocation(uint program, const char *name);

returns the generic attribute index that the attribute variable named name was bound
to when the program object named program was last linked. name must be a null-
terminated string. If name is active and is an attribute matrix, GetAttribLocation

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 76

returns the index of the first column of that matrix. If program has not been suc-
cessfully linked, the error INVALID_OPERATION is generated. If name is not an
active attribute, or if an error occurs, -1 will be returned.

The binding of an attribute variable to a generic attribute index can also be
specified explicitly. The command

void BindAttribLocation(uint program, uint index, const
char *name);

specifies that the attribute variable named name in program program should be
bound to generic vertex attribute index when the program is next linked. If name
was bound previously, its assigned binding is replaced with index. name must be a
null-terminated string. The error INVALID_VALUE is generated if index is equal or
greater than MAX_VERTEX_ATTRIBS. BindAttribLocation has no effect until the
program is linked. In particular, it doesn’t modify the bindings of active attribute
variables in a program that has already been linked.

When a program is linked, any active attributes without a binding specified
either through BindAttribLocation or explicitly set within the shader text will au-
tomatically be bound to vertex attributes by the GL. Such bindings can be queried
using the command GetAttribLocation. LinkProgram will fail if the assigned
binding of an active attribute variable would cause the GL to reference a non-
existent generic attribute (one greater than or equal to the value of MAX_VERTEX_—
ATTRIBS). LinkProgram will fail if the attribute bindings specified either by
BindAttribLocation or explicitly set within the shader text do not leave not
enough space to assign a location for an active matrix attribute or an active attribute
array, both of which require multiple contiguous generic attributes. If an active at-
tribute has a binding explicitly set within the shader text and a different binding
assigned by BindAttribLocation, the assignment in the shader text is used.

BindAttribLocation may be issued before any vertex shader objects are at-
tached to a program object. Hence it is allowed to bind any name to an index,
including a name that is never used as an attribute in any vertex shader object. As-
signed bindings for attribute variables that do not exist or are not active are ignored.

The values of generic attributes sent to generic attribute index 7 are part of
current state. If a new program object has been made active, then these values
will be tracked by the GL in such a way that the same values will be observed by
attributes in the new program object that are also bound to index .

It is possible for an application to bind more than one attribute name to the
same location. This is referred to as aliasing. This will only work if only one of
the aliased attributes is active in the executable program, or if no path through the
shader consumes more than one attribute of a set of attributes aliased to the same

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 77

location. A link error can occur if the linker determines that every path through the
shader consumes multiple aliased attributes, but implementations are not required
to generate an error in this case. The compiler and linker are allowed to assume that
no aliasing is done, and may employ optimizations that work only in the absence
of aliasing.

2.11.7 Uniform Variables

Shaders can declare named uniform variables, as described in the OpenGL Shading
Language Specification. Values for these uniforms are constant over a primitive,
and typically they are constant across many primitives. A uniform is considered
active if it is determined by the compiler and linker that the uniform will actually
be accessed when the executable code is executed. In cases where the compiler
and linker cannot make a conclusive determination, the uniform will be considered
active.

Sets of uniforms, except for atomic counters, images, samplers, and subroutine
uniforms, can be grouped into uniform blocks. The values of each uniform in
such a set are extracted from the data store of a buffer object corresponding to the
uniform block. OpenGL Shading Language syntax serves to delimit named blocks
of uniforms that can be backed by a buffer object. These are referred to as named
uniform blocks, and are assigned a uniform block index. Uniforms that are declared
outside of a named uniform block are said to be part of the default uniform block.
Default uniform blocks have no name or uniform block index. Uniforms in the
default uniform block, except for subroutine uniforms, are program object-specific
state. They retain their values once loaded, and their values are restored whenever
a program object is used, as long as the program object has not been re-linked.
Like uniforms, uniform blocks can be active or inactive. Active uniform blocks are
those that contain active uniforms after a program has been compiled and linked.

The amount of storage available for uniform variables, except for subrou-
tine uniforms and atomic counters, in the default uniform block accessed by a
vertex shader is specified by the value of the implementation-dependent con-
stant MAX_VERTEX_UNIFORM_COMPONENTS. The implementation-dependent con-
stant MAX_VERTEX_UNIFORM_VECTORS has a value equal to the value of MAX_-
VERTEX_UNIFORM_COMPONENTS divided by four. The total amount of com-
bined storage available for uniform variables in all uniform blocks accessed by
a vertex shader (including the default uniform block) is specified by the value
of the implementation-dependent constant MAX_COMBINED_VERTEX_ UNIFORM_-—
COMPONENTS. These values represent the numbers of individual floating-point, in-
teger, or boolean values that can be held in uniform variable storage for a vertex
shader. A uniform matrix in the default uniform block with single- or double-

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 78

precision components will consume no more than 4 x min(r,c) or 8 x min(r, c)
uniform components, respectively. A scalar or vector uniform with double-
precision components will consume no more than 2n components, where n is 1
for scalars, and the component count for vectors. A link error is generated if an
attempt is made to utilize more than the space available for vertex shader uniform
variables.

When a program is successfully linked, all active uniforms, except for atomic
counters, belonging to the program object’s default uniform block are initialized
as defined by the version of the OpenGL Shading Language used to compile the
program. A successful link will also generate a location for each active uniform
in the default uniform block. The values of active uniforms in the default uniform
block can be changed using this location and the appropriate Uniform* command
(see below). These locations are invalidated and new ones assigned after each
successful re-link.

Similarly, when a program is successfully linked, all active atomic counters
are assigned bindings, offsets (and strides for arrays of atomic counters) according
to layout rules described below. Atomic counter uniform buffer objects provide
the storage for atomic counters, so the values of atomic counters may be changed
by modifying the contents of the buffer object using commands such as Buffer-
Data, BufferSubData, MapBuffer, and UnmapBuffer. Atomic counters are not
assigned a location and may not be modified using the Uniform* commands. The
bindings, offsets, and strides belonging to atomic counters of a program object are
invalidated and new ones assigned after each successful re-link.

Similarly, when a program is successfully linked, all active uniforms belong-
ing to the program’s named uniform blocks are assigned offsets (and strides for
array and matrix type uniforms) within the uniform block according to layout rules
described below. Uniform buffer objects provide the storage for named uniform
blocks, so the values of active uniforms in named uniform blocks may be changed
by modifying the contents of the buffer object using commands such as Buffer-
Data, BufferSubData, MapBuffer, and UnmapBuffer. Uniforms in a named
uniform block are not assigned a location and may not be modified using the
Uniform* commands. The offsets and strides of all active uniforms belonging to
named uniform blocks of a program object are invalidated and new ones assigned
after each successful re-link.

To find the location within a program object of an active uniform variable as-
sociated with the default uniform block, use the command

int GetUniformLocation(uint program, const
char *name);

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 79

This command will return the location of uniform variable name if it is as-
sociated with the default uniform block. name must be a null-terminated string,
without white space. The value -1 will be returned if name does not correspond to
an active uniform variable name in program, if name is associated with an atomic
counter, or if name is associated with a named uniform block.

If program has not been successfully linked, the error INVALID_OPERATION
is generated. After a program is linked, the location of a uniform variable will not
change, unless the program is re-linked.

A valid name cannot be a structure, an array of structures, or any portion of
a single vector or a matrix. In order to identify a valid name, the " ." (dot) and
" [1" operators can be used in name to specify a member of a structure or element
of an array.

The first element of a uniform array is identified using the name of the uniform
array appended with " [0] ". Except if the last part of the string name indicates a
uniform array, then the location of the first element of that array can be retrieved
by either using the name of the uniform array, or the name of the uniform array
appended with " [0] ".

Locations for sequential array indices are not required to be sequential. The
location for "a[1]" may or may not be equal to the location for "a[0]" +1.
Furthermore, since unused elements at the end of uniform arrays may be trimmed
(see the discussion of the size parameter of GetActiveUniform), the location of
the 7 + 1’th array element may not be valid even if the location of the i’th element
is valid. As a direct consequence, the value of the location of "a[0]" +1 may
refer to a different uniform entirely. Applications that wish to set individual array
elements should query the locations of each element separately.

Named uniform blocks, like uniforms, are identified by name strings. Uniform
block indices corresponding to uniform block names can be queried by calling

uint GetUniformBlockIndex(uint program, const
char *uniformBlockName);

uniformBlockName must contain a null-terminated string specifying the name of a
uniform block in the program object program.

GetUniformBlockIndex returns the uniform block index for the uniform block
named uniformBlockName of program. If uniformBlockName does not identify an
active uniform block of program, or an error occurred, then INVALID_INDEX iS
returned. The indices of the active uniform blocks of a program are assigned in
consecutive order, beginning with zero.

An active uniform block’s name string can be queried from its uniform block
index by calling

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 80

void GetActiveUniformBlockName(uint program,
uint uniformBlockindex, sizei bufSize, sizei *length,
char *uniformBlockName);

uniformBlockIndex must be an active uniform block index of the program ob-
ject program, in the range zero to the value of ACTIVE_UNIFORM_BLOCKS minus
one. The value of ACTIVE_UNIFORM_BLOCKS can be queried with GetProgramiv
(see section 6.1.12). If uniformBlockIndex is greater than or equal to the value of
ACTIVE_UNIFORM_BLOCKS, the error INVALID_VALUE is generated.

The string name of the uniform block identified by uniformBlockIndex is re-
turned into uniformBlockName. The name is null-terminated. The actual number
of characters written into uniformBlockName, excluding the null terminator, is re-
turned in length. If length is NULL, no length is returned.

bufSize contains the maximum number of characters (including the null termi-
nator) that will be written back to uniformBlockName.

If an error occurs, nothing will be written to uniformBlockName or length.

Information about an active uniform block can be queried by calling

void GetActiveUniformBlockiv(uint program,
uint uniformBlockindex, enum pname, int *params);

uniformBlockIndex is an active uniform block index of the program object
program. If uniformBlockIndex is greater than or equal to the value of ACTIVE_-
UNIFORM_BLOCKS, the error INVALID_VALUE is generated.

If no error occurs, the uniform block parameter(s) specified by pname are re-
turned in params. Otherwise, nothing will be written to params.

If pname is UNTFORM_BLOCK_BINDING, then the index of the uniform buffer
binding point associated with uniformBlocklndex is returned.

If pname is UNIFORM_BLOCK_DATA_SIZE, then the implementation-
dependent minimum total buffer object size, in basic machine units, required to
hold all active uniforms in the uniform block identified by uniformBlockIndex is
returned. It is neither guaranteed nor expected that a given implementation will
arrange uniform values as tightly packed in a buffer object. The exception to this
is the std140 uniform block layout, which guarantees specific packing behavior
and does not require the application to query for offsets and strides. In this case the
minimum size may still be queried, even though it is determined in advance based
only on the uniform block declaration (see “Standard Uniform Block Layout” in
section 2.11.7).

The total amount of buffer object storage available for any given uniform block
is subject to an implementation-dependent limit. The maximum amount of avail-
able space, in basic machine units, can be queried by calling GetIntegerv with

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 81

the constant MAX_UNIFORM_BLOCK_SIZE. If the amount of storage required for a
uniform block exceeds this limit, a program may fail to link.

If pname is UNIFORM_BLOCK_NAME_LENGTH, then the total length (includ-
ing the null terminator) of the name of the uniform block identified by uniform-
BlockIndex is returned.

If pname is UNTFORM_BLOCK_ACTIVE_UNIFORMS, then the number of active
uniforms in the uniform block identified by uniformBlockIndex is returned.

If pname is UNTFORM_BLOCK_ACTIVE_UNIFORM_INDICES, then a list of the
active uniform indices for the uniform block identified by uniformBlockIndex is
returned. The number of elements that will be written to params is the value of
UNIFORM_BLOCK_ACTIVE_UNIFORMS for uniformBlockIndex.

If pname is UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER,
UNIFORM_BLOCK_REFERENCED_BY_TESS_CONTROL_SHADER, UNIFORM_-
BLOCK_REFERENCED_BY_TESS_EVALUATION_SHADER, UNIFORM_BLOCK_-
REFERENCED_BY_GEOMETRY_SHADER, or UNIFORM_BLOCK_REFERENCED_-
BY_FRAGMENT_SHADER, then a boolean value indicating whether the uniform
block identified by uniformBlockIndex is referenced by the vertex, tessellation
control, tessellation evaluation, geometry, or fragment programming stages of
program, respectively, is returned.

In programs with active atomic counter uniforms, each buffer object binding
point associated with one or more active atomic counters is considered an active
atomic counter buffer. Information about the set of active atomic counter buffers
for a program can be obtained by calling

void GetActiveAtomicCounterBufferiv(uint program,
uint bufferlndex, enum pname, int *params);

bufferIndex specifies the index of an active atomic counter buffer in the pro-
gram object program and must be in the range zero to the value of ACTIVE_ -
ATOMIC_COUNTER_BUFFERS minus one. The value of ACTIVE_ATOMIC_-
COUNTER_BUFFERS for program indicates the number of active atomic counter
buffers and can be queried with GetProgramiv (see section 6.1.12). If bufferIndex
is greater than or equal to the value of ACTIVE_ATOMIC_COUNTER_BUFFERS, the
error INVALID_VALUE is generated.

If no error occurs, the parameter(s) specified by pname are returned in params.
Otherwise, nothing will be written to params.

If pname is ATOMIC_COUNTER_BUFFER_BINDING, then the index of the
atomic counter buffer binding point associated with the active atomic counter
buffer bufferindex for program is returned.

If pname
is ATOMIC_COUNTER_BUFFER_DATA_SIZE, then the implementation-dependent

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 82

minimum total buffer object size, in basic machine units, required to hold all active
atomic counters in the atomic counter binding point identified by bufferlndex is
returned.

The total amount of buffer object storage accessible in any given atomic
counter buffer is subject to an implementation-dependent limit. The maximum
amount of storage accessible to atomic counters, in basic machine units, can
be queried by calling GetIntegerv with the constant MAX_ATOMIC_COUNTER_—
BUFFER_SIZE. If the amount of storage required for a atomic counter buffer ex-
ceeds this limit, a program may fail to link.

If pname iS ATOMIC_COUNTER_BUFFER_ACTIVE_ATOMIC_COUNTERS, then
the number of active atomic counters variables associated with the atomic counter
buffer identified by bufferindex is returned.

If pname 1S ATOMIC_COUNTER_BUFFER_ACTIVE_ATOMIC_COUNTER_-—
INDICES, then a list of the active atomic counter indices for the atomic counter
buffer identified by bufferindex is returned. The number of elements that will
be written to params is the value of ATOMIC_COUNTER_BUFFER_ACTIVE_-—
ATOMIC_COUNTERS for bufferindex.

If pname 1is ATOMIC_COUNTER_BUFFER_REFERENCED_BY_VERTEX_-
SHADER, ATOMIC_COUNTER_BUFFER_-—
REFERENCED_BY_TESS_CONTROL_SHADER, UNIFORM_BLOCK_REFERENCED_ -
BY_TESS_EVALUATION_SHADER, ATOMIC_COUNTER_BUFFER_REFERENCED_ -
BY_GEOMETRY_SHADER, or ATOMIC_COUNTER_BUFFER_REFERENCED_BY_-
FRAGMENT_SHADER, then a boolean value indicating whether the atomic counter
buffer identified by bufferindex is referenced by the vertex, tessellation control,
tessellation evaluation, geometry, or fragment programming stages of program, re-
spectively, is returned.

Each active uniform, except for subroutine uniforms, and whether in the default
block, in a named uniform block, or an atomic counter, is assigned an index when a
program is linked. Indices are assigned in consecutive order, beginning with zero.
Structures, arrays of structures, and individual elements of vectors and matrices
are not assigned indices. Instead, each uniform variable, declared in the shader, is
broken down into one or more strings, using the " . " (dot) and " [] " if necessary,
to the point that it is a built-in type or an array whose elements are of a built-in
type, and each of these is assigned an index. An array whose elements are of a
built-in type is assigned only one index (and its elements are not assigned indices),
but the index may be queried using either the name of the array, or the name of
the array with " [0] " appended. Individual elements of vectors and matrices are
never assigned indices.

The indices assigned to a set of uniforms in a program may be queried by
calling

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 83

void GetUniformIndices(uint program,
sizei uniformCount, const char * const
*uniformNames, uint *uniformlndices);

uniformCount indicates both the number of elements in the array of names
uniformNames and the number of indices that may be written to uniformlindices.

uniformNames contains a list of uniformCount null-terminated name strings
identifying the uniform names to be queried for indices. For each name string
in uniformNames, the index assigned to the active uniform of that name in the
program object program will be written to the corresponding element of unifor-
mindices. If a string in uniformNames is not the name of an active uniform, which
has been assigned an index, the value INVALID_INDEX will be written to the cor-
responding element of uniformindices.

If an error occurs, nothing is written to uniformindices.

The name of an active uniform, except for subroutine uniforms, may be queried
from the corresponding uniform index by calling

void GetActiveUniformName(uint program,
uint uniformindex, sizei bufSize, sizei *length,
char *uniformName);

uniformiIndex must be an active uniform index of the program object pro-
gram, in the range zero to the value of ACTIVE_UNIFORMS minus one. The value
of ACTIVE_UNIFORMS can be queried with GetProgramiv. If uniformindex is
greater than or equal to the value of ACTIVE_UNIFORMS, the error INVALID_—
VALUE is generated.

The name of the uniform identified by uniformindex is returned as a null-
terminated string in uniformName. The actual number of characters written into
uniformName, excluding the null terminator, is returned in length. If length is
NULL, no length is returned. The maximum number of characters that may be writ-
ten into uniformName, including the null terminator, is specified by bufSize. The
returned uniform name can be the name of built-in uniform state as well. The com-
plete list of built-in uniform state is described in section 7.5 of the OpenGL Shad-
ing Language Specification. The length of the longest uniform name in program
is given by the value of ACTIVE_UNIFORM_MAX_LENGTH, which can be queried
with GetProgramiv.

If GetActiveUniformName is not successful, nothing is written to length or
uniformName.

Each active uniform variable, except for subroutine uniforms, is broken down
into one or more strings using the " . " (dot) and " [] " operators, if necessary, to
the point that it is legal to pass each string back into GetUniformIndices.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 84

If the active uniform is an array, the uniform name returned in name will always
be the name of the uniform array appended with " [0] ".

Information about active uniforms, except for subroutine uniforms, can be ob-
tained by calling either

void GetActiveUniform(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

or

void GetActiveUniformsiv(uint program,
sizei uniformCount, const uint *uniformindices,
enum pname, int *params);

These commands provide information about the uniform or uniforms in the
program object program selected by index or uniformlndices, respectively. In
GetActiveUniform, an index of O selects the first active uniform, and an index
of the value of ACTIVE_UNIFORMS minus one selects the last active uniform. In
GetActiveUniformsiv, uniformindices is an array of such active uniform indices.
If any index is greater than or equal to the value of ACTIVE_UNIFORMS, the error
INVALID_VALUE is generated.

For the selected uniform, GetActiveUniform returns the uniform name as a
null-terminated string in name. The actual number of characters written into name,
excluding the null terminator, is returned in length. If length is NULL, no length
is returned. The maximum number of characters that may be written into name,
including the null terminator, is specified by bufSize. The returned uniform name
can be the name of built-in uniform state as well. The complete list of built-in
uniform state is described in section 7.5 of the OpenGL Shading Language Speci-
fication. The length of the longest uniform name in program is given by ACTIVE_ -
UNIFORM_MAX_LENGTH.

For the selected uniform, GetActiveUniform returns the type of the uniform
into type and the size of the uniform is into size. The value in size is in units of the
uniform type, which can be any of the type name tokens in table 2.13, correspond-
ing to OpenGL Shading Language type keywords also shown in that table.

If one or more elements of an array are active, GetActiveUniform will return
the name of the array in name, subject to the restrictions listed above. The type of
the array is returned in fype. The size parameter contains the highest array element
index used, plus one. The compiler or linker determines the highest index used.
There will be only one active uniform reported by the GL per uniform array.

If an error occurs, nothing is written to length, size, type, or name.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 85
Type Name Token Keyword Attrib| Xfb
FLOAT float o o
FLOAT_VEC2 vec2 o o
FLOAT_VEC3 vec3 L] L]
FLOAT_VEC4 vecd ° °
DOUBLE double (] °
DOUBLE_VEC2 dvec?2 ° °
DOUBLE_VEC3 dvec3 L] o
DOUBLE_VEC4 dvec4 o °
INT int ° °
INT_VEC2 ivec2 ° °
INT_VEC3 ivec3 (] (]
INT_VEC4 ivecd ° °
UNSIGNED_INT uint ° °
UNSIGNED_INT_VEC2 uvec?2 ° .
UNSIGNED_INT_VEC3 uvec3 L] o
UNSIGNED_INT_VEC4 uvecid o °
BOOL bool
BOOL_VEC2 bvec2
BOOL_VEC3 bvec3
BOOL_VEC4 bvec4d
FLOAT_MAT2 mat2 ° °
FLOAT_MAT3 mat3 L] L]
FLOAT_MATA4 mat4 ° °
FLOAT_MAT2x3 mat2x3 ° °
FLOAT_MAT2x4 mat2x4 ° °
FLOAT_MAT3x2 mat3x2 ° °
FLOAT_MAT3x4 mat3x4 ° °
FLOAT_MATA4x2 mat4x?2 o °
FLOAT_MAT4x3 mat4x3 (] (]
DOUBLE_MAT2 dmat?2 [°
DOUBLE_MAT3 dmat3 L] o
DOUBLE_MATA4 dmat4 ° °
DOUBLE_MAT2x3 dmat2x3 L] o
DOUBLE_MAT2x4 dmat2x4 ° °
DOUBLE_MAT3x2 dmat3x2 ° °
DOUBLE_MAT3x4 dmat 3x4 ° °

(Continued on next page)

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 86
OpenGL Shading Language Type Tokens (continued)

Type Name Token Keyword Attrib| Xfb
DOUBLE_MAT4x2 dmat4x2 ° °
DOUBLE_MAT4x3 dmat4x3 L] L]
SAMPLER_1D samplerlD
SAMPLER_2D sampler2D
SAMPLER_3D sampler3D
SAMPLER_CUBE samplerCube
SAMPLER_1D_SHADOW samplerlDShadow
SAMPLER_2D_SHADOW sampler2DShadow
SAMPLER_1D_ARRAY samplerlDArray
SAMPLER_2D_ARRAY sampler2DArray
SAMPLER_CUBE_MAP_ARRAY samplerCubeArray

SAMPLER_1D_ARRAY_SHADOW

samplerlDArrayShadow

SAMPLER_2D_ARRAY_SHADOW

samplerZ2DArrayShadow

SAMPLER_2D_MULTISAMPLE

sampler2DMS

SAMPLER_2D_MULTISAMPLE_-—
ARRAY

sampler2DMSArray

SAMPLER_CUBE_SHADOW

samplerCubeShadow

SAMPLER_CUBE_MAP_ARRAY_ - samplerCube-
SHADOW ArrayShadow

SAMPLER_BUFFER samplerBuffer
SAMPLER_2D_RECT sampler2DRect

SAMPLER_2D_RECT_SHADOW

sampler2DRectShadow

INT_SAMPLER_1D isamplerlD
INT_SAMPLER_2D isampler2D
INT_SAMPLER_3D isampler3D
INT_SAMPLER_CUBE isamplerCube
INT_SAMPLER_1D_ARRAY isamplerlDArray
INT_SAMPLER_2D_ARRAY isampler2DArray

INT_SAMPLER_CUBE_MAP_ -
ARRAY

isamplerCubeArray

INT_SAMPLER_2D_ - isampler2DMS
MULTISAMPLE

INT_SAMPLER_2D_-— isampler2DMSArray
MULTISAMPLE_ARRAY

INT_SAMPLER_BUFFER isamplerBuffer

(Continued on next page)

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 87
OpenGL Shading Language Type Tokens (continued)

Type Name Token Keyword Attrib| Xfb
INT_SAMPLER_2D_RECT isampler2DRect
UNSIGNED_INT_SAMPLER_1D usamplerlD
UNSIGNED_INT_SAMPLER_2D usampler2D
UNSIGNED_INT_SAMPLER_3D usampler3D
UNSIGNED_INT_SAMPLER_-— usamplerCube
CUBE
UNSIGNED_INT_SAMPLER_ - usamplerlDArray
1D_ARRAY
UNSIGNED_INT_SAMPLER_- usampler2DArray

2D_ARRAY

UNSIGNED_INT_SAMPLER_ -
CUBE_MAP_ARRAY

usamplerCubeArray

UNSIGNED_INT_SAMPLER_ - usampler2DMS
2D_MULTISAMPLE

UNSIGNED_INT_SAMPLER_- usampler2DMSArray
2D_MULTISAMPLE_ARRAY
UNSIGNED_INT_SAMPLER_ - usamplerBuffer
BUFFER

UNSIGNED_INT_SAMPLER_ - usampler2DRect
2D_RECT

IMAGE_1D imagelD
IMAGE_2D image2D
IMAGE_3D image3D
IMAGE_2D_RECT image2DRect
IMAGE_CUBE imageCube
IMAGE_BUFFER imageBuffer
IMAGE_1D_ARRAY imagelDArray
IMAGE_2D_ARRAY image2DArray
IMAGE_CUBE_MAP_ARRAY imageCubeArray
IMAGE_2D_MULTISAMPLE image2DMS
IMAGE_2D_MULTISAMPLE_ - image2DMSArray
ARRAY

INT_IMAGE_1D iimagelD
INT_IMAGE_2D iimage2D
INT_IMAGE_3D iimage3D

(Continued on next page)

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS

88

OpenGL Shading Language Type Tokens (continued)

Type Name Token Keyword Attrib| Xfb
INT_IMAGE_2D_RECT iimage2DRect
INT_IMAGE_CUBE iimageCube
INT_IMAGE_BUFFER iimageBuffer
INT_IMAGE_1D_ARRAY iimagelDArray
INT_IMAGE_2D_ARRAY iimage2DArray
INT_IMAGE_CUBE_MAP_ARRAY | iimageCubeArray
INT_IMAGE_2D_MULTISAMPLE | iimage2DMS
INT_IMAGE_2D - iimage2DMSArray
MULTISAMPLE_ARRAY

UNSIGNED_INT_IMAGE_1D uimagelD
UNSIGNED_INT_IMAGE_2D uimage?2D
UNSIGNED_INT_IMAGE_3D uimage3D
UNSIGNED_INT_IMAGE_2D_- uimage2DRect
RECT

UNSIGNED_INT_IMAGE_CUBE uimageCube
UNSIGNED_INT_IMAGE_- uimageBuffer
BUFFER

UNSIGNED_INT_IMAGE_1D_- uimagelDArray
ARRAY

UNSIGNED_INT_IMAGE_2D_- uimage2DArray
ARRAY

UNSIGNED_INT_IMAGE_- uimageCubeArray
CUBE_MAP_ARRAY

UNSIGNED_INT_IMAGE_2D_- uimage2DMS
MULTISAMPLE

UNSIGNED_INT_IMAGE_2D_-— uimage2DMSArray

MULTISAMPLE_ARRAY

UNSIGNED_INT_ATOMIC_-—-
COUNTER

atomic_uint

Table 2.13: OpenGL Shading Language type tokens returned by
GetActiveUniform and GetActiveUniformsiv, and correspond-
ing shading language keywords declaring each such type. Types
whose “Attrib” column are marked may be declared as vertex
attributes (see section 2.11.6). Types whose “Xfb” column are
marked may be the types of variable returned by transform feed-

back (see section 2.11.11).

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS &9

For GetActiveUniformsiv, uniformCount indicates both the number of ele-
ments in the array of indices uniformindices and the number of parameters written
to params upon successful return. pname identifies a property of each uniform in
uniformlIndices that should be written into the corresponding element of params.
If an error occurs, nothing will be written to params.

If pname is UNIFORM_TYPE, then an array identifying the types of the uniforms
specified by the corresponding array of uniformlndices is returned. The returned
types can be any of the values in table 2.13.

If pname is UNIFORM_SIZE, then an array identifying the size of the uniforms
specified by the corresponding array of uniformindices is returned. The sizes re-
turned are in units of the type returned by a query of UNIFORM_TYPE. For active
uniforms that are arrays, the size is the number of active elements in the array; for
all other uniforms, the size is one.

If pname is UNIFORM_NAME_LENGTH, then an array identifying the length,
including the terminating null character, of the uniform name strings specified by
the corresponding array of uniformindices is returned.

If pname is UNIFORM_BLOCK_INDEX, then an array identifying the uniform
block index of each of the uniforms specified by the corresponding array of unifor-
mindices is returned. The index of a uniform associated with the default uniform
block is -1.

If pname is UNIFORM_OFFSET, then an array of buffer offsets is returned. For
uniforms in a named uniform block, the returned value will be its offset, in basic
machine units, relative to the beginning of the uniform block in the buffer object
data store. For atomic counter uniforms, the returned value will be its offset relative
to the beginning of its active atomic counter buffer. For all other uniforms, an offset
of -1 will be returned.

If pname is UNIFORM_ARRAY_STRIDE, then an array of strides between ar-
ray elements in buffer object storage is returned. For uniforms in named uniform
blocks and for uniforms declared as atomic counters, the stride is the difference,
in basic machine units, of the offsets of consecutive elements in an array, or zero
for uniforms not declared as an array. For all other uniforms, a stride of -1 will be
returned.

If pname is UNIFORM_MATRIX_STRIDE, then an array identifying the stride
between columns of a column-major matrix or rows of a row-major matrix, in ba-
sic machine units, of each of the uniforms specified by the corresponding array of
uniformIndices is returned. The matrix stride of a uniform associated with the de-
fault uniform block is -1. Note that this information only makes sense for uniforms
that are matrices. For uniforms that are not matrices, but are declared in a named

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 90

uniform block, a matrix stride of zero is returned.

If pname is UNIFORM_IS_ROW_MAJOR, then an array identifying whether each
of the uniforms specified by the corresponding array of uniformlindices is a row-
major matrix or not is returned. A value of one indicates a row-major matrix, and
a value of zero indicates a column-major matrix, a matrix in the default uniform
block, or a non-matrix.

If pname is UNIFORM_ATOMIC_COUNTER_BUFFER_INDEX, then an array
identifying the active atomic counter buffer index of each of the uniforms spec-
ified by the corresponding array of uniformindices is returned. For uniforms other
than atomic counters, the returned buffer index is -1. The returned indices can be
passed to GetActiveAtomicCounterBufferiv to query properties of the associated
buffer, and not necessarily the binding point specified in the uniform declaration.

Loading Uniform Variables In The Default Uniform Block

To load values into the uniform variables except for subroutine uniforms and
atomic counters, of the default uniform block of the active program object, use
the commands

void Uniform{1234}{ifd}(int location, T value);

void Uniform{1234}{ifd}v(int location, sizei count,
const T value);

void Uniform{1234}ui(int location, T value);

void Uniform{1234}uiv(int location, sizei count, const
T value);

void UniformMatrix{234}{fd}v(int location, sizei count,
boolean transpose, const float *value);

void UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 } {fd } v(
int location, sizei count, boolean transpose, const
float *value);

If a non-zero program object is bound by UseProgram, it is the active pro-
gram object whose uniforms are updated by these commands. If no program ob-
ject is bound using UseProgram, the active program object of the current program
pipeline object set by ActiveShaderProgram is the active program object. If the
current program pipeline object has no active program or there is no current pro-
gram pipeline object, then there is no active program.

The given values are loaded into the default uniform block uniform variable
location identified by location.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 91

The Uniform*f{v} commands will load count sets of one to four floating-point
values into a uniform location defined as a float, a floating-point vector, an array of
floats, or an array of floating-point vectors.

The Uniform*d{v} commands will load count sets of one to four double-
precision floating-point values into a uniform location defined as a double, a double
vector, or an array of double scalars or vectors.

The Uniform*i{v} commands will load count sets of one to four integer val-
ues into a uniform location defined as a sampler, an integer, an integer vector, an
array of samplers, an array of integers, or an array of integer vectors. Only the
Uniform1i{v} commands can be used to load sampler values (see below).

The Uniform*ui{v} commands will load count sets of one to four unsigned
integer values into a uniform location defined as a unsigned integer, an unsigned
integer vector, an array of unsigned integers or an array of unsigned integer vectors.

The UniformMatrix{234}fv and UniformMatrix{234}dv commands will
load count 2 x 2, 3 x 3, or 4 x 4 matrices (corresponding to 2, 3, or 4 in the
command name) of single- or double-precision floating-point values, respectively,
into a uniform location defined as a matrix or an array of matrices. If transpose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

The UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv and UniformMa-
trix{2x3,3x2,2x4,4x2,3x4,4x3 }dv commands will load count 2 x 3,3 x 2,2 x 4,
4 x 2,3 x4, or4 x 3 matrices (corresponding to the numbers in the command
name) of single- or double-precision floating-point values, respectively, into a
uniform location defined as a matrix or an array of matrices. The first number in
the command name is the number of columns; the second is the number of rows.
For example, UniformMatrix2x4fv is used to load a single-precision matrix
consisting of two columns and four rows. If transpose is FALSE, the matrix is
specified in column major order, otherwise in row major order.

When loading values for a uniform declared as a boolean, a boolean vector,
an array of booleans, or an array of boolean vectors, the Uniform*i{v}, Uni-
form*ui{v}, and Uniform*f{v} set of commands can be used to load boolean
values. Type conversion is done by the GL. The uniform is set to FALSE if the
input value is O or 0.0f, and set to TRUE otherwise. The Uniform* command used
must match the size of the uniform, as declared in the shader. For example, to
load a uniform declared as a bvec2, any of the Uniform2{if ui}* commands may
be used. An INVALID_OPERATION error will be generated if an attempt is made
to use a non-matching Uniform* command. In this example using Uniformliv
would generate an error.

For all other uniform types, except for subroutine uniforms and atomic coun-
ters, the Uniform* command used must match the size and type of the uniform,

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 92

as declared in the shader. No type conversions are done. For example, to load a
uniform declared as a vec4, Uniform4f{v} must be used, and to load a uniform de-
clared as a dmat 3, UniformMatrix3dv must be used. An INVALID_OPERATION
error will be generated if an attempt is made to use a non-matching Uniform*
command.

When loading N elements starting at an arbitrary position k in a uniform de-
clared as an array, elements k£ through k + N — 1 in the array will be replaced
with the new values. Values for any array element that exceeds the highest array
element index used, as reported by GetActiveUniform, will be ignored by the GL.

If the value of location is -1, the Uniform* commands will silently ignore the
data passed in, and the current uniform values will not be changed.

If any of the following conditions occur, an INVALID_OPERATION error is
generated by the Uniform* commands, and no uniform values are changed:

e if the size indicated in the name of the Uniform* command used does not
match the size of the uniform declared in the shader,

e if the uniform declared in the shader is not of type boolean and the type
indicated in the name of the Uniform* command used does not match the
type of the uniform,

o if count is greater than one, and the uniform declared in the shader is not an
array variable,

e if no variable with a location of location exists in the program object cur-
rently in use and location is not -1, or

o if there is no active program object in use.

To load values into the uniform variables of the default uniform block of a
program which may not necessarily be bound, use the commands

void ProgramUniform{1234}{ifd}(uint program,
int location, T value);
void ProgramUniform{1234}{ifd}v(uint program,
int location, sizei count, const T value);
void ProgramUniform{1234}ui(uint program, int location,
T value);
void ProgramUniform{1234}uiv(uint program,
int location, sizei count, T value);

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 93

void ProgramUniformMatrix{234}{fd}v(uint program,
int location, sizei count, boolean transpose, const
float *value);

void ProgramUniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3} {fd } v(
uint program, int location, sizei count,
boolean transpose, const float *value);

These commands operate identically to the corresponding commands above
without Program in the command name except, rather than updating the cur-
rently active program object, these Program commands update the program ob-
ject named by the initial program parameter.The remaining parameters following
the initial program parameter match the parameters for the corresponding non-
Program uniform command.

If program is not the name of a created program or shader object, an
INVALID_VALUE error is generated. If program identifies a shader object or a
program object that has not been linked successfully, an INVALID_ OPERATION
error is generated.

Uniform Blocks

The values of uniforms arranged in named uniform blocks are extracted from buffer
object storage. The mechanisms for placing individual uniforms in a buffer object
and connecting a uniform block to an individual buffer object are described below.

There is a set of implementation-dependent maximums for the number
of active uniform blocks used by each shader. If the number of uni-
form blocks used by any shader in the program exceeds its correspond-
ing limit, the program will fail to link. The limits for vertex, tessellation
control, tessellation evaluation, geometry, and fragment shaders can be ob-
tained by calling GetIntegerv with pname values of MAX_VERTEX_UNIFORM_-
BLOCKS, MAX_TESS_CONTROL_UNIFORM_BLOCKS, MAX_TESS_EVALUATION_-
UNIFORM_BLOCKS, MAX_ GEOMETRY_UNIFORM_BLOCKS, and MAX_ FRAGMENT_-
UNIFORM_BLOCKS, respectively.

Additionally, there is an implementation-dependent limit on the sum of the
number of active uniform blocks used by each shader of a program. If a uniform
block is used by multiple shaders, each such use counts separately against this
combined limit. The combined uniform block use limit can be obtained by calling
Getlntegerv with a pname of MAX_COMBINED_UNIFORM_BLOCKS.

When a named uniform block is declared by multiple shaders in a program, it
must be declared identically in each shader. The uniforms within the block must
be declared with the same names and types, and in the same order. If a program

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 94

contains multiple shaders with different declarations for the same named uniform
block differs between shader, the program will fail to link.

Uniform Buffer Object Storage

When stored in buffer objects associated with uniform blocks, uniforms are repre-
sented in memory as follows:

e Members of type boo1l are extracted from a buffer object by reading a single
uint-typed value at the specified offset. All non-zero values correspond to
true, and zero corresponds to false.

e Members of type int are extracted from a buffer object by reading a single
int-typed value at the specified offset.

e Members of type uint are extracted from a buffer object by reading a single
uint-typed value at the specified offset.

e Members of type float are extracted from a buffer object by reading a
single float-typed value at the specified offset.

e Members of type double are extracted from a buffer object by reading a
single double-typed value at the specified offset.

e Vectors with NV elements with basic data types of bool, int, uint, float,
or double are extracted as N values in consecutive memory locations be-
ginning at the specified offset, with components stored in order with the first
(X) component at the lowest offset. The GL data type used for component
extraction is derived according to the rules for scalar members above.

e Column-major matrices with C' columns and R rows (using the type
matCxR, or simply matC if C' = R) are treated as an array of C' floating-
point column vectors, each consisting of R components. The column vec-
tors will be stored in order, with column zero at the lowest offset. The dif-
ference in offsets between consecutive columns of the matrix will be re-
ferred to as the column stride, and is constant across the matrix. The column
stride, UNIFORM_MATRIX_STRIDE, is an implementation-dependent value
and may be queried after a program is linked.

e Row-major matrices with C' columns and R rows (using the type matCxR,
or simply matC if C' = R) are treated as an array of R floating-point row
vectors, each consisting of C' components. The row vectors will be stored in
order, with row zero at the lowest offset. The difference in offsets between

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 95

consecutive rows of the matrix will be referred to as the row stride, and is
constant across the matrix. The row stride, UNIFORM_MATRIX_ STRIDE, iS
an implementation-dependent value and may be queried after a program is
linked.

e Arrays of scalars, vectors, and matrices are stored in memory by element
order, with array member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array stride,
UNIFORM_ARRAY_STRIDE, is an implementation-dependent value and may
be queried after a program is linked.

Standard Uniform Block Layout

By default, uniforms contained within a uniform block are extracted from buffer
storage in an implementation-dependent manner. Applications may query the off-
sets assigned to uniforms inside uniform blocks with query functions provided by
the GL.

The layout qualifier provides shaders with control of the layout of uniforms
within a uniform block. When the std140 layout is specified, the offset of each
uniform in a uniform block can be derived from the definition of the uniform block
by applying the set of rules described below.

If a uniform block is declared in multiple shaders linked together into a single
program, the link will fail unless the uniform block declaration, including layout
qualifier, are identical in all such shaders.

When using the std140 storage layout, structures will be laid out in buffer
storage with its members stored in monotonically increasing order based on their
location in the declaration. A structure and each structure member have a base
offset and a base alignment, from which an aligned offset is computed by rounding
the base offset up to a multiple of the base alignment. The base offset of the first
member of a structure is taken from the aligned offset of the structure itself. The
base offset of all other structure members is derived by taking the offset of the
last basic machine unit consumed by the previous member and adding one. Each
structure member is stored in memory at its aligned offset. The members of a top-
level uniform block are laid out in buffer storage by treating the uniform block as
a structure with a base offset of zero.

1. If the member is a scalar consuming N basic machine units, the base align-
ment is N.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11.

10.

VERTEX SHADERS 96

. If the member is a two- or four-component vector with components consum-

ing IV basic machine units, the base alignment is 2N or 4NV, respectively.

. If the member is a three-component vector with components consuming N

basic machine units, the base alignment is 4/V.

. If the member is an array of scalars or vectors, the base alignment and array

stride are set to match the base alignment of a single array element, according
to rules (1), (2), and (3), and rounded up to the base alignment of a vec4. The
array may have padding at the end; the base offset of the member following
the array is rounded up to the next multiple of the base alignment.

. If the member is a column-major matrix with C' columns and R rows, the

matrix is stored identically to an array of C' column vectors with R compo-
nents each, according to rule (4).

. If the member is an array of .S column-major matrices with C' columns and

R rows, the matrix is stored identically to a row of S x C column vectors
with R components each, according to rule (4).

. If the member is a row-major matrix with C' columns and R rows, the matrix

is stored identically to an array of R row vectors with C' components each,
according to rule (4).

. If the member is an array of S row-major matrices with C' columns and R

rows, the matrix is stored identically to a row of S x R row vectors with C'
components each, according to rule (4).

. If the member is a structure, the base alignment of the structure is /N, where

N is the largest base alignment value of any of its members, and rounded
up to the base alignment of a vec4. The individual members of this sub-
structure are then assigned offsets by applying this set of rules recursively,
where the base offset of the first member of the sub-structure is equal to the
aligned offset of the structure. The structure may have padding at the end;
the base offset of the member following the sub-structure is rounded up to
the next multiple of the base alignment of the structure.

If the member is an array of S structures, the S elements of the array are laid
out in order, according to rule (9).

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 97

Uniform Buffer Object Bindings

The value an active uniform inside a named uniform block is extracted from the
data store of a buffer object bound to one of an array of uniform buffer binding
points. The number of binding points can be queried using GetIntegerv with the
constant MAX_UNIFORM_BUFFER_BINDINGS.

Regions of buffer objects are bound as storage for uniform blocks by calling
one of the commands BindBufferRange or BindBufferBase (see section 2.9.1)
with target set to UNIFORM_BUFFER. In addition to the general errors described in
section 2.9.1, BindBufferRange will generate an INVALID_VALUE error if index
is greater than or equal to the value of MAX_UNIFORM_BUFFER_BINDINGS, or if
offset is not a multiple of the implementation-dependent alignment requirement
(the value of UNIFORM_BUFFER_OFFSET_ALIGNMENT).

Each of a program’s active uniform blocks has a corresponding uniform buffer
object binding point. This binding point can be assigned by calling:

void UniformBlockBinding(uint program,
uint uniformBlockindex, uint uniformBlockBinding);

program is a name of a program object for which the command LinkProgram has
been issued in the past.

An INVALID_VALUE error is generated if uniformBlockIndex is not an active
uniform block index of program, or if uniformBlockBinding is greater than or equal
to the value of MAX_UNIFORM_BUFFER_BINDINGS.

If successful, UniformBlockBinding specifies that program will use the data
store of the buffer object bound to the binding point uniformBlockBinding to extract
the values of the uniforms in the uniform block identified by uniformBlockIndex.

When executing shaders that access uniform blocks, the binding point corre-
sponding to each active uniform block must be populated with a buffer object with
a size no smaller than the minimum required size of the uniform block (the value
of UNIFORM_BLOCK_DATA_SIZE). For binding points populated by BindBuffer-
Range, the size in question is the value of the size parameter. If any active uniform
block is not backed by a sufficiently large buffer object, the results of shader ex-
ecution are undefined, and may result in GL interruption or termination. Shaders
may be executed to process the primitives and vertices specified by vertex array
commands (see section 2.8).

When a program object is linked or re-linked, the uniform buffer object binding
point assigned to each of its active uniform blocks is reset to zero.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 98

Atomic Counter Buffers

The values of atomic counters are backed by buffer object storage. The mecha-
nisms for accessing individual atomic counters in a buffer object and connecting to
an atomic counter are described in this section.

There is a set of implementation-dependent maximums for the number
of active atomic counter buffer referenced by each shader. If the num-
ber of atomic counter buffer bindings referenced by any shader in the
program exceeds its corresponding limit, the program will fail to link.
The limits for vertex, tessellation control, tessellation evaluation, geometry,
and fragment shaders can be obtained by calling Getlntegerv with pname
values of MAX_VERTEX_ATOMIC_COUNTER_BUFFERS, MAX_TESS_CONTROL_-
ATOMIC_COUNTER_BUFFERS, MAX_TESS_EVALUATION_ATOMIC_COUNTER_-
BUFFERS, MAX_GEOMETRY_ATOMIC_COUNTER_BUFFERS, or MAX FRAGMENT_ —
ATOMIC_COUNTER_BUFFERS, respectively.

Additionally, there is an implementation-dependent limit on the sum of the
number of active atomic counter buffers used by each shader of a program. If an
atomic counter buffer is used by multiple shaders, each such use counts separately
against this combined limit. The combined atomic counter buffer use limit can
be obtained by calling GetIntegerv with a pname of MAX_ATOMIC_COUNTER_—
BUFFERS.

Atomic Counter Buffer Object Storage

Atomic counters stored in buffer objects are represented in memory as follows:

e Members of type atomic_uint are extracted from a buffer object by read-
ing a single uint-typed value at the specified offset.

e Arrays of type atomic_uint are stored in memory by element order, with
array element member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The stride can
be queried by calling GetIntegerv with a pname of ATOMIC_COUNTER_—
ARRAY_STRIDE after a program is linked.

Atomic Counter Buffer Bindings

The value of an active atomic counter is extracted from or written to the data store
of a buffer object bound to one of an array of atomic counter buffer binding points.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 99

The number of binding points can be queried by calling GetIntegerv with a pname
of MAX_ATOMIC_COUNTER_BUFFER_BINDINGS.

Regions of buffer objects are bound as storage for atomic counters by calling
one of the commands BindBufferRange or BindBufferBase (see section 2.9.1)
with farget set to ATOMIC_COUNTER_BUFFER. In addition to the general errors
described in section 2.9.1, BindBufferBase and BindBufferRange will generate
an INVALID_VALUE error if index is greater than or equal to the value of MAX_-
ATOMIC_COUNTER_BUFFER_BINDINGS, and BindBufferRange will generate an
INVALID_VALUE error if offset is not a multiple of four.

Each of a program’s active atomic counter buffer bindings has a corresponding
atomic counter buffer binding point. This binding point is established with the
layout qualifier in the shader text, either explicitly or implicitly, as described in
the OpenGL Shading Language Specification.

When executing shaders that access atomic counters, each active atomic
counter buffer must be populated with a buffer object with a size no smaller than the
minimum required size for that buffer (the value of ATOMIC_COUNTER_BUFFER_—
DATA_SIZE). For binding points populated by BindBufferRange, the size in ques-
tion is the value of the size parameter. If any active atomic counter buffer is not
backed by a sufficiently large buffer object, the results of shader execution are un-
defined, and may result in GL interruption or termination.

2.11.8 Subroutine Uniform Variables

Subroutine uniform variables are similar to uniform variables, except they are con-
text state rather than program state. Having subroutine uniforms be context state
allows them to have different values if the program is used in multiple contexts
simultaneously. There is a set of subroutine uniforms for each shader stage.

The command

int GetSubroutineUniformLocation(uint program,
enum shadertype, const char *name);

will return the location of the subroutine uniform variable name in the shader stage
of type shadertype attached to program, with behavior otherwise identical to GetU-
niformLocation. The value -1 will be returned if name is not the name of an active
subroutine uniform. Active subroutine locations are assigned using consecutive in-
tegers in the range from zero to the value of ACTIVE_SUBROUTINE_UNIFORM_—
LOCATIONS minus one for the shader stage. There is an implementation-dependent
limit on the number of active subroutine uniform locations in each shader stage; a
program will fail to link if the number of subroutine uniform locations required is

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 100

greater than the value of MAX_SUBROUTINE_UNIFORM_LOCATIONS. If program
has not been successfully linked, the error INVALID_OPERATION will be gener-
ated. For active subroutine uniforms declared as arrays, the declared array elements
are assigned consecutive locations.

Each function in a shader associated with a subroutine type is considered an
active subroutine, unless the compiler conclusively determines that the function
could never be assigned to an active subroutine uniform. Each active subroutine
will be assigned an unsigned integer subroutine index that is unique to the shader
stage. This index can be queried with the command

uint GetSubroutinelndex(uint program, enum shadertype,
const char *name);

where name is the null-terminated name of a function in the shader stage of type
shadertype attached to program. Subroutine indices are assigned using consecutive
integers in the range from zero to the value of ACTIVE_SUBROUTINES minus one
for the shader stage. The value INVALID_INDEX will be returned if name is not
the name of an active subroutine in the shader stage. After the program has been
linked, the subroutine index will not change unless the program is re-linked.
There is an implementation-dependent limit on the number of active subrou-
tines in each shader stage; a program will fail to link if the number of subroutines
is greater than the maximum subroutine count, (the value of MAX_SUBROUTINES).
Information about active subroutine uniforms can be obtained by calling

void GetActiveSubroutineUniformiv(uint program,
enum shadertype, uint index, enum pname, int *values);
void GetActiveSubroutineUniformName(uint program,
enumn shadertype, uint index, sizei bufsize,
sizei *length, char *name);

program and shadertype specify the program and shader stage. index must be an
active subroutine uniform index in the range from zero to the value of ACTIVE_-
SUBROUTINE_UNIFORMS minus one for the shader stage. If index is greater than
or equal to the value of ACTIVE_SUBROUTINE_UNIFORMS, the error INVALID_—
VALUE is generated.

For GetActiveSubroutineUniformiv, pname identifies a property of the active
subroutine uniform being queried. If pname is NUM_COMPATIBLE_SUBROUTINES,
a single integer indicating the number of subroutines that can be assigned to the
uniform is returned in values. If pname is COMPATIBLE_SUBROUTINES, an array
of integers is returned in values, with each integer specifying the index of an active

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 101

subroutine that can be assigned to the selected subroutine uniform. The number
of integers returned is the same as the value returned for NUM_COMPATIBLE_-—
SUBROUTINES. If pname is UNIFORM_SIZE, a single integer is returned in values.
If the selected subroutine uniform is an array, the declared size of the array is re-
turned; otherwise, one is returned. If pname is UNIFORM_NAME_LENGTH, a single
integer specifying the length of the subroutine uniform name (including the termi-
nating null character) is returned in values.

For GetActiveSubroutineUniformName, the uniform name is returned as a
null-terminated string in name. The actual number of characters written into name,
excluding the null terminator is returned in length. If length is NULL, no length
is returned. The maximum number of characters that may be written into name,
including the null terminator, is specified by bufsize. The length of the longest
subroutine uniform name in program and shadertype is given by the value of
ACTIVE_SUBROUTINE_UNIFORM_MAX_LENGTH, which can be queried with Get-
ProgramStageiv.

The name of an active subroutine can be queried given its subroutine index
with the command:

void GetActiveSubroutineName(uint program,
enum shadertype, uint index, sizei bufsize,
sizei *length, char *name);

program and shadertype specify the program and shader stage. index must be
an active subroutine index in the range from zero to the value of ACTIVE_-
SUBROUTINES minus one for the shader stage. If index is greater than or equal
to the value of ACTIVE_SUBROUTINES, the error INVALID_VALUE is generated.
The name of the selected subroutine is returned as a null-terminated string in name.
The actual number of characters written into name, excluding the null terminator,
is returned in length. If length is NULL, no length is returned. The maximum num-
ber of characters that may be written into name, including the null terminator, is
specified by bufsize. The length of the longest subroutine name in program and
shadertype is given by the value of ACTIVE_SUBROUTINE_MAX_LENGTH, which
can be queried with GetProgramStageiv.
The command

void UniformSubroutinesuiv(enum shadertype, sizei count,
const uint *indices);

will load all active subroutine uniforms for shader stage shadertype with subroutine
indices from indices, storing indices[i] into the uniform at location i. If count is

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 102

not equal to the value of ACTIVE_SUBROUTINE_UNIFORM_LOCATIONS for the
program currently in use at shader stage shadertype, or if any value in indices is
greater than or equal to the value of ACTIVE_SUBROUTINES for the shader stage,
the error INVALID_VALUE is generated. If, for any subroutine index being loaded
to a particular uniform location, the function corresponding to the subroutine index
was not associated (as defined in section 6.1.2 of the OpenGL Shading Language
Specification) with the type of the subroutine variable at that location, then the error
INVALID_OPERATION is generated. If no program is active, the error INVALID_ -
OPERATION is generated.

Each subroutine uniform must have at least one subroutine to assign to the uni-
form. A program will fail to link if any stage has one or more subroutine uniforms
that has no subroutine associated with the subroutine type of the uniform.

When the active program for a shader stage is re-linked or changed by a call
to UseProgram, BindProgramPipeline, or UseProgramStages, subroutine uni-
forms for that stage are reset to arbitrarily chosen default functions with compatible
subroutine types.

2.11.9 Samplers

Samplers are special uniforms used in the OpenGL Shading Language to identify
the texture object used for each texture lookup. The value of a sampler indicates
the texture image unit being accessed. Setting a sampler’s value to 7 selects texture
image unit number ¢. The values of ¢ ranges from zero to the implementation-
dependent maximum supported number of texture image units.

The type of the sampler identifies the target on the texture image unit. The
texture object bound to that texture image unit’s target is then used for the texture
lookup. For example, a variable of type sampler2D selects target TEXTURE_2D
on its texture image unit. Binding of texture objects to targets is done as usual with
BindTexture. Selecting the texture image unit to bind to is done as usual with
ActiveTexture.

The location of a sampler needs to be queried with GetUniformLocation, just
like any uniform variable. Sampler values need to be set by calling Uniform1i{v}.
Loading samplers with any of the other Uniform* entry points is not allowed and
will result in an INVALID_OPERATION eIror.

It is not allowed to have variables of different sampler types pointing to the
same texture image unit within a program object. This situation can only be de-
tected at the next rendering command issued, and an INVALID_OPERATION error
will then be generated.

Active samplers are samplers actually being used in a program object. The
LinkProgram command determines if a sampler is active or not. The LinkPro-

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 103

gram command will attempt to determine if the active samplers in the shader(s)
contained in the program object exceed the maximum allowable limits. If it deter-
mines that the count of active samplers exceeds the allowable limits, then the link
fails (these limits can be different for different types of shaders). Each active sam-
pler variable counts against the limit, even if multiple samplers refer to the same
texture image unit.

2.11.10 Images

Images are special uniforms used in the OpenGL Shading Language to identify a
level of a texture to be read or written using built-in image load, store, and atomic
functions in the manner described in section 3.9.20. The value of an image uniform
is an integer specifying the image unit accessed. Image units are numbered begin-
ning at zero, and there is an implementation-dependent number of available im-
age units (MAX_IMAGE_UNITS). The error INVALID_VALUE is generated if Uni-
form1i{v} is used to set an image uniform to a value less than zero or greater than
or equal to the value of MAX_IMAGE_UNITS. Note that image units used for image
variables are independent of the texture image units used for sampler variables; the
number of units provided by the implementation may differ. Textures are bound
independently and separately to image and texture image units.

The type of an image variable must match the texture target of the image cur-
rently bound to the image unit, otherwise the result of a load, store, or atomic
operation is undefined (see section 4.1.7.2 of the OpenGL Shading Language spec-
ification for more detail).

The location of an image variable needs to be queried with GetUniformLoca-
tion, just like any uniform variable. Image values need to be set by calling Uni-
formli{v}. Loading image variables with any of the other Uniform entry points
is not allowed and will generate an INVALID_OPERATION error.

Unlike samplers, there is no limit on the number of active image variables that
may be used by a program or by any particular shader. However, given that there
is an implementation-dependent limit on the number of unique image units, the
actual number of images that may be used by all shaders in a program is limited.

2.11.11 Output Variables

A vertex shader may define one or more output variables or outputs (see the
OpenGL Shading Language Specification).

The OpenGL Shading Language Specification also defines a set of built-in out-
puts that vertex shaders can write to (see sections 7.1 and 7.6 of the OpenGL
Shading Language Specification). These output variables are either used as the

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 104

mechanism to communicate values to the next active stage in the vertex processing
pipeline: either the tessellation control shader, the tessellation evaluation shader,
the geometry shader, or the fixed-function vertex processing stages leading to ras-
terization.

If the output variables are passed directly to the vertex processing stages lead-
ing to rasterization, the values of all outputs are expected to be interpolated across
the primitive being rendered, unless flatshaded. Otherwise the values of all out-
puts are collected by the primitive assembly stage and passed on to the subsequent
pipeline stage once enough data for one primitive has been collected.

The number of components (individual scalar numeric values) of output vari-
ables that can be written by the vertex shader, whether or not a tessellation con-
trol, tessellation evaluation, or geometry shader is active, is given by the value
of the implementation-dependent constant MAX_VERTEX_OUTPUT_COMPONENTS.
Outputs declared as vectors, matrices, and arrays will all consume multiple com-
ponents. For the purposes of counting input and output components consumed
by a shader, variables declared as vectors, matrices, and arrays will all consume
multiple components. Each component of variables declared as double-precision
floating-point scalars, vectors, or matrices may be counted as consuming two com-
ponents.

When a program is linked, all components of any outputs written by a vertex
shader will count against this limit. A program whose vertex shader writes more
than the value of MAX_VERTEX_OUTPUT_COMPONENTS components worth of out-
puts may fail to link, unless device-dependent optimizations are able to make the
program fit within available hardware resources.

Additionally, when linking a program containing only a vertex and frag-
ment shader, there is a limit on the total number of components used as ver-
tex shader outputs or fragment shader inputs. This limit is given by the value
of the implementation-dependent constant MAX_VARYING_COMPONENTS. The
implementation-dependent constant MAX_VARYING_VECTORS has a value equal to
the value of MAX_VARYING_COMPONENTS divided by four. Each output variable
component used as either a vertex shader output or fragment shader input counts
against this limit, except for the components of g1_Position. A program con-
taining only a vertex and fragment shader that accesses more than this limit’s worth
of components of outputs may fail to link, unless device-dependent optimizations
are able to make the program fit within available hardware resources.

Each program object can specify a set of output variables from one shader to be
recorded in transform feedback mode (see section 2.17). The variables that can be
recorded are those emitted by the first active shader, in order, from the following
list:

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 105

e geometry shader

tessellation evaluation shader

tessellation control shader

vertex shader

The values to record are specified with the command

void TransformFeedbackVaryings(uint program,
sizei count, const char * const *varyings,
enum bufferMode);

program specifies the program object. count specifies the number of out-
put variables used for transform feedback. varyings is an array of count zero-
terminated strings specifying the names of the outputs to use for transform feed-
back. The variables specified in varyings can be either built-in (beginning with
"gl_") or user-defined variables. Output variables are written out in the or-
der they appear in the array varyings. bufferMode is either INTERLEAVED_ -
ATTRIBS or SEPARATE_ATTRIBS, and identifies the mode used to capture the
outputs when transform feedback is active. The error INVALID_VALUE is gener-
ated if bufferMode is SEPARATE_ATTRIBS and count is greater than the value of
the implementation-dependent limit MAX_TRANSFORM_FEEDBACK_SEPARATE_-—
ATTRIBS.

If a string in varyings is gl_NextBuffer, it does not identify an output,
but instead serves as a buffer separator value to direct subsequent outputs at
the next transform feedback binding point. If a string in varyings is gl_-—
SkipComponentsl, gl_SkipComponents2, gl_SkipComponents3, or gl_-—
SkipComponents4, it also does not identify a specific output. Instead, such val-
ues are treated as requesting that the GL skip the next one to four components of
output data. Skipping components this way is equivalent to specifying a one- to
four-component output with undefined values, except that the corresponding mem-
ory in the buffer object is not modified. Such array entries are counted as being
written to the buffer object for the purposes of determining whether the requested
attributes exceed per-buffer component count limits and whether recording a new
primitive would result in an overflow. Each component skipped is considered to
occupy a single float.

The error INVALID_OPERATION is generated if any pointer in varyings
identifies the special names gl_NextBuffer, gl_SkipComponentsl, gl_-
SkipComponents2, gl_SkipComponents3, or gl_SkipComponents4 and

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 106

bufferMode is not INTERLEAVED_ATTRIBS, or if the number of g1_NextBuffer
pointers in varyings is greater than or equal to the limit MAX_ TRANSFORM_-—
FEEDBACK_BUFFERS.

The state set by TransformFeedbackVaryings has no effect on the execu-
tion of the program until program is subsequently linked. When LinkProgram
is called, the program is linked so that the values of the specified outputs for the
vertices of each primitive generated by the GL are written to a single buffer object
(if the buffer mode is INTERLEAVED_ATTRIBS) or multiple buffer objects (if the
buffer mode is SEPARATE_ATTRIBS). A program will fail to link if:

e the count specified by TransformFeedbackVaryings is non-zero, but the
program object has no vertex, tessellation control, tessellation evaluation, or
geometry shader;

e any variable name specified in the varyings array is not one of gl_-
NextBuffer, gl_SkipComponentsl, gl_SkipComponents2, gl_-—
SkipComponents3, or gl_SkipComponents4, and is not declared as a
built-in or user-defined output variable in the shader stage whose outputs
can be recorded.

e any two entries in the varyings array specify the same output variable;

o the total number of components to capture in any output in varyings is greater
than the value of MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS
and the buffer mode is SEPARATE_ATTRIBS;

e the total number of components to capture is greater than the constant
MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS and the buffer
mode is INTERLEAVED_ATTRIBS; or

o the set of outputs to capture to any single binding point includes outputs from
more than one vertex stream.

For the purposes of counting the total number of components to capture, each
component of outputs declared as double-precision floating-point scalars, vectors,
or matrices may be counted as consuming two components.

To determine the set of output variables in a linked program object that will be
captured in transform feedback mode, the command:

void GetTransformFeedbackVarying(uint program,

uint index, sizei bufSize, sizei *length, sizei *size,
enum *type, char *name);

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 107

provides information about the output variable selected by index. An index of
0 selects the first output specified in the varyings array of TransformFeedback-
Varyings, and an index of TRANSFORM_FEEDBACK_VARYINGS-1 selects the last
such output. The value of TRANSFORM_FEEDBACK_VARYINGS can be queried
with GetProgramiv (see section 6.1.12). If index is greater than or equal
to TRANSFORM_FEEDBACK_VARYINGS, the error INVALID_VALUE is generated.
The parameter program is the name of a program object for which the command
LinkProgram has been issued in the past. If program has not been linked, the error
INVALID_OPERATION is generated. If a new set of outputs is specified by Trans-
formFeedbackVaryings after a program object has been linked, the information
returned by GetTransformFeedbackVarying will not reflect those variables until
the program is re-linked.

The name of the selected output is returned as a null-terminated string in name.
The actual number of characters written into name, excluding the null terminator,
is returned in length. If length is NULL, no length is returned. The maximum
number of characters that may be written into name, including the null terminator,
is specified by bufSize. The returned output name can be the name of either a
built-in (beginning with "g1_") or user-defined output variable. See the OpenGL
Shading Language Specification for a complete list. The length of the longest
output name in program is given by TRANSFORM_FEEDBACK_VARYING_MAX_—
LENGTH, which can be queried with GetProgramiv (see section 6.1.12).

The type of the selected output is returned into fype. The size of the output is
returned into size. The value in size is in units of the type returned in type. The
type returned can be any of the types whose “Xfb” column is checked in table 2.13.
If an error occurred, the return parameters length, size, type and name will be
unmodified.

Special output names (e.g., gl_NextBuffer, gl_SkipComponentsl)
passed to TransformFeedbackVaryings in the varyings array are counted as out-
puts to be recorded for the purposes of determining the value of TRANSFORM_—
FEEDBACK_VARYINGS and for determining the variable selected by index in Get-
TransformFeedbackVarying. If index identifies gl_NextBuffer, the values
zero and NONE will be written to size and type, respectively. If index is of the form
gl_SkipComponentsn, the value NONE will be written to type and the number of
components n will be written to size.

2.11.12 Shader Execution

If there is an active program object present for the vertex, tessellation control, tes-
sellation evaluation, or geometry shader stages, the executable code for these active
programs is used to process incoming vertex values. The following sequence of

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11.

VERTEX SHADERS 108

operations is performed:

Vertices are processed by the vertex shader (see section 2.11) and assembled
into primitives as described in sections 2.5 through 2.8.

If the current program contains a tessellation control shader, each indi-
vidual patch primitive is processed by the tessellation control shader (sec-
tion 2.12.1). Otherwise, primitives are passed through unmodified. If active,
the tessellation control shader consumes its input patch and produces a new
patch primitive, which is passed to subsequent pipeline stages.

If the current program contains a tessellation evaluation shader, each indi-
vidual patch primitive is processed by the tessellation primitive generator
(section 2.12.2) and tessellation evaluation shader (see section 2.12.3). Oth-
erwise, primitives are passed through unmodified. When a tessellation eval-
uation shader is active, the tessellation primitive generator produces a new
collection of point, line, or triangle primitives to be passed to subsequent
pipeline stages. The vertices of these primitives are processed by the tes-
sellation evaluation shader. The patch primitive passed to the tessellation
primitive generator is consumed by this process.

If the current program contains a geometry shader, each individual primitive
is processed by the geometry shader (section 2.13). Otherwise, primitives
are passed through unmodified. If active, the geometry shader consumes its
input patch. However, each geometry shader invocation may emit new ver-
tices, which are arranged into primitives and passed to subsequent pipeline
stages.

The following fixed-function operations are the applied to vertices of the re-
sulting primitives:

Transform feedback (section 2.17).

Flatshading (section 2.19).

Clipping, including client-defined half-spaces (section 2.20).
Perspective division on clip coordinates (section 2.14).

Viewport mapping, including depth range scaling (section 2.14.1).
Front face determination (section 3.6.1).

Generic attribute clipping (section 2.20.1).

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 109

e Rasterization (chapter 3).

There are several special considerations for vertex shader execution described
in the following sections.

Shader Only Texturing

This section describes texture functionality that is accessible through vertex, tes-
sellation control, tessellation evaluation, geometry, or fragment shaders. Also refer
to section 3.9 and to section 8.7 of the OpenGL Shading Language Specification,

Texel Fetches

The OpenGL Shading Language texel fetch functions provide the ability to ex-
tract a single texel from a specified texture image. The integer coordinates passed
to the texel fetch functions are used as the texel coordinates (4, j, k) into the tex-
ture image. This in turn means the texture image is point-sampled (no filtering is
performed), but the remaining steps of texture access (described below) are still
applied.

The level of detail accessed is computed by adding the specified level-of-detail
parameter lod to the base level of the texture, levely,se.-

The texel fetch functions can not perform depth comparisons or access cube
maps. Unlike filtered texel accesses, texel fetches do not support LOD clamping or
any texture wrap mode, and require a mipmapped minification filter to access any
level of detail other than the base level.

The results of the texel fetch are undefined if any of the following conditions
hold:

o the computed level of detail is less than the texture’s base level (levelp,se) or
greater than the maximum defined level, ¢ (see section 3.8)

o the computed level of detail is not the texture’s base level and the texture’s
minification filter is NEAREST or LINEAR

o the layer specified for array textures is negative or greater than the number
of layers in the array texture,

e the texel coordinates (i, j, k) refer to a texel outside the defined extents of
the specified level of detail, where any of

i<0 i > wg
j<0 J 2 hs
k<0 k> d,

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 110

and the size parameters ws, hg, and dg refer to the width, height, and depth
of the image, as in equation 3.16

o the texture being accessed is not complete, as defined in section 3.9.14.

Multisample Texel Fetches

Multisample buffers do not have mipmaps, and there is no level of detail parameter
for multisample texel fetches. Instead, an integer parameter selects the sample
number to be fetched from the buffer. The number identifying the sample is the
same as the value used to query the sample location using GetMultisamplefv.
Multisample textures support only NEAREST filtering.

Additionally, this fetch may only be performed on a multisample texture sam-
pler. No other sample or fetch commands may be performed on a multisample
texture sampler.

Texture Size Query

The OpenGL Shading Language texture size functions provide the ability to query
the size of a texture image. The LOD value lod passed in as an argument to the
texture size functions is added to the levelp,,. Of the texture to determine a tex-
ture image level. The dimensions of that image level, excluding a possible bor-
der, are then returned. If the computed texture image level is outside the range
[levelpgse, g, the results are undefined. When querying the size of an array texture,
both the dimensions and the layer index are returned.

Texture Access

Shaders have the ability to do a lookup into a texture map. The maximum number
of texture image units available to shaders are the values of the implementation-
dependent constants

e MAX_VERTEX_TEXTURE_IMAGE_UNITS (for vertex shaders),

e MAX_TESS_CONTROL_TEXTURE_IMAGE_UNITS (for tessellation control
shaders),

e MAX_TESS_EVALUATION_TEXTURE_IMAGE_UNITS (for tessellation eval-
uation shaders),

e MAX_GEOMETRY_TEXTURE_IMAGE_UNITS (for geometry shaders), and

e MAX_TEXTURE_IMAGE_UNITS (for fragment shaders).

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 111

All active shaders combined cannot use more than the value of MAX_-
COMBINED_TEXTURE_IMAGE_UNITS texture image units. If more than one
pipeline stage accesses the same texture image unit, each such access counts sepa-
rately against the MAX_COMBINED_TEXTURE_IMAGE_UNITS limit.

When a texture lookup is performed in a shader, the filtered texture value 7 is
computed in the manner described in sections 3.9.11 and 3.9.12, and converted to a
texture base color Cj, as shown in table 3.23, followed by application of the texture
swizzle as described in section 3.10.2 to compute the texture source color C's and
As.

The resulting four-component vector (Rs, G, Bs, As) is returned to the shader.
Texture lookup functions (see section 8.7 of the OpenGL Shading Language Spec-
ification) may return floating-point, signed, or unsigned integer values depending
on the function and the internal format of the texture.

In shaders other than fragment shaders, it is not possible to perform automatic
level-of-detail calculations using partial derivatives of the texture coordinates with
respect to window coordinates as described in section 3.9.11. Hence, there is no
automatic selection of an image array level. Minification or magnification of a tex-
ture map is controlled by a level-of-detail value optionally passed as an argument
in the texture lookup functions. If the texture lookup function supplies an explicit
level-of-detail value [, then the pre-bias level-of-detail value \pgse(,y) = I (re-
placing equation 3.17). If the texture lookup function does not supply an explicit
level-of-detail value, then Apqse(, y) = 0. The scale factor p(z, y) and its approx-
imation function f(z,y) (see equation 3.21) are ignored.

Texture lookups involving textures with depth component data generate a tex-
ture base color (U, either using depth data directly or by performing a comparison
with the D,.; value used to perform the lookup, as described in section 3.9.17,
and expanding the resulting value R, to a color C, = (R, 0,0,1). Swizzling is
then performed as described above, but only the first component C[0] is returned
to the shader. The comparison operation is requested in the shader by using any
of the shadow sampler types (sampler*Shadow), and in the texture using the
TEXTURE_COMPARE_MODE parameter. These requests must be consistent; the re-
sults of a texture lookup are undefined if any of the following conditions are true:

e The sampler used in a texture lookup function is not one of the shadow
sampler types, the texture object’s internal format is DEPTH_COMPONENT
or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE iS not NONE.

e The sampler used in a texture lookup function is one of the shadow sam-
pler types, the texture object’s internal format is DEPTH_COMPONENT or
DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE iS NONE.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 112

e The sampler used in a texture lookup function is one of the shadow sampler
types, and the texture object’s internal format is not DEPTH_COMPONENT or
DEPTH_STENCIL.

The stencil index texture internal component is ignored if the base internal
format is DEPTH_STENCIL.

If a sampler is used in a shader and the sampler’s associated texture is not
complete, as defined in section 3.9.14, (0, 0, 0, 1) will be returned for a non-shadow
sampler and O for a shadow sampler.

Atomic Counter Access

Shaders have the ability to set and get atomic counters. The maximum number of
atomic counters available to shaders are the values of the implementation depen-
dent constants

e MAX_ VERTEX_ATOMIC_COUNTERS (for vertex shaders),

e MAX_TESS_CONTROL_ATOMIC_COUNTERS (for tessellation control
shaders),

e MAX TESS_EVALUATION_ATOMIC_COUNTERS (for tessellation evaluation
shaders),

e MAX_GEOMETRY_ATOMIC_COUNTERS (for geometry shaders), and

e MAX_ FRAGMENT_ATOMIC_COUNTERS (for fragment shaders).

All active shaders combined cannot use more than the value of MAX_-
COMBINED_ATOMIC_COUNTERS atomic counters. If more than one pipeline stage
accesses the same atomic counter, each such access counts separately against the
MAX_COMBINED_ATOMIC_COUNTERS limit.

Image Access

Shaders have the ability to read and write to textures using image uniforms. The
maximum number of image uniforms available to individual shader stages are the
values of the implementation dependent constants

e MAX VERTEX_IMAGE_UNIFORMS (vertex shaders),

e MAX_TESS_CONTROL_IMAGE_UNIFORMS (tessellation control shaders),

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 113

e MAX_TESS_EVALUATION_IMAGE_UNIFORMS (tessellation evaluation
shaders),

e MAX_ GEOMETRY_IMAGE_UNIFORMS (geometry shaders), and

e MAX_ FRAGMENT_IMAGE_UNIFORMS (fragment shaders).

All active shaders combined cannot use more than the value of MAX -
COMBINED_IMAGE_UNIFORMS atomic counters. If more than one shader stage
accesses the same image uniform, each such access counts separately against the
MAX_COMBINED_IMAGE_UNIFORMS limit.

Shader Inputs

Besides having access to vertex attributes and uniform variables, vertex shaders
can access the read-only built-in variables g1_VertexID and gl_InstanceID.

gl_VertexID holds the integer index ¢ implicitly passed by DrawArrays or
one of the other drawing commands defined in section 2.8.3.

gl_InstanceID holds the integer instance number of the current primitive in
an instanced draw call (see section 2.8.3).

Section 7.1 of the OpenGL Shading Language Specification also describes
these variables.

Shader Outputs

A vertex shader can write to user-defined output variables. These values are ex-
pected to be interpolated across the primitive it outputs, unless they are specified
to be flat shaded. Refer to sections 4.3.6, 7.1, and 7.6 of the OpenGL Shading
Language Specification for more detail.

The built-in output g1_Position is intended to hold the homogeneous vertex
position. Writing g1_Position is optional.

The built-in output variable g1_ClipDistance holds the clip distance(s)
used in the clipping stage, as described in section 2.20. If clipping is enabled,
gl_ClipDistance should be written.

The built-in output g1_PointSize, if written, holds the size of the point to be
rasterized, measured in pixels.

Validation

It is not always possible to determine at link time if a program object can execute
successfully, given that LinkProgram can not know the state of the remainder

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 114

of the pipeline. Therefore validation is done when the first rendering command
is issued, to determine if the set of active program objects can be executed. If
the current set of active program objects cannot be executed, no primitives are
processed and the error INVALID_OPERATION will be generated.

This error is generated by any command that transfers vertices to the GL if:

e A program object is active for at least one, but not all of the shader stages
that were present when the program was linked.

e One program object is active for at least two shader stages and a second
program is active for a shader stage between two stages for which the first
program was active.

e There is an active program for tessellation control, tessellation evaluation, or
geometry stages with corresponding executable shader, but there is no active
program with executable vertex shader.

e There is no current unified program object and the current program pipeline
object includes a program object that was relinked since being applied to
the pipeline object via UseProgramStages with the PROGRAM_SEPARABLE
parameter set to FALSE.

e Any two active samplers in the current program object are of different types,
but refer to the same texture image unit.

e The number of active samplers in the program exceeds the maximum number
of texture image units allowed.

The INVALID_OPERATION error reported by these rendering commands may
not provide enough information to find out why the currently active program object
would not execute. No information at all is available about a program object that
would still execute, but is inefficient or suboptimal given the current GL state. As
a development aid, use the command

void ValidateProgram(uint program);

to validate the program object program against the current GL state. Each program
object has a boolean status, VALIDATE_STATUS, that is modified as a result of
validation. This status can be queried with GetProgramiv (see section 6.1.12).
If validation succeeded this status will be set to TRUE, otherwise it will be set to
FALSE. If validation succeeded the program object is guaranteed to execute, given
the current GL state. If validation failed, the program object is guaranteed to not
execute, given the current GL state.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 115

ValidateProgram will check for all the conditions that could lead to an
INVALID_OPERATION error when rendering commands are issued, and may check
for other conditions as well. For example, it could give a hint on how to optimize
some piece of shader code. The information log of program is overwritten with
information on the results of the validation, which could be an empty string. The
results written to the information log are typically only useful during application
development; an application should not expect different GL implementations to
produce identical information.

A shader should not fail to compile, and a program object should not fail to
link due to lack of instruction space or lack of temporary variables. Implementa-
tions should ensure that all valid shaders and program objects may be successfully
compiled, linked and executed.

Separable program objects may have validation failures that cannot be detected
without the complete program pipeline. Mismatched interfaces, improper usage
of program objects together, and the same state-dependent failures can result in
validation errors for such program objects. As a development aid, use the command

void ValidateProgramPipeline(uint pipeline);

to validate the program pipeline object pipeline against the current GL state. Each
program pipeline object has a boolean status, VALIDATE_STATUS, that is modified
as a result of validation. This status can be queried with GetProgramPipelineiv
(see section 6.1.12). If validation succeeded, the program pipeline object is guar-
anteed to execute given the current GL state.

If pipeline is a name that has been generated (without subsequent deletion)
by GenProgramPipelines, but refers to a program pipeline object that has not
been previously bound, the GL first creates a new state vector in the same man-
ner as when BindProgramPipeline creates a new program pipeline object. If
pipeline is not a name returned from a previous call to GenProgramPipelines or if
such a name has since been deleted by DeleteProgramPipelines, an INVALID_-
OPERATION error is generated.

Undefined Behavior

When using array or matrix variables in a shader, it is possible to access a vari-
able with an index computed at run time that is outside the declared extent of the
variable. Such out-of-bounds accesses have undefined behavior, and system er-
rors (possibly including program termination) may occur. The level of protection
provided against such errors in the shader is implementation-dependent.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 116

2.11.13 Shader Memory Access

Shaders may perform random-access reads and writes to texture or buffer object
memory using built-in image load, store, and atomic functions, as described in the
OpenGL Shading Language Specification. The ability to perform such random-
access reads and writes in systems that may be highly pipelined results in ordering
and synchronization issues discussed in the sections below.

Shader Memory Access Ordering

The order in which texture or buffer object memory is read or written by shaders
is largely undefined. For some shader types (vertex, tessellation evaluation, and in
some cases, fragment), even the number of shader invocations that might perform
loads and stores is undefined. In particular, the following rules apply:

e While a vertex or tessellation evaluation shader will be executed at least once
for each unique vertex specified by the application (vertex shaders) or gener-
ated by the tessellation primitive generator (tessellation evaluation shaders),
it may be executed more than once for implementation-dependent reasons.
Additionally, if the same vertex is specified multiple times in a collection
of primitives (e.g., repeating an index in DrawElements), the vertex shader
might be run only once.

e For each fragment generated by the GL, the number of fragment shader invo-
cations depends on a number of factors. If the fragment fails the pixel owner-
ship test (see section 4.1.1), the fragment shader may not be executed. Oth-
erwise, if the framebuffer has no multisample buffer (the value of SAMPLE_—
BUFFERS is zero), the fragment shader will be invoked exactly once. If the
fragment shader specifies per-sample shading, the fragment shader will be
run once per covered sample. Otherwise, the number of fragment shader
invocations is undefined, but must be in the range [1, N|, where N is the
number of samples covered by the fragment.

o If a fragment shader is invoked to process fragments or samples not covered
by a primitive being rasterized to facilitate the approximation of derivatives
for texture lookups, stores and atomics have no effect.

e The relative order of invocations of the same shader type are undefined. A
store issued by a shader when working on primitive B might complete prior
to a store for primitive A, even if primitive A is specified prior to primitive
B. This applies even to fragment shaders; while fragment shader outputs are

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 117

written to the framebuffer in primitive order, stores executed by fragment
shader invocations are not.

e The relative order of invocations of different shader types is largely unde-
fined. However, when executing a shader whose inputs are generated from
a previous programmable stage, the shader invocations from the previous
stage are guaranteed to have executed far enough to generate final values
for all next-stage inputs. That implies shader completion for all stages ex-
cept geometry; geometry shaders are guaranteed only to have executed far
enough to emit all needed vertices.

The above limitations on shader invocation order also make some forms of
synchronization between shader invocations within a single set of primitives unim-
plementable. For example, having one invocation poll memory written by another
invocation assumes that the other invocation has been launched and can complete
its writes. The only case where such a guarantee is made is when the inputs of
one shader invocation are generated from the outputs of a shader invocation in a
previous stage.

Stores issued to different memory locations within a single shader invocation
may not be visible to other invocations in the order they were performed. The
built-in function memoryBarrier () may be used to provide stronger ordering of
reads and writes performed by a single invocation. Calling memoryBarrier ()
guarantees that any memory transactions issued by the shader invocation prior to
the call complete prior to the memory transactions issued after the call. Memory
barriers may be needed for algorithms that require multiple invocations to access
the same memory and require the operations need to be performed in a partially-
defined relative order. For example, if one shader invocation does a series of writes,
followed by a memoryBarrier () call, followed by another write, then another
invocation that sees the results of the final write will also see the previous writes.
Without the memory barrier, the final write may be visible before the previous
writes.

The built-in atomic memory transaction functions may be used to read and
write a given memory address atomically. While built-in atomic functions issued
by multiple shader invocations are executed in undefined order relative to each
other, these functions perform both a read and a write of a memory address and
guarantee that no other memory transaction will write to the underlying memory
between the read and write. Atomics allow shaders to use shared global addresses
for mutual exclusion or as counters, among other uses.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 118

Shader Memory Access Synchronization

Data written to textures or buffer objects by a shader invocation may eventually
be read by other shader invocations, sourced by other fixed pipeline stages, or read
back by the application. When applications write to buffer objects or textures using
API commands such as TexSubImage* or BufferSubData, the GL implementa-
tion knows when and where writes occur and can perform implicit synchroniza-
tion to ensure that operations requested before the update see the original data and
that subsequent operations see the modified data. Without logic to track the target
address of each shader instruction performing a store, automatic synchronization
of stores performed by a shader invocation would require the GL implementa-
tion to make worst-case assumptions at significant performance cost. To permit
cases where textures or buffers may be read or written in different pipeline stages
without the overhead of automatic synchronization, buffer object and texture stores
performed by shaders are not automatically synchronized with other GL operations
using the same memory.

Explicit synchronization is required to ensure that the effects of buffer and tex-
ture data stores performed by shaders will be visible to subsequent operations using
the same objects and will not overwrite data still to be read by previously requested
operations. Without manual synchronization, shader stores for a “new” primitive
may complete before processing of an “old” primitive completes. Additionally,
stores for an “old” primitive might not be completed before processing of a “new”
primitive starts. The command

void MemoryBarrier(bitfield barriers);

defines a barrier ordering the memory transactions issued prior to the command
relative to those issued after the barrier. For the purposes of this ordering, memory
transactions performed by shaders are considered to be issued by the rendering
command that triggered the execution of the shader. barriers is a bitfield indicating
the set of operations that are synchronized with shader stores; the bits used in
barriers are as follows:

e VERTEX_ATTRIB_ARRAY BARRIER_BIT: If set, vertex data sourced from
buffer objects after the barrier will reflect data written by shaders prior to the
barrier. The set of buffer objects affected by this bit is derived from the buffer
object bindings used for arrays of generic vertex attributes (VERTEX_—
ATTRIB_ARRAY_BUFFER bindings).

e ELEMENT_ARRAY_BARRIER_BIT: If set, vertex array indices sourced from
buffer objects after the barrier will reflect data written by shaders prior to

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 119

the barrier. The buffer objects affected by this bit are derived from the
ELEMENT_ARRAY_BUFFER binding.

e UNIFORM_BARRIER_BIT: Shader uniforms sourced from buffer objects af-
ter the barrier will reflect data written by shaders prior to the barrier.

e TEXTURE_FETCH_BARRIER_ BIT: Texture fetches from shaders, including
fetches from buffer object memory via buffer textures, after the barrier will
reflect data written by shaders prior to the barrier.

e SHADER_IMAGE_ACCESS_BARRIER_BIT: Memory accesses using shader
built-in image load, store, and atomic functions issued after the barrier will
reflect data written by shaders prior to the barrier. Additionally, image stores
and atomics issued after the barrier will not execute until all memory ac-
cesses (e.g., loads, stores, texture fetches, vertex fetches) initiated prior to
the barrier complete.

e COMMAND_BARRIER_BIT: Command data sourced from buffer objects by
Draw*Indirect commands after the barrier will reflect data written by shaders
prior to the barrier. The buffer objects affected by this bit are derived from
the DRAW_INDIRECT_BUFFER binding.

e PIXEL_BUFFER_BARRIER BIT: Reads/writes of buffer objects via the
PIXEL_PACK_BUFFER and PIXEI_UNPACK_BUFFER bindings (ReadPix-
els, TexSubImage, etc.) after the barrier will reflect data written by shaders
prior to the barrier. Additionally, buffer object writes issued after the barrier
will wait on the completion of all shader writes initiated prior to the barrier.

e TEXTURE_UPDATE_BARRIER BIT: Writes
to a texture via Tex(Sub)Image*, CopyTex* CompressedTex*, and reads
via GetTexImage after the barrier will reflect data written by shaders prior
to the barrier. Additionally, texture writes from these commands issued after
the barrier will not execute until all shader writes initiated prior to the barrier
complete.

e BUFFER_UPDATE_BARRIER_BIT: Reads/writes via Buffer*Data, Copy-
BufferSubData, and GetBufferSubData, or to buffer object memory
mapped by MapBuffer* after the barrier will reflect data written by shaders
prior to the barrier. Additionally, writes via these commands issued after the
barrier will wait on the completion of any shader writes to the same memory
initiated prior to the barrier.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11. VERTEX SHADERS 120

e FRAMEBUFFER_BARRIER_BIT: Reads and writes via framebuffer object at-
tachments after the barrier will reflect data written by shaders prior to the
barrier. Additionally, framebuffer writes issued after the barrier will wait on
the completion of all shader writes issued prior to the barrier.

e TRANSFORM_FEEDBACK_BARRIER BIT: Writes via transform feedback
bindings after the barrier will reflect data written by shaders prior to the
barrier. Additionally, transform feedback writes issued after the barrier will
wait on the completion of all shader writes issued prior to the barrier.

e ATOMIC_COUNTER_BARRIER_BIT: Accesses to atomic counters after the
barrier will reflect writes prior to the barrier.

If barriers is ALL_BARRIER_BITS, shader memory accesses will be synchro-
nized relative to all the operations described above.

Implementations may cache buffer object and texture image memory that could
be written by shaders in multiple caches; for example, there may be separate caches
for texture, vertex fetching, and one or more caches for shader memory accesses.
Implementations are not required to keep these caches coherent with shader mem-
ory writes. Stores issued by one invocation may not be immediately observable
by other pipeline stages or other shader invocations because the value stored may
remain in a cache local to the processor executing the store, or because data over-
written by the store is still in a cache elsewhere in the system. When Memo-
ryBarrier is called, the GL flushes and/or invalidates any caches relevant to the
operations specified by the barriers parameter to ensure consistent ordering of op-
erations across the barrier.

To allow for independent shader invocations to communicate by reads and
writes to a common memory address, image variables in the OpenGL Shading
Language may be declared as coherent. Buffer object or texture image memory
accessed through such variables may be cached only if caches are automatically
updated due to stores issued by any other shader invocation. If the same address
is accessed using both coherent and non-coherent variables, the accesses using
variables declared as coherent will observe the results stored using coherent vari-
ables in other invocations. Using variables declared as coherent guarantees only
that the results of stores will be immediately visible to shader invocations using
similarly-declared variables; calling MemoryBarrier is required to ensure that the
stores are visible to other operations.

The following guidelines may be helpful in choosing when to use coherent
memory accesses and when to use barriers.

e Data that are read-only or constant may be accessed without using coher-
ent variables or calling MemoryBarrier. Updates to the read-only data via

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11.

VERTEX SHADERS 121

commands such as BufferSubData will invalidate shader caches implicitly
as required.

Data that are shared between shader invocations at a fine granularity (e.g.,
written by one invocation, consumed by another invocation) should use co-
herent variables to read and write the shared data.

Data written by one shader invocation and consumed by other shader in-
vocations launched as a result of its execution (dependent invocations)
should use coherent variables in the producing shader invocation and call
memoryBarrier () after the last write. The consuming shader invocation
should also use coherent variables.

Data written to image variables in one rendering pass and read by the shader
in a later pass need not use coherent variables or memoryBarrier (). Call-
ing MemoryBarrier with the SHADER_IMAGE_ACCESS_BARRIER BIT set
in barriers between passes is necessary.

Data written by the shader in one rendering pass and read by another mech-
anism (e.g., vertex or index buffer pulling) in a later pass need not use co-
herent variables or memoryBarrier (). Calling MemoryBarrier with the
appropriate bits set in barriers between passes is necessary.

2.11.14 Required State

The GL maintains state to indicate which shader and program object names are in
use. Initially, no shader or program objects exist, and no names are in use.
The state required per shader object consists of:

An unsigned integer specifying the shader object name.

An integer holding the value of SHADER_TYPE.

A boolean holding the delete status, initially FALSE.

A boolean holding the status of the last compile, initially FALSE.

An array of type char containing the information log, initially empty.
An integer holding the length of the information log.

An array of type char containing the concatenated shader string, initially
empty.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.11.

VERTEX SHADERS 122

An integer holding the length of the concatenated shader string.

The state required per program object consists of:

An unsigned integer indicating the program object name.

A boolean holding the delete status, initially FALSE.

A boolean holding the status of the last link attempt, initially FALSE.

A boolean holding the status of the last validation attempt, initially FALSE.
An integer holding the number of attached shader objects.

A list of unsigned integers to keep track of the names of the shader objects
attached.

An array of type char containing the information log, initially empty.
An integer holding the length of the information log.
An integer holding the number of active uniforms.

For each active uniform, three integers, holding its location, size, and type,
and an array of type char holding its name.

An array holding the values of each active uniform.
An integer holding the number of active attributes.

For each active attribute, three integers holding its location, size, and type,
and an array of type char holding its name.

A boolean holding the hint to the retrievability of the program binary, ini-
tially FALSE.

Additional state required to support vertex shaders consists of:

A bit indicating whether or not program point size mode (section 3.4.1) is
enabled, initially disabled.

Additional state required to support transform feedback consists of:

An integer holding the transform feedback mode, initially INTERLEAVED_—
ATTRIBS.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 123

e An integer holding the number of outputs to be captured, initially zero.

e An integer holding the length of the longest output name being captured,
initially zero.

e For each output being captured, two integers holding its size and type, and
an array of type char holding its name.

Additionally, one unsigned integer is required to hold the name of the current pro-
gram object, if any.

This list of program object state is not complete. Tables 6.32-6.40 describe ad-
ditional program object state specific to program binaries, geometry shaders, tes-
sellation control and evaluation shaders, shader subroutines, and uniform blocks.

2.12 Tessellation

Tessellation is a process that reads a patch primitive and generates new primitives
used by subsequent pipeline stages. The generated primitives are formed by sub-
dividing a single triangle or quad primitive according to fixed or shader-computed
levels of detail and transforming each of the vertices produced during this subdivi-
sion.

Tessellation functionality is controlled by two types of tessellation shaders: tes-
sellation control shaders and tessellation evaluation shaders. Tessellation is con-
sidered active if and only if there is an active tessellation control or tessellation
evaluation program object.

The tessellation control shader is used to read an input patch provided by the
application, and emit an output patch. The tessellation control shader is run once
for each vertex in the output patch and computes the attributes of that vertex. Addi-
tionally, the tessellation control shader may compute additional per-patch attributes
of the output patch. The most important per-patch outputs are the tessellation lev-
els, which are used to control the number of subdivisions performed by the tessella-
tion primitive generator. The tessellation control shader may also write additional
per-patch attributes for use by the tessellation evaluation shader. If no tessellation
control shader is active, the patch provided is passed through to the tessellation
primitive generator stage unmodified.

If a tessellation evaluation shader is active, the tessellation primitive generator
subdivides a triangle or quad primitive into a collection of points, lines, or triangles
according to the tessellation levels of the patch and the set of layout declarations
specified in the tessellation evaluation shader text. The tessellation levels used to

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 124

control subdivision are normally written by the tessellation control shader. If no
tessellation control shader is active, default tessellation levels are instead used.

When a tessellation evaluation shader is active, it is run on each vertex gener-
ated by the tessellation primitive generator to compute the final position and other
attributes of the vertex. The tessellation evaluation shader can read the relative
location of the vertex in the subdivided output primitive, given by an (u,v) or
(u,v,w) coordinate, as well as the position and attributes of any or all of the ver-
tices in the input patch.

Tessellation operates only on patch primitives. If tessellation is active, any
command that transfers vertices to the GL will generate an INVALID_OPERATION
error if the primitive mode is not PATCHES.

Patch primitives are not supported by pipeline stages below the tessellation
evaluation shader. If there is no active tessellation evaluation program, the error
INVALID_OPERATION is generated by any command that transfers vertices to the
GL if the primitive mode is PATCHES.

A program object or program pipeline object that includes a tessellation shader
of any kind must also include a vertex shader. If the current program state has a
tessellation shader but no vertex shader when any command that transfers vertices
to the GL is called, an INVALID_OPERATION error will be generated.

2.12.1 Tessellation Control Shaders

The tessellation control shader consumes an input patch provided by the applica-
tion and emits a new output patch. The input patch is an array of vertices with at-
tributes corresponding to output variables written by the vertex shader. The output
patch consists of an array of vertices with attributes corresponding to per-vertex
output variables written by the tessellation control shader and a set of per-patch
attributes corresponding to per-patch output variables written by the tessellation
control shader. Tessellation control output variables are per-vertex by default, but
may be declared as per-patch using the patch qualifier.

The number of vertices in the output patch is fixed when the program is linked,
and is specified in tessellation control shader source code using the output layout
qualifier vertices, as described in the OpenGL Shading Language Specification.
A program will fail to link if the output patch vertex count is not specified by
any tessellation control shader object attached to the program, if it is specified
differently by multiple tessellation control shader objects, if it is less than or equal
to zero, or if it is greater than the implementation-dependent maximum patch size.
The output patch vertex count may be queried by calling GetProgramiv with the
symbolic constant TESS_CONTROL_OUTPUT_VERTICES.

Tessellation control shaders are created as described in section 2.11.1, using a

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 125

type of TESS_CONTROL_SHADER. When a new input patch is received, the tessel-
lation control shader is run once for each vertex in the output patch. The tessel-
lation control shader invocations collectively specify the per-vertex and per-patch
attributes of the output patch. The per-vertex attributes are obtained from the per-
vertex output variables written by each invocation. Each tessellation control shader
invocation may only write to per-vertex output variables corresponding to its own
output patch vertex. The output patch vertex number corresponding to a given
tessellation control point shader invocation is given by the built-in variable g1_ -
InvocationID. Per-patch attributes are taken from the per-patch output variables,
which may be written by any tessellation control shader invocation. While tessella-
tion control shader invocations may read any per-vertex and per-patch output vari-
able and write any per-patch output variable, reading or writing output variables
also written by other invocations has ordering hazards discussed below.

Tessellation Control Shader Variables

Tessellation control shaders can access uniforms belonging to the current program
object. The amount of storage available for uniform variables, except for subrou-
tine uniforms and atomic counters, in the default uniform block accessed by a tes-
sellation control shader is specified by the value of the implementation-dependent
constant MAX_TESS_CONTROL_UNIFORM_COMPONENTS. The total amount of
combined storage available for uniform variables in all uniform blocks accessed
by a tessellation control shader (including the default uniform block) is specified
by the value of the implementation-dependent constant MAX_COMBINED_TESS_—
CONTROL_UNIFORM_COMPONENTS. These values represent the numbers of indi-
vidual floating-point, integer, or boolean values that can be held in uniform vari-
able storage for a tessellation control shader. A uniform matrix in the default
uniform block with single- or double-precision components will consume no more
than 4 x min(r, c) or 8 x min(r, ¢) uniform components, respectively. A scalar
or vector uniform with double-precision components will consume no more than
2n components, where #n is 1 for scalars, and the component count for vectors. A
link error is generated if an attempt is made to utilize more than the space available
for tessellation control shader uniform variables. Uniforms are manipulated as de-
scribed in section 2.11.7. Tessellation control shaders also have access to samplers
to perform texturing operations, as described in section 2.11.9.

Tessellation control shaders can access the transformed attributes of all vertices
for their input primitive using input variables. A vertex shader writing to output
variables generates the values of these input variables. Values for any inputs that
are not written by a vertex shader are undefined.

Additionally, tessellation control shaders can write to one or more oufput in-

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 126

cluding per-vertex attributes for the vertices of the output patch and per-patch at-
tributes of the patch. Tessellation control shaders can also write to a set of built-in
per-vertex and per-patch outputs defined in the OpenGL Shading Language. The
per-vertex and per-patch attributes of the output patch are used by the tessellation
primitive generator (section 2.12.2) and may be read by tessellation control shader
(section 2.12.3).

Tessellation Control Shader Execution Environment

If there is an active program for the tessellation control stage, the executable ver-
sion of the program’s tessellation control shader is used to process patches result-
ing from the primitive assembly stage. When tessellation control shader execu-
tion completes, the input patch is consumed. A new patch is assembled from the
per-vertex and per-patch output variables written by the shader and is passed to
subsequent pipeline stages.

There are several special considerations for tessellation control shader execu-
tion described in the following sections.

Texture Access

The Shader-Only Texturing subsection of section 2.11.12 describes texture lookup
functionality accessible to a vertex shader. The texel fetch and texture size query
functionality described there also applies to tessellation control shaders.

Tessellation Control Shader Inputs

Section 7.1 of the OpenGL Shading Language Specification describes the built-
in variable array g1_in available as input to a tessellation control shader. g1_-
in receives values from equivalent built-in output variables written by the vertex
shader (section 2.11.12). Each array element of g1_in is a structure holding val-
ues for a specific vertex of the input patch. The length of g1_in is equal to the
implementation-dependent maximum patch size (g1_MaxPatchVertices). Be-
havior is undefined if g1_1in is indexed with a vertex index greater than or equal
to the current patch size. The members of each element of the g1_in array are
gl_Position, gl _PointSize,gl_ClipDistance, and gl_ClipVertex.

Tessellation control shaders have available several other built-in input variables
not replicated per-vertex and not contained in g1_in, including:

e The variable g1_PatchVerticesIn holds the number of vertices in the
input patch being processed by the tessellation control shader.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 127

e The variable g1_PrimitiveID is filled with the number of primitives pro-
cessed by the drawing command which generated the input vertices. The
first primitive generated by a drawing command is numbered zero, and the
primitive ID counter is incremented after every individual point, line, or tri-
angle primitive is processed. Restarting a primitive topology using the prim-
itive restart index has no effect on the primitive ID counter.

e The variable g1_TInvocationID holds an invocation number for the cur-
rent tessellation control shader invocation. Tessellation control shaders are
invoked once per output patch vertex, and invocations are numbered begin-
ning with zero.

Similarly to the built-in inputs, each user-defined input variable has a value
for each vertex and thus needs to be declared as arrays or inside input blocks
declared as arrays. Declaring an array size is optional. If no size is specified,
it will be taken from the implementation-dependent maximum patch size (g1_-
MaxPatchVertices). If a size is specified, it must match the maximum patch
size; otherwise, a link error will occur. Since the array size may be larger than
the number of vertices found in the input patch, behavior is undefined if a per-
vertex input variable is accessed using an index greater than or equal to the number
of vertices in the input patch. The OpenGL Shading Language doesn’t support
multi-dimensional arrays; therefore, user-defined tessellation control shader inputs
corresponding to vertex shader outputs declared as arrays must be declared as array
members of an input block that is itself declared as an array.

Similarly to the limit on vertex shader output components (see section 2.11.11),
there is a limit on the number of components of input variables that can be read by
the tessellation control shader, given by the value of the implementation-dependent
constant MAX_TESS_CONTROL_INPUT_COMPONENTS.

When a program is linked, all components of any input variable read by a tes-
sellation control shader will count against this limit. A program whose tessellation
control shader exceeds this limit may fail to link, unless device-dependent opti-
mizations are able to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.11.11).

Tessellation Control Shader Outputs

Section 7.1 of the OpenGL Shading Language Specification describes the built-
in variable array gl_out available as an output for a tessellation control shader.
gl_out passes values to equivalent built-in input variables read by subsequent
shader stages or to subsequent fixed functionality vertex processing pipeline stages.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 128

Each array element of g1_out is a structure holding values for a specific vertex
of the output patch. The length of g1_out is equal to the output patch size spec-
ified in the tessellation control shader output layout declaration. = The members
of each element of the g1_out array are g1_Position, gl_PointSize, and
gl_ClipDistance, and behave identically to equivalently named vertex shader
outputs (section 2.11.12).

Tessellation shaders additionally have two built-in per-patch output arrays,
gl_TessLevelOuter and gl_TessLevelInner. These arrays are not repli-
cated for each output patch vertex and are not members of gl_out. gl_-
TessLevelOuter is an array of four floating-point values specifying the approxi-
mate number of segments that the tessellation primitive generator should use when
subdividing each outer edge of the primitive it subdivides. g1_TessLevellInner
is an array of two floating-point values specifying the approximate number of seg-
ments used to produce a regularly-subdivided primitive interior. The values writ-
tento gl_TessLevelOuter and gl_TessLevelInner need not be integers, and
their interpretation depends on the type of primitive the tessellation primitive gener-
ator will subdivide and other tessellation parameters, as discussed in the following
section.

A tessellation control shader may also declare user-defined per-vertex output
variables. User-defined per-vertex output variables are declared with the qualifier
out and have a value for each vertex in the output patch. Such variables must be
declared as arrays or inside output blocks declared as arrays. Declaring an array
size is optional. If no size is specified, it will be taken from the output patch size
declared in the shader. If a size is specified, it must match the maximum patch
size; otherwise, a link error will occur. The OpenGL Shading Language doesn’t
support multi-dimensional arrays; therefore, user-defined per-vertex tessellation
control shader outputs with multiple elements per vertex must be declared as array
members of an output block that is itself declared as an array.

While per-vertex output variables are declared as arrays indexed by vertex
number, each tessellation control shader invocation may write only to those out-
puts corresponding to its output patch vertex. Tessellation control shaders must
use the input variable g1_TInvocationID as the vertex number index when writ-
ing to per-vertex output variables.

Additionally, a tessellation control shader may declare per-patch output vari-
ables using the qualifier patch out. Unlike per-vertex outputs, per-patch outputs
do not correspond to any specific vertex in the patch, and are not indexed by vertex
number. Per-patch outputs declared as arrays have multiple values for the output
patch; similarly declared per-vertex outputs would indicate a single value for each
vertex in the output patch. User-defined per-patch outputs are not used by the tes-
sellation primitive generator, but may be read by tessellation evaluation shaders.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 129

There are several limits on the number of components of output variables that
can be written by the tessellation control shader. The number of components
of active per-vertex output variables may not exceed the value of MAX_TESS_—
CONTROL_OUTPUT_COMPONENTS. The number of components of active per-patch
output variables may not exceed the value of MAX_TESS_PATCH_COMPONENTS.
The built-in outputs gl_TessLevelOuter and gl_TessLevellInner are not
counted against the per-patch limit. The total number of components of active per-
vertex and per-patch outputs is derived by multiplying the per-vertex output com-
ponent count by the output patch size and then adding the per-patch output compo-
nent count. The total component count may not exceed MAX_TESS_CONTROI,_ -
TOTAL_OUTPUT_COMPONENTS.

When a program is linked, all components of any output variable written by a
tessellation control shader will count against this limit. A program exceeding any
of these limits may fail to link, unless device-dependent optimizations are able to
make the program fit within available hardware resources.

Counting rules for different variable types and variable declarations are the
same as for MAX_VERTEX_OQOUTPUT_COMPONENTS. (see section 2.11.11).

Tessellation Control Shader Execution Order

For tessellation control shaders with a declared output patch size greater than one,
the shader is invoked more than once for each input patch. The order of execution
of one tessellation control shader invocation relative to the other invocations for
the same input patch is largely undefined. The built-in function barrier provides
some control over relative execution order. When a tessellation control shader calls
the barrier function, its execution pauses until all other invocations have also
called the same function. Output variable assignments performed by any invocation
executed prior to calling barrier will be visible to any other invocation after the
call to barrier returns. Shader output values read in one invocation but written
by another may be undefined without proper use of barrier; full rules are found
in the OpenGL Shading Language Specification.

The barrier function may only be called inside the main entry point of the
tessellation control shader and may not be called in potentially divergent flow con-
trol. In particular, barrier may not be called inside a switch statement, in either
sub-statement of an if statement, inside a do, for, or while loop, or at any point after
a return statement in the function main.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 130

2.12.2 Tessellation Primitive Generation

If a tessellation evaluation shader is present, the tessellation primitive generator
consumes the input patch and produces a new set of basic primitives (points, lines,
or triangles). These primitives are produced by subdividing a geometric primitive
(rectangle or triangle) according to the per-patch tessellation levels written by the
tessellation control shader, if present, or taken from default patch parameter val-
ues. This subdivision is performed in an implementation-dependent manner. If no
tessellation evaluation shader is present, the tessellation primitive generator passes
incoming primitives through without modification.

The type of subdivision performed by the tessellation primitive generator is
specified by an input layout declaration in the tessellation evaluation shader us-
ing one of the identifiers triangles, quads, and isolines. For triangles,
the primitive generator subdivides a triangle primitive into smaller triangles. For
quads, the primitive generator subdivides a rectangle primitive into smaller tri-
angles. For isolines, the primitive generator subdivides a rectangle primitive
into a collection of line segments arranged in strips stretching horizontally across
the rectangle. Each vertex produced by the primitive generator has an associated
(u,v,w) or (u, v) position in a normalized parameter space, with parameter values
in the range [0, 1], as illustrated in figure 2.7. For triangles, the vertex position
is a barycentric coordinate (u, v, w), where u + v + w = 1, and indicates the rela-
tive influence of the three vertices of the triangle on the position of the vertex. For
quads and isolines, the position is a (u,v) coordinate indicating the relative
horizontal and vertical position of the vertex relative to the subdivided rectangle.
The subdivision process is explained in more detail in subsequent sections.

When no tessellation control shader is present, the tessellation levels are taken
from default patch tessellation levels. These default levels are set by calling

void PatchParameterfv(enum pname, const
float *values);

If pname is PATCH_DEFAULT_OUTER_LEVEL, values specifies an array of four
floating-point values corresponding to the four outer tessellation levels for each
subsequent patch. If prame is PATCH_DEFAULT_INNER_LEVEL, values specifies
an array of two floating-point values corresponding to the two inner tessellation
levels.

A patch is discarded by the tessellation primitive generator if any relevant outer
tessellation level is less than or equal to zero. Patches will also be discarded if
any outer tessellation level corresponds to a floating-point NaN (not a number) in
implementations supporting NaN. When patches are discarded, no new primitives
will be generated and the tessellation evaluation program will not be run. For

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 131
(0,1) oL3 (1,1) (0,1,0)
ILO
oLo IL1 oL2 oLo oL2
ILO
(0,0) oL1 (1,0) (0,0,1) oL1 (1,0,0)
Quads Triangles
(0,1) (1,1)
A (no edge)
oLo!
\Y
(0,0) oL1 (1,0)
Isolines
Figure 2.7. Domain parameterization for tessellation generator primitive modes (tri-
angles, quads, or isolines). The coordinates illustrate the value of g1_TessCoord
at the corners of the domain. The labels on the edges indicate the inner (ILO and IL1)
and outer (OLO through OL3) tessellation level values used to control the number
of subdivisions along each edge of the domain.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 132

quads, all four outer levels are relevant. For t riangles and isolines, only the
first three or two outer levels, respectively, are relevant. Negative inner levels will
not cause a patch to be discarded; they will be clamped as described below.

Each of the tessellation levels is used to determine the number and spacing
of segments used to subdivide a corresponding edge. The method used to derive
the number and spacing of segments is specified by an input layout declaration
in the tessellation evaluation shader using one of the identifiers equal_spacing,
fractional_even_spacing, or fractional_odd_spacing. If no spacing is
specified in the tessellation evaluation shader, equal_spacing will be used.

If equal_spacing is used, the floating-point tessellation level is first clamped
to the range [1, max], where max is the implementation-dependent maximum tes-
sellation level (the value of MAX_TESS_GEN_LEVEL). The result is rounded up to
the nearest integer n, and the corresponding edge is divided into n segments of
equal length in (u, v) space.

If fractional_even_spacing is used, the tessellation level is first clamped
to the range [2,max] and then rounded up to the nearest even integer n. If
fractional_odd_spacingis used, the tessellation level is clamped to the range
[1, max — 1] and then rounded up to the nearest odd integer n. If n is one, the edge
will not be subdivided. Otherwise, the corresponding edge will be divided into
n — 2 segments of equal length, and two additional segments of equal length that
are typically shorter than the other segments. The length of the two additional seg-
ments relative to the others will decrease monotonically with the value of n — f,
where f is the clamped floating-point tessellation level. When n — f is zero, the
additional segments will have equal length to the other segments. As n — f ap-
proaches 2.0, the relative length of the additional segments approaches zero. The
two additional segments should be placed symmetrically on opposite sides of the
subdivided edge. The relative location of these two segments is undefined, but
must be identical for any pair of subdivided edges with identical values of f.

When the tessellation primitive generator produces triangles (in the
triangles or quads modes), the orientation of all triangles can be specified by
an input layout declaration in the tessellation evaluation shader using the identifiers
cw and ccw. If the order is cw, the vertices of all generated triangles will have a
clockwise ordering in (u,v) or (u,v,w) space, as illustrated in figure 2.7. If the
order is ccw, the vertices will be specified in counter-clockwise order. If no layout
is specified, ccw will be used.

For all primitive modes, the tessellation primitive generator is capable of gen-
erating points instead of lines or triangles. If an input layout declaration in the
tessellation evaluation shader specifies the identifier point_mode, the primitive
generator will generate one point for each unique vertex produced by tessellation.
Otherwise, the primitive generator will produce a collection of line segments or

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 133

triangles according to the primitive mode.
The points, lines, or triangles produced by the tessellation primitive generator
are passed to subsequent pipeline stages in an implementation-dependent order.

Triangle Tessellation

If the tessellation primitive mode is triangles, an equilateral triangle is subdi-
vided into a collection of triangles covering the area of the original triangle. First,
the original triangle is subdivided into a collection of concentric equilateral trian-
gles. The edges of each of these triangles are subdivided, and the area between
each triangle pair is filled by triangles produced by joining the vertices on the sub-
divided edges. The number of concentric triangles and the number of subdivisions
along each triangle except the outermost is derived from the first inner tessellation
level. The edges of the outermost triangle are subdivided independently, using the
first, second, and third outer tessellation levels to control the number of subdivi-
sions of the u = 0 (left), v = 0 (bottom), and w = 0 (right) edges, respectively.
The second inner tessellation level and the fourth outer tessellation level have no
effect in this mode.

If the first inner tessellation level and all three outer tessellation levels are ex-
actly one after clamping and rounding, only a single triangle with (u, v, w) co-
ordinates of (0,0, 1), (1,0,0), and (0, 1,0) is generated. If the inner tessellation
level is one and any of the outer tessellation levels is greater than one, the inner
tessellation level is treated as though it were originally specified as 1 4 € and will
be rounded up to result in a two- or three-segment subdivision according to the
tessellation spacing.

If any tessellation level is greater than one, tessellation begins by producing a
set of concentric inner triangles and subdividing their edges. First, the three outer
edges are temporarily subdivided using the clamped and rounded first inner tes-
sellation level and the specified tessellation spacing, generating n segments. For
the outermost inner triangle, the inner triangle is degenerate — a single point at the
center of the triangle — if n is two. Otherwise, for each corner of the outer trian-
gle, an inner triangle corner is produced at the intersection of two lines extended
perpendicular to the corner’s two adjacent edges running through the vertex of the
subdivided outer edge nearest that corner. If n is three, the edges of the inner tri-
angle are not subdivided and is the final triangle in the set of concentric triangles.
Otherwise, each edge of the inner triangle is divided into n — 2 segments, with
the n — 1 vertices of this subdivision produced by intersecting the inner edge with
lines perpendicular to the edge running through the n — 1 innermost vertices of the
subdivision of the outer edge. Once the outermost inner triangle is subdivided, the
previous subdivision process repeats itself, using the generated triangle as an outer

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 134

(0,1,0)

(0,1,0)

(0,0,1) (1,0,0)

0,0,1) (1,0,0

Figure 2.8. Inner triangle tessellation with inner tessellation levels of (a) five and (b)
four, respectively (not to scale) Solid black circles depict vertices along the edges of
the concentric triangles. The edges of inner triangles are subdivided by intersecting
the edge with segments perpendicular to the edge passing through each inner vertex
of the subdivided outer edge. Dotted lines depict edges connecting corresponding
vertices on the inner and outer triangle edges.

triangle. This subdivision process is illustrated in figure 2.8.

Once all the concentric triangles are produced and their edges are subdivided,
the area between each pair of adjacent inner triangles is filled completely with a
set of non-overlapping triangles. In this subdivision, two of the three vertices of
each triangle are taken from adjacent vertices on a subdivided edge of one triangle;
the third is one of the vertices on the corresponding edge of the other triangle.
If the innermost triangle is degenerate (i.e., a point), the triangle containing it is
subdivided into six triangles by connecting each of the six vertices on that triangle
with the center point. If the innermost triangle is not degenerate, that triangle is
added to the set of generated triangles as-is.

After the area corresponding to any inner triangles is filled, the primitive gen-
erator generates triangles to cover area between the outermost triangle and the out-
ermost inner triangle. To do this, the temporary subdivision of the outer triangle
edge above is discarded. Instead, the u = 0, v = 0, and w = 0 edges are subdi-
vided according to the first, second, and third outer tessellation levels, respectively,

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 135

and the tessellation spacing. The original subdivision of the first inner triangle is
retained. The area between the outer and first inner triangles is completely filled by
non-overlapping triangles as described above. If the first (and only) inner triangle
is degenerate, a set of triangles is produced by connecting each vertex on the outer
triangle edges with the center point.

After all triangles are generated, each vertex in the subdivided triangle is as-
signed a barycentric (u, v, w) coordinate based on its location relative to the three
vertices of the outer triangle.

The algorithm used to subdivide the triangular domain in (u, v, w) space into
individual triangles is implementation-dependent. However, the set of triangles
produced will completely cover the domain, and no portion of the domain will be
covered by multiple triangles. The order in which the generated triangles passed
to subsequent pipeline stages and the order of the vertices in those triangles are
both implementation-dependent. However, when depicted in a manner similar to
figure 2.8, the order of the vertices in the generated triangles will be either all clock-
wise or all counter-clockwise, according to the vertex order layout declaration.

Quad Tessellation

If the tessellation primitive mode is quads, a rectangle is subdivided into a col-
lection of triangles covering the area of the original rectangle. First, the original
rectangle is subdivided into a regular mesh of rectangles, where the number of
rectangles along the u = 0 and v = 1 (vertical) and v = 0 and v = 1 (horizon-
tal) edges are derived from the first and second inner tessellation levels, respec-
tively. All rectangles, except those adjacent to one of the outer rectangle edges,
are decomposed into triangle pairs. The outermost rectangle edges are subdivided
independently, using the first, second, third, and fourth outer tessellation levels to
control the number of subdivisions of the v = 0 (left), v = 0 (bottom), u = 1
(right), and v = 1 (top) edges, respectively. The area between the inner rectan-
gles of the mesh and the outer rectangle edges are filled by triangles produced by
joining the vertices on the subdivided outer edges to the vertices on the edge of the
inner rectangle mesh.

If both clamped inner tessellation levels and all four clamped outer tessellation
levels are exactly one, only a single triangle pair covering the outer rectangle is
generated. Otherwise, if either clamped inner tessellation level is one, that tessel-
lation level is treated as though it were originally specified as 1 + €, which would
rounded up to result in a two- or three-segment subdivision according to the tessel-
lation spacing.

If any tessellation level is greater than one, tessellation begins by subdividing
the v = 0 and u = 1 edges of the outer rectangle into m segments using the

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 136

clamped and rounded first inner tessellation level and the tessellation spacing. The
v = 0 and v = 1 edges are subdivided into n segments using the second inner
tessellation level. Each vertex on the u = 0 and v = 0 edges are joined with the
corresponding vertex on the v = 1 and v = 1 edges to produce a set of vertical
and horizontal lines that divide the rectangle into a grid of smaller rectangles. The
primitive generator emits a pair of non-overlapping triangles covering each such
rectangle not adjacent to an edge of the outer rectangle. The boundary of the re-
gion covered by these triangles forms an inner rectangle, the edges of which are
subdivided by the grid vertices that lie on the edge. If either m or n is two, the
inner rectangle is degenerate, and one or both of the rectangle’s “edges” consist of
a single point. This subdivision is illustrated in figure 2.9.

After the area corresponding to the inner rectangle is filled, the primitive gen-
erator must produce triangles to cover area between the inner and outer rectangles.
To do this, the subdivision of the outer rectangle edge above is discarded. Instead,
thew = 0, v = 0, v = 1, and v = 1 edges are subdivided according to the
first, second, third, and fourth outer tessellation levels, respectively, and the tes-
sellation spacing. The original subdivision of the inner rectangle is retained. The
area between the outer and inner rectangles is completely filled by non-overlapping
triangles. Two of the three vertices of each triangle are adjacent vertices on a sub-
divided edge of one rectangle; the third is one of the vertices on the corresponding
edge of the other triangle. If either edge of the innermost rectangle is degenerate,
the area near the corresponding outer edges is filled by connecting each vertex on
the outer edge with the single vertex making up the inner “edge”.

The algorithm used to subdivide the rectangular domain in (u,v) space into
individual triangles is implementation-dependent. However, the set of triangles
produced will completely cover the domain, and no portion of the domain will be
covered by multiple triangles. The order in which the generated triangles passed
to subsequent pipeline stages and the order of the vertices in those triangles are
both implementation-dependent. However, when depicted in a manner similar to
figure 2.9, the order of the vertices in the generated triangles will be either all clock-
wise or all counter-clockwise, according to the vertex order layout declaration.

Isoline Tessellation

If the tessellation primitive mode is isolines, a set of independent horizontal
line segments is drawn. The segments are arranged into connected strips, where
each strip has a constant v coordinate, and the u coordinates of the strip cover the
full range [0, 1]. The number of segments in each strip is derived from the first
outer tessellation level; the number of line strips drawn is derived from the second
outer tessellation level. Both inner tessellation levels and the third and fourth outer

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 137

(0,1) (1,1)
. *® . *® ®
| S . . A ‘
o ° o ° o
(0,0) (1,0)
(a)
(0,1) (1,1)
. *® . *® . ® ® ®
| S o - .
®------- ® - ------]
®------- g * A * * ® - *
o o ¢ ¢ ¢ ¢ ¢ o
(0,0) (1,0)
(b)
Figure 2.9. Inner quad tessellation with inner tessellation levels of (a) (4, 2) and (b)
(7,4), respectively. Gray regions on the bottom figure depict the 10 inner rectan-
gles, each of which will be subdivided into two triangles. Solid black circles depict
vertices on the boundary of the outer and inner rectangles, where the inner rectangle
on the top figure is degenerate (a single line segment). Dotted lines depict the hor-
izontal and vertical edges connecting corresponding vertices on the inner and outer
rectangle edges.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 138

tessellation levels have no effect in this mode.

As with quad tessellation above, isoline tessellation begins with a rectangle.
The v = 0 and u = 1 edges of the rectangle are subdivided according to the
second outer tessellation level. For the purposes of this subdivision, the tessellation
spacing is ignored and treated as EQUAL. A line is drawn from each vertex on the
u = 0 rectangle edge with the corresponding vertex on the v = 1 rectangle edge,
except that no line is drawn between (0,1) and (1,1). If the number of segments on
the subdivided v = 0 and u = 1 edges is n, this process will result in n equally
spaced lines with constant v coordinates of 0, %, %, cee ”T_l

Each of the n lines is then subdivided according to the first outer tessellation
level and the tessellation spacing, resulting in m line segments. Each segment of
each line is emitted by the tessellation primitive generator, as illustrated in fig-
ure 2.10.

The order in which the generated line segments are passed to subsequent
pipeline stages and the order of the vertices in each generated line segment are
both implementation-dependent.

2.12.3 Tessellation Evaluation Shaders

If active, the tessellation evaluation shader takes the (u,v) or (u,v,w) location
of each vertex in the primitive subdivided by the tessellation primitive generator,
and generates a vertex with a position and associated attributes. The tessellation
evaluation shader can read any of the vertices of its input patch, which is the output
patch produced by the tessellation control shader (if present) or provided by the
application and transformed by the vertex shader (if no control shader is used).
Tessellation evaluation shaders are created as described in section 2.11.1, using a
type of TESS_EVALUATION_SHADER.

Each invocation of the tessellation evaluation shader writes the attributes of
exactly one vertex. The number of vertices evaluated per patch depends on the
tessellation level values computed by the tessellation control shaders (if present)
or specified as patch parameters. Tessellation evaluation shader invocations run
independently, and no invocation can access the variables belonging to another
invocation. All invocations are capable of accessing all the vertices of their corre-
sponding input patch.

If a tessellation control shader is present, the number of the vertices in the
input patch is fixed and is equal to the tessellation control shader output patch size
parameter in effect when the program was last linked. If no tessellation control
shader is present, the input patch is provided by the application can have a variable
number of vertices, as specified by PatchParameteri.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 139

(0,1) (1,1)
©) ©)
(4 @ ® L J

(0,0) (1,0)

(a)

(0,1) (1,1)
©) @)
@ @ @ ® @ @ ®
[@ @ ® @ @ @
[@ @ ® @ @ L
[® @ ® @ ® L

(0,0) (1,0)

(b)

Figure 2.10. Isoline tessellation with the first two outer tessellation levels of (a)

(3,1) and (b) (6,4), respectively. Line segments connecting the vertices marked

with solid black circles are emitted by the primitive generator. Vertices marked

with empty circles correspond to (u,v) coordinates of (0, 1) and (1, 1), where no
line segments are generated.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 140

Tessellation Evaluation Shader Variables

Tessellation evaluation shaders can access uniforms belonging to the current pro-
gram object. The amount of storage available for uniform variables, except for
subroutine uniforms and atomic counters, in the default uniform block accessed by
a tessellation evaluation shader is specified by the value of the implementation-
dependent constant MAX_TESS_EVALUATION_UNIFORM_COMPONENTS. The to-
tal amount of combined storage available for uniform variables in all uniform
blocks accessed by a tessellation evaluation shader (including the default uni-
form block) is specified by the value of the implementation-dependent con-
stant MAX_COMBINED_TESS_EVALUATION_UNIFORM_COMPONENTS. These val-
ues represent the numbers of individual floating-point, integer, or boolean values
that can be held in uniform variable storage for a tessellation evaluation shader.
A uniform matrix in the default uniform block with single- or double-precision
components will consume no more than 4 x min(r,c) or 8 x min(r, c) uniform
components, respectively. A scalar or vector uniform with double-precision com-
ponents will consume no more than 2n components, where n is 1 for scalars, and
the component count for vectors. A link error is generated if an attempt is made
to utilize more than the space available for tessellation evaluation shader uniform
variables. Uniforms are manipulated as described in section 2.11.7. Tessellation
evaluation shaders also have access to samplers to perform texturing operations, as
described in section 2.11.9.

Tessellation evaluation shaders can access the transformed attributes of all ver-
tices for their input primitive using input variables. If active, a tessellation control
shader writing to output variables generates the values of these input variables. If
no tessellation control shader is active, input variables will be obtained from vertex
shader outputs. Values for any input variable that are not written by a vertex or
tessellation control shader are undefined.

Additionally, tessellation evaluation shaders can write to one or more output
variables that will be passed to subsequent programmable shader stages or fixed
functionality vertex pipeline stages.

Tessellation Evaluation Shader Execution Environment

If there is an active program for the tessellation evaluation stage, the executable
version of the program’s tessellation evaluation shader is used to process vertices
produced by the tessellation primitive generator. During this processing, the shader
may access the input patch processed by the primitive generator. When tessellation
evaluation shader execution completes, a new vertex is assembled from the output
variables written by the shader and is passed to subsequent pipeline stages.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 141

There are several special considerations for tessellation evaluation shader exe-
cution described in the following sections.

Texture Access

The Shader-Only Texturing subsection of section 2.11.12 describes texture lookup
functionality accessible to a vertex shader. The texel fetch and texture size query
functionality described there also applies to tessellation evaluation shaders.

Tessellation Evaluation Shader Inputs

Section 7.1 of the OpenGL Shading Language Specification describes the built-in
variable array gl_in available as input to a tessellation evaluation shader. g1_—
in receives values from equivalent built-in output variables written by a previous
shader (section 2.11.12). If a tessellation control shader active, the values of g1_in
will be taken from tessellation control shader outputs. Otherwise, they will be taken
from vertex shader outputs. Each array element of g1_in is a structure holding
values for a specific vertex of the input patch. The length of g1_in is equal to
the implementation-dependent maximum patch size (g1_MaxPatchVertices).
Behavior is undefined if g1_in is indexed with a vertex index greater than or equal
to the current patch size. The members of each element of the g1_in array are
gl_Position, gl_PointSize, and gl_ClipDistance.

Tessellation evaluation shaders have available several other built-in input vari-
ables not replicated per-vertex and not contained in g1_in, including:

e The variables gl_PatchVerticesIn and gl_PrimitiveID are filled
with the number of the vertices in the input patch and a primitive number,
respectively. They behave exactly as the identically named inputs for tessel-
lation control shaders.

e The variable g1_TessCoord is a three-component floating-point vector
consisting of the (u, v, w) coordinate of the vertex being processed by the
tessellation evaluation shader. The values of u, v, and w are in the range
[0, 1], and vary linearly across the primitive being subdivided. For tessella-
tion primitive modes of quads or isolines, the w value is always zero.
The (u,v,w) coordinates are generated by the tessellation primitive gen-
erator in a manner dependent on the primitive mode, as described in sec-
tion 2.12.2. gl_TessCoord is not an array; it specifies the location of the
vertex being processed by the tessellation evaluation shader, not of any ver-
tex in the input patch.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.12. TESSELLATION 142

e The variables gl_TessLevelOuter and gl_TessLevelInner are ar-
rays holding outer and inner tessellation levels of the patch, as used by
the tessellation primitive generator. If a tessellation control shader is ac-
tive, the tessellation levels will be taken from the corresponding outputs of
the tessellation control shader. Otherwise, the default levels provided as
patch parameters are used. Tessellation level values loaded in these vari-
ables will be prior to the clamping and rounding operations performed by
the primitive generator as described in section 2.12.2. For triangular tes-
sellation, gl_TessLevelOuter[3] and gl_TessLevellInner[1] will
be undefined. For isoline tessellation, gl_TessLevelOuter[2], gl_-
TessLevelOuter[3], and both values in gl_TessLevelInner are un-
defined.

A tessellation evaluation shader may also declare user-defined per-vertex input
variables. User-defined per-vertex input variables are declared with the qualifier
in and have a value for each vertex in the input patch. User-defined per-vertex
input variables have a value for each vertex and thus need to be declared as arrays
or inside input blocks declared as arrays. Declaring an array size is optional. If
no size is specified, it will be taken from the implementation-dependent maximum
patch size (g1_MaxPatchVertices). If a size is specified, it must match the
maximum patch size; otherwise, a link error will occur. Since the array size may
be larger than the number of vertices found in the input patch, behavior is undefined
if a per-vertex input variable is accessed using an index greater than or equal to the
number of vertices in the input patch. The OpenGL Shading Language doesn’t
support multi-dimensional arrays; therefore, user-defined tessellation evaluation
shader inputs corresponding to vertex shader outputs declared as arrays must be
declared as array members of an input block that is itself declared as an array.

Additionally, a tessellation evaluation shader may declare per-patch input vari-
ables using the qualifier patch in. Unlike per-vertex inputs, per-patch inputs do
not correspond to any specific vertex in the patch, and are not indexed by vertex
number. Per-patch inputs declared as arrays have multiple values for the input
patch; similarly declared per-vertex inputs would indicate a single value for each
vertex in the output patch. User-defined per-patch input variables are filled with
corresponding per-patch output values written by the tessellation control shader. If
no tessellation control shader is active, all such variables are undefined.

Similarly to the limit on vertex shader output components (see section 2.11.11),
there is a limit on the number of components of per-vertex and per-patch input
variables that can be read by the tessellation evaluation shader, given by the values
of the implementation-dependent constants MAX_TESS_EVALUATION_INPUT_-—
COMPONENTS and MAX_TESS_PATCH_COMPONENTS, respectively. The built-in in-

OpenGL 4.2 (Core Profile) - April 27, 2012

2.13. GEOMETRY SHADERS 143

puts gl_TessLevelOuter and gl_TessLevelInner are not counted against
the per-patch limit.

When a program is linked, all components of any input variable read by a tes-
sellation evaluation shader will count against this limit. A program whose tessella-
tion evaluation shader exceeds this limit may fail to link, unless device-dependent
optimizations are able to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.11.11).

Tessellation Evaluation Shader Outputs

Tessellation evaluation shaders have a number of built-in output variables used to
pass values to equivalent built-in input variables read by subsequent shader stages
or to subsequent fixed functionality vertex processing pipeline stages. These vari-
ables are g1_Position, gl_PointSize, and gl_ClipDistance, and all be-
have identically to equivalently named vertex shader outputs (see section 2.11.12).
A tessellation evaluation shader may also declare user-defined per-vertex output
variables.

Similarly to the limit on vertex shader output components (see section 2.11.11),
there is a limit on the number of components of output output variables
that can be written by the tessellation evaluation shader, given by the values
of the implementation-dependent constant MAX_TESS_EVALUATION_OUTPUT_—
COMPONENTS.

When a program is linked, all components of any output variable written by
a tessellation evaluation shader will count against this limit. A program whose
tessellation evaluation shader exceeds this limit may fail to link, unless device-
dependent optimizations are able to make the program fit within available hardware
resources.

Counting rules for different variable types and variable declarations are the
same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.11.11).

2.13 Geometry Shaders

After vertices are processed, they are arranged into primitives, as described in sec-
tion 2.6.1. This section describes optional geometry shaders, an additional pipeline
stage defining operations to further process those primitives. Geometry shaders are
defined by source code in the OpenGL Shading Language, in the same manner as
vertex shaders. They operate on a single primitive at a time and emit one or more
output primitives, all of the same type, which are then processed like an equivalent

OpenGL 4.2 (Core Profile) - April 27, 2012

2.13. GEOMETRY SHADERS 144

OpenGL primitive specified by the application. The original primitive is discarded
after geometry shader execution. The inputs available to a geometry shader are the
transformed attributes of all the vertices that belong to the primitive. Additional
adjacency primitives are available which also make the transformed attributes of
neighboring vertices available to the shader. The results of the shader are a new set
of transformed vertices, arranged into primitives by the shader.

The geometry shader pipeline stage is inserted after primitive assembly, prior
to transform feedback (section 2.17).

Geometry shaders are created as described in section 2.11.1 using a type of
GEOMETRY_SHADER. They are attached to and used in program objects as described
in section 2.11.3. When the program object currently in use includes a geometry
shader, its geometry shader is considered active, and is used to process primitives.
If the program object has no geometry shader, this stage is bypassed.

A program object or program pipeline object that includes a geometry shader
must also include a vertex shader. If the current program state has a geometry
shader but no vertex shader when any command that transfers vertices to the GL
is called, an INVALID_OPERATION error will be generated.

2.13.1 Geometry Shader Input Primitives

A geometry shader can operate on one of five input primitive types. Depending on
the input primitive type, one to six input vertices are available when the shader is
executed. Each input primitive type supports a subset of the primitives provided by
the GL. If a geometry shader is active, any command that transfers vertices to the
GL will generate an INVALID_OPERATION error if the primitive mode parameter
is incompatible with the input primitive type of the geometry shader of the active
geometry program object, as discussed below.

A geometry shader that accesses more input vertices than are available for a
given input primitive type can be successfully compiled, because the input prim-
itive type is not part of the shader object. However, a program object containing
a shader object that accesses more input vertices than are available for the input
primitive type of the program object will not link.

The input primitive type is specified in the geometry shader source code using
an input layout qualifier, as described in the OpenGL Shading Language Specifi-
cation. A program will fail to link if the input primitive type is not specified by
any geometry shader object attached to the program, or if it is specified differently
by multiple geometry shader objects. The input primitive type may be queried by
calling GetProgramiv with the symbolic constant GEOMETRY_INPUT_TYPE. The
supported types and the corresponding OpenGL Shading Language input layout
qualifier keywords are:

OpenGL 4.2 (Core Profile) - April 27, 2012

2.13. GEOMETRY SHADERS 145

Points (points)

Geometry shaders that operate on points are valid only for the POINTS primi-
tive type. There is only a single vertex available for each geometry shader invoca-
tion.

Lines (1ines)

Geometry shaders that operate on line segments are valid only for the LINES,
LINE_STRIP, and LINE_LOOP primitive types. There are two vertices available
for each geometry shader invocation. The first vertex refers to the vertex at the
beginning of the line segment and the second vertex refers to the vertex at the end
of the line segment. See also section 2.13.4.

Lines with Adjacency (1ines_adjacency)

Geometry shaders that operate on line segments with adjacent vertices are valid
only for the LINES_ADJACENCY and LINE_STRIP_ADJACENCY primitive types.
There are four vertices available for each program invocation. The second vertex
refers to attributes of the vertex at the beginning of the line segment and the third
vertex refers to the vertex at the end of the line segment. The first and fourth
vertices refer to the vertices adjacent to the beginning and end of the line segment,
respectively.

Triangles (triangles)

Geometry shaders that operate on triangles are valid for the TRIANGLES,
TRIANGLE_STRIP and TRIANGLE_FAN primitive types. There are three vertices
available for each program invocation. The first, second and third vertices refer to
attributes of the first, second and third vertex of the triangle, respectively.

Triangles with Adjacency (triangles_adjacency)

Geometry shaders that operate on triangles with adjacent vertices are valid
for the TRIANGLES_ADJACENCY and TRIANGLE_STRIP_ADJACENCY primitive
types. There are six vertices available for each program invocation. The first, third
and fifth vertices refer to attributes of the first, second and third vertex of the tri-
angle, respectively. The second, fourth and sixth vertices refer to attributes of the
vertices adjacent to the edges from the first to the second vertex, from the second
to the third vertex, and from the third to the first vertex, respectively.

2.13.2 Geometry Shader Output Primitives

A geometry shader can generate primitives of one of three types. The supported
output primitive types are points (POINTS), line strips (LINE_STRIP), and triangle

OpenGL 4.2 (Core Profile) - April 27, 2012

2.13. GEOMETRY SHADERS 146

strips (TRIANGLE_STRIP). The vertices output by the geometry shader are assem-
bled into points, lines, or triangles based on the output primitive type in the man-
ner described in section 2.6.1. The resulting primitives are then further processed
as described in section 2.13.4. If the number of vertices emitted by the geometry
shader is not sufficient to produce a single primitive, nothing is drawn. The number
of vertices output by the geometry shader is limited to a maximum count specified
in the shader.

The output primitive type and maximum output vertex count are specified in
the geometry shader source code using an output layout qualifier, as described in
section 4.3.8.1 of the OpenGL Shading Language Specification. A program will
fail to link if either the output primitive type or maximum output vertex count are
not specified by any geometry shader object attached to the program, or if they
are specified differently by multiple geometry shader objects. The output primi-
tive type and maximum output vertex count of a linked program may be queried
by calling GetProgramiv with the symbolic constants GEOMETRY_OUTPUT_TYPE
and GEOMETRY_VERTICES_OUT, respectively.

2.13.3 Geometry Shader Variables

Geometry shaders can access uniforms belonging to the current program object.
The amount of storage available for uniform variables, except for subroutine uni-
forms and atomic counters, in the default uniform block accessed by a geometry
shader is specified by the value of the implementation-dependent constant MAX_ -
GEOMETRY_UNIFORM_COMPONENTS. The total amount of combined storage avail-
able for uniform variables in all uniform blocks accessed by a geometry shader (in-
cluding the default uniform block) is specified by the value of the implementation-
dependent constant MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS. These
values represent the numbers of individual floating-point, integer, or boolean val-
ues that can be held in uniform variable storage for a geometry shader. A uniform
matrix in the default uniform block with single- or double-precision components
will consume no more than 4 x min(r, c) or 8 x min(r, c) uniform components,
respectively. A scalar or vector uniform with double-precision components will
consume no more than 2n components, where 7 is 1 for scalars, and the compo-
nent count for vectors. A link error is generated if an attempt is made to utilize
more than the space available for geometry shader uniform variables. Uniforms
are manipulated as described in section 2.11.7. Geometry shaders also have access
to samplers to perform texturing operations, as described in section 2.11.9.
Geometry shaders can access the transformed attributes of all vertices for their
input primitive type using input variables. A vertex shader writing to output vari-
ables generates the values of these input variables. Values for any inputs that are

OpenGL 4.2 (Core Profile) - April 27, 2012

2.13. GEOMETRY SHADERS 147

not written by a vertex shader are undefined. Additionally, a geometry shader has
access to a built-in input that holds the ID of the current primitive. This ID is gen-
erated by the primitive assembly stage that sits in between the vertex and geometry
shader.

Additionally, geometry shaders can write to one or more output variables for
each vertex they output. These values are optionally flatshaded (using the OpenGL
Shading Language qualifier f1at) and clipped, then the clipped values interpo-
lated across the primitive (if not flatshaded). The results of these interpolations are
available to the fragment shader.

2.13.4 Geometry Shader Execution Environment

If there is an active program for the geometry stage, the executable version of
the program’s geometry shader is used to process primitives resulting from the
primitive assembly stage.

The following operations are applied to the primitives that are the result of
executing a geometry shader:

e Perspective division on clip coordinates (section 2.14).

e Viewport mapping, including depth range scaling (section 2.14.1).

Flatshading (section 2.19).

Clipping, including client-defined half-spaces (section 2.20).

Front face determination (section 3.6.1).

Generic attribute clipping (section 2.20.1).

There are several special considerations for geometry shader execution de-
scribed in the following sections.
Texture Access

The Shader Only Texturing subsection of section 2.11.12 describes texture
lookup functionality accessible to a vertex shader. The texel fetch and texture size
query functionality described there also applies to geometry shaders.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.13. GEOMETRY SHADERS 148

Instanced Geometry Shaders

For each input primitive received by the geometry shader pipeline stage, the geom-
etry shader may be run once or multiple times. The number of times a geometry
shader should be executed for each input primitive may be specified using a layout
qualifier in a geometry shader of a linked program. If the invocation count is not
specified in any layout qualifier, the invocation count will be one.

Each separate geometry shader invocation is assigned a unique invocation num-
ber. For a geometry shader with [NV invocations, each input primitive spawns [N
invocations, numbered 0 through N — 1. The built-in uniform g1_InvocationID
may be used by a geometry shader invocation to determine its invocation number.

When executing instanced geometry shaders, the output primitives generated
from each input primitive are passed to subsequent pipeline stages using the shader
invocation number to order the output. The first primitives received by the subse-
quent pipeline stages are those emitted by the shader invocation numbered zero,
followed by those from the shader invocation numbered one, and so forth. Addi-
tionally, all output primitives generated from a given input primitive are passed to
subsequent pipeline stages before any output primitives generated from subsequent
input primitives.

Geometry Shader Vertex Streams

Geometry shaders may emit primitives to multiple independent vertex streams.
Each vertex emitted by the geometry shader is directed at one of the vertex streams.
As vertices are received on each stream, they are arranged into primitives of the
type specified by the geometry shader output primitive type. The shading language
built-in functions EndPrimitive and EndStreamPrimitive may be used to
end the primitive being assembled on a given vertex stream and start a new empty
primitive of the same type. If an implementation supports N vertex streams, the
individual streams are numbered O through N — 1. There is no requirement on the
order of the streams to which vertices are emitted, and the number of vertices emit-
ted to each stream may be completely independent, subject only to implementation-
dependent output limits.

The primitives emitted to all vertex streams are passed to the transform feed-
back stage to be captured and written to buffer objects in the manner specified
by the transform feedback state. The primitives emitted to all streams but stream
zero are discarded after transform feedback. Primitives emitted to stream zero are
passed to subsequent pipeline stages for clipping, rasterization, and subsequent
fragment processing.

Geometry shaders that emit vertices to multiple vertex streams are currently

OpenGL 4.2 (Core Profile) - April 27, 2012

2.13. GEOMETRY SHADERS 149

limited to using only the points output primitive type. A program will fail to
link if it includes a geometry shader that calls the EmitStreamVertex built-in
function and has any other output primitive type parameter.

Geometry Shader Inputs

Section 7.1 of the OpenGL Shading Language Specification describes the built-in
variable array g1_in [] available as input to a geometry shader. g1_in[] receives
values from equivalent built-in output variables written by the vertex shader, and
each array element of g1_in[] is a structure holding values for a specific vertex of
the input primitive. The length of g1_in[] is determined by the geometry shader
input type (see section 2.13.1). The members of each element of the g1_in[]
array are:

e Structure member g1l_ClipDistance[] holds the per-vertex array of clip
distances, as written by the vertex shader to its built-in output variable g1_ -
ClipDistancel[].

e Structure member gl_PointSize holds the per-vertex point size written
by the vertex shader to its built-in output variable g1_PointSize. If the
vertex shader does not write g1_PointSize, the value of g1_PointSize
is undefined, regardless of the value of the enable PROGRAM_POINT_SIZE.

e Structure member gl_Position holds the per-vertex position, as written
by the vertex shader to its built-in output variable g1_Position. Note that
writing to gl_Position from either the vertex or geometry shader is op-
tional (also see section 7.1 of the OpenGL Shading Language Specification)

Geometry shaders also have available the built-in input variable gl_-
PrimitiveIDIn, which is not an array and has no vertex shader equivalent. It
is filled with the number of primitives processed by the drawing command which
generated the input vertices. The first primitive generated by a drawing command
is numbered zero, and the primitive ID counter is incremented after every individ-
ual point, line, or triangle primitive is processed. For triangles drawn in point or
line mode, the primitive ID counter is incremented only once, even though multiple
points or lines may eventually be drawn. Restarting a primitive topology using the
primitive restart index has no effect on the primitive ID counter.

Similarly to the built-in inputs, each user-defined input has a value for each
vertex and thus needs to be declared as arrays or inside input blocks declared as
arrays. Declaring an array size is optional. If no size is specified, it will be inferred
by the linker from the input primitive type. If a size is specified, it must match the

OpenGL 4.2 (Core Profile) - April 27, 2012

2.13. GEOMETRY SHADERS 150

number of vertices for the input primitive type; otherwise, a link error will occur.
The OpenGL Shading Language doesn’t support multi-dimensional arrays; there-
fore, user-defined geometry shader inputs corresponding to vertex shader outputs
declared as arrays must be declared as array members of an input block that is itself
declared as an array. See sections 4.3.6 and 7.6 of the OpenGL Shading Language
Specification for more information.

Similarly to the limit on vertex shader output components (see section 2.11.11),
there is a limit on the number of components of input variables that can be read by
the geometry shader, given by the value of the implementation-dependent constant
MAX_GEOMETRY_INPUT_COMPONENTS.

When a program is linked, all components of any input read by a geometry
shader will count against this limit. A program whose geometry shader exceeds
this limit may fail to link, unless device-dependent optimizations are able to make
the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.11.11).

Geometry Shader Outputs

A geometry shader is limited in the number of vertices it may emit per invocation.
The maximum number of vertices a geometry shader can possibly emit is spec-
ified in the geometry shader source and may be queried after linking by calling
GetProgramiv with the symbolic constant GEOMETRY_VERTICES_OUT. If a sin-
gle invocation of a geometry shader emits more vertices than this value, the emitted
vertices may have no effect.

There are two implementation-dependent limits on the value of GEOMETRY_ -
VERTICES_OUT; it may not exceed the value of MAX_GEOMETRY_OUTPUT_-—
VERTICES, and the product of the total number of vertices and the sum of all
components of all active output variables may not exceed the value of MAX_—
GEOMETRY_TOTAL_OUTPUT_COMPONENTS. LinkProgram will fail if it deter-
mines that the total component limit would be violated.

A geometry shader can write to built-in as well as user-defined output variables.
These values are expected to be interpolated across the primitive it outputs, unless
they are specified to be flat shaded. To enable seamlessly inserting or removing a
geometry shader from a program object, the rules, names and types of the built-in
and user-defined output variables are the same as for the vertex shader. Refer to
section 2.11.11, and sections 4.3.6, 7.1, and 7.6 of the OpenGL Shading Language
Specification for more detail.

After a geometry shader emits a vertex, all output variables are undefined, as
described in section 8.10 of the OpenGL Shading Language Specification.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.13. GEOMETRY SHADERS 151

The built-in output g1_Position is intended to hold the homogeneous vertex
position. Writing g1_Position is optional.

The built-in output g1_ClipDistance holds the clip distance used in the clip-
ping stage, as described in section 2.20.

The built-in output g1_PointSize, if written, holds the size of the point to be
rasterized, measured in pixels.

The built-in output g1_PrimitiveID holds the primitive ID counter read by
the fragment shader, replacing the value of g1_PrimitiveID generated by draw-
ing commands when no geometry shader is active. The geometry shader must
write to g1_PrimitivelID for the provoking vertex (see section 2.19) of a prim-
itive being generated, or the primitive ID counter read by the fragment shader for
that primitive is undefined.

The built-in output g1_Layer is used in layered rendering, and discussed fur-
ther in the next section.

The built-in output g1_ViewportIndex is used to direct rendering to one of
several viewports and is discussed further in the next section.

Similarly to the limit on vertex shader output components (see section 2.11.11),
there is a limit on the number of components of output variables that can be writ-
ten by the geometry shader, given by the value of the implementation-dependent
constant MAX_GEOMETRY_OUTPUT_COMPONENTS.

When a program is linked, all components of any output variable written by a
geometry shader will count against this limit. A program whose geometry shader
exceeds this limit may fail to link, unless device-dependent optimizations are able
to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.11.11).

Layer and Viewport Selection

Geometry shaders can be used to render to one of several different layers of cube
map textures, three-dimensional textures, or one-or two-dimensional texture ar-
rays. This functionality allows an application to bind an entire complex texture
to a framebuffer object, and render primitives to arbitrary layers computed at run
time. For example, it can be used to project and render a scene onto all six faces
of a cubemap texture in one pass. The layer to render to is specified by writing
to the built-in output variable g1_Layer. Layered rendering requires the use of
framebuffer objects (see section 4.4.7).

Geometry shaders may also select the destination viewport for each output
primitive. The destination viewport for a primitive may be selected in the geom-
etry shader by writing to the built-in output variable g1_vViewportIndex. This

OpenGL 4.2 (Core Profile) - April 27, 2012

2.13. GEOMETRY SHADERS 152

functionality allows a geometry shader to direct its output to a different viewport
for each primitive, or to draw multiple versions of a primitive into several different
viewports.

The specific vertex of a primitive that is used to select the rendering layer or
viewport index is implementation-dependent and thus portable applications will
assign the same layer and viewport index for all vertices in a primitive. The vertex
conventions followed for g1_TLayer and g1_Viewport Index may be determined
by calling GetIntegerv with the symbolic constants LAYER_PROVOKING_VERTEX
and VIEWPORT_INDEX_ PROVOKING_VERTEX, respectively. For either query, if
the value returned is PROVOKING_VERTEX, then vertex selection follows the con-
vention specified by ProvokingVertex (see section 2.19). If the value returned
is FIRST_VERTEX_CONVENTION, selection is always taken from the first vertex
of a primitive. If the value returned is LAST_VERTEX_CONVENTION, the selec-
tion is always taken from the last vertex of a primitive. If the value returned is
UNDEF INED_VERTEX, the selection is not guaranteed to be taken from any specific
vertex in the primitive. The vertex considered the provoking vertex for particular
primitive types is given in table 2.15.

Primitive Type Mismatches and Drawing Commands

A geometry shader will fail to execute if a mismatch exists between the type of
primitive being drawn and the input primitive type of the shader. If it cannot be
executed then no fragments will be rendered, and the error INVALID_OPERATION
will be generated.

This error is generated by any command that transfers vertices to the GL if a
geometry shader is active and:

e the input primitive type of the current geometry shader is POINTS and mode
1S not POINTS;

e the input primitive type of the current geometry shader is LINES and mode
is not LINES, LINE_STRIP, or LINE_LOOP;

o the input primitive type of the current geometry shader is TRIANGLES and
mode is not TRIANGLES, TRIANGLE_STRIP or TRIANGLE_FAN;

e the input primitive type of the current geometry shader is LINES_-
ADJACENCY and mode 1s not LINES_ADJACENCY or LINE_STRIP_-
ADJACENCY; or,

OpenGL 4.2 (Core Profile) - April 27, 2012

2.14. COORDINATE TRANSFORMATIONS 153

e the input primitive type of the current geometry shader is TRIANGLES_ -
ADJACENCY and mode is not TRIANGLES_ADJACENCY or TRIANGLE_ -
STRIP_ADJACENCY.

2.14 Coordinate Transformations

Clip coordinates for a vertex result from vertex or, if active, geometry shader
execution, which yields a vertex coordinate g1_Position. Perspective division
on clip coordinates yields normalized device coordinates, followed by a viewport
transformation to convert these coordinates into window coordinates.
Tc
Ye

(&)
We
then the vertex’s normalized device coordinates are

If a vertex in clip coordinates is given by

Tc

Td We
_ Ye

Ya | = | w.
Zc.

Zd we

2.14.1 Controlling the Viewport

The viewport transformation is determined by the selected viewport’s width and

height in pixels, p, and p,, respectively, and its center (o, 0,) (also in pixels).
LTw

The vertex’s window coordinates, | v, | , are given by

Zw
Loy %xd + 0z
D
Yw | = %yd + 0y
—n n—+
Zw fTZd + Tf

Multiple viewports are available and are numbered zero through the value of
MAX_VIEWPORTS minus one. If a geometry shader is active and writes to g1_—
ViewportIndex, the viewport transformation uses the viewport corresponding
to the value assigned to gl_ViewportIndex taken from an implementation-
dependent primitive vertex. If the value of the viewport index is outside the range
zero to the value of MAX_VIEWPORTS minus one, the results of the viewport trans-
formation are undefined. If no geometry shader is active, or if the active geometry
shader does not write to g1_Viewport Index, the viewport numbered zero is used
by the viewport transformation.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.14. COORDINATE TRANSFORMATIONS 154

A single vertex may be used in more than one individual primitive, in primitives
such as TRIANGLE_STRIP. In this case, the viewport transformation is applied
separately for each primitive.

The factor and offset applied to z4 for each viewport encoded by n and f are
set using

void DepthRangeArrayv(uint first, sizei count, const
double *v);

void DepthRangelndexed(uint index, double n,
doublef);

void DepthRange(double n, double f);

void DepthRangef(float n, float f);

DepthRangeArrayyv is used to specify the depth range for multiple viewports
simultaneously. first specifies the index of the first viewport to modify and count
specifies the number of viewports. If (first + count) is greater than the value of
MAX_VIEWPORTS then an INVALID_VALUE error will be generated. Viewports
whose indices lie outside the range [first, first + count) are not modified. The v
parameter contains the address of an array of double types specifying near (n) and
far (f) for each viewport in that order.

DepthRangelndexed specifies the depth range for a single viewport and is
equivalent (assuming no errors are generated) to:

double vI[] = { n, f };
DepthRangeArrayv (index, 1, v);

DepthRange sets the depth range for all viewports to the same values and is
equivalent (assuming no errors are generated) to:

for (uint 1 = 0; i < MAX_VIEWPORTS; i++)
DepthRangelndexed (i, n, f);

zw may be represented using either a fixed-point or floating-point representation.
However, a floating-point representation must be used if the draw framebuffer has
a floating-point depth buffer. If an m-bit fixed-point representation is used, we
assume that it represents each value k/(2"™ — 1), where k € {0,1,...,2™ — 1},
as k (e.g. 1.0 is represented in binary as a string of all ones). If a fixed-point
representation is used, the parameters n and f are clamped to the range [0, 1] when
computing 2.
Viewport transformation parameters are specified using

OpenGL 4.2 (Core Profile) - April 27, 2012

2.14. COORDINATE TRANSFORMATIONS 155

void ViewportArrayv(uint first, sizei count, const
float *v);

void ViewportIndexedf(uint index, float x, floaty,
float w, float h);

void ViewportIndexedfv(uint index, const float *v);

void Viewport(int x, inty, sizeiw, sizeih);

ViewportArrayv specifies parameters for multiple viewports simultaneously.
first specifies the index of the first viewport to modify and count specifies the num-
ber of viewports. If first+ count is greater than the value of MAX_VIEWPORTS then
an INVALID_VALUE error will be generated. Viewports whose indices lie outside
the range [first, first + count) are not modified. v contains the address of an array
of floating-point values specifying the left (x), bottom (y), width (w) and height (%)
of each viewport, in that order. x and y give the location of the viewport’s lower
left corner and w and £ give the viewport’s width and height, respectively.

ViewportIndexedf and ViewportIndexedfv specify parameters for a single
viewport and are equivalent (assuming no errors are generated) to:

float vi4] = { z, y, w, h };
ViewportArrayv (index, 1, v);

and
ViewportArrayv (index, 1, v);

respectively.
Viewport sets the parameters for all viewports to the same values and is equiv-
alent (assuming no errors are generated) to:

for (uint i = 0; i < MAX VIEWPORTS; i++)
ViewportIndexedf (i, 1, (float)xz, (float)y, (float)w,

The viewport parameters shown in the above equations are found from these
values as
Oz =T+ %5
Oy =Y+ %
Pz =W
py = h.
The location of the viewport’s bottom-left corner, given by (z, y), are clamped
to be within the implementation-dependent viewport bounds range. The viewport

OpenGL 4.2 (Core Profile) - April 27, 2012

(float)h);

2.15. ASYNCHRONOUS QUERIES 156

bounds range [min, max] tuple may be determined by calling GetFloatv with the
symbolic constant VIEWPORT_BOUNDS_RANGE (see section 6.1).

Viewport width and height are clamped to implementation-dependent maxi-
mums when specified. The maximum width and height may be found by call-
ing GetFloatv with the symbolic constant MAX_VIEWPORT_DIMS. The maximum
viewport dimensions must be greater than or equal to the larger of the visible di-
mensions of the display being rendered to (if a display exists), and the largest ren-
derbuffer image which can be successfully created and attached to a framebuffer
object (see chapter 4). INVALID_VALUE is generated if either w or 4 is negative.

The state required to implement the viewport transformation is four integers
and two clamped floating-point values for each viewport. In the initial state, w and
h for each viewport are set to the width and height, respectively, of the window
into which the GL is to do its rendering. If the default framebuffer is bound but no
default framebuffer is associated with the GL context (see chapter 4), then w and &
are initially set to zero. o, oy, n, and f are set to %, %, 0.0, and 1.0, respectively.

The precision with which the GL interprets the floating-point viewport
bounds is implementation-dependent and may be determined by querying the
implementation-defined constant VIEWPORT _SUBPIXEL_BITS.

2.15 Asynchronous Queries

Asynchronous queries provide a mechanism to return information about the pro-
cessing of a sequence of GL commands. There are four query types supported
by the GL. Primitive queries with a target of PRIMITIVES_GENERATED (see
section 2.18) return information on the number of primitives processed by the
GL. Primitive queries with a target of TRANSFORM_FEEDBACK_PRIMITIVES_-
WRITTEN (see section 2.18) return information on the number of primitives written
to one or more buffer objects. Occlusion queries (see section 4.1.6) count the
number of fragments or samples that pass the depth test, or set a boolean to true
when any fragments or samples pass the depth test. Timer queries (see section 5.1)
record the amount of time needed to fully process these commands or the current
time of the GL.

The results of asynchronous queries are not returned by the GL immediately
after the completion of the last command in the set; subsequent commands can
be processed while the query results are not complete. When available, the query
results are stored in an associated query object. The commands described in sec-
tion 6.1.7 provide mechanisms to determine when query results are available and
return the actual results of the query. The name space for query objects is the
unsigned integers, with zero reserved by the GL.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.15. ASYNCHRONOUS QUERIES 157

Each type of query supported by the GL has an active query object name. If
the active query object name for a query type is non-zero, the GL is currently
tracking the information corresponding to that query type and the query results
will be written into the corresponding query object. If the active query object for a
query type name is zero, no such information is being tracked.

A query object is created and made active by calling

void BeginQuery(enum target, uint id);

target indicates the type of query to be performed; valid values of rarget are defined
in subsequent sections. If id is an unused query object name, the name is marked
as used and associated with a new query object of the type specified by target.
Otherwise id must be the name of an existing query object of that type.

BeginQuery fails and an INVALID_OPERATION error is generated if id is not
a name returned from a previous call to GenQueries, or if such a name has since
been deleted with DeleteQueries.

BeginQuery sets the active query object name for the query type given by tar-
getto id. If BeginQuery is called with an id of zero, if the active query object name
for target is non-zero (for the targets SAMPLES_PASSED and ANY_SAMPLES_—
PASSED, if the active query for either target is non-zero), if id is the name of an
existing query object whose type does not match rarget, if id is the active query
object name for any query type, or if id is the active query object for condtional
rendering (see section 2.106), the error INVALID_OPERATION is generated.

Query targets also support multiple indexed queries. A query object may be
created and made active on an indexed query target by calling:

void BeginQueryIndexed(enum target, uint index,
uint id);

target indicates the type of query to be performed as in BeginQuery. index is the
index of the query and must be between 0 and a target-specific maximum. If index
is outside of this range, the error INVALID_VALUE is generated. The number of
indexed queries supported by specific targets is one, unless indicated otherwise in
following sections. Calling BeginQuery is equivalent to calling BeginQueryIn-
dexed with index set to zero.

The command

void EndQuery(enum target);

marks the end of the sequence of commands to be tracked for the query type given
by target. The active query object for target is updated to indicate that query results

OpenGL 4.2 (Core Profile) - April 27, 2012

2.15. ASYNCHRONOUS QUERIES 158

are not available, and the active query object name for rarget is reset to zero. When
the commands issued prior to EndQuery have completed and a final query result
is available, the query object active when EndQuery is called is updated by the
GL. The query object is updated to indicate that the query results are available and
to contain the query result. If the active query object name for farget is zero when
EndQuery is called, the error INVALID_OPERATION is generated.

The command

void EndQueryIndexed(enum farget, uint index);

may be used to mark the end of the query currently active at index index of target,
and must be between zero and the target-specific maximum. If index is outside of
this range, the error INVALID_VALUE is generated. Calling EndQuery is equiva-
lent to calling EndQueryIndexed with index set to zero.

The command

void GenQueries(sizei n, uint *ids);

returns n previously unused query object names in ids. These names are marked
as used, for the purposes of GenQueries only, but no object is associated with
them until the first time they are used by BeginQuery, BeginQueryIndexed, or
QueryCounter (see section 5.1).

Query objects are deleted by calling

void DeleteQueries(sizei n, const uint *ids);

ids contains n names of query objects to be deleted. After a query object is deleted,
its name is again unused. If an active query object is deleted its name immedi-
ately becomes unused, but the underlying object is not deleted until it is no longer
active (see section D.1). Unused names in ids that have been marked as used for
the purposes of GenQueries are marked as unused again. Unused names in ids
are silently ignored, as is the value zero.

Query objects contain two pieces of state: a single bit indicating whether a
query result is available, and an integer containing the query result value. The
number of bits, n, used to represent the query result is implementation-dependent
and may be determined as described in section 6.1.7. In the initial state of a query
object, the result is not available (the flag is FALSE), and the result value is zero.

If the query result overflows (exceeds the value 2" — 1), its value becomes
undefined. It is recommended, but not required, that implementations handle this
overflow case by saturating at 2’ — 1 and incrementing no further.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.16. CONDITIONAL RENDERING 159

The necessary state for each query type is an unsigned integer holding the
active query object name (zero if no query object is active), and any state necessary
to keep the current results of an asynchronous query in progress. Only a single type
of occlusion query can be active at one time, so the required state for occlusion
queries is shared.

2.16 Conditional Rendering

Conditional rendering can be used to discard rendering commands based on the
result of an occlusion query. Conditional rendering is started and stopped using the
commands

void BeginConditionalRender(uint id, enum mode);
void EndConditionalRender(void);

id specifies the name of an occlusion query object whose results are used to deter-
mine if the rendering commands are discarded. If the result (SAMPLES_PASSED)
of the query is zero, or if the result (ANY_SAMPLES_PASSED) is false, all render-
ing commands between BeginConditionalRender and the corresponding End-
ConditionalRender are discarded. In this case, all drawing commands (see sec-
tion 2.8.3), as well as Clear and ClearBuffer* (see section 4.2.3), have no effect.
The effect of commands setting current vertex state, such as VertexAttrib, are un-
defined. If the result (SAMPLES_PASSED) of the query is non-zero, or if the result
(ANY_SAMPLES_PASSED) is true, such commands are not discarded.

mode specifies how BeginConditionalRender interprets the results of the oc-
clusion query given by id. If mode is QUERY_WAIT, the GL waits for the results of
the query to be available and then uses the results to determine if subsquent render-
ing commands are discarded. If mode is QUERY_NO_WAIT, the GL may choose to
unconditionally execute the subsequent rendering commands without waiting for
the query to complete.

If mode is QUERY_BY REGION_WAIT, the GL will also wait for occlusion
query results and discard rendering commands if the result of the occlusion query is
zero. If the query result is non-zero, subsequent rendering commands are executed,
but the GL may discard the results of the commands for any region of the frame-
buffer that did not contribute to the sample count in the specified occlusion query.
Any such discarding is done in an implementation-dependent manner, but the ren-
dering command results may not be discarded for any samples that contributed
to the occlusion query sample count. If mode is QUERY_BY_REGION_NO_WAIT,
the GL operates as in QUERY_BY_REGION_WAIT, but may choose to uncondition-

OpenGL 4.2 (Core Profile) - April 27, 2012

2.17. TRANSFORM FEEDBACK 160

ally execute the subsequent rendering commands without waiting for the query to
complete.

If BeginConditionalRender is called while conditional rendering is in
progress, the error INVALID_OPERATION is generated. If id is not the name of
an existing query object, the error INVALID_VALUE is generated. If id is the name
of a query object with a target other than SAMPLES_PASSED or ANY_SAMPLES_—
PASSED, or if id is the name of a query currently in progress, the error INVALID_-
OPERATION is generated. If EndConditionalRender is called while conditional
rendering is not in progress, the error INVALID_OPERATION is generated.

2.17 Transform Feedback

In transform feedback mode, attributes of the vertices of transformed primitives
passed to the transform feedback stage are written out to one or more buffer objects.
The vertices are fed back before flatshading and clipping. The transformed vertices
may be optionally discarded after being stored into one or more buffer objects, or
they can be passed on down to the clipping stage for further processing. The set of
attributes captured is determined when a program is linked.

The data captured in transform feedback mode depends on the active programs
on each of the shader stages. If a program is active for the geometry shader stage,
transform feedback captures the vertices of each primitive emitted by the geometry
shader. Otherwise, if a program is active for the tessellation evaluation shader
stage, transform feedback captures each primitive produced by the tessellation
primitive generator, whose vertices are processed by the tessellation evaluation
shader. Otherwise, transform feedback captures each primitive processed by the
vertex shader.

If separable program objects are in use, the set of attributes captured is taken
from the program object active on the last shader stage processing the primitives
captured by transform feedback. The set of attributes to capture in transform feed-
back mode for any other program active on a previous shader stage is ignored.

2.17.1 Transform Feedback Objects

The set of buffer objects used to capture vertex attributes and related state are stored
in a transform feedback object. The set of attributes captured in transform feedback
mode is determined using the state of the active program object. The name space
for transform feedback objects is the unsigned integers. The name zero designates
the default transform feedback object.

The command

OpenGL 4.2 (Core Profile) - April 27, 2012

2.17. TRANSFORM FEEDBACK 161

void GenTransformFeedbacks(sizei n, uint *ids);

returns n previously unused transform feedback object names in ids. These names
are marked as used, for the purposes of GenTransformFeedbacks only, but they
acquire transform feedback state only when they are first bound.

Transform feedback objects are deleted by calling

void DeleteTransformFeedbacks(sizei n, const
uint *ds);

ids contains n names of transform feedback objects to be deleted. After a trans-
form feedback object is deleted it has no contents, and its name is again unused.
Unused names in ids that have been marked as used for the purposes of GenTrans-
formFeedbacks are marked as unused again. Unused names in ids are silently
ignored, as is the value zero. The default transform feedback object cannot be
deleted. If an active transform feedback object is deleted its name immediately
becomes unused, but the underlying object is not deleted until it is no longer active
(see section D.1).

The error INVALID_OPERATION is generated by DeleteTransformFeedbacks
if the transform feedback operation for any object named by ids is currently active.

A transform feedback object is created by binding a name returned by Gen-
TransformFeedbacks with the command

void BindTransformFeedback(enum farget, uint id);

target must be TRANSFORM_FEEDBACK and id is the transform feedback object
name. The resulting transform feedback object is a new state vector, comprising
all the state and with the same initial values listed in table 6.43. Additionally, the
new object is bound to the GL state vector and is used for subsequent transform
feedback operations.

BindTransformFeedback can also be used to bind an existing transform feed-
back object to the GL state for subsequent use. If the bind is successful, no change
is made to the state of the newly bound transform feedback object and any previous
binding to target is broken.

While a transform feedback buffer object is bound, GL operations on the target
to which it is bound affect the bound transform feedback object, and queries of the
target to which a transform feedback object is bound return state from the bound
object. When buffer objects are bound for transform feedback, they are attached to
the currently bound transform feedback object. Buffer objects are used for trans-
form feedback only if they are attached to the currently bound transform feedback
object.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.17. TRANSFORM FEEDBACK 162

In the initial state, a default transform feedback object is bound and treated as
a transform feedback object with a name of zero. That object is bound any time
BindTransformFeedback is called with id of zero.

The error INVALID_OPERATION is generated by Bind TransformFeedback if
the transform feedback operation is active on the currently bound transform feed-
back object, and that operation is not paused (as described below).

BindTransformFeedback fails and an INVALID_OPERATION error is gener-
ated if id is not zero or a name returned from a previous call to GenTransform-
Feedbacks, or if such a name has since been deleted with DeleteTransformFeed-
backs.

2.17.2 Transform Feedback Primitive Capture

Transform feedback for the currently bound transform feedback object is started
and finished by calling

void BeginTransformFeedback(enum primitiveMode);
and
void EndTransformFeedback(void);

respectively. Transform feedback is said to be active after a call to BeginTrans-
formFeedback and inactive after a call to EndTransformFeedback. EndTrans-
formFeedback first performs an implicit ResumeTransformFeedback (see be-
low) if transform feedback is active and not paused. primitiveMode is one of
TRIANGLES, LINES, or POINTS, and specifies the output type of primitives that
will be recorded into the buffer objects bound for transform feedback (see below).
primitiveMode restricts the primitive types that may be rendered while transform
feedback is active, as shown in table 2.14.

Transform feedback commands must be paired; the error INVALID_-
OPERATION is generated by BeginTransformFeedback if transform feedback is
active for the current transform feedback object, and by EndTransformFeedback
if transform feedback is inactive. Transform feedback is initially inactive.

Transform feedback operations for the currently bound transform feedback ob-
ject may be paused and resumed by calling

void PauseTransformFeedback(void);

and

OpenGL 4.2 (Core Profile) - April 27, 2012

2.17. TRANSFORM FEEDBACK 163

Transform Feedback | Allowed render primitive

primitiveMode modes

POINTS POINTS

LINES LINES, LINE_LOOP, LINE_STRIP

TRIANGLES TRIANGLES, TRIANGLE_STRIP, TRIANGLE_FAN

Table 2.14: Legal combinations of the transform feedback primitive mode, as
passed to BeginTransformFeedback, and the current primitive mode.

void ResumeTransformFeedback(void);

respectively. When transform feedback operations are paused, transform feedback
is still considered active and changing most transform feedback state related to the
object results in an error. However, a new transform feedback object may be bound
while transform feedback is paused. The error INVALID_OPERATION is gener-
ated by PauseTransformFeedback if the currently bound transform feedback is
not active or is paused. The error INVALID_OPERATION is generated by Resume-
TransformFeedback if the currently bound transform feedback is not active or is
not paused.

When transform feedback is active and not paused, all geometric primitives
generated must be compatible with the value of primitiveMode passed to Begin-
TransformFeedback. The error INVALID_OPERATION is generated by DrawAr-
rays and the other drawing commands defined in section 2.8.3 if mode is not one
of the allowed modes in table 2.14. If a tessellation evaluation or geometry shader
is active, the type of primitive emitted by that shader is used instead of of the mode
parameter passed to drawing commands for the purposes of this error check. If tes-
sellation evaluation and geometry shaders are both active, the output primitive type
of the geometry shader will be used for the purposes of this error. Any primitive
type may be used while transform feedback is paused.

Transform feedback mode captures the values of output variables written by
the vertex shader (or, if active, geometry shader).

Regions of buffer objects are bound as the targets of transform feedback by
calling one of the commands BindBufferRange or BindBufferBase (see sec-
tion 2.9.1) with target set to TRANSFORM_FEEDBACK_BUFFER. In addition to
the general errors described in section 2.9.1, BindBufferRange will generate an
INVALID_VALUE error if index is greater than or equal to the value of MAX_ -
TRANSFORM_FEEDBACK_BUFFERS, or if either offset or size is not a multiple of
4.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.17. TRANSFORM FEEDBACK 164

When an individual point, line, or triangle primitive reaches the transform feed-
back stage while transform feedback is active and not paused, the values of the
specified output variables of the vertex are appended to the buffer objects bound to
the transform feedback binding points. The attributes of the first vertex received af-
ter BeginTransformFeedback are written at the starting offsets of the bound buffer
objects set by BindBufferRange, and subsequent vertex attributes are appended to
the buffer object. When capturing line and triangle primitives, all attributes of
the first vertex are written first, followed by attributes of the subsequent vertices.
When writing output variables that are arrays, individual array elements are writ-
ten in order. For multi-component output variables, elements of output arrays, or
transformed vertex attributes, the individual components are written in order. The
value for any attribute specified to be streamed to a buffer object but not actually
written by a vertex or geometry shader is undefined. The results of appending an
output variable to a transform feedback buffer are undefined if any component of
that variable would be written at an offset not aligned to the size of the component.

When transform feedback is paused, no vertices are recorded. When transform
feedback is resumed, subsequent vertices are appended to the bound buffer ob-
jects immediately following the last vertex written before transform feedback was
paused.

Individual lines or triangles of a strip or fan primitive will be extracted and
recorded separately. Incomplete primitives are not recorded.

Transform feedback can operate in either INTERLEAVED_ATTRIBS or
SEPARATE_ATTRIBS mode.

In INTERLEAVED_ATTRIBS mode, the values of one or more output variables
written by a vertex or geometry shader are written, interleaved, into the buffer ob-
jects bound to one or more transform feedback binding points. The list of outputs
provided for capture in interleaved mode may include special separator values,
which can be used to direct subsequent outputs to the next binding point. Each
non-separator output is written to the binding point numbered n, where n is the
number of separator values preceding it in the list. If more than one output vari-
able is written to a buffer object, they will be recorded in the order specified by
TransformFeedbackVaryings (see section 2.11.11).

In SEPARATE_ATTRIBS mode, the first output variable or transformed vertex
attribute specified by TransformFeedbackVaryings is written to the first trans-
form feedback binding point; subsequent output variables are written to the sub-
sequent transform feedback binding points. The total number of variables that
may be captured in separate mode is given by MAX_TRANSFORM_FEEDBACK_-
SEPARATE_ATTRIBS.

When using a geometry shader or program that writes vertices to multiple ver-
tex streams, each vertex emitted may trigger a new primitive in the vertex stream to

OpenGL 4.2 (Core Profile) - April 27, 2012

2.17. TRANSFORM FEEDBACK 165

which it was emitted. If transform feedback is active, the outputs of the primitive
are written to a transform feedback binding point if and only if the outputs directed
at that binding point belong to the vertex stream in question. All outputs assigned
to a given binding point are required to come from a single vertex stream.

If recording the vertices of a primitive to the buffer objects being used for trans-
form feedback purposes would result in either exceeding the limits of any buffer
object’s size, or in exceeding the end position offset + size — 1, as set by Bind-
BufferRange, then no vertices of that primitive are recorded in any buffer object,
and the counter corresponding to the asynchronous query target TRANSFORM_-
FEEDBACK_PRIMITIVES_WRITTEN (see section 2.18) is not incremented. For
the purposes of this test, g1_SkipComponents variables are counted as recording
data to a buffer object.

Transform feedback binding points zero through count minus one must have
buffer objects bound when BeginTransformFeedback is called, where count is the
parameter passed to TransformFeedback Varyings in separate mode, or one more
than the number of g1_NextBuf fer elements in the varyings parameter to Trans-
formFeedbackVaryings in interleaved mode. The error INVALID_OPERATION is
generated by BeginTransformFeedback if any of these binding points does not
have a buffer object bound. The error INVALID_OPERATION is also generated
by BeginTransformFeedback if no binding points would be used, either because
no program object is active or because the active program object has specified no
output variables to record.

When BeginTransformFeedback is called with an active program object con-
taining a vertex or geometry shader, the set of output variables captured during
transform feedback is taken from the active program object and may not be changed
while transform feedback is active. That program object must be active until the
EndTransformFeedback is called, except while the transform feedback object is
paused. The error INVALID_OPERATION is generated:

e by UseProgram if the current transform feedback object is active and not
paused;

e by UseProgramStages if the program pipeline object it refers to is current
and the current transform feedback object is active and not paused;

¢ by BindProgramPipeline if the current transform feedback object is active
and not paused;

e by LinkProgram if program is the name of a program being used by one or
more transform feedback objects, even if the objects are not currently bound
or are paused;

OpenGL 4.2 (Core Profile) - April 27, 2012

2.17. TRANSFORM FEEDBACK 166

e by ResumeTransformFeedback if the program object being used by the
current transform feedback object is not active, or has been re-linked since
transform feedback became active for the current transform feedback object.

e by ResumeTransformFeedback if the program pipeline object being used
by the current transform feedback object is not bound, if any of its shader
stage bindings has changed, or if a single program object is active and over-
riding it; and

e by BindBufferRange or BindBufferBase if farget is TRANSFORM_-
FEEDBACK_BUFFER and transform feedback is currently active.

Buffers should not be bound or in use for both transform feedback and other
purposes in the GL. Specifically, if a buffer object is simultaneously bound to a
transform feedback buffer binding point and elsewhere in the GL, any writes to
or reads from the buffer generate undefined values. Examples of such bindings
include ReadPixels to a pixel buffer object binding point and client access to a
buffer mapped with MapBuffer.

However, if a buffer object is written and read sequentially by transform feed-
back and other mechanisms, it is the responsibility of the GL to ensure that data
are accessed consistently, even if the implementation performs the operations in a
pipelined manner. For example, MapBuffer may need to block pending the com-
pletion of a previous transform feedback operation.

2.17.3 Transform Feedback Draw Operations

When transform feedback is active, the values of output variables or transformed
vertex attributes are captured into the buffer objects attached to the current trans-
form feedback object. After transform feedback is complete, subsequent rendering
operations may use the contents of these buffer objects (see section 2.9). The
number of vertices captured from each vertex stream during transform feedback is
stored in the corresponding transform feedback object and may be used in conjunc-
tion with the commands

void DrawTransformFeedback(enum mode, uint id);

void DrawTransformFeedbackInstanced(enum mode,
uint id, sizei primcount);

void DrawTransformFeedbackStream(enum mode, uint id,
uint stream);

void DrawTransformFeedbackStreamlInstanced(enum mode,
uint id, uint stream, sizei primcount);

OpenGL 4.2 (Core Profile) - April 27, 2012

2.18. PRIMITIVE QUERIES 167

to replay the captured vertices.

DrawTransformFeedbackStreamInstanced is equivalent to calling
DrawArraysInstanced with mode as specified, first set to zero, count set to the
number of vertices captured from the vertex stream numbered stream the last time
transform feedback was active on the transform feedback object named id, and
primcount as specified.

Calling DrawTransformFeedbackInstanced is equivalent to calling Draw-
TransformFeedbackStreamInstanced with stream set to zero.

Calling DrawTransformFeedbackStream is equivalent to calling Draw-
TransformFeedbackStreamInstanced with primcount set to one.

Finally, calling DrawTransformFeedback is equivalent to calling Draw-
TransformFeedbackStreamInstanced with stream set to zero and primcount set
to one.

The error INVALID_VALUE is generated if stream is greater than or equal to the
value of MAX_VERTEX_STREAMS. The error INVALID_VALUE is generated if id is
not the name of a transform feedback object. The error INVALID_OPERATION
is generated if EndTransformFeedback has never been called while the object
named by id was bound. No error is generated if the transform feedback object
named by id is active; the vertex count used for the rendering operation is set by
the previous EndTransformFeedback command.

Note that the vertex count is from the number of vertices recorded to the se-
lected vertex stream during the transform feedback operation. If no outputs be-
longing to the selected vertex stream are recorded, the corresponding vertex count
will be zero even if complete primitives were emitted to the selected stream.

2.18 Primitive Queries

Primitive queries use query objects to track the number of primitives in each vertex
stream that are generated by the GL and the number of primitives in each vertex
stream that are written to buffer objects in transform feedback mode.

When BeginQueryIndexed is called with a farget of PRIMITIVES_-—
GENERATED, the primitives generated count maintained by the GL for the vertex
stream index is set to zero. There is a separate query and counter for each vertex
stream. The number of vertex streams is given by the value of the implementation-
dependent constant MAX_VERTEX_STREAMS. If index is not an integer in the range
zero to the value of MAX VERTEX_STREAMS minus one, the error INVALID_ -
VALUE is generated. When a generated primitive query for a vertex stream is ac-
tive, the primitives-generated count is incremented every time a primitive emitted
to that stream reaches the transform feedback stage (see section 2.17), whether or

OpenGL 4.2 (Core Profile) - April 27, 2012

2.19. FLATSHADING 168

not transform feedback is active. This counter counts the number of primitives
emitted by a geometry shader, if active, possibly further tessellated into separate
primitives during the transform feedback stage, if active.

When BeginQueryIndexed is called with a target of TRANSFORM_-
FEEDBACK_PRIMITIVES_WRITTEN, the transform feedback primitives written
count maintained by the GL for vertex stream index is set to zero. There is a sepa-
rate query and counter for each vertex stream. If index is not an integer in the range
zero to the value of MAX_VERTEX_STREAMS minus one, the error INVALID_ -
VALUE is generated. When a transform feedback primitives written query for a
vertex stream is active, the counter for that vertex stream is incremented every time
the vertices of a primitive written to that stream are recorded into one or more
buffer objects. If transform feedback is not active or if a primitive to be recorded
does not fit in a buffer object, the counter is not incremented.

These two types of queries can be used together to determine if all primitives
in a given vertex stream have been written to the bound feedback buffers; if both
queries are run simultaneously and the query results are equal, all primitives have
been written to the buffer(s). If the number of primitives written is less than the
number of primitives generated, one or more buffers overflowed.

2.19 Flatshading

Flatshading a vertex shader output means to assign all vertices of the primitive the
same value for that output.

The output values assigned are those of the provoking vertex of the primitive.
The provoking vertex is controlled with the command

void ProvokingVertex(enum provokeMode);

provokeMode must be either FIRST_VERTEX_CONVENTION or LAST_VERTEX_—
CONVENTION, and controls selection of the vertex whose values are assigned to
flatshaded colors and outputs, as shown in table 2.15

If a vertex or geometry shader is active, user-defined output variables may be
flatshaded by using the f1at qualifier when declaring the output, as described in
section 4.3.6 of the OpenGL Shading Language Specification

The state required for flatshading is one bit for the provoking vertex mode,
and one implementation-dependent bit for the provoking vertex behavior of quad
primitives. The initial value of the provoking vertex mode is LAST_VERTEX_—
CONVENTION.

OpenGL 4.2 (Core Profile) - April 27, 2012

2.20. PRIMITIVE CLIPPING 169

Primitive type of polygon ¢ First vertex convention | Last vertex convention

point 7 ?

independent line 2 —1 24

line loop 1 1+ 1,ifi <n
Lift=mn

line strip 1 1+1

independent triangle 3i—2 31

triangle strip 7 1+ 2

triangle fan 1+ 1 142

line adjacency 49— 2 45— 1

line strip adjacency 1+ 1 1+ 2

triangle adjacency 67 — 5 67 — 1

triangle strip adjacency 2i—1 2i+3

Table 2.15: Provoking vertex selection. The output values used for flatshading
the ¢th primitive generated by drawing commands with the indicated primitive type
are derived from the corresponding values of the vertex whose index is shown in
the table. Vertices are numbered 1 through n, where n is the number of vertices
drawn.

2.20 Primitive Clipping

Primitives are clipped to the clip volume. In clip coordinates, the view volume is
defined by

—we < xe < We

—We < Ye < We

—we < ze < We.

This view volume may be further restricted by as many as n client-defined half-
spaces. (n is an implementation-dependent maximum that must be at least 8.) The
clip volume is the intersection of all such half-spaces with the view volume (if no
client-defined half-spaces are enabled, the clip volume is the view volume).

A vertex shader may write a single clip distance for each supported half-space
to elements of the g1_ClipDistance[] array. Half-space n is then given by the
set of points satisfying the inequality

cn(P) 20,

where ¢, (P) is the value of clip distance n at point P. For point primitives,
¢n(P) is simply the clip distance for the vertex in question. For line and triangle

OpenGL 4.2 (Core Profile) - April 27, 2012

2.20. PRIMITIVE CLIPPING 170

primitives, per-vertex clip distances are interpolated using a weighted mean, with
weights derived according to the algorithms described in sections 3.5 and 3.6.

Client-defined half-spaces are enabled with the generic Enable command and
disabled with the Disable command. The value of the argument to either command
is CLIP_DISTANCE(, where 7 is an integer between 0 and n — 1; specifying a
value of ¢ enables or disables the plane equation with index 7. The constants obey
CLIP_DISTANCE; = CLIP_DISTANCEOQ + i.

Depth clamping is enabled with the generic Enable command and disabled
with the Disable command. The value of the argument to either command is
DEPTH_CLAMP. If depth clamping is enabled, the

—We < 2Ze < We

plane equation is ignored by view volume clipping (effectively, there is no near or
far plane clipping).

If the primitive under consideration is a point, then clipping passes it un-
changed if it lies within the clip volume; otherwise, it is discarded.

If the primitive is a line segment, then clipping does nothing to it if it lies
entirely within the clip volume, and discards it if it lies entirely outside the volume.

If part of the line segment lies in the volume and part lies outside, then the
line segment is clipped and new vertex coordinates are computed for one or both
vertices. A clipped line segment endpoint lies on both the original line segment
and the boundary of the clip volume.

This clipping produces a value, 0 < ¢ < 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices’ coordinates are P
and P, then ¢ is given by

P=tP+ (1 — t)PQ.

The value of ¢ is used to clip vertex shader outputs as described in section 2.20.1.

If the primitive is a polygon, then it is passed if every one of its edges lies
entirely inside the clip volume and either clipped or discarded otherwise. Polygon
clipping may cause polygon edges to be clipped, but because polygon connectivity
must be maintained, these clipped edges are connected by new edges that lie along
the clip volume’s boundary. Thus, clipping may require the introduction of new
vertices into a polygon.

If it happens that a polygon intersects an edge of the clip volume’s boundary,
then the clipped polygon must include a point on this boundary edge.

Primitives rendered with user-defined half-spaces must satisfy a complemen-
tarity criterion. Suppose a series of primitives is drawn where each vertex ¢ has a
single specified clip distance d; (or a number of similarly specified clip distances,

OpenGL 4.2 (Core Profile) - April 27, 2012

2.20. PRIMITIVE CLIPPING 171

if multiple half-spaces are enabled). Next, suppose that the same series of primi-
tives are drawn again with each such clip distance replaced by —d; (and the GL
is otherwise in the same state). In this case, primitives must not be missing any
pixels, nor may any pixels be drawn twice in regions where those primitives are
cut by the clip planes.

The state required for clipping is at least 8 bits indicating which of the client-
defined half-spaces are enabled. In the initial state, all half-spaces are disabled.

2.20.1 Clipping Shader Outputs

Next, vertex shader outputs are clipped. The output values associated with a
vertex that lies within the clip volume are unaffected by clipping. If a primitive is
clipped, however, the output values assigned to vertices produced by clipping are
clipped.

Let the output values assigned to the two vertices P; and P, of an unclipped
edge be c; and co. The value of ¢ (section 2.20) for a clipped point P is used to
obtain the output value associated with P as >

c=tcy + (1 —1t)co.

(Multiplying an output value by a scalar means multiplying each of x, y, z, and w
by the scalar.)

Polygon clipping may create a clipped vertex along an edge of the clip volume’s
boundary. This situation is handled by noting that polygon clipping proceeds by
clipping against one half-space at a time. Output value clipping is done in the
same way, so that clipped points always occur at the intersection of polygon edges
(possibly already clipped) with the clip volume’s boundary.

For vertex shader outputs specified to be interpolated without perspective cor-
rection (using the noperspective qualifier), the value of ¢ used to obtain the
output value associated with P will be adjusted to produce results that vary lin-
early in screen space.

Outputs of integer or unsigned integer type must always be declared with the
flat qualifier. Since such outputs are constant over the primitive being rasterized
(see sections 3.5.1 and 3.6.1), no interpolation is performed.

1

3 Since this computation is performed in clip space before division by w., clipped output values
are perspective-correct.

OpenGL 4.2 (Core Profile) - April 27, 2012

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information as color and depth.
Thus, rasterizing a primitive consists of two parts. The first is to determine which
squares of an integer grid in window coordinates are occupied by the primitive.
The second is assigning a depth value and one or more color values to each such
square. The results of this process are passed on to the next stage of the GL (per-
fragment operations), which uses the information to update the appropriate loca-
tions in the framebuffer. Figure 3.1 diagrams the rasterization process. The color
values assigned to a fragment are determined by a fragment shader as defined in
section 3.10. The final depth value is initially determined by the rasterization op-
erations and may be modified or replaced by a fragment shader. The results from
rasterizing a point, line, or polygon are routed through a fragment shader.

A grid square along with its z (depth) and shader output parameters is called
a fragment; the parameters are collectively dubbed the fragment’s associated data.
A fragment is located by its lower left corner, which lies on integer grid coordi-
nates. Rasterization operations also refer to a fragment’s center, which is offset by
(1/2,1/2) from its lower left corner (and so lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules are not
affected by the actual aspect ratio of the grid squares. Display of non-square grids,
however, will cause rasterized points and line segments to appear fatter in one
direction than the other. We assume that fragments are square, since it simplifies
antialiasing and texturing.

Several factors affect rasterization. Primitives may be discarded before ras-
terization. Points may be given differing diameters and line segments differing
widths. A point, line segment, or polygon may be antialiased.

Rasterization only produces fragments corresponding to pixels in the frame-

172

3.1. DISCARDING PRIMITIVES BEFORE RASTERIZATION 173

Point

Rasterization
From

Line

. \ ragment
—_— ne oy
Primitive Rasterization / Program

Assembly Fragments

Triangle
Rasterization

Figure 3.1. Rasterization.

buffer. Fragments which would be produced by application of any of the primitive
rasterization rules described below but which lie outside the framebuffer are not
produced, nor are they processed by any later stage of the GL, including any of the
early per-fragment tests described in section 3.8.

3.1 Discarding Primitives Before Rasterization

Primitives sent to vertex stream zero (see section 2.17) are processed further; prim-
itives emitted to any other stream are discarded. When geometry shaders are dis-
abled, all vertices are considered to be emitted to stream zero.

Primitives can be optionally discarded before rasterization by calling Enable
and Disable with RASTERIZER_DISCARD. When enabled, primitives are discarded
immediately before the rasterization stage, but after the optional transform feed-
back stage (see section 2.17). When disabled, primitives are passed through to
the rasterization stage to be processed normally. When enabled, RASTERIZER —
DISCARD also causes the Clear and ClearBuffer* commands to be ignored.

The state required to control primitive discard is a bit indicating whether dis-
card is enabled or disabled. The initial value of primitive discard is FALSE.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.2. INVARIANCE 174

3.2 Invariance

Consider a primitive p’ obtained by translating a primitive p through an offset (z,)
in window coordinates, where x and y are integers. As long as neither p’ nor p is
clipped, it must be the case that each fragment f’ produced from p’ is identical to
a corresponding fragment f from p except that the center of f is offset by (z,y)
from the center of f.

3.3 Antialiasing

The R, G, and B values of the rasterized fragment are left unaffected, but the A
value is multiplied by a floating-point value in the range [0, 1] that describes a
fragment’s screen pixel coverage. The per-fragment stage of the GL can be set up
to use the A value to blend the incoming fragment with the corresponding pixel
already present in the framebuffer.

The details of how antialiased fragment coverage values are computed are dif-
ficult to specify in general. The reason is that high-quality antialiasing may take
into account perceptual issues as well as characteristics of the monitor on which
the contents of the framebuffer are displayed. Such details cannot be addressed
within the scope of this document. Further, the coverage value computed for a
fragment of some primitive may depend on the primitive’s relationship to a num-
ber of grid squares neighboring the one corresponding to the fragment, and not just
on the fragment’s grid square. Another consideration is that accurate calculation
of coverage values may be computationally expensive; consequently we allow a
given GL implementation to approximate true coverage values by using a fast but
not entirely accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact an-
tialiasing in the prototypical case that each displayed pixel is a perfect square of
uniform intensity. The square is called a fragment square and has lower left corner
(x,y) and upper right corner (x+ 1, y+1). We recognize that this simple box filter
may not produce the most favorable antialiasing results, but it provides a simple,
well-defined model.

A GL implementation may use other methods to perform antialiasing, subject
to the following conditions:

1. If f; and f, are two fragments, and the portion of f; covered by some prim-
itive is a subset of the corresponding portion of fs covered by the primitive,
then the coverage computed for f; must be less than or equal to that com-
puted for fo.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.3. ANTIALIASING 175

2. The coverage computation for a fragment f must be local: it may depend
only on f’s relationship to the boundary of the primitive being rasterized. It
may not depend on f’s x and y coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasterizing a
particular primitive must be constant, independent of any rigid motions in
window coordinates, as long as none of those fragments lies along window
edges.

In some implementations, varying degrees of antialiasing quality may be obtained
by providing GL hints (section 5.4), allowing a user to make an image quality
versus speed tradeoff.

3.3.1 Multisampling

Multisampling is a mechanism to antialias all GL primitives: points, lines, and
polygons. The technique is to sample all primitives multiple times at each pixel.
The color sample values are resolved to a single, displayable color each time a
pixel is updated, so the antialiasing appears to be automatic at the application level.
Because each sample includes color, depth, and stencil information, the color (in-
cluding texture operation), depth, and stencil functions perform equivalently to the
single-sample mode.

An additional buffer, called the multisample buffer, is added to the framebuffer.
Pixel sample values, including color, depth, and stencil values, are stored in this
buffer. Samples contain separate color values for each fragment color. When
the framebuffer includes a multisample buffer, it does not include depth or sten-
cil buffers, even if the multisample buffer does not store depth or stencil values.
Color buffers do coexist with the multisample buffer, however.

Multisample antialiasing is most valuable for rendering polygons, because it
requires no sorting for hidden surface elimination, and it correctly handles adja-
cent polygons, object silhouettes, and even intersecting polygons. If only lines
are being rendered, the “smooth” antialiasing mechanism provided by the base GL
may result in a higher quality image. This mechanism is designed to allow multi-
sample and smooth antialiasing techniques to be alternated during the rendering of
a single scene.

If the value of SAMPLE_BUFFERS is one, the rasterization of all primitives
is changed, and is referred to as multisample rasterization. Otherwise, primitive
rasterization is referred to as single-sample rasterization. The value of SAMPLE_ -
BUFFERS is queried by calling GetIntegerv with pname set to SAMPLE_BUFFERS.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.3. ANTIALIASING 176

During multisample rendering the contents of a pixel fragment are changed
in two ways. First, each fragment includes a coverage value with SAMPLES bits.
The value of SAMPLES is an implementation-dependent constant, and is queried by
calling GetIntegerv with pname set to SAMPLES.

The location of a given sample is queried with the command

void GetMultisamplefv(enum pname, uint index,
float *val);

pname must be SAMPLE_POSITION, and index corresponds to the sample for
which the location should be returned. The sample location is returned as two
floating-point values in val[{0] and val[1], each between 0 and 1, corresponding to
the = and y locations respectively in GL pixel space of that sample. (0.5, 0.5) thus
corresponds to the pixel center. The error INVALID_VALUE is generated if index
is greater than or equal to the value of SAMPLES. If the multisample mode does not
have fixed sample locations, the returned values may only reflect the locations of
samples within some pixels.

Second, each fragment includes SAMPLES depth values and sets of associated
data, instead of the single depth value and set of associated data that is maintained
in single-sample rendering mode. An implementation may choose to assign the
same associated data to more than one sample. The location for evaluating such
associated data can be anywhere within the pixel including the fragment center or
any of the sample locations. The different associated data values need not all be
evaluated at the same location. Each pixel fragment thus consists of integer x and y
grid coordinates, SAMPLES depth values and sets of associated data, and a coverage
value with a maximum of SAMPLES bits.

Multisample rasterization is enabled or disabled by calling Enable or Disable
with the symbolic constant MULTISAMPLE.

If MULTISAMPLE is disabled, multisample rasterization of all primitives is
equivalent to single-sample (fragment-center) rasterization, except that the frag-
ment coverage value is set to full coverage. The color and depth values and the
sets of texture coordinates may all be set to the values that would have been as-
signed by single-sample rasterization, or they may be assigned as described below
for multisample rasterization.

If MULTISAMPLE is enabled, multisample rasterization of all primitives differs
substantially from single-sample rasterization. It is understood that each pixel in
the framebuffer has SAMPLES locations associated with it. These locations are
exact positions, rather than regions or areas, and each is referred to as a sample
point. The sample points associated with a pixel may be located inside or outside
of the unit square that is considered to bound the pixel. Furthermore, the relative

OpenGL 4.2 (Core Profile) - April 27, 2012

3.4. POINTS 177

locations of sample points may be identical for each pixel in the framebuffer, or
they may differ.

If MULTISAMPLE is enabled and the current program object includes a frag-
ment shader with one or more input variables qualified with sample in, the data
associated with those variables will be assigned independently. The values for each
sample must be evaluated at the location of the sample. The data associated with
any other variables not qualified with sample in need not be evaluated indepen-
dently for each sample.

If the sample locations differ per pixel, they should be aligned to window, not
screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in section 3.2 is relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

Sample Shading

Sample shading can be used to specify a minimum number of unique samples to
process for each fragment. Sample shading is controlled by calling Enable or
Disable with the symbolic constant SAMPLE_SHADING.

If MULTISAMPLE or SAMPLE_SHADING is disabled, sample shading has no
effect. Otherwise, an implementation must provide a minimum of

max([mss x samples], 1)

unique color values for each fragment, where mss is the value of MIN_SAMPLE_—
SHADING_VALUE and samples is the number of samples (the value of SAMPLES).
These are associated with the samples in an implementation-dependent manner.
The value of MIN_SAMPLE_SHADING_VALUE is specified by calling

void MinSampleShading(f1oat value);

with value set to the desired minimum sample shading fraction. value is clamped
to [0, 1] when specified. The sample shading fraction may be queried by calling
GetFloatv with the symbolic constant MIN_SAMPLE_SHADING_VALUE.

When the sample shading fraction is 1.0, a separate set of colors and other
associated data are evaluated for each sample, and each set of values is evaluated
at the sample location.

3.4 Points

A point is drawn by generating a set of fragments in the shape of a square or circle
centered around the vertex of the point. Each vertex has an associated point size
that controls the size of that square or circle.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.4. POINTS 178

If program point size mode is enabled, the derived point size is taken from the
(potentially clipped) shader built-in g1_PointSize written by:

e the geometry shader, if active;
o the tessellation evaluation shader, if active and no geometry shader is active;

o the tessellation control shader, if active and no geometry or tessellation eval-
uation shader is active; or

e the vertex shader, otherwise

and clamped to the implementation-dependent point size range. If the value written
to gl_PointSize is less than or equal to zero, or if no value was written to g1_ -
PointSize, results are undefined. If program point size mode is disabled, the
derived point size is specified with the command

void PointSize(float size);

size specifies the requested size of a point. The default value is 1.0. A value less
than or equal to zero results in the error INVALID_VALUE. Program point size
mode is enabled and disabled by calling Enable or Disable with the symbolic
value PROGRAM_POINT_SIZE.

If multisampling is enabled, an implementation may optionally fade the point
alpha (see section 3.12) instead of allowing the point width to go below a given
threshold. In this case, the width of the rasterized point is

. derived_size derived_size > threshold
width = { threshold otherwise 3.1
and the fade factor is computed as follows:
fad 1 derived_size > threshold 32)
ade = . . .
(“htaie)” otherwise

The point fade threshold is specified with

void PointParameter{if}(enum pname, T param);
void PointParameter{if}v(enum pname, const T params);

If pname is POINT_FADE_THRESHOLD_SIZE, then param specifies, or params
points to the point fade threshold. Values of POINT_FADE_THRESHOLD_SIZE
less than zero result in the error INVALID_VALUE.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.4. POINTS 179

Data conversions are performed as specified in section 2.3.1.

The point sprite texture coordinate origin is set with the PointParame-
ter* commands where pname is POINT_SPRITE_COORD_ORIGIN and param is
LOWER_LEFT or UPPER_LEFT. The default value is UPPER_LEFT.

3.4.1 Basic Point Rasterization

Point rasterization produces a fragment for each framebuffer pixel whose center
lies inside a square centered at the point’s (z,, ¥,), With side length equal to the
current point size.

All fragments produced in rasterizing a point sprite are assigned the same as-
sociated data, which are those of the vertex corresponding to the point. However,
the fragment shader built-in g1_PointCoord contains point sprite texture coordi-
nates. The s point sprite texture coordinate varies from O to 1 across the point hor-
izontally left-to-right. If POINT_SPRITE_COORD_ORIGIN iSs LOWER_LEFT, the ¢
coordinate varies from O to 1 vertically bottom-to-top. Otherwise if the point sprite
texture coordinate origin is UPPER_LEFT, the ¢ coordinate varies from O to 1 ver-
tically top-to-bottom. The following formula is used to evaluate the s and ¢ point
sprite texture coordinates:

1 (245 —aw)

S=—4+-—=—2 (3.3)
2 size
1 (nyr%*yw)
. _) 5+ 2" POINT_SPRITE_COORD_ORIGIN = LOWER_LEFT
- +5—Yuw
1 2" poINT_SPRITE_COORD_ORIGIN = UPPER_LEFT

(3.4)
where size is the point’s size, x; and y are the (integral) window coordinates of
the fragment, and z,, and y,, are the exact, unrounded window coordinates of the
vertex for the point.

Not all point widths need be supported, but the width 1.0 must be provided.
The range of supported widths and the width of evenly-spaced gradations within
that range are implementation-dependent. The range and gradations may be ob-
tained using the query mechanism described in chapter 6. If, for instance, the
width range is from 0.1 to 2.0 and the gradation width is 0.1, then the widths
0.1,0.2,...,1.9,2.0 are supported. Additional point widths may also be sup-
ported. There is no requirement that these widths must be equally spaced. If
an unsupported width is requested, the nearest supported width is used instead.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.5. LINE SEGMENTS 180

3.4.2 Point Rasterization State

The state required to control point rasterization consists of the floating-point point
width, a bit indicating whether or not vertex program point size mode is enabled,
a bit for the point sprite texture coordinate origin, and a floating-point value speci-
fying the point fade threshold size.

3.4.3 Point Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then points
are rasterized using the following algorithm. Point rasterization produces a frag-
ment for each framebuffer pixel with one or more sample points that intersect a
region centered at the point’s (z,,, yy,). This region is a square with side equal
to the current point width. Coverage bits that correspond to sample points that
intersect the region are 1, other coverage bits are 0. All data associated with each
sample for the fragment are the data associated with the point being rasterized.

The set of point sizes supported is equivalent to those for point sprites without
multisample .

3.5 Line Segments

A line segment results from a line strip, a line loop, or a series of separate line
segments. Line segment rasterization is controlled by several variables. Line width,
which may be set by calling

void LineWidth(float width);

with an appropriate positive floating-point width, controls the width of rasterized
line segments. The default width is 1.0. Values less than or equal to 0.0 generate
the error INVALID_VALUE. Antialiasing is controlled with Enable and Disable
using the symbolic constant LINE_SMOOTH.

3.5.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either x-major
or y-major. x-major line segments have slope in the closed interval [—1,1]; all
other line segments are y-major (slope is determined by the segment’s endpoints).
We shall specify rasterization only for z-major segments except in cases where the
modifications for y-major segments are not self-evident.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.5. LINE SEGMENTS 181

Ideally, the GL uses a “diamond-exit” rule to determine those fragments that
are produced by rasterizing a line segment. For each fragment f with center at win-
dow coordinates x; and y, define a diamond-shaped region that is the intersection
of four half planes:

Ry ={(z,y) ||z —zpl + |y —ysl <1/2.}

Essentially, a line segment starting at p, and ending at p; produces those frag-
ments f for which the segment intersects ¢, except if py, is contained in Ry. See
figure 3.2.

To avoid difficulties when an endpoint lies on a boundary of 2y we (in princi-
ple) perturb the supplied endpoints by a tiny amount. Let p, and p; have window
coordinates (x4, y,) and (zp, yp), respectively. Obtain the perturbed endpoints p/,
given by (z4,94) — (€, €2) and p}, given by (24,) — (€, €2). Rasterizing the line
segment starting at p, and ending at p; produces those fragments f for which the
segment starting at p/, and ending on pj, intersects R, except if pj is contained in
Ry. € is chosen to be so small that rasterizing the line segment produces the same
fragments when ¢ is substituted for € for any 0 < 6 < e.

When p, and p; lie on fragment centers, this characterization of fragments
reduces to Bresenham’s algorithm with one modification: lines produced in this
description are “half-open,” meaning that the final fragment (corresponding to pp)
is not drawn. This means that when rasterizing a series of connected line segments,
shared endpoints will be produced only once rather than twice (as would occur with
Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may be difficult
to implement, other line segment rasterization algorithms are allowed, subject to
the following rules:

1. The coordinates of a fragment produced by the algorithm may not deviate by
more than one unit in either z or y window coordinates from a corresponding
fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may differ from
that produced by the diamond-exit rule by no more than one.

3. For an z-major line, no two fragments may be produced that lie in the same
window-coordinate column (for a y-major line, no two fragments may ap-
pear in the same row).

4. If two line segments share a common endpoint, and both segments are either
z-major (both left-to-right or both right-to-left) or y-major (both bottom-to-
top or both top-to-bottom), then rasterizing both segments may not produce

OpenGL 4.2 (Core Profile) - April 27, 2012

3.5. LINE SEGMENTS 182

Figure 3.2. Visualization of Bresenham’s algorithm. A portion of a line segment is
shown. A diamond shaped region of height 1 is placed around each fragment center;
those regions that the line segment exits cause rasterization to produce correspond-
ing fragments.

duplicate fragments, nor may any fragments be omitted so as to interrupt
continuity of the connected segments.

Next we must specify how the data associated with each rasterized fragment
are obtained. Let the window coordinates of a produced fragment center be given

by pr = (74,%q) and let p, = (T4, Ya) and py = (2, yp). Set

_ (Pr=pa) - (Pr = Pa)
Hpb - paH2

(Note that t = 0 at p, and ¢t = 1 at pp.) The value of an associated datum f for the

fragment, whether it be a shader output or the clip w coordinate, is found as

(1 - t)fa/wa + tfb/wb
(1 —1t)/wq + t/wy
where f, and f; are the data associated with the starting and ending endpoints of
the segment, respectively; w, and wy are the clip w coordinates of the starting and
ending endpoints of the segments, respectively. However, depth values for lines

must be interpolated by

(3.5)

f= (3.6)

z=(1—1)zq + tzp (3.7)

OpenGL 4.2 (Core Profile) - April 27, 2012

3.5. LINE SEGMENTS 183

where z, and z;, are the depth values of the starting and ending endpoints of the
segment, respectively.

The noperspective and flat keywords used to declare shader outputs
affect how they are interpolated. When neither keyword is specified, interpolation
is performed as described in equation 3.6. When the noperspective keyword
is specified, interpolation is performed in the same fashion as for depth values,
as described in equation 3.7. When the f1at keyword is specified, no interpola-
tion is performed, and outputs are taken from the corresponding input value of the
provoking vertex corresponding to that primitive (see section 2.19).

3.5.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments of width
one. We now describe the rasterization of line segments for general values of the
line segment rasterization parameters.

Wide Lines

The actual width of non-antialiased lines is determined by rounding the supplied
width to the nearest integer, then clamping it to the implementation-dependent
maximum non-antialiased line width. This implementation-dependent value must
be no less than the implementation-dependent maximum antialiased line width,
rounded to the nearest integer value, and in any event no less than 1. If rounding
the specified width results in the value 0, then it is as if the value were 1.

Non-antialiased line segments of width other than one are rasterized by off-
setting them in the minor direction (for an x-major line, the minor direction is
y, and for a y-major line, the minor direction is x) and replicating fragments in
the minor direction (see figure 3.3). Let w be the width rounded to the nearest
integer (if w = 0, then it is as if w = 1). If the line segment has endpoints
given by (x,yp) and (x1,y;) in window coordinates, the segment with endpoints
(xo,y0 — (w—1)/2) and (x1,y1 — (w— 1)/2) is rasterized, but instead of a single
fragment, a column of fragments of height w (a row of fragments of length w for
a y-major segment) is produced at each = (y for y-major) location. The lowest
fragment of this column is the fragment that would be produced by rasterizing the
segment of width 1 with the modified coordinates. The whole column is not pro-
duced if the stipple bit for the column’s x location is zero; otherwise, the whole
column is produced.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.5. LINE SEGMENTS 184

width =2 width =3

Figure 3.3. Rasterization of non-antialiased wide lines. x-major line segments are
shown. The heavy line segment is the one specified to be rasterized; the light seg-
ment is the offset segment used for rasterization. x marks indicate the fragment
centers produced by rasterization.

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment squares
intersect a rectangle centered on the line segment. Two of the edges are parallel to
the specified line segment; each is at a distance of one-half the current width from
that segment: one above the segment and one below it. The other two edges pass
through the line endpoints and are perpendicular to the direction of the specified
line segment. Coverage values are computed for each fragment by computing the
area of the intersection of the rectangle with the fragment square (see figure 3.4;
see also section 3.3). Equation 3.6 is used to compute associated data values just as
with non-antialiased lines; equation 3.5 is used to find the value of ¢ for each frag-
ment whose square is intersected by the line segment’s rectangle. Not all widths
need be supported for line segment antialiasing, but width 1.0 antialiased segments
must be provided. As with the point width, a GL implementation may be queried
for the range and number of gradations of available antialiased line widths.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.5. LINE SEGMENTS 185

Figure 3.4. The region used in rasterizing and finding corresponding coverage val-
ues for an antialiased line segment (an x-major line segment is shown).

3.5.3 Line Rasterization State

The state required for line rasterization consists of the floating-point line width
and a bit indicating whether line antialiasing is on or off. The initial value of the
line width is 1.0. The initial state of line segment antialiasing is disabled.

3.5.4 Line Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then lines
are rasterized using the following algorithm, regardless of whether line antialiasing
(LINE_SMOOTH) is enabled or disabled. Line rasterization produces a fragment for
each framebuffer pixel with one or more sample points that intersect the rectangular
region that is described in the Antialiasing portion of section 3.5.2 (Other Line
Segment Features).

Coverage bits that correspond to sample points that intersect a retained rectan-
gle are 1, other coverage bits are 0. Each depth value and set of associated data is
produced by substituting the corresponding sample location into equation 3.5, then
using the result to evaluate equation 3.7. An implementation may choose to as-
sign the associated data to more than one sample by evaluating equation 3.5 at any
location within the pixel including the fragment center or any one of the sample
locations, then substituting into equation 3.6. The different associated data values
need not be evaluated at the same location.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.6. POLYGONS 186

Line width range and number of gradations are equivalent to those supported
for antialiased lines.

3.6 Polygons

A polygon results from a triangle arising from a triangle strip, triangle fan, or
series of separate triangles. Like points and line segments, polygon rasterization
is controlled by several variables. Polygon antialiasing is controlled with Enable
and Disable with the symbolic constant POLYGON_SMOOTH.

3.6.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygon is back-facing
or front-facing. This determination is made based on the sign of the (clipped or
unclipped) polygon’s area computed in window coordinates. One way to compute
this area is

= o
a= 3 Z vay;)@l — xﬁ?lyz} (3.8)
=0

where 2%, and ! are the x and y window coordinates of the ith vertex of
the n-vertex polygon (vertices are numbered starting at zero for purposes of this
computation) and ¢ 1 is (i+ 1) mod n. The interpretation of the sign of this value
is controlled with

void FrontFace(enumdir);

Setting dir to cCw (corresponding to counter-clockwise orientation of the pro-
jected polygon in window coordinates) uses a as computed above. Setting dir to
cw (corresponding to clockwise orientation) indicates that the sign of a should be
reversed prior to use. Front face determination requires one bit of state, and is
initially set to CCw.

If the sign of a (including the possible reversal of this sign as determined by
FrontFace) is positive, the polygon is front-facing; otherwise, it is back-facing.
This determination is used in conjunction with the CullFace enable bit and mode
value to decide whether or not a particular polygon is rasterized. The CullFace
mode is set by calling

void CullFace(enum mode);

OpenGL 4.2 (Core Profile) - April 27, 2012

3.6. POLYGONS 187

mode is a symbolic constant: one of FRONT, BACK or FRONT_AND_BACK. Culling
is enabled or disabled with Enable or Disable using the symbolic constant CULL_-
FACE. Front-facing polygons are rasterized if either culling is disabled or the Cull-
Face mode is BACK while back-facing polygons are rasterized only if either culling
is disabled or the CullFace mode is FRONT. The initial setting of the CullFace
mode is BACK. Initially, culling is disabled.

The rule for determining which fragments are produced by polygon rasteriza-
tion is called point sampling. The two-dimensional projection obtained by taking
the x and y window coordinates of the polygon’s vertices is formed. Fragment
centers that lie inside of this polygon are produced by rasterization. Special treat-
ment is given to a fragment whose center lies on a polygon edge. In such a case
we require that if two polygons lie on either side of a common edge (with identical
endpoints) on which a fragment center lies, then exactly one of the polygons results
in the production of the fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a poly-
gon, we begin by specifying how these values are produced for fragments in a
triangle. Define barycentric coordinates for a triangle. Barycentric coordinates are
a set of three numbers, a, b, and ¢, each in the range [0, 1], witha + b+ ¢ = 1.
These coordinates uniquely specify any point p within the triangle or on the trian-
gle’s boundary as

P = apq + bpp + cpe,

where pg, py, and p. are the vertices of the triangle. a, b, and ¢ can be found as

A(ppype) _ A(ppape) _ A(ppapy)

~ Alpappe)” T Awapepe)’ T Apapepe)’
where A (lmn) denotes the area in window coordinates of the triangle with vertices
[, m, and n.
Denote an associated datum at p,, pp, Or p. as fq, f, or fe, respectively. Then
the value f of a datum at a fragment produced by rasterizing a triangle is given by

f - afa/wa + bfb/wb + Cfc/wc

a/wg + bjwy + c/w.
where w,, wp, and w, are the clip w coordinates of p,, py, and p., respectively.
a, b, and c are the barycentric coordinates of the fragment for which the data are
produced. a, b, and ¢ must correspond precisely to the exact coordinates of the
center of the fragment. Another way of saying this is that the data associated with
a fragment must be sampled at the fragment’s center. However, depth values for
polygons must be interpolated by

(3.9

Z = azq + bzp + cz. (3.10)

OpenGL 4.2 (Core Profile) - April 27, 2012

3.6. POLYGONS 188

where z,, 25, and z. are the depth values of p,, py, and p, respectively.

The noperspective and flat keywords used to declare shader outputs
affect how they are interpolated. When neither keyword is specified, interpolation
is performed as described in equation 3.9. When the noperspective keyword
is specified, interpolation is performed in the same fashion as for depth values, as
described in equation 3.10. When the flat keyword is specified, no interpola-
tion is performed, and outputs are taken from the corresponding input value of the
provoking vertex corresponding to that primitive (see section 2.19).

For a polygon with more than three edges, such as may be produced by clipping
a triangle, we require only that a convex combination of the values of the datum
at the polygon’s vertices can be used to obtain the value assigned to each fragment
produced by the rasterization algorithm. That is, it must be the case that at every

fragment
n
=Y aifi
i=1

where n is the number of vertices in the polygon, f; is the value of the f at vertex
1; foreach 1 0 < a; < 1 and Z;‘Zl a; = 1. The values of the a; may differ from
fragment to fragment, but at vertex 7, a; = 0,j # ¢ and a; = 1.

One algorithm that achieves the required behavior is to triangulate a polygon
(without adding any vertices) and then treat each triangle individually as already
discussed. A scan-line rasterizer that linearly interpolates data along each edge
and then linearly interpolates data across each horizontal span from edge to edge
also satisfies the restrictions (in this case, the numerator and denominator of equa-
tion 3.9 should be iterated independently and a division performed for each frag-
ment).

3.6.2 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever the
interior of the polygon intersects that fragment’s square. A coverage value is com-
puted at each such fragment, and this value is saved to be applied as described
in section 3.11. An associated datum is assigned to a fragment by integrating the
datum’s value over the region of the intersection of the fragment square with the
polygon’s interior and dividing this integrated value by the area of the intersection.
For a fragment square lying entirely within the polygon, the value of a datum at the
fragment’s center may be used instead of integrating the value across the fragment.

3.6.3 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using

OpenGL 4.2 (Core Profile) - April 27, 2012

3.6. POLYGONS 189

void PolygonMode(enum face, enum mode);

face must be FRONT_AND_BACK, indicating that the rasterizing method described
by mode replaces the rasterizing method for both front- and back-facing polygons.
mode is one of the symbolic constants POINT, LINE, or FILL. Calling Polygon-
Mode with POINT causes the vertices of a polygon to be treated, for rasterization
purposes, as if they had been drawn with mode POINTS. LINE causes edges to
be rasterized as line segments. FILL is the default mode of polygon rasteriza-
tion, corresponding to the description in sections 3.6.1, and 3.6.2. Note that these
modes affect only the final rasterization of polygons: in particular, a polygon’s ver-
tices are lit, and the polygon is clipped and possibly culled before these modes are
applied.

Polygon antialiasing applies only to the FILL state of PolygonMode. For
POINT or LINE, point antialiasing or line segment antialiasing, respectively, ap-

ply.

3.6.4 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon may
be offset by a single value that is computed for that polygon. The function that
determines this value is specified by calling

void PolygonOffset(f1oat factor, float units);

factor scales the maximum depth slope of the polygon, and units scales an
implementation-dependent constant that relates to the usable resolution of the
depth buffer. The resulting values are summed to produce the polygon offset value.
Both factor and units may be either positive or negative.

The maximum depth slope m of a triangle is

0z 2 0z 2
m:\/ (a) *(ay> G-Ah

where (2, Yw, 2w) i a point on the triangle. m may be approximated as
m:max{‘azw Oz } (3.12)

0y Y
The minimum resolvable difference r is an implementation-dependent param-
eter that depends on the depth buffer representation. It is the smallest difference in
window coordinate 2z values that is guaranteed to remain distinct throughout poly-
gon rasterization and in the depth buffer. All pairs of fragments generated by the

)

OpenGL 4.2 (Core Profile) - April 27, 2012

3.6. POLYGONS 190

rasterization of two polygons with otherwise identical vertices, but z,, values that
differ by r, will have distinct depth values.

For fixed-point depth buffer representations, r is constant throughout the range
of the entire depth buffer. For floating-point depth buffers, there is no single min-
imum resolvable difference. In this case, the minimum resolvable difference for a
given polygon is dependent on the maximum exponent, e, in the range of z values
spanned by the primitive. If n is the number of bits in the floating-point mantissa,
the minimum resolvable difference, r, for the given primitive is defined as

r=2¢"

If no depth buffer is present, is undefined.
The offset value o for a polygon is

o =m X factor + r X units. (3.13)

m is computed as described above. If the depth buffer uses a fixed-point represen-
tation, m is a function of depth values in the range [0, 1], and o is applied to depth
values in the same range.

Boolean state values POLYGON_OFFSET_POINT, POLYGON_OFFSET_LINE,
and POLYGON_OFFSET_FILL determine whether o is applied during the rasteriza-
tion of polygons in POINT, LINE, and FILL modes. These boolean state values are
enabled and disabled as argument values to the commands Enable and Disable.
If POLYGON_OFFSET_POINT is enabled, o is added to the depth value of each
fragment produced by the rasterization of a polygon in POINT mode. Likewise,
if POLYGON_OFFSET_LINE or POLYGON_OFFSET_FILL is enabled, o is added to
the depth value of each fragment produced by the rasterization of a polygon in
LINE or FILL modes, respectively.

For fixed-point depth buffers, fragment depth values are always limited to the
range [0, 1] by clamping after offset addition is performed. Fragment depth values
are clamped even when the depth buffer uses a floating-point representation.

3.6.5 Polygon Multisample Rasterization

If MULTISAMPLE is enabled and the value of SAMPLE_BUFFERS is one, then poly-
gons are rasterized using the following algorithm, regardless of whether polygon
antialiasing (POLYGON_SMOOTH) is enabled or disabled. Polygon rasterization pro-
duces a fragment for each framebuffer pixel with one or more sample points that
satisfy the point sampling criteria described in section 3.6.1. If a polygon is
culled, based on its orientation and the CullFace mode, then no fragments are pro-
duced during rasterization.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.7. PIXEL RECTANGLES 191

Coverage bits that correspond to sample points that satisfy the point sampling
criteria are 1, other coverage bits are 0. Each associated datum is produced as
described in section 3.6.1, but using the corresponding sample location instead of
the fragment center. An implementation may choose to assign the same associated
data values to more than one sample by barycentric evaluation using any location
within the pixel including the fragment center or one of the sample locations.

When using a vertex shader, the noperspective and £1lat qualifiers affect
how shader outputs are interpolated in the same fashion as described for for basic
polygon rasterization in section 3.6.1.

The rasterization described above applies only to the FILL state of Polygon-
Mode. For POINT and LINE, the rasterizations described in sections 3.4.3 (Point
Multisample Rasterization) and 3.5.4 (Line Multisample Rasterization) apply.

3.6.6 Polygon Rasterization State

The state required for polygon rasterization consists of the current state of polygon
antialiasing (enabled or disabled), the current values of the PolygonMode setting,
whether point, line, and fill mode polygon offsets are enabled or disabled, and
the factor and bias values of the polygon offset equation. The initial setting of
polygon antialiasing is disabled. The initial state for PolygonMode is FILL . The
initial polygon offset factor and bias values are both 0; initially polygon offset is
disabled for all modes.

3.7 Pixel Rectangles

Rectangles of color, depth, and certain other values may be specified to the GL
using TexImage*D (see section 3.9.3). Some of the parameters and operations
governing the operation of these commands are shared by ReadPixels (used to
obtain pixel values from the framebuffer); the discussion of ReadPixels, how-
ever, is deferred until chapter 4 after the framebuffer has been discussed in detail.
Nevertheless, we note in this section when parameters and state pertaining to these
commands also pertain to ReadPixels.

A number of parameters control the encoding of pixels in buffer object or client
memory (for reading and writing) and how pixels are processed before being placed
in or after being read from the framebuffer (for reading, writing, and copying).
These parameters are set with PixelStore.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.7. PIXEL RECTANGLES 192

Parameter Name Type Initial Value \ Valid Range ‘
UNPACK_SWAP_BYTES boolean FALSE TRUE/FALSE
UNPACK_LSB_FIRST boolean FALSE TRUE/FALSE
UNPACK_ROW_LENGTH integer 0 [0, 00)
UNPACK_SKIP_ROWS integer 0 [0, 00)
UNPACK_SKIP_PIXELS integer 0 [0, 00)
UNPACK_ALIGNMENT integer 4 1,2,4,8
UNPACK_IMAGE_HEIGHT integer 0 [0, 00)
UNPACK_SKIP_IMAGES integer 0 [0, 00)
UNPACK_COMPRESSED_BLOCK_WIDTH | integer 0 [0, 00)
UNPACK_COMPRESSED_BLOCK_HEIGHT | integer 0 [0, 00)
UNPACK_COMPRESSED_BLOCK_DEPTH integer 0 [0, 00)
UNPACK_COMPRESSED_BLOCK_SIZE integer 0 [0, 00)

Table 3.1: PixelStore parameters pertaining to one or more of TexImage*D, Tex-
SubImage*D, Compressed TexImage*D and CompressedTexSubImage*D.

3.7.1 Pixel Storage Modes and Pixel Buffer Objects

Pixel storage modes affect the operation of TexImage*D, TexSubImage*D, Com-
pressedTexImage*D, CompressedTexSublmage*D, and ReadPixels when one
of these commands is issued. Pixel storage modes are set with

void PixelStore{if}(enum pname, T param);

pname is a symbolic constant indicating a parameter to be set, and param is the
value to set it to. Table 3.1 summarizes the pixel storage parameters, their types,
their initial values, and their allowable ranges. Setting a parameter to a value out-
side the given range results in the error INVALID_VALUE.

Data conversions are performed as specified in section 2.3.1.

In addition to storing pixel data in client memory, pixel data may also be
stored in buffer objects (described in section 2.9). The current pixel unpack and
pack buffer objects are designated by the PIXEL_UNPACK_BUFFER and PIXEL_—
PACK_BUFFER targets respectively.

Initially, zero is bound for the PIXEL_UNPACK_BUFFER, indicating that im-
age specification commands such as TexImage*D source their pixels from client
memory pointer parameters. However, if a non-zero buffer object is bound as the
current pixel unpack buffer, then the pointer parameter is treated as an offset into
the designated buffer object.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.7. PIXEL RECTANGLES 193

byte, short, int, float, or packed
pixel component data stream

; Pixel Storage

; 1 Operations
1Convert to Float,

\ J

Expansion to
RGBA

RGBA pixel data outl

Figure 3.5. Transfer of pixel rectangles to the GL. Output is RGBA pixels. Depth
and stencil pixel paths are not shown.

3.7.2 Transfer of Pixel Rectangles

The process of transferring pixels encoded in buffer object or client memory is
diagrammed in figure 3.5. We describe the stages of this process in the order in
which they occur.

Commands accepting or returning pixel rectangles take the following argu-
ments (as well as additional arguments specific to their function):

Jformat is a symbolic constant indicating what the values in memory represent.

width and height are the width and height, respectively, of the pixel rectangle
to be transferred.

data refers to the data to be drawn. These data are represented with one of
several GL data types, specified by type. The correspondence between the type
token values and the GL data types they indicate is given in table 3.2.

Not all combinations of format and type are valid. If format is DEPTH_—
STENCIL and type is not UNSIGNED_INT 24_8 or FLOAT 32_UNSIGNED_-
INT_24_8_REV, then the error INVALID_ENUM occurs. If format is one of the
INTEGER component formats as defined in table 3.3 and #ype is one of the floating-
point types as defined in table 3.2, an INVALID_ENUM error is generated. Some

OpenGL 4.2 (Core Profile) - April 27, 2012

3.7. PIXEL RECTANGLES 194

additional constraints on the combinations of format and type values that are ac-
cepted are discussed below. Additional restrictions may be imposed by specific
commands.

Unpacking

Data are taken from the currently bound pixel unpack bufter or client memory as a
sequence of signed or unsigned bytes (GL data types byte and ubyte), signed or
unsigned short integers (GL data types short and ushort), signed or unsigned
integers (GL data types int and uint), or floating-point values (GL data types
half and float). These elements are grouped into sets of one, two, three, or
four values, depending on the format, to form a group. Table 3.3 summarizes the
format of groups obtained from memory; it also indicates those formats that yield
indices and those that yield floating-point or integer components.

If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_-
UNPACK_BUFFER_BINDING), data is an offset into the pixel unpack buffer and
the pixels are unpacked from the buffer relative to this offset; otherwise, data is a
pointer to client memory and the pixels are unpacked from client memory relative
to the pointer. If a pixel unpack buffer object is bound and unpacking the pixel data
according to the process described below would access memory beyond the size of
the pixel unpack buffer’s memory size, an INVALID_OPERATION error results. If a
pixel unpack buffer object is bound and data is not evenly divisible by the number
of basic machine units needed to store in memory the corresponding GL data type
from table 3.2 for the type parameter (or not evenly divisible by 4 for rype FLOAT_-
32_UNSIGNED_INT_ 24_8_REV, which does not have a corresponding GL data
type), an INVALID_OPERATION error results.

By default the values of each GL data type are interpreted as they would be
specified in the language of the client’s GL binding. If UNPACK_SWAP_BYTES is
enabled, however, then the values are interpreted with the bit orderings modified
as per table 3.4. The modified bit orderings are defined only if the GL data type
ubyte has eight bits, and then for each specific GL data type only if that type is
represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This rect-
angle consists of a series of rows, with the first element of the first group of the
first row pointed to by data. If the value of UNPACK_ROW_LENGTH is not positive,
then the number of groups in a row is width; otherwise the number of groups is
UNPACK_ROW_LENGTH. If p indicates the location in memory of the first element
of the first row, then the first element of the Nth row is indicated by

p+ Nk (3.14)

OpenGL 4.2 (Core Profile) - April 27, 2012

3.7. PIXEL RECTANGLES 195
type Parameter Corresponding Special Floating
Token Name GL Data Type | Interpretation Point
UNSIGNED_BYTE ubyte No No
BYTE byte No No
UNSIGNED_SHORT ushort No No
SHORT short No No
UNSIGNED_INT uint No No
INT int No No
HALF_FLOAT half No Yes
FLOAT float No Yes
UNSIGNED_BYTE_3_3_2 ubyte Yes No
UNSIGNED_BYTE_2_3_3_REV ubyte Yes No
UNSIGNED_SHORT_5_6_5 ushort Yes No
UNSIGNED_SHORT_5_6_5_REV ushort Yes No
UNSIGNED_SHORT_4_4_4_4 ushort Yes No
UNSIGNED_SHORT_4_4_4_4_REV ushort Yes No
UNSIGNED_SHORT_5_5_5_1 ushort Yes No
UNSIGNED_SHORT_1_5_5_5_REV ushort Yes No
UNSIGNED_INT_8_8_8_38 uint Yes No
UNSIGNED_INT_8_8_8_8_ REV uint Yes No
UNSIGNED_INT_10_10_10_2 uint Yes No
UNSIGNED_INT_2_10_10_10_REV uint Yes No
UNSIGNED_INT_24_8 uint Yes No
UNSIGNED_INT_10F_11F_11F_REV uint Yes Yes
UNSIGNED_INT_5_9_9_9_ REV uint Yes Yes
FLOAT_32_UNSIGNED_INT_24_8_REV n/a Yes No

Table 3.2: Pixel data type parameter values and the corresponding GL data types.
Refer to table 2.2 for definitions of GL data types. Special interpretations are
described near the end of section 3.6. Floating-point types are incompatible with

INTEGER formats as described above.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.7. PIXEL RECTANGLES 196
Format Name H Element Meaning and Order Target Buffer
STENCIL_INDEX Stencil Index Stencil
DEPTH_COMPONENT Depth Depth
DEPTH_STENCIL Depth and Stencil Index Depth and Stencil
RED R Color
GREEN G Color
BLUE B Color
RG R, G Color
RGB R,G,B Color
RGBA R,G,B, A Color
BGR B,G,R Color
BGRA B,G,R, A Color
RED_INTEGER iR Color
GREEN_INTEGER iG Color
BLUE_INTEGER iB Color
RG_INTEGER iR, iG Color
RGB_INTEGER iR, iG, iB Color
RGBA_INTEGER iR, 1G, 1B, 1A Color
BGR_INTEGER iB, iG, iR Color
BGRA_INTEGER iB, iG, iR, 1A Color

Table 3.3: Pixel data formats. The second column gives a description of and the
number and order of elements in a group. Unless specified as an index, formats
yield components. Components are floating-point unless prefixed with the letter
’1’, which indicates they are integer.

Element Size ‘ Default Bit Ordering ‘ Modified Bit Ordering ‘

8 bit [7..0] [7..0]
16 bit [15..0] [7..0][15..8]
32 bit [31..0] [7..0][15..8][23..16][31..24]

Table 3.4: Bit ordering modification of elements when UNPACK_SWAP_BYTES is
enabled. These reorderings are defined only when GL data type ubyte has 8 bits,
and then only for GL data types with 8, 16, or 32 bits. Bit O is the least significant.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.7. PIXEL RECTANGLES 197

ROW LENGTH

Figure 3.6. Selecting a subimage from an image. The indicated parameter names
are prefixed by UNPACK__ for TexImage* and by PACK__ for ReadPixels.

where [V is the row number (counting from zero) and k is defined as

l >
k:{ff[an Lo (3.15)
S a

where n is the number of elements in a group, ! is the number of groups in
the row, a is the value of UNPACK_ALIGNMENT, and s is the size, in units of GL
ubytes, of an element. If the number of bits per element is not 1, 2, 4, or 8 times
the number of bits in a GL ubyte, then k = nl for all values of a.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer parameters:
UNPACK_ROW_LENGTH, UNPACK_SKIP_ROWS, and UNPACK_SKIP_PIXELS. Be-
fore obtaining the first group from memory, the data pointer is advanced by
(UNPACK_SKIP_PIXELS)n + (UNPACK_SKIP_ROWS)k elements. Then width
groups are obtained from contiguous elements in memory (without advancing the
pointer), after which the pointer is advanced by k elements. height sets of width
groups of values are obtained this way. See figure 3.6.

Special Interpretations

A type matching one of the types in table 3.5 is a special case in which all
the components of each group are packed into a single unsigned byte, unsigned
short, or unsigned int, depending on the type. If fype is FLOAT_32_UNSIGNED_-
INT_24_8_REV, the components of each group are contained within two 32-bit

OpenGL 4.2 (Core Profile) - April 27, 2012

3.7. PIXEL RECTANGLES 198

words; the first word contains the float component, and the second word contains
a packed 24-bit unused field, followed by an 8-bit component. The number of
components per packed pixel is fixed by the type, and must match the number of
components per group indicated by the format parameter, as listed in table 3.5.
The error INVALID_OPERATION is generated by any command processing pixel
rectangles if a mismatch occurs.

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in tables 3.6- 3.9. Each bitfield is interpreted as an
unsigned integer value.

Components are normally packed with the first component in the most signif-
icant bits of the bitfield, and successive component occupying progressively less
significant locations. Types whose token names end with _REV reverse the compo-
nent packing order from least to most significant locations. In all cases, the most
significant bit of each component is packed in the most significant bit location of
its location in the bitfield.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.7. PIXEL RECTANGLES 199
type Parameter GL Data | Number of | Matching
Token Name Type Components | Pixel Formats
UNSIGNED_BYTE_3_3_2 ubyte 3 RGB, RGB_INTEGER
UNSIGNED_BYTE_2_3_3_REV ubyte 3 RGB, RGB_INTEGER
UNSIGNED_SHORT_5_6_5 ushort 3 RGB, RGB_INTEGER
UNSIGNED_SHORT_5_6_5_REV ushort 3 RGB, RGB_INTEGER
UNSIGNED_SHORT_4_4_4_4 ushort 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_—
INTEGER
UNSIGNED_SHORT_4_4_4_4_REV ushort 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_—
INTEGER
UNSIGNED_SHORT_5_5_5_1 ushort 4 RGBA, BGRA, RGBA_-
INTEGER, BGRA_—
INTEGER
UNSIGNED_SHORT_1_5_5_5_REV ushort 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_—
INTEGER
UNSIGNED_INT_8_8_8_8 uint 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_-—
INTEGER
UNSIGNED_INT_8_8_8_8_REV uint 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_—
INTEGER
UNSIGNED_INT_10_10_10_2 uint 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_—
INTEGER
UNSIGNED_INT_2_10_10_10_REV uint 4 RGBA, BGRA, RGBA_-—
INTEGER, BGRA_—
INTEGER
UNSIGNED_INT_24_8 uint 2 DEPTH_STENCIL
UNSIGNED_INT_10F_11F_11F_REV uint 3 RGB
UNSIGNED_INT_5_9_9 9_REV uint 4 RGB
FLOAT_32_UNSIGNED_INT_24_8_REV n/a 2 DEPTH_STENCIL

Table 3.5: Packed pixel formats.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.7. PIXEL RECTANGLES 200

UNSIGNED_BYTE_3_3_2:

7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED_BYTE_2_3_3_REV:

7 6 5 4 3 2 1 0

3rd 2nd 1st Component

Table 3.6: UNSIGNED_BYTE formats. Bit numbers are indicated for each compo-
nent.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.7. PIXEL RECTANGLES

201

UNSIGNED_SHORT_5_6_5:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1st Component 2nd 3rd
UNSIGNED_SHORT_5_6_5_REV:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
3rd 2nd 1st Component
UNSIGNED_SHORT_4_4_4_4:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1st Component 2nd 3rd 4th
UNSIGNED_SHORT_4_4_4_4_REV:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
4th 3rd 2nd 1st Component
UNSIGNED_SHORT_5_5_5_1:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1st Component 2nd 3rd 4th ‘
UNSIGNED_SHORT_1_5_5_5_REV:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ 4th ‘ 3rd 2nd 1st Component

Table 3.7: UNSIGNED_SHORT formats

OpenGL 4.2 (Core Profile) - April 27, 2012

3.7. PIXEL RECTANGLES

UNSIGNED_INT_8_8_8_8:

202

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0
1st Component 3rd 4th
UNSIGNED_INT_8_8_8_8_REV:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0

4th 2nd 1st Component
UNSIGNED_INT_10_10_10_2:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0
1st Component 3rd ‘ 4th ‘
UNSIGNED_INT_2_10_10_10_REV:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0
’ 4th ‘ 3rd 2nd 1st Component
UNSIGNED_INT_24_8:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0
1st Component 2nd
UNSIGNED_INT_10F_11F_11F_REV:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0

3rd

1st Component

UNSIGNED_INT_5_9_9_9_ REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 131211109 8 7 6 5 4 3 2 1 0

4th 3rd

2nd

1st Component

Table 3.8: UNSIGNED_INT formats

OpenGL 4.2 (Core Profile) - April 27, 2012

3.7. PIXEL RECTANGLES 203

FLOAT_32_UNSIGNED_INT_24_8_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 1211109 8 7 6 5 4 3 2 1 0

’ 1st Component ‘

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211109 8 7 6 5 4 3 2 1 0

’ Unused 2nd ‘

Table 3.9: FLOAT_UNSIGNED_INT formats

OpenGL 4.2 (Core Profile) - April 27, 2012

3.7. PIXEL RECTANGLES 204
Format First Second Third Fourth
Component | Component | Component | Component
RGB red green blue
RGBA red green blue alpha
BGRA blue green red alpha
DEPTH_STENCIL depth stencil

Table 3.10: Packed pixel field assignments.

The assignment of component to fields in the packed pixel is as described in
table 3.10.

Byte swapping, if enabled, is performed before the components are extracted
from each pixel. The above discussions of row length and image extraction are
valid for packed pixels, if “group” is substituted for “component” and the number
of components per group is understood to be one.

A type of UNSIGNED_INT_10F_11F_11F_REV and format of RGB is a special
case in which the data are a series of GL uint values. Each uint value specifies 3
packed components as shown in table 3.8. The 1st, 2nd, and 3rd components are
called freq (11 bits), fgreen (11 bits), and fy,,e (10 bits) respectively.

freda and fg,cen are treated as unsigned 11-bit floating-point values and con-
verted to floating-point red and green components respectively as described in sec-
tion 2.1.1. fpyye is treated as an unsigned 10-bit floating-point value and converted
to a floating-point blue component as described in section 2.1.1.
in which the data are a series of GL uint values. Each uint value specifies 4
packed components as shown in table 3.8. The 1st, 2nd, 3rd, and 4th components
are called pred, Pgreens Polue, and pesp respectively and are treated as unsigned
integers. These are then used to compute floating-point RGB components (ignoring
the “Conversion to floating-point™ section below in this case) as follows:

red = pred2pmpiBiN
green = pgreen2pezPiBiN

blue = pblue2pﬁzpiBiN

where B = 15 (the exponent bias) and N = 9 (the number of mantissa bits).

OpenGL 4.2 (Core Profile) - April 27, 2012

3.8. EARLY PER-FRAGMENT TESTS 205

Conversion to floating-point

This step applies only to groups of floating-point components. It is not performed
on indices or integer components. For groups containing both components and
indices, such as DEPTH_STENCIL, the indices are not converted.

Each element in a group is converted to a floating-point value. For unsigned
integer elements, equation 2.1 is used. For signed integer elements, equation 2.2 is
used.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group is con-
verted to a group of 4 elements as follows: if a group does not contain an A ele-
ment, then A is added and set to 1 for integer components or 1.0 for floating-point
components. If any of R, G, or B is missing from the group, each missing element
is added and assigned a value of O for integer components or 0.0 for floating-point
components.

3.8 Early Per-Fragment Tests

Once fragments are produced by rasterization, a number of per-fragment operations
may be performed prior to fragment shader execution. If a fragment is discarded
during any of these operations, it will not be processed by any subsequent stage,
including fragment shader execution.

Up to five operations are performed on each fragment, in the following order:

o the pixel ownership test (see section 4.1.1);
e the scissor test (see section 4.1.2);
e the stencil test (see section 4.1.4);
o the depth buffer test (see section 4.1.5); and

e occlusion query sample counting (see section 4.1.6).

The pixel ownership and scissor tests are always performed.

The other operations are performed if and only if early fragment tests are en-
abled in the active fragment shader (see section 3.10.2). When early per-fragment
operations are enabled, the stencil test, depth buffer test, and occlusion query sam-
ple counting operations are performed prior to fragment shader execution, and the

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 206

stencil buffer, depth buffer, and occlusion query sample counts will be updated ac-
cordingly. When early per-fragment operations are enabled, these operations will
not be performed again after fragment shader execution. When the active program
has no fragment shader, or the active program was linked with early fragment tests
disabled, these operations are performed only after fragment program execution,
in the order described in chapter 4.

If early fragment tests are enabled, any depth value computed by the fragment
shader has no effect. Additionally, the depth buffer, stencil buffer, and occlusion
query sample counts may be updated even for fragments or samples that would be
discarded after fragment shader execution due to per-fragment operations such as
alpha-to-coverage tests.

3.9 Texturing

Texturing maps a portion of one or more specified images onto a fragment or
vertex. This mapping is accomplished in shaders by sampling the color of an
image at the location indicated by specified (s, t,r) texture coordinates. Texture
lookups are typically used to modify a fragment’s RGBA color but may be used
for any purpose in a shader.

The internal data type of a texture may be signed or unsigned normalized fixed-
point, signed or unsigned integer, or floating-point, depending on the internal for-
mat of the texture. The correspondence between the internal format and the internal
data type is given in tables 3.12-3.13. Fixed-point and floating-point textures return
a floating-point value and integer textures return signed or unsigned integer values.
The fragment shader is responsible for interpreting the result of a texture lookup as
the correct data type, otherwise the result is undefined.

Each of the supported types of texture is a collection of images built from
one-, two-, or three-dimensional arrays of image elements referred to as texels.
One-, two-, and three-dimensional textures consist respectively of one-, two-, or
three-dimensional texel arrays. One- and two-dimensional array textures are ar-
rays of one- or two-dimensional images, consisting of one or more layers. Two-
dimensional multisample and two-dimensional multisample array textures are spe-
cial two-dimensional and two-dimensional array textures, respectively, containing
multiple samples in each texel. Cube maps are special two-dimensional array tex-
tures with six layers that represent the faces of a cube. When accessing a cube
map, the texture coordinates are projected onto one of the six faces of the cube. A
cube map array is a collection of cube map layers stored as a two-dimensional array
texture. When accessing a cube map array, the texture coordinate s, ¢, and r are ap-
plied similarly as cube maps while the last texture coordinate g is used as the index

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 207

of one of the cube map slices. Rectangular textures are special two-dimensional
textures consisting of only a single image and accessed using unnormalized coor-
dinates. Buffer textures are special one-dimensional textures whose texel arrays
are stored in separate buffer objects.

Implementations must support texturing using multiple images. The following
subsections (up to and including section 3.9.11) specify the GL operation with a
single texture. The process by which multiple texture images may be sampled and
combined by the application-supplied vertex and fragment shaders is described in
sections 2.11 and 3.10.

The coordinates used for texturing in a fragment shader are defined by the
OpenGL Shading Language Specification.

The command

void ActiveTexture(enum texture);

specifies the active texture unit selector, ACTIVE_TEXTURE. Each texture image
unit consists of all the texture state defined in section 3.9.

The active texture unit selector selects the texture image unit accessed by com-
mands involving texture image processing. Such commands include TexParam-
eter, TexImage, BindTexture, and queries of all such state.

ActiveTexture generates the error INVALID_ENUM if an invalid fexture is spec-
ified. fexture is a symbolic constant of the form TEXTURE4, indicating that texture
unit 7 is to be modified. The constants obey TEXTURE? = TEXTUREOQ 1 (7 is in the
range 0 to k — 1, where k is the value of MAX_COMBINED_TEXTURE_IMAGE_—
UNITS).

The state required for the active texture image unit selector is a single integer.
The initial value is TEXTUREQ.

3.9.1 Texture Objects

Textures in GL are represented by named objects. The name space for tex-
ture objects is the unsigned integers, with zero reserved by the GL to represent
the default texture object. The default texture object is bound to each of the
TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_ARRAY, TEXTURE_—
2D_ARRAY, TEXTURE_RECTANGLE, TEXTURE_BUFFER, TEXTURE_CUBE_MAP,
TEXTURE_CUBE_MAP_ARRAY, TEXTURE_2D_MULTISAMPLE, and TEXTURE_-—
2D_MULTISAMPLE_ARRAY targets during context initialization.

A new texture object is created by binding an unused name to one of these
texture targets. The command

void GenTextures(sizei n, uint *fextures);;

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 208

returns n previously unused texture names in textures. These names are marked
as used, for the purposes of GenTextures only, but they acquire texture state and
a dimensionality only when they are first bound, just as if they were unused. The
binding is effected by calling

void BindTexture(enum farget, uint fexture);

with farget set to the desired texture target and fexture set to the unused name. The
resulting texture object is a new state vector, comprising all the state and with the
same initial values listed in section 3.9.15 The new texture object bound to farget
is, and remains a texture of the dimensionality and type specified by farget until it
is deleted.

BindTexture may also be used to bind an existing texture object to any of
these targets. The error INVALID_OPERATION is generated if an attempt is made
to bind a texture object of different dimensionality than the specified target. If the
bind is successful no change is made to the state of the bound texture object, and
any previous binding to farget is broken.

BindTexture fails and an INVALID_OPERATION error is generated if fexture
is not zero or a name returned from a previous call to GenTextures, or if such a
name has since been deleted.

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return
state from the bound object. If texture mapping of the dimensionality of the target
to which a texture object is bound is enabled, the state of the bound texture object
directs the texturing operation.

Texture objects are deleted by calling

void DeleteTextures(sizei n, const uint *fextures);

textures contains n names of texture objects to be deleted. After a texture object
is deleted, it has no contents or dimensionality, and its name is again unused. If
a texture that is currently bound to any of the target bindings of BindTexture is
deleted, it is as though BindTexture had been executed with the same target and
texture zero. Additionally, special care must be taken when deleting a texture if any
of the images of the texture are attached to a framebuffer object. See section 4.4.2
for details.

Unused names in fextures that have been marked as used for the purposes of
GenTextures are marked as unused again. Unused names in fextures are silently
ignored, as is the name zero.

The texture object name space, including the initial one-, two-, and three- di-
mensional, one- and two-dimensional array, rectangular, buffer, cube map, cube

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 209

map array, two-dimensional multisample, and two-dimensional multisample array
texture objects, is shared among all texture units. A texture object may be bound
to more than one texture unit simultaneously. After a texture object is bound, any
GL operations on that target object affect any other texture units to which the same
texture object is bound.

Texture binding is affected by the setting of the state ACTIVE_TEXTURE. If a
texture object is deleted, it as if all texture units which are bound to that texture
object are rebound to texture object zero.

3.9.2 Sampler Objects

The state necessary for texturing can be divided into two categories as described
in section 3.9.15. A GL texture object includes both categories. The first category
represents dimensionality and other image parameters, and the second category
represents sampling state. Additionally, a sampler object may be created to encap-
sulate only the second category - the sampling state - of a texture object.

A new sampler object is created by binding an unused name to a texture unit.
The command

void GenSamplers(sizei count, uint *samplers);

returns count previously unused sampler object names in samplers. The name zero
is reserved by the GL to represent no sampler being bound to a sampler unit. The
names are marked as used, for the purposes of GenSamplers only, but they acquire
state only when they are first used as a parameter to BindSampler, SamplerPa-
rameter*, GetSamplerParameter*, or IsSampler. When a sampler object is first
used in one of these functions, the resulting sampler object is initialized with a
new state vector, comprising all the state and with the same initial values listed in
table 6.18.

When a sampler object is bound to a texture unit, its state supersedes that of
the texture object bound to that texture unit. If the sampler name zero is bound to
a texture unit, the currently bound texture’s sampler state becomes active. A single
sampler object may be bound to multiple texture units simultaneously.

A sampler object binding is effected with the command

void BindSampler(uint unit, uint sampler);

with unit set to the zero-based index of the texture unit to which to bind the sampler
and sampler set to the name of a sampler object returned from a previous call to
GenSamplers.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 210

If the bind is successful no change is made to the state of the bound sampler
object, and any previous binding to unit is broken.

BindSampler fails and an INVALID_OPERATION error is generated if sam-
pler is not zero or a name returned from a previous call to GenSamplers, or if
such a name has since been deleted with DeleteSamplers. An INVALID_VALUE
error is generated if unit is greater than or equal to the value of MAX_COMBINED_ -
TEXTURE_IMAGE_UNITS.

If state is present in a sampler object bound to a texture unit that would have
been rejected by a call to TexParameter* for the texture bound to that unit, the
behavior of the implementation is as if the texture were incomplete. For example,
if TEXTURE_WRAP_S or TEXTURE_WRAP_T 1is set to REPEAT or MIRRORED_ -
REPEAT on the sampler object bound to a texture unit and the texture bound to that
unit is a rectangular texture, the texture will be considered incomplete.

Sampler object state which does not affect sampling for the type of texture
bound to a texture unit, such as TEXTURE_WRAP_R for a rectangular texture, does
not affect completeness.

The currently bound sampler may be queried by calling GetIntegerv with
pname set to SAMPLER_BINDING. When a sampler object is unbound from the
texture unit (by binding another sampler object, or the sampler object named zero,
to that texture unit) the modified state is again replaced with the sampler state as-
sociated with the texture object bound to that texture unit.

The parameters represented by a sampler object are a subset of those described
in section 3.9.8. Each parameter of a sampler object is set by calling

void SamplerParameter{if}(uint sampler, enum pname,
T param);

void SamplerParameter{if}v(uint sampler, enum pname,
const T param);

void SamplerParameterI{i ui}v(uint sampler, enum pname,
const T *params);

sampler is the name of a sampler object previously reserved by a call to
GenSamplers. pname is the name of a parameter to modify and param is
the new value of that parameter. An INVALID_OPERATION error is gen-
erated if sampler is not the name of a sampler object previously returned
from a call to GenSamplers. The values accepted in the pname parameter
are TEXTURE_WRAP_S, TEXTURE_WRAP_T, TEXTURE_WRAP_R, TEXTURE_MIN_-
FILTER, TEXTURE_MAG_FILTER, TEXTURE_BORDER_COLOR, TEXTURE_MIN_-
LOD, TEXTURE_MAX_LOD, TEXTURE_LOD_BIAS, TEXTURE_COMPARE_MODE, and
TEXTURE_COMPARE_FUNC. Texture state listed in table 6.17 but not listed here and

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 211

in the sampler state in table 6.18 is not part of the sampler state, and remains in the
texture object.

Data conversions are performed as specified in section 2.3.1, except that if
the values for TEXTURE_BORDER_COLOR are specified with a call to SamplerPa-
rameterliv or SamplerParameterluiv, the values are unmodified and stored with
an internal data type of integer. If specified with SamplerParameteriv, they are
converted to floating-point using equation 2.1. Otherwise, border color values are
unmodified and stored as floating-point.

An INVALID_ENUM error is generated if pname is not the name of a parame-
ter accepted by SamplerParameter*. If the value of param is not an acceptable
value for the parameter specified in pname, an error is generated as specified in the
description of TexParameter*.

Modifying a parameter of a sampler object affects all texture units to which
that sampler object is bound. Calling TexParameter has no effect on the sampler
object bound to the active texture unit. It will modify the parameters of the texture
object bound to that unit.

Sampler objects are deleted by calling

void DeleteSamplers(sizei count, const uint *samplers);

samplers contains count names of sampler objects to be deleted. After a sampler
object is deleted, its name is again unused. If a sampler object that is currently
bound to a sampler unit is deleted, it is as though BindSampler is called with
unit set to the unit the sampler is bound to and sampler zero. ~ Unused names
in samplers that have been marked as used for the purposes of GenSamplers are
marked as unused again. Unused names in samplers are silently ignored, as is the
reserved name zero.

3.9.3 Texture Image Specification

The command

void TexImage3D(enum rarget, int level, int internalformat,
sizei width, sizei height, sizei depth, int border,
enumn format, enum type, const void *data);

is used to specify a three-dimensional texture image. farget must be one of
TEXTURE_ 3D for a three-dimensional texture, TEXTURE_2D_ARRAY for an two-
dimensional array texture, or TEXTURE_CUBE_MAP_ARRAY for a cube map ar-
ray texture. Additionally, target may be either PROXY_TEXTURE_3D for a three-
dimensional proxy texture, PROXY_TEXTURE_2D_ARRAY for a two-dimensional

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 212

proxy array texture, or PROXY_TEXTURE_CUBE_MAP_ARRAY for a cube map array
texture, as discussed in section 3.9.15. format, type, and data specify the format of
the image data, the type of those data, and a reference to the image data in the cur-
rently bound pixel unpack buffer or client memory, as described in section 3.7.2.
The format STENCIL_INDEX is not allowed.

The groups in memory are treated as being arranged in a sequence of adjacent
rectangles. Each rectangle is a two-dimensional image, whose size and organiza-
tion are specified by the width and height parameters to TexImage3D. The val-
ues of UNPACK_ROW_LENGTH and UNPACK_ALIGNMENT control the row-to-row
spacing in these images as described in section 3.7.2. If the value of the integer
parameter UNPACK_IMAGE_HEIGHT is not positive, then the number of rows in
each two-dimensional image is height; otherwise the number of rows is UNPACK_ —
IMAGE_HEIGHT. Each two-dimensional image comprises an integral number of
rows, and is exactly adjacent to its neighbor images.

The mechanism for selecting a sub-volume of a three-dimensional image relies
on the integer parameter UNPACK_SKIP_IMAGES. If UNPACK_SKIP_IMAGES is
positive, the pointer is advanced by UNPACK_SKIP_IMAGES times the number of
elements in one two-dimensional image before obtaining the first group from mem-
ory. Then depth two-dimensional images are processed, each having a subimage
extracted as described in section 3.7.2.

The selected groups are transferred to the GL as described in section 3.7.2
and then clamped to the representable range of the internal format. If the inter-
nalformat of the texture is signed or unsigned integer, components are clamped
to [-27~1, 271 — 1] or [0,2" — 1], respectively, where n is the number of bits
per component. For color component groups, if the internalformat of the texture
is signed or unsigned normalized fixed-point, components are clamped to [—1, 1]
or [0, 1], respectively. For depth component groups, the depth value is clamped
to [0, 1]. Otherwise, values are not modified. Stencil index values are masked by
2™ — 1, where n is the number of stencil bits in the internal format resolution (see
below). If the base internal format is DEPTH_STENCIL and format is not DEPTH_ -
STENCIL, then the values of the stencil index texture components are undefined.

Components are then selected from the resulting R, G, B, A, depth, or stencil
values to obtain a texture with the base internal format specified by (or derived
from) internalformat. Table 3.11 summarizes the mapping of R, G, B, A, depth,
or stencil values to texture components, as a function of the base internal format
of the texture image. internalformat may be specified as one of the internal format
symbolic constants listed in table 3.11, as one of the sized internal format symbolic
constants listed in tables 3.12- 3.13, as one of the generic compressed internal
format symbolic constants listed in table 3.14, or as one of the specific compressed
internal format symbolic constants (if listed in table 3.14). Specifying a value for

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 213

Base Internal Format | RGBA, Depth, and Stencil Values \ Internal Components

DEPTH_COMPONENT | Depth D
DEPTH_STENCIL Depth,Stencil D,S

RED R R

RG R,G R,G

RGB R.G,B R,G,B
RGBA R,G,B,A R,G,B,A

Table 3.11: Conversion from RGBA, depth, and stencil pixel components to inter-
nal texture components. Texture components R, G, B, and A are converted back
to RGBA colors during filtering as shown in table 3.23.

internalformat that is not one of the above values generates the error INVALID_-
VALUE.

Textures with a base internal format of DEPTH_COMPONENT or DEPTH_ -
STENCIL are supported by texture image specification commands only if
target iS TEXTURE_1D, TEXTURE_2D, TEXTURE_1D_ARRAY, TEXTURE_2D_-
ARRAY, TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP, TEXTURE_CUBE_MAP_-
ARRAY, PROXY_TEXTURE_1D, PROXY TEXTURE_2D, PROXY TEXTURE_1D -
ARRAY, PROXY_TEXTURE_2D_ARRAY, PROXY_TEXTURE_RECTANGLE, PROXY_-
TEXTURE_CUBE_MAP, or PROXY_TEXTURE_CUBE_MAP_ARRAY. Using these for-
mats in conjunction with any other farget will result in an INVALID_OPERATION
erTor.

Textures with a base internal format of DEPTH_COMPONENT or DEPTH_-—
STENCIL require either depth component data or depth/stencil component data.
Textures with other base internal formats require RGBA component data. The error
INVALID_OPERATION is generated if one of the base internal format and format is
DEPTH_COMPONENT or DEPTH_STENCIL, and the other is neither of these values.

Textures with integer internal formats (see table 3.12) require integer data. If
the internal format is integer and format is not one of the integer formats listed in
table 3.3, or if the internal format is not integer and format is an integer format, an
INVALID_OPERATION error is generated.

In addition to the specific compressed internal formats listed in table 3.14, the
GL provides a mechanism to query token values for specific compressed internal
formats, suitable for general-purpose’ usage. Formats with restrictions that need to
be specifically understood prior to use will not be returned by this query. The num-

! These queries have been deprecated in OpenGL 4.2, because the vagueness of the term “general-
purpose” makes it possible for implementations to choose to return no formats from the query.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 214

ber of specific compressed internal formats is obtained by querying the value of
NUM_COMPRESSED_TEXTURE_FORMATS. The set of specific compressed internal
formats is obtained by querying COMPRESSED_TEXTURE_FORMATS with GetInte-
gerv, returning an array containing that number of values.

Generic compressed internal formats are never used directly as the internal for-
mats of texture images. If internalformat is one of the six generic compressed
internal formats, its value is replaced by the symbolic constant for a specific com-
pressed internal format of the GL’s choosing with the same base internal format.
If no specific compressed format is available, internalformat is instead replaced by
the corresponding base internal format. If internalformat is given as or mapped
to a specific compressed internal format, but the GL can not support images com-
pressed in the chosen internal format for any reason (e.g., the compression format
might not support 3D textures), internalformat is replaced by the corresponding
base internal format and the texture image will not be compressed by the GL.

The internal component resolution is the number of bits allocated to each value
in a texture image. If internalformat is specified as a base internal format, the GL
stores the resulting texture with internal component resolutions of its own choos-
ing. If a sized internal format is specified, the mapping of the R, G, B, A, depth,
and stencil values to texture components is equivalent to the mapping of the cor-
responding base internal format’s components, as specified in table 3.11; the type
(unsigned int, float, etc.) is assigned the same type specified by internalformat;
and the memory allocation per texture component is assigned by the GL to match
the allocations listed in tables 3.12- 3.13 as closely as possible. (The definition of
closely is left up to the implementation. However, a non-zero number of bits must
be allocated for each component whose desired allocation in tables 3.12- 3.13 is
non-zero, and zero bits must be allocated for all other components).

Required Texture Formats

Implementations are required to support at least one allocation of internal com-
ponent resolution for each type (unsigned int, float, etc.) for each base internal
format.

In addition, implementations are required to support the following sized and
compressed internal formats. Requesting one of these sized internal formats for
any texture type will allocate at least the internal component sizes, and exactly the
component types shown for that format in tables 3.12- 3.13:

e Texture and renderbuffer color formats (see section 4.4.2).

— RGBA32F, RGBA32I, RGBA32UI, RGBAl6, RGBA16F, RGBA16I,
RGBA16UI, RGBAS, RGBASI, RGBASUI, SRGBS_ALPHAS, RGB10_A2,

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 215

RGB10_A2UI, RGB5_A1l, and RGBAA4.
— R11F_G11F_B10F and RGB565.

— RG32F, RG321I, RG32UI, RG16, RG16F, RG16I, RG16UI, RG8, RGSI,
and RG8SUI.

— R32F,R321,R32UI,R16F,R16I,R16UI, R16, R8, R8I, and REUI.
e Texture-only color formats:

— RGBA16_SNORM and RGBAS_SNORM.

— RGB32F, RGB321I, and RGB32UT.

— RGB16_SNORM, RGB16F, RGB16I, RGB16UT, and RGB16.
— RGB8_SNORM, RGBS, RGB8I, RGB8UI, and SRGBS.

— RGBY_ES.

— RG16_SNORM, RG8_SNORM, COMPRESSED_RG_RGTC2 and
COMPRESSED_SIGNED_RG_RGTCZ2.

— R16_SNORM, R8_SNORM, COMPRESSED_RED_RGTC1 and
COMPRESSED_SIGNED_RED_RGTCI.

e Depth formats: DEPTH_COMPONENT32F, DEPTH_COMPONENT24, and
DEPTH_COMPONENT16.

e Combined depth+stencil formats: DEPTH32F_STENCILS and DEPTH24_—
STENCTILS.

Encoding of Special Internal Formats

If internalformat is R11F_G11F_B10F, the red, green, and blue bits are converted
to unsigned 11-bit, unsigned 11-bit, and unsigned 10-bit floating-point values as
described in sections 2.1.1 and 2.1.1.

If internalformat is RGB9_ES5, the red, green, and blue bits are converted to a
shared exponent format according to the following procedure:

Components red, green, and blue are first clamped (in the process, mapping
NaN to zero) as follows:

red. = max (0, min(sharedexpmag, red))
green, = max(0, min(sharedexpmaz, green))

blue. = max (0, min(sharedexpmag, blue))

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 216

where
2V 1)

Ermaz—B
‘3 max X
2N

sharedexpma, =

N is the number of mantissa bits per component (9), B is the exponent bias (15),
and E,,,; is the maximum allowed biased exponent value (31).
The largest clamped component, max., is determined:

mazx. = max(red., green., blue.)

A preliminary shared exponent exp,, is computed:

expp, = max(—B — 1, |logy(maz.)]) + 1+ B

A refined shared exponent exp; is computed:

max,

maZL‘s = [QszprfN

+ 0.5J

expp, 0 < max, < 2V
€TPs = AN
expy +1, maxs =2

Finally, three integer values in the range 0 to 2 — 1 are computed:

red,

reds = W + 0.5
green

greeng = _W + 05J
blue.

blues = W —+ 05

The resulting reds, greens, blueg, and exp are stored in the red, green, blue,
and shared bits respectively of the texture image.

REV with format RGB is allowed to store the components “as is”.

Sized Base R G B A | Shared
Internal Format Internal Format | bits | bits | bits | bits bits
R8 RED 8
R8_SNORM RED s8

Sized internal color formats continued on next page

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 217

Sized internal color formats continued from previous page
Sized Base R G B A | Shared
Internal Format Internal Format | bits | bits | bits | bits bits
R16 RED 16
R16_SNORM RED s16
RGS8 RG 8 8
RG8_SNORM RG s8 s8
RG16 RG 16 16
RG16_SNORM RG sl6 | sl6
R3_G3_B2 RGB 3 3 2
RGB4 RGB 4 4 4
RGB5 RGB 5 5 5
RGB565 RGB 5 6 5
RGBS RGB 8 8 8
RGBS_SNORM RGB s8 s8 s8
RGB10 RGB 10 10 10
RGB12 RGB 12 12 12
RGB16 RGB 16 16 16
RGB16_SNORM RGB sl6 | s16 | sl6
RGBA2 RGBA 2 2 2 2
RGBA4 RGBA 4 4 4 4
RGB5_A1l RGBA 5 5 5 1
RGBAS RGBA 8 8 8 8
RGBAS_SNORM RGBA s8 s8 s8 s8
RGB10_A2 RGBA 10 10 10 2
RGB10_A2UI RGBA uilO | wilO | wilQ | wi2
RGBA12 RGBA 12 12 12 12
RGBA16 RGBA 16 16 16 16
RGBA16_SNORM RGBA sl6 | s16 | s16 | sl6
SRGBS RGB 8 8 8
SRGBS_ALPHAS RGBA 8 8 8 8
R16F RED f16
RG16F RG fl6 | fl16
RGB16F RGB fl6 | fl6 | fl6
RGBA16F RGBA fi6 | fl6 | fl6 | f16
R32F RED 32
RG32F RG 32 | 132

Sized internal color formats continued on next page

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 218
Sized internal color formats continued from previous page
Sized Base R G B A | Shared
Internal Format Internal Format | bits | bits | bits | bits bits
RGB32F RGB 32 | 32 | 132
RGBA32F RGBA f32 | 32 | 32 | 32
R11F_G11F_B10F | RGB f11 | f11 | f10
RGB9_E5 RGB 9 9 9 5
R8I RED 8
R8UI RED ui8
R16I RED 16
R16UI RED uil6
R32I RED 132
R32UI RED ui32
RGSI RG i8 i8
RG8UI RG ui8 | ui8
RG161I RG 16 | il6
RG16UI RG uil6 | uil6
RG32T RG i32 | i32
RG32U1I RG ui32 | ui32
RGBSI RGB i8 8 8
RGB8UI RGB ui8 | ui8 | ui8
RGB161I RGB 116 116 | 116
RGB16UI RGB uil6 | uil6 | uil6
RGB321 RGB 132 | 132 | i32
RGB32UI RGB ui32 | ui32 | ui32
RGBASI RGBA i8 8 i8 i8
RGBASUI RGBA ui8 ui8 ui8 ui8
RGBA161 RGBA 16 116 | 116 | il6
RGBA16UI RGBA uil6 | vil6 | uil6 | uil6
RGBA321I RGBA 132 132 | 132 132
RGBA32UI RGBA ui32 | uwi32 | uwi32 | ui32

Table 3.12: Correspondence of sized internal color formats to base
internal formats, internal data type, and desired component reso-
lutions for each sized internal format. The component resolution
prefix indicates the internal data type: fis floating-point, i is signed
integer, ui is unsigned integer, s is signed normalized fixed-point,

and no prefix is unsigned normalized fixed-point.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 219

Sized Base D S
Internal Format Internal Format bits | bits

DEPTH_COMPONENT16 DEPTH_COMPONENT | 16
DEPTH_COMPONENT?24 DEPTH_COMPONENT | 24
DEPTH_COMPONENT32 DEPTH_COMPONENT | 32
DEPTH_COMPONENT32F | DEPTH_COMPONENT | {32
DEPTH24_STENCILS DEPTH_STENCIL 24 8
DEPTH32F_STENCILS8 DEPTH_STENCIL 32 8

Table 3.13: Correspondence of sized internal depth and stencil formats to base
internal formats, internal data type, and desired component resolutions for each
sized internal format. The component resolution prefix indicates the internal data
type: fis floating-point, i is signed integer, ui is unsigned integer, and no prefix is
fixed-point.

If a compressed internal format is specified, the mapping of the R, G, B, and
A values to texture components is equivalent to the mapping of the corresponding
base internal format’s components, as specified in table 3.11. The specified image
is compressed using a (possibly lossy) compression algorithm chosen by the GL.

A GL implementation may vary its allocation of internal component resolution
or compressed internal format based on any TexImage3D, TexImage2D (see be-
low), or TexImagelD (see below) parameter (except target), but the allocation and
chosen compressed image format must not be a function of any other state and can-
not be changed once they are established. In addition, the choice of a compressed
image format may not be affected by the data parameter. Allocations must be in-
variant; the same allocation and compressed image format must be chosen each
time a texture image is specified with the same parameter values. These allocation
rules also apply to proxy textures, which are described in section 3.9.15.

The image itself (referred to by data) is a sequence of groups of values. The
first group is the lower left back corner of the texture image. Subsequent groups
fill out rows of width width from left to right; height rows are stacked from bottom
to top forming a single two-dimensional image slice; and depth slices are stacked
from back to front. When the final R, G, B, and A components have been computed
for a group, they are assigned to components of a fexel as described by table 3.11.
Counting from zero, each resulting Nth texel is assigned internal integer coordi-
nates (4, , k), where

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 220

Compressed Internal Format Base Internal Format | Type

COMPRESSED_RED RED Generic
COMPRESSED_RG RG Generic
COMPRESSED_RGB RGB Generic
COMPRESSED_RGBA RGBA Generic
COMPRESSED_SRGB RGB Generic
COMPRESSED_SRGB_ALPHA RGBA Generic
COMPRESSED_RED_RGTC1 RED Specific
COMPRESSED_SIGNED_RED_RGTC1 RED Specific
COMPRESSED_RG_RGTC2 RG Specific
COMPRESSED_SIGNED_RG_RGTC2 RG Specific
COMPRESSED_RGBA_BPTC_UNORM RGBA Specific
COMPRESSED_SRGB_ALPHA_BPTC_UNORM RGBA Specific
COMPRESSED_RGB_BPTC_SIGNED_FLOAT RGB Specific
COMPRESSED_RGB_BPTC_UNSIGNED_FLOAT | RGB Specific

Table 3.14: Generic and specific compressed internal formats. The specific RGTC
and BPTC formats are described in appendix C.

i = (N mod width) — wy

. N .
] = (\‘u}ldthJ mod helght) — hb

N
= ({width X heightJ mod depth) — d,

and wyp, hy, and dy, are the specified border width, height, and depth. wy and h;, are
the specified border value; d, is the specified border value if target is TEXTURE_—
3D, or zero if target is TEXTURE_2D_ARRAY or TEXTURE_CUBE_MAP_ARRAY.
Thus the last two-dimensional image slice of the three-dimensional image is in-
dexed with the highest value of k.

When target is TEXTURE_CUBE_MAP_ARRAY. specifying a cube map array tex-
ture, k refers to a layer-face. The layer is given by

layer = ﬁ
y - 6)

and the face is given by

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 221

face = k mod 6.

The face number corresponds to the cube map faces as shown in table 4.12.

If the internal data type of the image array is signed or unsigned normalized
fixed-point, each color component is converted using equation 2.4 or 2.3, respec-
tively. If the internal type is floating-point or integer, components are clamped
to the representable range of the corresponding internal component, but are not
converted.

The level argument to TexImage3D is an integer level-of-detail number. Levels
of detail are discussed below, under Mipmapping. The main texture image has a
level of detail number of 0. If a level-of-detail less than zero is specified, the error
INVALID_VALUE is generated.

The border argument to TexImage3D is a border width. The significance of
borders is described below. The border width affects the dimensions of the texture
image: let

Ws = Wt + 2wy
hs = hy + 2hy (3.16)
ds = d; + 2dy

where ws, hg, and dg are the specified image width, height, and depth, and wy,
h, and d; are the dimensions of the texture image internal to the border. If wy, hy,
or dy are less than zero, then the error INVALID_VALUE is generated.

The maximum border width b; is 0. If border is less than zero, or greater than
b, then the error INVALID_VALUE is generated.

The maximum allowable width, height, or depth of a texel array for a three-
dimensional texture is an implementation-dependent function of the level-of-detail
and internal format of the resulting image array. It must be at least 2¥~%°¢ 1 2p,
for image arrays of level-of-detail 0 through k&, where k is the log base 2 of MAX_ -
3D_TEXTURE_SIZE, lod is the level-of-detail of the image array, and b, is the
maximum border width. It may be zero for image arrays of any level-of-detail
greater than k.

If width, height, or depth exceed the corresponding maximum size, an
INVALID_VALUE error is generated. As described in section 3.9.14, these
implementation-dependent limits may be configured to reject textures at level 1 or
greater unless a mipmap complete set of image arrays consistent with the specified
sizes can be supported.

When target 1S TEXTURE_CUBE_MAP_ARRAY or PROXY_TEXTURE_CUBE_-—
MAP_ARRAY width and height must be equal, otherwise the error INVALID_VALUE

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 222

is generated. Also, depth must be a multiple of six indicating 6N layer-faces in the
cube map array, otherwise the error INVALID_VALUE is generated.

If a pixel unpack buffer object is bound and storing texture data would access
memory beyond the end of the pixel unpack buffer, an INVALID_OPERATION error
results.

In a similar fashion, the maximum allowable width of a texel array for a one- or
two-dimensional, one- or two-dimensional array, two-dimensional multisample, or
two-dimensional multisample array texture, and the maximum allowable height of
a two-dimensional, two-dimensional array, two-dimensional multisample, or two-
dimensional multisample array texture, must be at least 2¢7°¢ 4+ 2b, for image
arrays of level 0 through &, where £ is the log base 2 of MAX_TEXTURE_SIZE.

The maximum allowable width and height of a cube map or cube map array
texture must be the same, and must be at least 2¥~1°¢ + 2b, for image arrays level 0
through k, where k is the log base 2 of the value of MAX_CUBE_MAP_TEXTURE_—
S1ZE. The maximum number of layers for one- and two-dimensional array textures
(height or depth, respectively), and the maximum number of layer-faces for cube
map array textures (depth), must be at least the value of MAX_ARRAY TEXTURE_-—
LAYERS for all levels.

The maximum allowable width and height of a rectangular texture image
must each be at least the value of the implementation-dependent constant MAX_ -
RECTANGLE_TEXTURE_SIZE.

The command

void TexImage2D(enum farget, int level, int internalformat,
sizei width, sizei height, int border, enum format,
enum type, const void *data);

is used to specify a two-dimensional texture image. target must be one of
TEXTURE_2D for a two-dimensional texture, TEXTURE_1D_ARRAY for a one-
dimensional array texture, TEXTURE_RECTANGLE for a rectangle texture, or one
of TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_-
X, TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_MAP_NEGATIVE_Z for
a cube map texture. Additionally, target may be either PROXY_TEXTURE_2D
for a two-dimensional proxy texture, PROXY_TEXTURE_1D_ARRAY for a one-
dimensional proxy array texture, PROXY_TEXTURE_RECTANGLE for a rectangle
proxy texture, or PROXY_TEXTURE_CUBE_MAP for a cube map proxy texture
in the special case discussed in section 3.9.15. The other parameters match the
corresponding parameters of TexImage3D.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 223

For the purposes of decoding the texture image, TexImage2D is equivalent to
calling TexImage3D with corresponding arguments and depth of 1, except that
UNPACK_SKIP_IMAGES is ignored.

A two-dimensional or rectangle texture consists of a single two-dimensional
texture image. A cube map texture is a set of six two-dimensional texture im-
ages. The six cube map texture targets form a single cube map texture though
each target names a distinct face of the cube map. The TEXTURE_CUBE_MAP_ *
targets listed above update their appropriate cube map face 2D texture image. Note
that the six cube map two-dimensional image tokens such as TEXTURE_CUBE_ -
MAP_POSITIVE_X are used when specifying, updating, or querying one of a cube
map’s six two-dimensional images, but when binding to a cube map texture ob-
ject (that is when the cube map is accessed as a whole as opposed to a particular
two-dimensional image), the TEXTURE_CUBE_MAP target is specified.

When the target parameter to TexImage2D is one of the six cube map two-
dimensional image targets, the error INVALID_VALUE is generated if the width
and height parameters are not equal.

When target is TEXTURE_RECTANGLE, an INVALID_VALUE error is generated
if level is non-zero.

An INVALID_VALUE error is generated if border is non-zero.

Finally, the command

void TexImagelD(enum target, int level,
int internalformat, sizei width, int border,
enum format, enum type, const void *data);

is used to specify a one-dimensional texture image. tfarget must be either
TEXTURE_1D, or PROXY_TEXTURE_1D in the special case discussed in sec-
tion 3.9.15.

For the purposes of decoding the texture image, TexImagelD is equivalent to
calling TexImage2D with corresponding arguments and height of 1.

The image indicated to the GL by the image pointer is decoded and copied into
the GL’s internal memory.

We shall refer to the decoded image as the texel array. A three-dimensional
texel array has width, height, and depth wg, hs, and d; as defined in equation 3.16.
A two-dimensional or rectangular texel array has depth d; = 1, with height A
and width ws as above. A one-dimensional texel array has depth ds = 1, height
hs = 1, and width w as above.

An element (4, j, k) of the texel array is called a fexel (for a two-dimensional
texture or one-dimensional array texture, k is irrelevant; for a one-dimensional
texture, 7 and k are both irrelevant). The fexture value used in texturing a fragment

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 224

0 | b

-1.0 u 9.0

0.0 S 1.0

Figure 3.7. A texture image and the coordinates used to access it. This is a two-
dimensional texture with width 8 and height 4. A one-dimensional texture would
consist of a single horizontal strip. « and /3, values used in blending adjacent texels
to obtain a texture value, are also shown.

is determined by sampling the texture in a shader, but may not correspond to any
actual texel. See figure 3.7. If target is TEXTURE_CUBE_MAP_ARRAY, the texture
value is determined by (s, ¢, r, ¢) coordinates where s, ¢, and r are defined to be the
same as for TEXTURE_CUBE_MAP and ¢ is defined as the index of a specific cube
map in the cube map array.

If the data argument of TexImagelD, TexImage2D, or TexImage3D is NULL,
and the pixel unpack buffer object is zero, a one-, two-, or three-dimensional
texel array is created with the specified target, level, internalformat, border, width,
height, and depth, but with unspecified image contents. In this case no pixel values
are accessed in client memory, and no pixel processing is performed. Errors are
generated, however, exactly as though the dara pointer were valid. Otherwise if the
pixel unpack buffer object is non-zero, the data argument is treatedly normally to
refer to the beginning of the pixel unpack buffer object’s data.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 225

3.9.4 Alternate Texture Image Specification Commands

Two-dimensional and one-dimensional texture images may also be specified us-
ing image data taken directly from the framebuffer, and rectangular subregions of
existing texture images may be respecified.

The command

void CopyTexImage2D(enum farget, int level,
enum internalformat, int x, inty, sizei width,
sizei height, int border);

defines a two-dimensional texel array in exactly the manner of TexImage2D, ex-
cept that the image data are taken from the framebuffer rather than from client
memory. Currently, target must be one of TEXTURE_2D, TEXTURE_1D_ARRAY,
TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_ -
MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_-
Y, TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, Or
TEXTURE_CUBE_MAP_NEGATIVE_Z. X, y, width, and height correspond precisely
to the corresponding arguments to ReadPixels (refer to section 4.3.1); they specify
the image’s width and height, and the lower left (x,y) coordinates of the frame-
buffer region to be copied. The image is taken from the framebuffer exactly as if
these arguments were passed to CopyPixels (see section 4.3.2) with argument fype
set to COLOR, DEPTH, or DEPTH_STENCIL, depending on internalformat, stopping
after conversion of depth values. RGBA data is taken from the current color
buffer, while depth component and stencil index data are taken from the depth and
stencil buffers, respectively. The error INVALID_OPERATION is generated if depth
component data is required and no depth buffer is present; if stencil index data is
required and no stencil buffer is present; if integer RGBA data is required and the
format of the current color buffer is not integer; or if floating- or fixed-point RGBA
data is required and the format of the current color buffer is integer.

Subsequent processing is identical to that described for TexImage2D, begin-
ning with clamping of the R, G, B, A, or depth values, and masking of the stencil
index values from the resulting pixel groups. Parameters level, internalformat, and
border are specified using the same values, with the same meanings, as the equiv-
alent arguments of TexImage2D. An invalid value specified for internalformat
generates the error INVALID_ENUM. The constraints on width, height, and border
are exactly those for the equivalent arguments of TexImage2D.

When the farget parameter to CopyTexImage2D is one of the six cube map
two-dimensional image targets, the error INVALID_VALUE is generated if the width
and height parameters are not equal.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 226

An INVALID_FRAMEBUFFER_OPERATION error will be generated if the ob-
ject bound to READ_FRAMEBUFFER_BINDING (see section 4.4) is not framebuffer
complete (as defined in section 4.4.4). An INVALID_OPERATION error will be
generated if the object bound to READ_FRAMEBUFFER_BINDING is framebuffer
complete and the value of SAMPLE_BUFFERS is greater than zero.

The command

void CopyTexImagelD(enum target, int level,
enum infernalformat, int x, int y, sizei width,
int border);

defines a one-dimensional texel array in exactly the manner of TexImagelD, ex-
cept that the image data are taken from the framebuffer, rather than from client
memory. Currently, farget must be TEXTURE_1D. For the purposes of decoding
the texture image, CopyTexImagelD is equivalent to calling CopyTexImage2D
with corresponding arguments and height of 1, except that the height of the image
is always 1, regardless of the value of border. level, internalformat, and border are
specified using the same values, with the same meanings, as the equivalent argu-
ments of TexImagelD. The constraints on width and border are exactly those of
the equivalent arguments of TexImagelD.
Six additional commands,

void TexSubImage3D(enum target, int level, int xoffset,
int yoffset, int zoffset, sizei width, sizei height,
sizei depth, enum format, enum type, const
void *data);

void TexSubImage2D(enum target, int level, int xoffset,
int yoffset, sizei width, sizei height, enum format,
enum fype, const void *data);

void TexSublmagelD(enum target, int level, int xoffset,
sizei width, enumn format, enum type, const
void *data);

void CopyTexSublmage3D(enum farget, int level,
int xoffset, int yoffset, int zoffset, int x, inty,
sizei width, sizei height);

void CopyTexSublmage2D(enum farget, int level,
int xoffset, int yoffset, int x, inty, sizei width,
sizei height);

void CopyTexSublmagelD(enum farget, int level,
int xoffset, int x, int y, sizei width);

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 227

respecify only a rectangular subregion of an existing texel array. No change is made
to the internalformat, width, height, depth, or border parameters of the specified
texel array, nor is any change made to texel values outside the specified subregion.

The target arguments of TexSubImagelD and CopyTexSublmagelD
must be TEXTURE_1D, the farget arguments of TexSublmage2D and
CopyTexSublmage2D must be one of TEXTURE_2D, TEXTURE_1D_ARRAY,
TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_-
MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_-
MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_-
MAP_NEGATIVE_Z, and the farget arguments of TexSubImage3D and CopyTex-
SubImage3D must be TEXTURE_ 3D, TEXTURE_2D_ARRAY, or TEXTURE_CUBE_ —
MAP_ARRAY.

The level parameter of each command specifies the level of the texel array that
is modified. If level is less than zero or greater than the base 2 logarithm of the
maximum texture width, height, or depth, the error INVALID_VALUE is generated.
If target is TEXTURE_RECTANGLE and level is not zero, the error INVALID_VALUE
is generated. TexSubImage3D arguments width, height, depth, format, type, and
data match the corresponding arguments to TexImage3D, meaning that they are
specified using the same values, and have the same meanings. Likewise, Tex-
SublImage2D arguments width, height, format, type, and data match the corre-
sponding arguments to TexImage2D, and TexSubImagelD arguments width, for-
mat, type, and data match the corresponding arguments to TexImagelD.

CopyTexSubImage3D and CopyTexSubImage2D arguments x, y, width,
and height match the corresponding arguments to CopyTexImage2D”. CopyTex-
SubImagelD arguments x, y, and width match the corresponding arguments to
CopyTexImagelD. Each of the TexSubImage commands interprets and processes
pixel groups in exactly the manner of its TexImage counterpart, except that the as-
signment of R, G, B, A, depth, and stencil index pixel group values to the texture
components is controlled by the internalformat of the texel array, not by an argu-
ment to the command. The same constraints and errors apply to the TexSubImage
commands’ argument format and the internalformat of the texel array being re-
specified as apply to the format and internalformat arguments of its TexImage
counterparts.

Arguments xoffset, yoffset, and zoffset of TexSublmage3D and CopyTex-
SubImage3D specify the lower left texel coordinates of a width-wide by height-
high by depth-deep rectangular subregion of the texel array. For cube map array
textures, zoffset is the first layer-face to update, and depth is the number of layer-

% Because the framebuffer is inherently two-dimensional, there is no CopyTexImage3D com-
mand.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 228

faces to update. The depth argument associated with CopyTexSubImage3D is
always 1, because framebuffer memory is two-dimensional - only a portion of a
single (s, t) slice of a three-dimensional texture is replaced by CopyTexSubIm-
age3D.

Negative values of xoffset, yoffset, and zoffset correspond to the coordinates
of border texels, addressed as in figure 3.7. Taking wg, hs, ds, wy, hp, and dy to
be the specified width, height, depth, and border width, border height, and border
depth of the texel array, and taking x, y, z, w, h, and d to be the xoffset, yoffset,
zoffset, width, height, and depth argument values, any of the following relationships
generates the error INVALID_VALUE:

T < —wy
T+ w > wg — Wy
y < —hy
y+h>hs—hy
z < —dp
z4+d>ds—dy

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, , k], where

i =x ~+ (n mod w)

n
| = — dh
j=y+ (L] modh)
"
width * height

Arguments xoffset and yoffset of TexSubImage2D and CopyTexSubImage2D
specify the lower left texel coordinates of a width-wide by height-high rectangular
subregion of the texel array. Negative values of xoffset and yoffset correspond to
the coordinates of border texels, addressed as in figure 3.7. Taking ws, hs, and b
to be the specified width, height, and border width of the texel array, and taking x,
y, w, and h to be the xoffset, yoffset, width, and height argument values, any of the
following relationships generates the error INVALID_VALUE:

k=z+(| | mod d

T < —by
T+ w > ws — b

y < —bg

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 229

y+h > hy — b,

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j], where

i =x ~+ (n mod w)
j=y+ () mod)

The xoffset argument of TexSubImagelD and CopyTexSubImagelD speci-
fies the left texel coordinate of a width-wide subregion of the texel array. Negative
values of xoffset correspond to the coordinates of border texels. Taking ws and by
to be the specified width and border width of the texel array, and x and w to be the
xoffset and width argument values, either of the following relationships generates
the error INVALID_VALUE:

T < —byg
T+ w > ws — by

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i], where

i =+ (n mod w)

Texture images with compressed internal formats may be stored in such a way
that it is not possible to modify an image with subimage commands without having
to decompress and recompress the texture image. Even if the image were modi-
fied in this manner, it may not be possible to preserve the contents of some of
the texels outside the region being modified. To avoid these complications, the
GL does not support arbitrary modifications to texture images with compressed
internal formats. Calling TexSubImage3D, CopyTexSubImage3D, TexSubIm-
age2D, CopyTexSubIlmage2D, TexSubImagelD, or CopyTexSubImagelD will
result in an INVALID_OPERATION error if xoffset, yoffset, or zoffset is not equal to
—bs (border width). In addition, the contents of any texel outside the region mod-
ified by such a call are undefined. These restrictions may be relaxed for specific
compressed internal formats whose images are easily modified.

If the internal format of the texture image being modified is one of the specific
RGTC or BPTC formats described in table 3.14, the texture is stored using the cor-
responding RGTC or BPTC texture image encoding (see appendix C). Since such
images are easily edited along 4 x 4 texel boundaries, the limitations on subim-
age location and size are relaxed for TexSubImage2D, TexSubImage3D, Copy-
TexSubImage2D, and CopyTexSubImage3D. These commands will generate an
INVALID_OPERATION error if one of the following conditions occurs:

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 230

e width is not a multiple of four, width + zoffset is not equal to the value of
TEXTURE_WIDTH, and either xoffset or yoffset is non-zero.

e height is not a multiple of four, height 4 yoffset is not equal to the value of
TEXTURE_HEIGHT, and either xoffset or yoffset is non-zero.

e xoffset or yoffset is not a multiple of four.

The contents of any 4 x 4 block of texels of an RGTC or BPTC compressed
texture image that does not intersect the area being modified are preserved during
valid TexSubImage* and CopyTexSubImage* calls.

Calling CopyTexSubImage3D, CopyTexImage2D, CopyTexSublmage2D,
CopyTexImagelD, or CopyTexSubImagelD will result in an INVALID_-
FRAMEBUFFER_OPERATION error if the object bound to READ_FRAMEBUFFER_ -
BINDING is not framebuffer complete (see section 4.4.4).

Texture Copying Feedback Loops

Calling CopyTexSubImage3D, CopyTexImage2D, CopyTexSubImage2D,
CopyTexImagelD, or CopyTexSubImagelD will result in undefined behavior if
the destination texture image level is also bound to to the selected read buffer (see
section 4.3.1) of the read framebuffer. This situation is discussed in more detail in
the description of feedback loops in section 4.4.3.

3.9.5 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format, such as the RGTC formats defined in ap-
pendix C, or additional formats defined by GL extensions.

The commands

void CompressedTexImagelD(enum target, int level,
enum internalformat, sizei width, int border,
sizei imageSize, const void *data);

void CompressedTexImage2D(enum target, int level,
enum internalformat, sizei width, sizei height,
int border, sizei imageSize, const void *data);

void CompressedTexImage3D(enum target, int level,
enumn internalformat, sizei width, sizei height,
sizei depth, int border, sizei imageSize, const
void *data);

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 231

define one-, two-, and three-dimensional texture images, respectively, with incom-
ing data stored in a specific compressed image format. The farget, level, inter-
nalformat, width, height, depth, and border parameters have the same meaning
as in TexImagelD, TexImage2D, and TexImage3D, except that compressed rect-
angular texture formats are not supported. data refers to compressed image data
stored in the specific compressed image format corresponding to internalformat.
If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_—
UNPACK_BUFFER_BINDING), data is an offset into the pixel unpack buffer and the
compressed data is read from the buffer relative to this offset; otherwise, data is
a pointer to client memory and the compressed data is read from client memory
relative to the pointer.

If the target parameter to any of the CompressedTexImagenD commands is
TEXTURE_RECTANGLE or PROXY_TEXTURE_RECTANGLE, the error INVALID_-
ENUM is generated.

internalformat must be a supported specific compressed internal format. An
INVALID_ENUM error will be generated if any other values, including any of the
generic compressed internal formats, is specified.

For all other compressed internal formats, the compressed image will be de-
coded according to the specification defining the internalformat token. Com-
pressed texture images are treated as an array of imageSize ubytes relative to
data. If a pixel unpack buffer object is bound and data + imageSize is greater
than the size of the pixel buffer, an INVALID_OPERATION error results. If the im-
ageSize parameter is not consistent with the format, dimensions, and contents of
the compressed image, an INVALID_VALUE error results. If the compressed image
is not encoded according to the defined image format, the results of the call are
undefined.

If the compressed data are arranged into fixed-size blocks of texels, the pixel
storage modes can be used to select a sub-rectangle from a larger containing rect-
angle. These pixel storage modes operate in the same way as they do for TexIm-
age*D and as described in section 3.7.2. In the remainder of this section, denote
by bs, by, by, and by the values of pixel storage modes UNPACK_COMPRESSED_—
BLOCK_SIZE, UNPACK_COMPRESSED_BLOCK_WIDTH, UNPACK_COMPRESSED_-
BLOCK_HEIGHT, and UNPACK_COMPRESSED_BLOCK_DEPTH respectively. by is
the compressed block size in bytes; b,,, by, and by are the compressed block width,
height, and depth in pixels.

By default the pixel storage modes UNPACK_ROW_LENGTH, UNPACK_SKIP_-
ROWS, UNPACK_SKIP_PIXELS, UNPACK_IMAGE_HEIGHT and UNPACK_SKIP_-
IMAGES are ignored for compressed images. To enable UNPACK_SKIP_PIXELS
and UNPACK_ROW_LENGTH, b, and b,, must both be non-zero. To also enable
UNPACK_SKIP_ROWS and UNPACK_IMAGE_HEIGHT, b, must be non-zero. And

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 232

to also enable UNPACK_SKIP_IMAGES, by must be non-zero. All parameters must
be consistent with the compressed format to produce the desired results.
When selecting a sub-rectangle from a compressed image:

e the value of UNPACK_SKIP_PIXELS must be a multiple of b,;

e the value of UNPACK_SKIP_ROWS must be a multiple of b;, for Compressed-
TexImage2D and CompressedTexImage3D;

e the value of UNPACK_SKIP_IMAGES must be a multiple of by for Com-
pressed TexImage3D.

The error INVALID_OPERATION will be generated if any of the previous con-
ditions are violated.
For CompressedTexImagelD the imageSize parameter must be equal to

b, x [wzdth—‘

buw

For CompressedTexImage2D the imageSize parameter must be equal to

width height
52 < [P

For CompressedTexImage3D the imageSize parameter must be equal to

width height depth
oo [S5t | [< [

The error INVALID_VALUE will be generated if imageSize does not match this
requirement when pixel storage modes are active.

Based on the definition of unpacking from section 3.7.2 for uncompressed im-
ages, unpacking compressed images can be defined where:

e 1, the number of elements in a group, is 1
e s, the size of an element, is b,

e [, the number of groups in a row, is

mw’éﬂ—‘ , row_length >0

= length
w

, otherwise

where row_length is the value of UNPACK_ROW_LENGTH.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 233

e q, the value of UNPACK_ALIGNMENT, is ignored and

e k =n x [asis defined for uncompressed images.

Before obtaining the first compressed image block from memory, the data
pointer is advanced by

UNPACK_SKIP_PIXELS UNPACK_SKIP_ROWS
Xn -+ X

k
by by

elements. Then {%ﬁthw blocks are obtained from contiguous blocks in memory
(without advancing the pointer), after which the pointer is advanced by k elements.

[h%ghﬂ sets of [%ﬁh} blocks are obtained this way. For three-dimensional com-

pressed images the pointer is advanced by UNPACK*SI;IP*IMAGES times the number
of elements in one two-dimensional image before obtaining the first group from

memory. Then after height rows are obtained the pointer skips over the remaining

UNPACK*H';)A}GEJ{EIGHT} rows, if UNPACK_IMAGE_HEIGHT is positive, before starting

the next two-dimensional image.

Specific compressed internal formats may impose format-specific restrictions
on the use of the compressed image specification calls or parameters. For example,
the compressed image format might be supported only for 2D textures, or might
not allow non-zero border values. Any such restrictions will be documented in the
extension specification defining the compressed internal format; violating these
restrictions will result in an INVALID_OPERATION error.

Any restrictions imposed by specific compressed internal formats will be in-
variant, meaning that if the GL accepts and stores a texture image in compressed
form, providing the same image to CompressedTexImagelD, Compressed-
TexImage2D, or CompressedTexImage3D will not result in an INVALID_ -
OPERATION error if the following restrictions are satisfied:

e data points to a compressed texture image returned by GetCompressedTex-
Image (section 6.1.4).

o target, level, and internalformat match the target, level and format parame-
ters provided to the GetCompressed TexImage call returning data.

e width, height, depth, internalformat, and imageSize match the values
of TEXTURE_WIDTH, TEXTURE_HEIGHT, TEXTURE_DEPTH, TEXTURE_-—
INTERNAL_FORMAT, and TEXTURE_COMPRESSED_IMAGE_SIZE for image
level level in effect at the time of the GetCompressed TexImage call return-
ing data.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 234

This guarantee applies not just to images returned by GetCompressedTexImage,
but also to any other properly encoded compressed texture image of the same size
and format.

If internalformat is one of the specific RGTC or BPTC formats described in
table 3.14, the compressed image data is stored using the corresponding texture
image encoding (see appendix C). The RGTC and BPTC texture compression al-
gorithms support only two-dimensional images without borders, though 3D im-
ages can be compressed as multiple slices of compressed 2D BPTC images. If
internalformat is an RGTC format, CompressedTexImagelD will generate an
INVALID_ENUM error; CompressedTexImage2D will generate an INVALID_—
OPERATION error if border is non-zero or target is TEXTURE_RECTANGLE; and
CompressedTexImage3D will generate an INVALID_OPERATION error if bor-
der is non-zero or target is not TEXTURE_2D_ARRAY. If internalformat is a BPTC
format, Compressed TexImagelD will generate an INVALID_ENUM error; Com-
pressedTexImage2D and CompressedTexImage3D will generate an INVALID_-
OPERATION error if border is non-zero.

If the data argument of Compressed TexImagel1D, Compressed TexImage2D,
or CompressedTexImage3D is NULL, and the pixel unpack buffer object is
zero, a texel array with unspecified image contents is created, just as when a NULL
pointer is passed to TexImagelD, TexImage2D, or TexImage3D.

The commands

void CompressedTexSublmagelD(enum target, int level,
int xoffset, sizei width, enum format, sizei imageSize,
const void *data);

void CompressedTexSublmage2D(enum farget, int level,
int xoffset, int yoffset, sizei width, sizei height,
enum format, sizei imageSize, const void *data);

void CompressedTexSublmage3D(enum farget, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format,
sizei imageSize, const void *data);

respecify only a rectangular region of an existing texel array, with incoming data
stored in a known compressed image format. The farget, level, xoffset, yoffset, zoff-
set, width, height, and depth parameters have the same meaning as in TexSubIm-
agelD, TexSubImage2D, and TexSubImage3D. data points to compressed image
data stored in the compressed image format corresponding to format. Using any of
the generic compressed internal formats as format will result in an INVALID_ENUM
error.

OpenGL 4.2 (Core Profile) - April 27, 2012

3.9. TEXTURING 235

If the farget parameter to any of the CompressedTexSubImagenD com-
mands iS TEXTURE_RECTANGLE or PROXY_TEXTURE_RECTANGLE, the error
INVALID_ENUM is generated.

The image pointed to by data and the imageSize parameter are interpreted
as though they were provided to CompressedTexImagelD, CompressedTexIm-
age2D, and CompressedTexImage3D. These commands do not provide for im-
age format conversion, so an INVALID_OPERATION error results if format does
not match