
The OpenGL
R©

Graphics System:
A Specification

(Version 3.3 (Compatibility Profile) - March 11,
2010)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2-3.3): Jon Leech

Editor (version 2.0): Pat Brown

Copyright c© 2006-2010 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary
to the Khronos Group, Inc. It or any components may not be reproduced, repub-
lished, distributed, transmitted, displayed, broadcast or otherwise exploited in any
manner without the express prior written permission of Khronos Group. You may
use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the
receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor
or Adopter member of Khronos to copy and redistribute UNMODIFIED versions
of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version
of the API is used whenever possible. Such distributed specification may be re-
formatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A link
to the current version of this specification on the Khronos Group web-site should
be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or war-
ranties, express or implied, regarding this specification, including, without limita-
tion, any implied warranties of merchantability or fitness for a particular purpose
or non-infringement of any intellectual property. Khronos Group makes no, and
expressly disclaims any, warranties, express or implied, regarding the correctness,
accuracy, completeness, timeliness, and reliability of the specification. Under no
circumstances will the Khronos Group, or any of its Promoters, Contributors or
Members or their respective partners, officers, directors, employees, agents or rep-
resentatives be liable for any damages, whether direct, indirect, special or conse-
quential damages for lost revenues, lost profits, or otherwise, arising from or in
connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trade-
mark, and OpenGL ES is a trademark, of Silicon Graphics International.

Contents

1 Introduction 1
1.1 Formatting of the OpenGL Specification 1

1.1.1 Formatting of the Compatibility Profile 1
1.1.2 Formatting of Optional Features 1

1.2 What is the OpenGL Graphics System? 1
1.3 Programmer’s View of OpenGL 2
1.4 Implementor’s View of OpenGL 2
1.5 Our View . 3
1.6 The Deprecation Model . 3
1.7 Companion Documents . 3

1.7.1 OpenGL Shading Language 3
1.7.2 Window System Bindings 4

2 OpenGL Operation 5
2.1 OpenGL Fundamentals . 5

2.1.1 Floating-Point Computation 7
2.1.2 16-Bit Floating-Point Numbers 8
2.1.3 Unsigned 11-Bit Floating-Point Numbers 9
2.1.4 Unsigned 10-Bit Floating-Point Numbers 9
2.1.5 Fixed-Point Data Conversions 10

2.2 GL State . 12
2.2.1 Shared Object State . 13

2.3 GL Command Syntax . 13
2.4 Basic GL Operation . 15
2.5 GL Errors . 17
2.6 Begin/End Paradigm . 18

2.6.1 Begin and End . 22
2.6.2 Polygon Edges . 29
2.6.3 GL Commands within Begin / End 29

i

CONTENTS ii

2.7 Vertex Specification . 30
2.8 Vertex Arrays . 36

2.8.1 Packed Vertex Data Formats 43
2.8.2 Drawing Commands . 44

2.9 Buffer Objects . 51
2.9.1 Creating and Binding Buffer Objects 52
2.9.2 Creating Buffer Object Data Stores 54
2.9.3 Mapping and Unmapping Buffer Data 56
2.9.4 Effects of Accessing Outside Buffer Bounds 61
2.9.5 Copying Between Buffers 61
2.9.6 Vertex Arrays in Buffer Objects 62
2.9.7 Array Indices in Buffer Objects 62
2.9.8 Buffer Object State . 63

2.10 Vertex Array Objects . 63
2.11 Rectangles . 64
2.12 Fixed-Function Vertex Transformations 65

2.12.1 Matrices . 66
2.12.2 Normal Transformation 71
2.12.3 Generating Texture Coordinates 73

2.13 Fixed-Function Vertex Lighting and Coloring 76
2.13.1 Lighting . 77
2.13.2 Lighting Parameter Specification 81
2.13.3 ColorMaterial . 82
2.13.4 Lighting State . 85
2.13.5 Color Index Lighting . 85
2.13.6 Clamping or Masking 86

2.14 Vertex Shaders . 87
2.14.1 Shader Objects . 87
2.14.2 Program Objects . 89
2.14.3 Vertex Attributes . 91
2.14.4 Uniform Variables . 95
2.14.5 Samplers . 111
2.14.6 Varying Variables . 112
2.14.7 Shader Execution . 115
2.14.8 Required State . 122

2.15 Geometry Shaders . 123
2.15.1 Geometry Shader Input Primitives 124
2.15.2 Geometry Shader Output Primitives 125
2.15.3 Geometry Shader Variables 126
2.15.4 Geometry Shader Execution Environment 126

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

CONTENTS iii

2.16 Coordinate Transformations . 131
2.16.1 Controlling the Viewport 132

2.17 Asynchronous Queries . 133
2.18 Conditional Rendering . 135
2.19 Transform Feedback . 136
2.20 Primitive Queries . 139
2.21 Flatshading . 139
2.22 Primitive Clipping . 142

2.22.1 Color and Associated Data Clipping 144
2.23 Final Color Processing . 145
2.24 Current Raster Position . 146

3 Rasterization 150
3.1 Discarding Primitives Before Rasterization 152
3.2 Invariance . 152
3.3 Antialiasing . 152

3.3.1 Multisampling . 154
3.4 Points . 155

3.4.1 Basic Point Rasterization 157
3.4.2 Point Rasterization State 161
3.4.3 Point Multisample Rasterization 161

3.5 Line Segments . 162
3.5.1 Basic Line Segment Rasterization 162
3.5.2 Other Line Segment Features 165
3.5.3 Line Rasterization State 168
3.5.4 Line Multisample Rasterization 168

3.6 Polygons . 168
3.6.1 Basic Polygon Rasterization 169
3.6.2 Stippling . 171
3.6.3 Antialiasing . 172
3.6.4 Options Controlling Polygon Rasterization 172
3.6.5 Depth Offset . 173
3.6.6 Polygon Multisample Rasterization 174
3.6.7 Polygon Rasterization State 175

3.7 Pixel Rectangles . 175
3.7.1 Pixel Storage Modes and Pixel Buffer Objects 176
3.7.2 The Imaging Subset . 177
3.7.3 Pixel Transfer Modes . 178
3.7.4 Transfer of Pixel Rectangles 189
3.7.5 Rasterization of Pixel Rectangles 202

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

CONTENTS iv

3.7.6 Pixel Transfer Operations 204
3.7.7 Pixel Rectangle Multisample Rasterization 213

3.8 Bitmaps . 214
3.9 Texturing . 216

3.9.1 Texture Objects . 218
3.9.2 Sampler Objects . 221
3.9.3 Texture Image Specification 223
3.9.4 Alternate Texture Image Specification Commands 238
3.9.5 Compressed Texture Images 243
3.9.6 Multisample Textures . 247
3.9.7 Buffer Textures . 249
3.9.8 Texture Parameters . 251
3.9.9 Depth Component Textures 254
3.9.10 Cube Map Texture Selection 254
3.9.11 Texture Minification . 256
3.9.12 Texture Magnification 265
3.9.13 Combined Depth/Stencil Textures 266
3.9.14 Texture Completeness 266
3.9.15 Texture State and Proxy State 268
3.9.16 Texture Environments and Texture Functions 270
3.9.17 Texture Comparison Modes 276
3.9.18 sRGB Texture Color Conversion 277
3.9.19 Shared Exponent Texture Color Conversion 278
3.9.20 Texture Application . 278

3.10 Color Sum . 281
3.11 Fog . 281
3.12 Fragment Shaders . 283

3.12.1 Shader Variables . 283
3.12.2 Shader Execution . 284

3.13 Antialiasing Application . 290
3.14 Multisample Point Fade . 291

4 Per-Fragment Operations and the Framebuffer 292
4.1 Per-Fragment Operations . 294

4.1.1 Pixel Ownership Test . 294
4.1.2 Scissor Test . 295
4.1.3 Multisample Fragment Operations 295
4.1.4 Alpha Test . 297
4.1.5 Stencil Test . 298
4.1.6 Depth Buffer Test . 299

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

CONTENTS v

4.1.7 Occlusion Queries . 300
4.1.8 Blending . 301
4.1.9 sRGB Conversion . 307
4.1.10 Dithering . 307
4.1.11 Logical Operation . 308
4.1.12 Additional Multisample Fragment Operations 309

4.2 Whole Framebuffer Operations 310
4.2.1 Selecting a Buffer for Writing 311
4.2.2 Fine Control of Buffer Updates 315
4.2.3 Clearing the Buffers . 316
4.2.4 The Accumulation Buffer 319

4.3 Drawing, Reading, and Copying Pixels 321
4.3.1 Writing to the Stencil or Depth/Stencil Buffers 321
4.3.2 Reading Pixels . 321
4.3.3 Copying Pixels . 329
4.3.4 Pixel Draw/Read State 334

4.4 Framebuffer Objects . 334
4.4.1 Binding and Managing Framebuffer Objects 335
4.4.2 Attaching Images to Framebuffer Objects 337
4.4.3 Feedback Loops Between Textures and the Framebuffer . 346
4.4.4 Framebuffer Completeness 348
4.4.5 Effects of Framebuffer State on Framebuffer Dependent

Values . 353
4.4.6 Mapping between Pixel and Element in Attached Image . 354
4.4.7 Layered Framebuffers 355

5 Special Functions 357
5.1 Evaluators . 357
5.2 Selection . 363
5.3 Feedback . 365
5.4 Timer Queries . 367
5.5 Display Lists . 369

5.5.1 Commands Not Usable In Display Lists 372
5.6 Flush and Finish . 374
5.7 Sync Objects and Fences . 374

5.7.1 Waiting for Sync Objects 376
5.7.2 Signalling . 378

5.8 Hints . 378

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

CONTENTS vi

6 State and State Requests 380
6.1 Querying GL State . 380

6.1.1 Simple Queries . 380
6.1.2 Data Conversions . 381
6.1.3 Enumerated Queries . 382
6.1.4 Texture Queries . 386
6.1.5 Sampler Queries . 388
6.1.6 Stipple Query . 389
6.1.7 Color Matrix Query . 389
6.1.8 Color Table Query . 390
6.1.9 Convolution Query . 392
6.1.10 Histogram Query . 393
6.1.11 Minmax Query . 393
6.1.12 Pointer and String Queries 394
6.1.13 Asynchronous Queries 396
6.1.14 Sync Object Queries . 398
6.1.15 Buffer Object Queries 399
6.1.16 Vertex Array Object Queries 400
6.1.17 Shader and Program Queries 401
6.1.18 Framebuffer Object Queries 405
6.1.19 Renderbuffer Object Queries 408
6.1.20 Saving and Restoring State 409

6.2 State Tables . 411

A Invariance 473
A.1 Repeatability . 473
A.2 Multi-pass Algorithms . 474
A.3 Invariance Rules . 474
A.4 What All This Means . 476

B Corollaries 477

C Compressed Texture Image Formats 480
C.1 RGTC Compressed Texture Image Formats 480

C.1.1 Format COMPRESSED_RED_RGTC1 481
C.1.2 Format COMPRESSED_SIGNED_RED_RGTC1 482
C.1.3 Format COMPRESSED_RG_RGTC2 483
C.1.4 Format COMPRESSED_SIGNED_RG_RGTC2 483

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

CONTENTS vii

D Shared Objects and Multiple Contexts 484
D.1 Object Deletion Behavior . 484

D.1.1 Automatic Unbinding of Deleted Objects 484
D.1.2 Deleted Object and Object Name Lifetimes 485

D.2 Sync Objects and Multiple Contexts 485
D.3 Propagating Changes to Objects 486

D.3.1 Determining Completion of Changes to an object 486
D.3.2 Definitions . 487
D.3.3 Rules . 487

E Profiles and the Deprecation Model 489
E.1 Core and Compatibility Profiles 490
E.2 Deprecated and Removed Features 490

E.2.1 Deprecated But Still Supported Features 490
E.2.2 Removed Features . 491

F Version 3.0 and Before 496
F.1 New Features . 496
F.2 Deprecation Model . 497
F.3 Changed Tokens . 498
F.4 Change Log . 498
F.5 Credits and Acknowledgements 500

G Version 3.1 503
G.1 New Features . 503
G.2 Deprecation Model . 504
G.3 Change Log . 504
G.4 Credits and Acknowledgements 505

H Version 3.2 508
H.1 New Features . 508
H.2 Deprecation Model . 509
H.3 Changed Tokens . 509
H.4 Change Log . 510
H.5 Credits and Acknowledgements 512

I Version 3.3 515
I.1 New Features . 515
I.2 Deprecation Model . 516
I.3 Change Log . 517

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

CONTENTS viii

I.4 Credits and Acknowledgements 517

J Extension Registry, Header Files, and ARB Extensions 519
J.1 Extension Registry . 519
J.2 Header Files . 519
J.3 ARB Extensions . 520

J.3.1 Naming Conventions . 520
J.3.2 Promoting Extensions to Core Features 521
J.3.3 Multitexture . 521
J.3.4 Transpose Matrix . 521
J.3.5 Multisample . 521
J.3.6 Texture Add Environment Mode 522
J.3.7 Cube Map Textures . 522
J.3.8 Compressed Textures . 522
J.3.9 Texture Border Clamp 522
J.3.10 Point Parameters . 522
J.3.11 Vertex Blend . 522
J.3.12 Matrix Palette . 522
J.3.13 Texture Combine Environment Mode 523
J.3.14 Texture Crossbar Environment Mode 523
J.3.15 Texture Dot3 Environment Mode 523
J.3.16 Texture Mirrored Repeat 523
J.3.17 Depth Texture . 523
J.3.18 Shadow . 523
J.3.19 Shadow Ambient . 523
J.3.20 Window Raster Position 523
J.3.21 Low-Level Vertex Programming 524
J.3.22 Low-Level Fragment Programming 524
J.3.23 Buffer Objects . 524
J.3.24 Occlusion Queries . 524
J.3.25 Shader Objects . 524
J.3.26 High-Level Vertex Programming 524
J.3.27 High-Level Fragment Programming 524
J.3.28 OpenGL Shading Language 525
J.3.29 Non-Power-Of-Two Textures 525
J.3.30 Point Sprites . 525
J.3.31 Fragment Program Shadow 525
J.3.32 Multiple Render Targets 525
J.3.33 Rectangular Textures . 525
J.3.34 Floating-Point Color Buffers 526

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

CONTENTS ix

J.3.35 Half-Precision Floating Point 526
J.3.36 Floating-Point Textures 526
J.3.37 Pixel Buffer Objects . 526
J.3.38 Floating-Point Depth Buffers 527
J.3.39 Instanced Rendering . 527
J.3.40 Framebuffer Objects . 527
J.3.41 sRGB Framebuffers . 527
J.3.42 Geometry Shaders . 527
J.3.43 Half-Precision Vertex Data 528
J.3.44 Instanced Rendering . 528
J.3.45 Flexible Buffer Mapping 528
J.3.46 Texture Buffer Objects 528
J.3.47 RGTC Texture Compression Formats 528
J.3.48 One- and Two-Component Texture Formats 528
J.3.49 Vertex Array Objects . 529
J.3.50 Versioned Context Creation 529
J.3.51 Uniform Buffer Objects 529
J.3.52 Restoration of features removed from OpenGL 3.0 529
J.3.53 Fast Buffer-to-Buffer Copies 530
J.3.54 Shader Texture Level of Detail Control 530
J.3.55 Depth Clamp Control . 530
J.3.56 Base Vertex Offset Drawing Commands 530
J.3.57 Fragment Coordinate Convention Control 530
J.3.58 Provoking Vertex Control 530
J.3.59 Seamless Cube Maps . 531
J.3.60 Fence Sync Objects . 531
J.3.61 Multisample Textures . 531
J.3.62 BGRA Attribute Component Ordering 531
J.3.63 Per-Buffer Blend Control 531
J.3.64 Sample Shading Control 531
J.3.65 Cube Map Array Textures 531
J.3.66 Texture Gather . 532
J.3.67 Texture Level-Of-Detail Queries 532
J.3.68 Profiled Context Creation 532
J.3.69 Shading Language Include 532
J.3.70 BPTC texture compression 532
J.3.71 Extended Blend Functions 533
J.3.72 Explicit Attribute Location 533
J.3.73 Boolean Occlusion Queries 533
J.3.74 Sampler Objects . 533

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

CONTENTS x

J.3.75 Shader Bit Encoding . 533
J.3.76 RGB10A2 Integer Textures 533
J.3.77 Texture Swizzle . 534
J.3.78 Timer Queries . 534
J.3.79 Packed 2.10.10.10 Vertex Formats 534

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

List of Figures

2.1 Block diagram of the GL. 15
2.2 Creation of a processed vertex from a transformed vertex and cur-

rent values. 19
2.3 Primitive assembly and processing. 21
2.4 Triangle strips, fans, and independent triangles. 23
2.5 Quadrilateral strips and independent quadrilaterals. 24
2.6 Lines with adjacency. 25
2.7 Triangles with adjacency. 25
2.8 Triangle strips with adjacency. 27
2.9 Vertex transformation sequence. 65
2.10 Processing of RGBA colors. 76
2.11 Processing of color indices. 76
2.12 ColorMaterial operation. 82
2.13 Current raster position. 147

3.1 Rasterization. 150
3.2 Rasterization of non-antialiased wide points. 158
3.3 Rasterization of antialiased wide points. 158
3.4 Visualization of Bresenham’s algorithm. 163
3.5 Rasterization of non-antialiased wide lines. 166
3.6 The region used in rasterizing an antialiased line segment. 167
3.7 Transfer of pixel rectangles. 189
3.8 Selecting a subimage from an image 194
3.9 A bitmap and its associated parameters. 215
3.10 A texture image and the coordinates used to access it. 237
3.11 Multitexture pipeline. 279

4.1 Per-fragment operations. 294
4.2 Operation of ReadPixels. 321

xi

LIST OF FIGURES xii

4.3 Operation of CopyPixels. 329

5.1 Map Evaluation. 359
5.2 Feedback syntax. 368

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

List of Tables

2.1 GL command suffixes . 14
2.2 GL data types . 16
2.3 Summary of GL errors . 19
2.4 Triangles generated by triangle strips with adjacency. 28
2.5 Vertex array sizes (values per vertex) and data types 39
2.6 Packed component layout for non-BGRA formats. 43
2.7 Packed component layout for BGRA format. 43
2.8 Variables that direct the execution of InterleavedArrays. 50
2.9 Buffer object binding targets. 53
2.10 Buffer object parameters and their values. 53
2.11 Buffer object initial state. 56
2.12 Buffer object state set by MapBufferRange. 58
2.13 Summary of lighting parameters. 78
2.14 Correspondence of lighting parameter symbols to names. 83
2.15 OpenGL Shading Language type tokens 103
2.16 Transform feedback modes . 137
2.17 Provoking vertex selection. 141

3.1 PixelStore parameters. 176
3.2 PixelTransfer parameters. 178
3.3 PixelMap parameters. 179
3.4 Color table names. 181
3.5 Pixel data types. 191
3.6 Pixel data formats. 192
3.7 Swap Bytes bit ordering. 193
3.8 Packed pixel formats. 195
3.9 UNSIGNED_BYTE formats. Bit numbers are indicated for each

component. 196
3.10 UNSIGNED_SHORT formats . 197

xiii

LIST OF TABLES xiv

3.11 UNSIGNED_INT formats . 198
3.12 FLOAT_UNSIGNED_INT formats 199
3.13 Packed pixel field assignments. 200
3.14 Color table lookup. 207
3.15 Computation of filtered color components. 208
3.16 Conversion from RGBA, depth, and stencil pixel components to

internal texture, table, or filter components. 225
3.17 Sized internal color formats. 230
3.18 Sized internal luminance and intensity formats. 231
3.19 Sized internal depth and stencil formats. 232
3.20 Generic and specific compressed internal formats. 232
3.21 Internal formats for buffer textures 251
3.22 Texture parameters and their values. 253
3.23 Selection of cube map images. 255
3.24 Texel location wrap mode application. 260
3.25 Correspondence of filtered texture components to texture base

components. 272
3.26 Texture functions REPLACE, MODULATE, and DECAL 272
3.27 Texture functions BLEND and ADD. 273
3.28 COMBINE texture functions. 274
3.29 Arguments for COMBINE_RGB functions. 275
3.30 Arguments for COMBINE_ALPHA functions. 275
3.31 Depth texture comparison functions. 277

4.1 RGB and Alpha blend equations. 304
4.2 Blending functions. 305
4.3 Arguments to LogicOp and their corresponding operations. 309
4.4 Buffer selection for the default framebuffer 312
4.5 Buffer selection for a framebuffer object 312
4.6 DrawBuffers buffer selection for the default framebuffer 313
4.7 PixelStore parameters. 323
4.8 ReadPixels index masks. 327
4.9 ReadPixels GL data types and reversed component conversion for-

mulas. 328
4.10 Effective ReadPixels format for DEPTH_STENCIL CopyPixels

operation. 331
4.11 Correspondence of renderbuffer sized to base internal formats. . . 340
4.12 Framebuffer attachment points. 342
4.13 Layer numbers for cube map texture faces. 356

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

LIST OF TABLES xv

5.1 Values specified by the target to Map1. 358
5.2 Correspondence of feedback type to number of values per vertex. . 367
5.3 Initial properties of a sync object created with FenceSync. 375
5.4 Hint targets and descriptions . 379

6.1 Texture, table, and filter return values. 388
6.2 Pixel data formats accepted for the imaging queries. 390
6.3 Pixel data types accepted for the imaging queries. 391
6.4 Context profile bits . 396
6.5 Attribute groups . 410
6.6 State Variable Types . 412
6.7 GL Internal begin-end state variables (inaccessible) 414
6.8 Current Values and Associated Data 415
6.9 Vertex Array Object State . 416
6.10 Vertex Array Object State (cont.) 417
6.11 Vertex Array Object State (cont.) 418
6.12 Vertex Array Object State (cont.) 419
6.13 Vertex Array Data (not in Vertex Array objects) 420
6.14 Buffer Object State . 421
6.15 Transformation state . 422
6.16 Coloring . 423
6.17 Lighting (see also table 2.13 for defaults) 424
6.18 Lighting (cont.) . 425
6.19 Rasterization . 426
6.20 Rasterization (cont.) . 427
6.21 Multisampling . 428
6.22 Textures (state per texture unit and binding point) 429
6.23 Textures (state per texture unit and binding point)(cont.) 430
6.24 Textures (state per texture object) 431
6.25 Textures (state per texture image) 432
6.26 Textures (state per sampler object) 433
6.27 Texture Environment and Generation 434
6.28 Texture Environment and Generation (cont.) 435
6.29 Pixel Operations . 436
6.30 Pixel Operations (cont.) . 437
6.31 Framebuffer Control . 438
6.32 Framebuffer (state per target binding point) 439
6.33 Framebuffer (state per framebuffer object) 440
6.34 Framebuffer (state per attachment point) 441
6.35 Renderbuffer (state per target and binding point) 442

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

LIST OF TABLES xvi

6.36 Renderbuffer (state per renderbuffer object) 443
6.37 Pixels . 444
6.38 Pixels (cont.) . 445
6.39 Pixels (cont.) . 446
6.40 Pixels (cont.) . 447
6.41 Pixels (cont.) . 448
6.42 Pixels (cont.) . 449
6.43 Evaluators (GetMap takes a map name) 450
6.44 Shader Object State . 451
6.45 Program Object State . 452
6.46 Program Object State (cont.) . 453
6.47 Program Object State (cont.) . 454
6.48 Program Object State (cont.) . 455
6.49 Vertex and Geometry Shader State 456
6.50 Query Object State . 457
6.51 Transform Feedback State . 458
6.52 Sync (state per sync object) . 459
6.53 Hints . 460
6.54 Implementation Dependent Values 461
6.55 Implementation Dependent Values (cont.) 462
6.56 Implementation Dependent Values (cont.) 463
6.57 Implementation Dependent Version and Extension Support 464
6.58 Implementation Dependent Vertex Shader Limits 465
6.59 Implementation Dependent Geometry Shader Limits 466
6.60 Implementation Dependent Fragment Processing Limits 467
6.61 Implementation Dependent Aggregate Shader Limits

† The minimum value for each stage is
MAX_stage_UNIFORM_BLOCKS × MAX_UNIFORM_BLOCK_SIZE

/ 4 + MAX_stage_UNIFORM_COMPONENTS 468
6.62 Implementation Dependent Values (cont.) 469
6.63 Implementation Dependent Transform Feedback Limits 470
6.64 Framebuffer Dependent Values 471
6.65 Miscellaneous . 472

F.1 New token names . 498

H.1 New token names . 510

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it acts, and
what is required to implement it. We assume that the reader has at least a rudi-
mentary understanding of computer graphics. This means familiarity with the es-
sentials of computer graphics algorithms as well as familiarity with basic graphics
hardware and associated terms.

1.1 Formatting of the OpenGL Specification

1.1.1 Formatting of the Compatibility Profile

Material which is present only in the compatibility profile specification and not in
the core specification (see appendix E) is typeset in orange, like this paragraph.

1.1.2 Formatting of Optional Features

Starting with version 1.2 of OpenGL, some features in the specification are consid-
ered optional; an OpenGL implementation may or may not choose to provide them
(see section 3.7.2).

Portions of the specification which are optional are so described where the
optional features are first defined (see section 3.7.2). State table entries which are
optional are typeset against a gray background .

1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is a software interface to graphics hard-
ware. The interface consists of a set of several hundred procedures and functions

1

1.3. PROGRAMMER’S VIEW OF OPENGL 2

that allow a programmer to specify the objects and operations involved in produc-
ing high-quality graphical images, specifically color images of three-dimensional
objects.

Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls pertain to drawing objects such as points, lines, polygons, and
bitmaps, but the way that some of this drawing occurs (such as when antialiasing
or texturing is enabled) relies on the existence of a framebuffer. Further, some of
OpenGL is specifically concerned with framebuffer manipulation.

1.3 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
geometric objects in two or three dimensions, together with commands that control
how these objects are rendered into the framebuffer.

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
a GL context and associate it with the window. Once a GL context is allocated,
the programmer is free to issue OpenGL commands. Some calls are used to draw
simple geometric objects (i.e. points, line segments, and polygons), while others
affect the rendering of these primitives including how they are lit or colored and
how they are mapped from the user’s two- or three-dimensional model space to
the two-dimensional screen. There are also calls to effect direct control of the
framebuffer, such as reading and writing pixels.

1.4 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that affect the operation of
graphics hardware. If the hardware consists only of an addressable framebuffer,
then OpenGL must be implemented almost entirely on the host CPU. More typi-
cally, the graphics hardware may comprise varying degrees of graphics accelera-
tion, from a raster subsystem capable of rendering two-dimensional lines and poly-
gons to sophisticated floating-point processors capable of transforming and com-
puting on geometric data. The OpenGL implementor’s task is to provide the CPU
software interface while dividing the work for each OpenGL command between
the CPU and the graphics hardware. This division must be tailored to the available
graphics hardware to obtain optimum performance in carrying out OpenGL calls.

OpenGL maintains a considerable amount of state information. This state con-
trols how objects are drawn into the framebuffer. Some of this state is directly

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

1.5. OUR VIEW 3

available to the user: he or she can make calls to obtain its value. Some of it, how-
ever, is visible only by the effect it has on what is drawn. One of the main goals of
this specification is to make OpenGL state information explicit, to elucidate how it
changes, and to indicate what its effects are.

1.5 Our View

We view OpenGL as a pipeline having some programmable stages and some state-
driven stages that control a set of specific drawing operations. This model should
engender a specification that satisfies the needs of both programmers and imple-
mentors. It does not, however, necessarily provide a model for implementation. An
implementation must produce results conforming to those produced by the speci-
fied methods, but there may be ways to carry out a particular computation that are
more efficient than the one specified.

1.6 The Deprecation Model

GL features marked as deprecated in one version of the specification are expected
to be removed in a future version, allowing applications time to transition away
from use of deprecated features. The deprecation model is described in more detail,
together with a summary of the commands and state deprecated from this version
of the API, in appendix E.

1.7 Companion Documents

1.7.1 OpenGL Shading Language

This specification should be read together with a companion document titled The
OpenGL Shading Language. The latter document (referred to as the OpenGL Shad-
ing Language Specification hereafter) defines the syntax and semantics of the pro-
gramming language used to write vertex and fragment shaders (see sections 2.14
and 3.12). These sections may include references to concepts and terms (such as
shading language variable types) defined in the companion document.

OpenGL 3.3 implementations are guaranteed to support version 3.30 of the
OpenGL Shading Language. All references to sections of that specification refer
to version 3.30. The supported version of the shading language may be queried as
described in section 6.1.5.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

1.7. COMPANION DOCUMENTS 4

1.7.2 Window System Bindings

OpenGL requires a companion API to create and manage graphics contexts, win-
dows to render into, and other resources beyond the scope of this Specification.
There are several such APIs supporting different operating and window systems.

OpenGL Graphics with the X Window System, also called the “GLX Specifica-
tion”, describes the GLX API for use of OpenGL in the X Window System. It is
primarily directed at Linux and Unix systems, but GLX implementations also exist
for Microsoft Windows, MacOS X, and some other platforms where X is avail-
able. The GLX Specification is available in the OpenGL Extension Registry (see
appendix J).

The WGL API supports use of OpenGL with Microsoft Windows. WGL is
documented in Microsoft’s MSDN system, although no full specification exists.

Several APIs exist supporting use of OpenGL with Quartz, the MacOS X win-
dow system, including CGL, AGL, and NSOpenGLView. These APIs are docu-
mented on Apple’s developer website.

The Khronos Native Platform Graphics Interface or “EGL Specification” de-
scribes the EGL API for use of OpenGL ES on mobile and embedded devices.
EGL implementations may be available supporting OpenGL as well. The EGL
Specification is available in the Khronos Extension Registry at URL

http://www.khronos.org/registry/egl

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

http://www.khronos.org/registry/egl

Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the “GL”) is concerned only with rendering into a frame-
buffer (and reading values stored in that framebuffer). There is no support for
other peripherals sometimes associated with graphics hardware, such as mice and
keyboards. Programmers must rely on other mechanisms to obtain user input.

The GL draws primitives subject to a number of selectable modes and shader
programs. Each primitive is a point, line segment, polygon, or pixel rectangle.
Each mode may be changed independently; the setting of one does not affect the
settings of others (although many modes may interact to determine what eventually
ends up in the framebuffer). Modes are set, primitives specified, and other GL
operations described by sending commands in the form of function or procedure
calls.

Primitives are defined by a group of one or more vertices. A vertex defines
a point, an endpoint of an edge, or a corner of a polygon where two edges meet.
Data such as positional coordinates, colors, normals, texture coordinates, etc. are
associated with a vertex and each vertex is processed independently, in order, and
in the same way. The only exception to this rule is if the group of vertices must
be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping
depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all

5

2.1. OPENGL FUNDAMENTALS 6

previously invoked GL commands, except where explicitly specified otherwise. In
general, the effects of a GL command on either GL modes or the framebuffer must
be complete before any subsequent command can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a com-
mand are interpreted when that command is received. Even if the command re-
quires a pointer to data, those data are interpreted when the call is made, and any
subsequent changes to the data have no effect on the GL (unless the same pointer
is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of parameters of application-defined shader
programs performing transformation, lighting, texturing, and shading operations,
as well as built-in functionality such as antialiasing and texture filtering. It does not
provide a means for describing or modeling complex geometric objects. Another
way to describe this situation is to say that the GL provides mechanisms to de-
scribe how complex geometric objects are to be rendered rather than mechanisms
to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer as the client. In this sense, the GL is “network-transparent.” A server
may maintain a number of GL contexts, each of which is an encapsulation of cur-
rent GL state. A client may choose to connect to any one of these contexts. Issuing
GL commands when the program is not connected to a context results in undefined
behavior.

The GL interacts with two classes of framebuffers: window system-provided
and application-created. There is at most one window system-provided framebuffer
at any time, referred to as the default framebuffer. Application-created frame-
buffers, referred to as framebuffer objects, may be created as desired. These two
types of framebuffer are distinguished primarily by the interface for configuring
and managing their state.

The effects of GL commands on the default framebuffer are ultimately con-
trolled by the window system, which allocates framebuffer resources, determines
which portions of the default framebuffer the GL may access at any given time, and
communicates to the GL how those portions are structured. Therefore, there are
no GL commands to initialize a GL context or configure the default framebuffer.
Similarly, display of framebuffer contents on a physical display device (including
the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by the GL.

Allocation and configuration of the default framebuffer occurs outside of the
GL in conjunction with the window system, using companion APIs described in

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.1. OPENGL FUNDAMENTALS 7

section 1.7.2.
Allocation and initialization of GL contexts is also done using these companion

APIs. GL contexts can typically be associated with different default framebuffers,
and some context state is determined at the time this association is performed.

It is possible to use a GL context without a default framebuffer, in which case
a framebuffer object must be used to perform all rendering. This is useful for
applications needing to perform offscreen rendering.

The GL is designed to be run on a range of graphics platforms with varying
graphics capabilities and performance. To accommodate this variety, we specify
ideal behavior instead of actual behavior for certain GL operations. In cases where
deviation from the ideal is allowed, we also specify the rules that an implemen-
tation must obey if it is to approximate the ideal behavior usefully. This allowed
variation in GL behavior implies that two distinct GL implementations may not
agree pixel for pixel when presented with the same input even when run on identi-
cal framebuffer configurations.

Finally, command names, constants, and types are prefixed in the GL (by gl,
GL_, and GL, respectively in C) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Floating-Point Computation

The GL must perform a number of floating-point operations during the course of
its operation. In some cases, the representation and/or precision of such opera-
tions is defined or limited; by the OpenGL Shading Language Specification for
operations in shaders, and in some cases implicitly limited by the specified format
of vertex, texture, or renderbuffer data consumed by the GL. Otherwise, the rep-
resentation of such floating-point numbers, and the details of how operations on
them are performed, is not specified. We require simply that numbers’ floating-
point parts contain enough bits and that their exponent fields are large enough so
that individual results of floating-point operations are accurate to about 1 part in
105. The maximum representable magnitude of a floating-point number used to
represent positional, normal, or texture coordinates must be at least 232; the max-
imum representable magnitude for colors must be at least 210. The maximum
representable magnitude for all other floating-point values must be at least 232.
x · 0 = 0 · x = 0 for any non-infinite and non-NaN x. 1 · x = x · 1 = x.
x+ 0 = 0 + x = x. 00 = 1. (Occasionally further requirements will be specified.)
Most single-precision floating-point formats meet these requirements.

The special values Inf and −Inf encode values with magnitudes too large to
be represented; the special value NaN encodes “Not A Number” values resulting
from undefined arithmetic operations such as 0

0 . Implementations are permitted,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.1. OPENGL FUNDAMENTALS 8

but not required, to support Inf s and NaN s in their floating-point computations.
Any representable floating-point value is legal as input to a GL command that

requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified re-
sult but must not lead to GL interruption or termination.

2.1.2 16-Bit Floating-Point Numbers

A 16-bit floating-point number has a 1-bit sign (S), a 5-bit exponent (E), and a
10-bit mantissa (M). The value V of a 16-bit floating-point number is determined
by the following:

V =



(−1)S × 0.0, E = 0,M = 0
(−1)S × 2−14 × M

210 , E = 0,M 6= 0
(−1)S × 2E−15 ×

(
1 + M

210

)
, 0 < E < 31

(−1)S × Inf , E = 31,M = 0
NaN , E = 31,M 6= 0

If the floating-point number is interpreted as an unsigned 16-bit integerN , then

S =
⌊
N mod 65536

32768

⌋
E =

⌊
N mod 32768

1024

⌋
M = N mod 1024.

Any representable 16-bit floating-point value is legal as input to a GL command
that accepts 16-bit floating-point data. The result of providing a value that is not a
floating-point number (such as Inf or NaN) to such a command is unspecified, but
must not lead to GL interruption or termination. Providing a denormalized number
or negative zero to GL must yield predictable results.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.1. OPENGL FUNDAMENTALS 9

2.1.3 Unsigned 11-Bit Floating-Point Numbers

An unsigned 11-bit floating-point number has no sign bit, a 5-bit exponent (E), and
a 6-bit mantissa (M). The value V of an unsigned 11-bit floating-point number is
determined by the following:

V =



0.0, E = 0,M = 0
2−14 × M

64 , E = 0,M 6= 0
2E−15 ×

(
1 + M

64

)
, 0 < E < 31

Inf , E = 31,M = 0
NaN , E = 31,M 6= 0

If the floating-point number is interpreted as an unsigned 11-bit integerN , then

E =
⌊
N

64

⌋
M = N mod 64.

When a floating-point value is converted to an unsigned 11-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 65024 (the maximum finite representable unsigned 11-bit
floating-point value) are converted to 65024. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NaN .

Any representable unsigned 11-bit floating-point value is legal as input to a
GL command that accepts 11-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

2.1.4 Unsigned 10-Bit Floating-Point Numbers

An unsigned 10-bit floating-point number has no sign bit, a 5-bit exponent (E), and
a 5-bit mantissa (M). The value V of an unsigned 10-bit floating-point number is
determined by the following:

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.1. OPENGL FUNDAMENTALS 10

V =



0.0, E = 0,M = 0
2−14 × M

32 , E = 0,M 6= 0
2E−15 ×

(
1 + M

32

)
, 0 < E < 31

Inf , E = 31,M = 0
NaN , E = 31,M 6= 0

If the floating-point number is interpreted as an unsigned 10-bit integerN , then

E =
⌊
N

32

⌋
M = N mod 32.

When a floating-point value is converted to an unsigned 10-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 64512 (the maximum finite representable unsigned 10-bit
floating-point value) are converted to 64512. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NaN .

Any representable unsigned 10-bit floating-point value is legal as input to a
GL command that accepts 10-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

2.1.5 Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are repre-
sented as integers, they are often (but not always) considered to be normalized.
Normalized integer values are treated specially when being converted to and from
floating-point values, and are usually referred to as normalized fixed-point. Such
values are always either signed or unsigned.

In the remainder of this section, b denotes the bit width of the fixed-point in-
teger representation. When the integer is one of the types defined in table 2.2, b
is the minimum required bit width of that type. When the integer is a texture or
renderbuffer color or depth component (see section 3.9.3), b is the number of bits
allocated to that component in the internal format of the texture or renderbuffer.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.1. OPENGL FUNDAMENTALS 11

When the integer is a framebuffer color or depth component (see section 4), b is
the number of bits allocated to that component in the framebuffer. For framebuffer
and renderbuffer A components, b must be at least 2 if the buffer does not contain
an A component, or if there is only 1 bit of A in the buffer.

The signed and unsigned fixed-point representations are assumed to be b-bit
binary twos-complement integers and binary unsigned integers, respectively. The
signed fixed-point representation may be treated in one of two ways, as discussed
below.

All the conversions described below are performed as defined, even if the im-
plemented range of an integer data type is greater than the minimum required range.

Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0, 1].
The conversion from an unsigned normalized fixed-point value c to the correspond-
ing floating-point value f is defined as

f =
c

2b − 1
. (2.1)

Signed normalized fixed-point integers represent numbers in the range [−1, 1].
The conversion from a signed normalized fixed-point value c to the corresponding
floating-point value f may be performed in two ways:

f =
2c+ 1
2b − 1

(2.2)

In this case the full range of the representation is used, so that −2b−1 corre-
sponds to -1.0 and 2b−1 − 1 corresponds to 1.0. For example, if b = 8, then the
integer value -128 corresponds to -1.0 and the value 127 corresponds to 1.0. Note
that it is not possible to exactly express 0 in this representation. In general, this rep-
resentation is used for signed normalized fixed-point parameters in GL commands,
such as vertex attribute values.

Alternatively, conversion may be performed using

f = max

{
c

2b−1 − 1
,−1.0

}
. (2.3)

In this case only the range [−2b−1 + 1, 2b−1 − 1] is used to represent signed
fixed-point values in the range [−1, 1]. For example, if b = 8, then the integer
value -127 corresponds to -1.0 and the value 127 corresponds to 1.0. Note that
while zero can be exactly expressed in this representation, one value (-128 in the
example) is outside the representable range, and must be clamped before use. In

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.2. GL STATE 12

general, this representation is used for signed normalized fixed-point texture or
framebuffer values.

Everywhere that signed normalized fixed-point values are converted, the equa-
tion used is specified.

Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned nor-
malized fixed-point value c is defined by first clamping f to the range [0, 1], then
computing

f ′ = f × (2b − 1). (2.4)

f ′ is then cast to an unsigned binary integer value with exactly b bits.
The conversion from a floating-point value f to the corresponding signed nor-

malized fixed-point value c may be performed in two ways, both beginning by
clamping f to the range [−1, 1]:

f ′ = f × (2b − 1)− 1
2

(2.5)

In general, this conversion is used when querying floating-point state (see sec-
tion 6) and returning integers.

Alternatively, conversion may be performed using

f ′ = f × (2b−1 − 1). (2.6)

In general, this conversion is used when specifying signed normalized fixed-
point texture or framebuffer values.

After conversion, f ′ is then cast to a signed two’s-complement binary integer
value with exactly b bits.

Everywhere that floating-point values are converted to signed normalized fixed-
point, the equation used is specified.

2.2 GL State

The GL maintains considerable state. This document enumerates each state vari-
able and describes how each variable can be changed. For purposes of discussion,
state variables are categorized somewhat arbitrarily by their function. Although we
describe the operations that the GL performs on the framebuffer, the framebuffer
is not a part of GL state.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.3. GL COMMAND SYNTAX 13

We distinguish two types of state. The first type of state, called GL server
state, resides in the GL server. The majority of GL state falls into this category.
The second type of state, called GL client state, resides in the GL client. Unless
otherwise specified, all state referred to in this document is GL server state; GL
client state is specifically identified. Each instance of a GL context implies one
complete set of GL server state; each connection from a client to a server implies
a set of both GL client state and GL server state.

While an implementation of the GL may be hardware dependent, this discus-
sion is independent of the specific hardware on which a GL is implemented. We are
therefore concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

2.2.1 Shared Object State

It is possible for groups of contexts to share certain state. Enabling such sharing
between contexts is done through window system binding APIs such as those de-
scribed in section 1.7.2. These APIs are responsible for creation and management
of contexts, and not discussed further here. More detailed discussion of the behav-
ior of shared objects is included in appendix D. Except as defined in this appendix,
all state in a context is specific to that context only.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands perform
the same operation but differ in how arguments are supplied to them. To conve-
niently accommodate this variation, we adopt a notation for describing commands
and their arguments.

GL commands are formed from a name which may be followed, depending on
the particular command, by a sequence of characters describing a parameter to the
command. If present, a digit indicates the required length (number of values) of the
indicated type. Next, a string of characters making up one of the type descriptors
from table 2.1 indicates the specific size and data type of parameter values. A
final v character, if present, indicates that the command takes a pointer to an array
(a vector) of values rather than a series of individual arguments. Two specific
examples are:

void Uniform4f(int location, float v0, float v1,
float v2, float v3);

and

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.3. GL COMMAND SYNTAX 14

Type Descriptor Corresponding GL Type
b byte
s short
i int

i64 int64
f float
d double

ub ubyte
us ushort
ui uint

ui64 uint64

Table 2.1: Correspondence of command suffix type descriptors to GL argument
types. Refer to table 2.2 for definitions of the GL types.

void GetFloatv(enum value, float *data);

These examples show the ANSI C declarations for these commands. In general,
a command declaration has the form1

rtype Name{ε1234}{ε b s i i64 f d ub us ui ui64}{εv}
([args ,] T arg1 , . . . , T argN [, args]);

rtype is the return type of the function. The braces ({}) enclose a series of type
descriptors (see table 2.1), of which one is selected. ε indicates no type descriptor.
The arguments enclosed in brackets ([args ,] and [, args]) may or may not be
present. The N arguments arg1 through argN have type T, which corresponds to
one of the type descriptors indicated in table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then N is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only arg1 is present and it is an array of N values of
the indicated type.

For example,

void Uniform{1234}{if}(int location, T value);

indicates the eight declarations
1The declarations shown in this document apply to ANSI C. Languages such as C++ and Ada

that allow passing of argument type information admit simpler declarations and fewer entry points.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.4. BASIC GL OPERATION 15

void Uniform1i(int location, int value);
void Uniform1f(int location, float value);
void Uniform2i(int location, int v0, int v1);
void Uniform2f(int location, float v0, float v1);
void Uniform3i(int location, int v0, int v1, int v2);
void Uniform3f(int location, float v1, float v2,

float v2);
void Uniform4i(int location, int v0, int v1, int v2,

int v3);
void Uniform4f(int location, float v0, float v1,

float v2, float v3);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of the GL data types summarized in table 2.2, or pointers to one of these
types.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL on the
left. Some commands specify geometric objects to be drawn while others control
how the objects are handled by the various stages. Most commands may be ac-
cumulated in a display list for processing by the GL at a later time. Otherwise,
commands are effectively sent through a processing pipeline.

The first stage provides an efficient means for approximating curve and surface
geometry by evaluating polynomial functions of input values. The next stage
operates on geometric primitives described by vertices: points, line segments, and
polygons. In this stage vertices are transformed and lit, followed by assembly into
geometric primitives, which may optionally be used by the next stage, geometry
shading, to generate new primitives. The final resulting primitives are clipped to
a viewing volume in preparation for the next stage, rasterization. The rasterizer
produces a series of framebuffer addresses and values using a two-dimensional
description of a point, line segment, or polygon. Each fragment so produced is
fed to the next stage that performs operations on individual fragments before they
finally alter the framebuffer. These operations include conditional updates into the
framebuffer based on incoming and previously stored depth values (to effect depth
buffering), blending of incoming fragment colors with stored colors, as well as
masking and other logical operations on fragment values.

Finally, there is a way to bypass the vertex processing portion of the pipeline to
send a block of fragments directly to the individual fragment operations, eventually
causing a block of pixels to be written to the framebuffer; values may also be read

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.4. BASIC GL OPERATION 16

GL Type Minimum Description
Bit Width

boolean 1 Boolean
byte 8 Signed twos complement binary inte-

ger
ubyte 8 Unsigned binary integer
char 8 Characters making up strings
short 16 Signed twos complement binary inte-

ger
ushort 16 Unsigned binary integer
int 32 Signed twos complement binary inte-

ger
uint 32 Unsigned binary integer
int64 64 Signed twos complement binary inte-

ger
uint64 64 Unsigned binary integer
sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
intptr ptrbits Signed twos complement binary inte-

ger
sizeiptr ptrbits Non-negative binary integer size
sync ptrbits Sync object handle (see section 5.7)
bitfield 32 Bit field
half 16 Half-precision floating-point value

encoded in an unsigned scalar
float 32 Floating-point value
clampf 32 Floating-point value clamped to [0, 1]
double 64 Floating-point value
clampd 64 Floating-point value clamped to [0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation may use more bits than the
number indicated in the table to represent a GL type. Correct interpretation of
integer values outside the minimum range is not required, however.
ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr, sizeiptr, and sync must be sufficiently large as to store any
address.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.5. GL ERRORS 17

Display
 List

Evaluator

Per−Vertex
Operations Rasteriz−

ation

Per−
Fragment
Operations

Framebuffer

Pixel
Operations

Primitive
Assembly

Texture
Memory

Figure 2.1. Block diagram of the GL.

back from the framebuffer or copied from one portion of the framebuffer to another.
These transfers may include some type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL. Objects such as curved surfaces, for instance, may
be transformed before they are converted to polygons.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO_ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 18

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO_ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO_ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set, results of
GL operation are undefined only if OUT_OF_MEMORY has occurred. In other cases,
the command generating the error is ignored so that it has no effect on GL state or
framebuffer contents. If the generating command returns a value, it returns zero. If
the generating command modifies values through a pointer argument, no change is
made to these values. These error semantics apply only to GL errors, not to system
errors such as memory access errors. This behavior is the current behavior; the
action of the GL in the presence of errors is subject to change.

Several error generation conditions are implicit in the description of every GL
command:

• If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, the
error INVALID_ENUM is generated. This is the case even if the argument is
a pointer to a symbolic constant, if the value pointed to is not allowable for
the given command.

• If a negative number is provided where an argument of type sizei or
sizeiptr is specified, the error INVALID_VALUE is generated.

• If memory is exhausted as a side effect of the execution of a command, the
error OUT_OF_MEMORY may be generated.

Otherwise, errors are generated only for conditions that are explicitly described in
this specification.

2.6 Begin/End Paradigm

In the GL, most geometric objects are drawn by enclosing a series of coordinate
sets that specify vertices and optionally normals, texture coordinates, and colors
between Begin / End pairs. Points, lines, polygons, and a variety of related
geometric objects (see section 2.6.1) can be drawn in this way.

Each vertex is specified with two, three, or four coordinates. In addition, a
current normal, multiple current texture coordinate sets, multiple current generic

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 19

Error Description Offending com-
mand ignored?

INVALID_ENUM enum argument out of range Yes
INVALID_VALUE Numeric argument out of range Yes
INVALID_OPERATION Operation illegal in current state Yes
INVALID_FRAMEBUFFER_OPERATION Framebuffer object is not com-

plete
Yes

STACK_OVERFLOW Command would cause a stack
overflow

Yes

STACK_UNDERFLOW Command would cause a stack
underflow

Yes

OUT_OF_MEMORY Not enough memory left to exe-
cute command

Unknown

TABLE_TOO_LARGE The specified table is too large Yes

Table 2.3: Summary of GL errors

vertex attributes, current color, current secondary color, and current fog coordi-
nate may be used in processing each vertex. Normals are used by the GL in lighting
calculations; the current normal is a three-dimensional vector that may be set by
sending three coordinates that specify it. Texture coordinates determine how a tex-
ture image is mapped onto a primitive. Multiple sets of texture coordinates may
be used to specify how multiple texture images are mapped onto a primitive. The
number of texture units supported is implementation-dependent but must be at least
two. The number of texture units supported can be queried with the state MAX_-

TEXTURE_UNITS. Generic vertex attributes can be accessed from within vertex
shaders (section 2.14) and used to compute values for consumption by later pro-
cessing stages.

Primary and secondary colors are associated with each vertex (see sec-
tion 3.10). These associated colors are either based on the current color and current
secondary color or produced by lighting, depending on whether or not lighting is
enabled. Texture and fog coordinates are similarly associated with each vertex.
Multiple sets of texture coordinates may be associated with a vertex. Figure 2.2
summarizes the association of auxiliary data with a transformed vertex to produce
a processed vertex.

The current values are part of GL state. Vertices and normals are transformed,
colors may be affected or replaced by lighting, and texture coordinates are trans-
formed and possibly affected by a texture coordinate generation function. The

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 20

Current
Edge Flag &
Fog Coord

lighting

vertex / normal
transformation

Current
Normal

Current
Colors &
Materials

Associated
Data

Transformed
Coordinates

Processed
Vertex

Out

(Colors, Edge Flag,
Fog and Texture

Coordinates)

Vertex
Coordinates In

texgen texture
matrix 0

Current
Texture

Coord Set 0

texgen texture
matrix 1

Current
Texture

Coord Set 1

texgen texture
matrix 2

Current
Texture

Coord Set 2

texgen texture
matrix 3

Current
Texture

Coord Set 3

Figure 2.2. Association of current values with a vertex. The heavy lined boxes rep-
resent GL state. Four texture units are shown; however, multitexturing may support
a different number of units depending on the implementation.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 21

Processed
Vertices

Point,
Line Segment, or

Polygon
(Primitive)
Assembly

Begin/End
State

Point culling;
Line Segment
 or Polygon

Clipping

Color
Processing

Rasterization

Coordinates

Associated
Data

Figure 2.3. Primitive assembly and processing.

processing indicated for each current value is applied for each vertex that is sent to
the GL.

The methods by which vertices, normals, texture coordinates, fog coordinate,
generic attributes, and colors are sent to the GL, as well as how normals are trans-
formed and how vertices are mapped to the two-dimensional screen, are discussed
later.

Before colors have been assigned to a vertex, the state required by a vertex
is the vertex’s coordinates, the current normal, the current edge flag (see sec-
tion 2.6.2), the current material properties (see section 2.13.2), the current fog co-
ordinate, the multiple generic vertex attribute sets, and the multiple current texture
coordinate sets. Because color assignment is done vertex-by-vertex, a processed
vertex comprises the vertex’s coordinates, its edge flag, its fog coordinate, its as-
signed colors, and its multiple texture coordinate sets.

Figure 2.3 shows the sequence of operations that builds a primitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed, it
is clipped to a viewing volume. This may alter the primitive by altering vertex
coordinates, texture coordinates, and colors. In the case of line and polygon prim-
itives, clipping may insert new vertices into the primitive. The vertices defining a
primitive to be rasterized have texture coordinates and colors associated with them.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 22

2.6.1 Begin and End

Vertices making up one of the supported geometric object types are specified by
enclosing commands defining those vertices between the two commands

void Begin(enum mode);
void End(void);

There is no limit on the number of vertices that may be specified between a Begin
and an End. The mode parameter of Begin determines the type of primitives to be
drawn using the vertices. The types, and the corresponding mode parameters, are:

Points
A series of individual points may be specified with mode POINTS. Each vertex

defines a separate point. No special state need be kept between Begin and End in
this case, since each point is independent of previous and following points.

Line Strips
A series of one or more connected line segments may be specified with mode

LINE_STRIP. In this case, the first vertex specifies the first segment’s start point
while the second vertex specifies the first segment’s endpoint and the second seg-
ment’s start point. In general, the ith vertex (for i > 1) specifies the beginning of
the ith segment and the end of the i − 1st. The last vertex specifies the end of the
last segment. If only one vertex is specified, then no primitive is generated.

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

Line Loops
Line loops may be specified with mode LINE_LOOP. Loops are the same as

line strips except that a final segment is added from the final specified vertex to the
first vertex. The required state consists of the processed first vertex, in addition to
the state required for line strips.

Separate Lines
Individual line segments, each specified by a pair of vertices, may be specified

with mode LINES. The first two vertices between a Begin and End pair define the
first segment, with subsequent pairs of vertices each defining one more segment.
If the number of specified vertices is odd, then the last one is ignored. The state
required is the same as for line strips but it is used differently: a processed ver-
tex holding the first vertex of the current segment, and a boolean flag indicating
whether the current vertex is odd or even (a segment start or end).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 23

(a) (b) (c)

1

2

3

4

5 1

2
3

4

5
1

2

3

4

5

6

Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices in order within the vertex arrays. Note
that in (a) and (b) triangle edge ordering is determined by the first triangle, while in
(c) the order of each triangle’s edges is independent of the other triangles.

Polygons
A polygon is described by specifying its boundary as a series of line segments.

When Begin is called with POLYGON, the bounding line segments are specified in
the same way as line loops. A polygon described with fewer than three vertices
does not generate a primitive.

The state required to support polygons consists of at least two processed ver-
tices (more than two are never required, although an implementation may use
more); this is because a convex polygon can be rasterized as its vertices arrive,
before all of them have been specified.

Triangle Strips
A triangle strip is a series of triangles connected along shared edges, and may

be specified with mode TRIANGLE_STRIP. In this case, the first three vertices
define the first triangle (and their order is significant, just as for polygons). Each
subsequent vertex defines a new triangle using that point along with two vertices
from the previous triangle. If fewer than three vertices are specified, no primitive
is produced. See figure 2.4.

The required state consists of a flag indicating if the first triangle has been
completed, two stored processed vertices, (called vertex A and vertex B), and a
one bit pointer indicating which stored vertex will be replaced with the next vertex.
After a Begin(TRIANGLE_STRIP), the pointer is initialized to point to vertex A.
Each successive vertex toggles the pointer. Therefore, the first vertex is stored as

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 24

vertex A, the second stored as vertex B, the third stored as vertex A, and so on.
Any vertex after the second one sent forms a triangle from vertex A, vertex B, and
the current vertex (in that order).

Triangle Fans
A triangle fan is the same as a triangle strip with one exception: each vertex

after the first always replaces vertex B of the two stored vertices. A triangle fan
may be specified with mode TRIANGLE_FAN.

Separate Triangles
Separate triangles are specified with mode TRIANGLES. In this case, The 3i+

1st, 3i + 2nd, and 3i + 3rd vertices (in that order) determine a triangle for each
i = 0, 1, . . . , n− 1, where there are 3n+ k vertices drawn. k is either 0, 1, or 2; if
k is not zero, the final k vertices are ignored. For each triangle, vertex A is vertex
3i and vertex B is vertex 3i + 1. Otherwise, separate triangles are the same as a
triangle strip.

Quadrilateral (quad) strips
Quad strips generate a series of edge-sharing quadrilaterals from vertices ap-

pearing between Begin and End, when Begin is called with QUAD_STRIP. If the
m vertices between the Begin and End are v1, . . . , vm, where vj is the jth spec-
ified vertex, then quad i has vertices (in order) v2i, v2i+1, v2i+3, and v2i+2 with
i = 0, . . . , bm/2c. The state required is thus three processed vertices, to store the
last two vertices of the previous quad along with the third vertex (the first new ver-
tex) of the current quad, a flag to indicate when the first quad has been completed,
and a one-bit counter to count members of a vertex pair. See figure 2.5.

A quad strip with fewer than four vertices generates no primitive. If the number
of vertices specified for a quadrilateral strip between Begin and End is odd, the
final vertex is ignored.

Separate Quadrilaterals
Separate quads are just like quad strips except that each group of four vertices,

the 4j + 1st, the 4j + 2nd, the 4j + 3rd, and the 4j + 4th, generate a single quad,
for j = 0, 1, . . . , n − 1. The total number of vertices between Begin and End is
4n+k, where 0 ≤ k ≤ 3; if k is not zero, the final k vertices are ignored. Separate
quads are generated by calling Begin with the argument value QUADS.

Lines with Adjacency
Lines with adjacency are independent line segments where each endpoint has

a corresponding adjacent vertex that can be accessed by a geometry shader (sec-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 25

1

2

3

4

5

6

1

2 3

4 5

6 7

8

(a) (b)

Figure 2.5. (a) A quad strip. (b) Independent quads. The numbers give the sequenc-
ing of the vertices between Begin and End.

tion 2.15). If a geometry shader is not active, the adjacent vertices are ignored.
They are generated with mode LINES_ADJACENCY.

A line segment is drawn from the 4i + 2nd vertex to the 4i + 3rd vertex for
each i = 0, 1, . . . , n − 1, where there are 4n + k vertices between a Begin and
End pair. k is either 0, 1, 2, or 3; if k is not zero, the final k vertices are ignored.
For line segment i, the 4i+ 1st and 4i+ 4th vertices are considered adjacent to the
4i+ 2nd and 4i+ 3rd vertices, respectively (see figure 2.6).

Line Strips with Adjacency
Line strips with adjacency are similar to line strips, except that each line seg-

ment has a pair of adjacent vertices that can be accessed by a geometry shader. If a
geometry shader is not active, the adjacent vertices are ignored. They are generated
with mode LINE_STRIP_ADJACENCY.

A line segment is drawn from the i+ 2nd vertex to the i+ 3rd vertex for each
i = 0, 1, . . . , n− 1, where there are n+ 3 vertices between a Begin and End pair.
If there are fewer than four vertices, all vertices are ignored. For line segment i,
the i + 1st and i + 4th vertex are considered adjacent to the i + 2nd and i + 3rd
vertices, respectively (see figure 2.6).

Triangles with Adjacency
Triangles with adjacency are similar to separate triangles, except that each tri-

angle edge has an adjacent vertex that can be accessed by a geometry shader. If a
geometry shader is not active, the adjacent vertices are ignored. They are generated
with mode TRIANGLES_ADJACENCY.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 26

Figure 2.6. Lines with adjacency (a) and line strips with adjacency (b). The vertices
connected with solid lines belong to the main primitives; the vertices connected by
dashed lines are the adjacent vertices that may be used in a geometry shader.

Figure 2.7. Triangles with adjacency. The vertices connected with solid lines be-
long to the main primitive; the vertices connected by dashed lines are the adjacent
vertices that may be used in a geometry shader.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 27

Figure 2.8. Triangle strips with adjacency. The vertices connected with solid lines
belong to the main primitives; the vertices connected by dashed lines are the adja-
cent vertices that may be used in a geometry shader.

The 6i+ 1st, 6i+ 3rd, and 6i+ 5th vertices (in that order) determine a triangle
for each i = 0, 1, . . . , n− 1, where there are 6n+ k vertices between a Begin and
End pair. k is either 0, 1, 2, 3, 4, or 5; if k is non-zero, the final k vertices are
ignored. For triangle i, the i + 2nd, i + 4th, and i + 6th vertices are considered
adjacent to edges from the i + 1st to the i + 3rd, from the i + 3rd to the i + 5th,
and from the i+ 5th to the i+ 1st vertices, respectively (see figure 2.7).

Triangle Strips with Adjacency
Triangle strips with adjacency are similar to triangle strips, except that each line

triangle edge has an adjacent vertex that can be accessed by a geometry shader. If a
geometry shader is not active, the adjacent vertices are ignored. They are generated
with mode TRIANGLE_STRIP_ADJACENCY.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 28

Primitive Vertices Adjacent Vertices
Primitive 1st 2nd 3rd 1/2 2/3 3/1
only (i = 0, n = 1) 1 3 5 2 6 4
first (i = 0) 1 3 5 2 7 4
middle (i odd) 2i+ 3 2i+ 1 2i+ 5 2i− 1 2i+ 4 2i+ 7
middle (i even) 2i+ 1 2i+ 3 2i+ 5 2i− 1 2i+ 7 2i+ 4
last (i = n− 1, i odd) 2i+ 3 2i+ 1 2i+ 5 2i− 1 2i+ 4 2i+ 6
last (i = n− 1, i even) 2i+ 1 2i+ 3 2i+ 5 2i− 1 2i+ 6 2i+ 4

Table 2.4: Triangles generated by triangle strips with adjacency. Each triangle
is drawn using the vertices whose numbers are in the 1st, 2nd, and 3rd columns
under primitive vertices, in that order. The vertices in the 1/2, 2/3, and 3/1 columns
under adjacent vertices are considered adjacent to the edges from the first to the
second, from the second to the third, and from the third to the first vertex of the
triangle, respectively. The six rows correspond to six cases: the first and only
triangle (i = 0, n = 1), the first triangle of several (i = 0, n > 0), “odd” middle
triangles (i = 1, 3, 5 . . .), “even” middle triangles (i = 2, 4, 6, . . .), and special
cases for the last triangle, when i is either even or odd. For the purposes of this
table, the first vertex specified after Begin is numbered 1 and the first triangle is
numbered 0.

In triangle strips with adjacency, n triangles are drawn where there are 2(n +
2) + k vertices between a Begin and End pair. k is either 0 or 1; if k is 1, the final
vertex is ignored. If there are fewer than 6 vertices, the entire primitive is ignored.
Table 2.4 describes the vertices and order used to draw each triangle, and which
vertices are considered adjacent to each edge of the triangle (see figure 2.8).

Depending on the current state of the GL, a polygon primitive gener-
ated from a drawing command with mode POLYGON, QUADS, QUAD_STRIP,
TRIANGLE_FAN, TRIANGLE_STRIP, TRIANGLES, TRIANGLES_ADJACENCY, or
TRIANGLE_STRIP_ADJACENCY may be rendered in one of several ways, such as
outlining its border or filling its interior. The order of vertices in such a prim-
itive is significant in lighting, polygon rasterization, and fragment shading (see
sections 2.13.1, 3.6.1, and 3.12.2). Only convex polygons are guaranteed to be
drawn correctly by the GL. If a specified polygon is nonconvex when projected
onto the window, then the rendered polygon need only lie within the convex hull
of the projected vertices defining its boundary.

The state required for Begin and End consists of an fifteen-valued integer in-
dicating either one of the fourteen possible Begin / End modes, or that no Begin /

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 29

End mode is being processed.
Calling Begin will result in an INVALID_FRAMEBUFFER_OPERATION error if

the object bound to DRAW_FRAMEBUFFER_BINDING is not framebuffer complete
(see section 4.4.4).

2.6.2 Polygon Edges

Each edge of each polygon primitive generated is flagged as either boundary or
non-boundary. These classifications are used during polygon rasterization; some
modes affect the interpretation of polygon boundary edges (see section 3.6.4). By
default, all edges are boundary edges, but the flagging of polygons, separate trian-
gles, or separate quadrilaterals may be altered by calling

void EdgeFlag(boolean flag);
void EdgeFlagv(const boolean *flag);

to change the value of a flag bit. If flag is zero, then the flag bit is set to FALSE; if
flag is non-zero, then the flag bit is set to TRUE.

When Begin is supplied with one of the argument values POLYGON,
TRIANGLES, or QUADS, each vertex specified within a Begin and End pair be-
gins an edge. If the edge flag bit is TRUE, then each specified vertex begins an edge
that is flagged as boundary. If the bit is FALSE, then induced edges are flagged as
non-boundary.

The state required for edge flagging consists of one current flag bit. Initially, the
bit is TRUE. In addition, each processed vertex of an assembled polygonal primitive
must be augmented with a bit indicating whether or not the edge beginning on that
vertex is boundary or non-boundary.

2.6.3 GL Commands within Begin / End

The only GL commands that are allowed within any Begin / End pairs are the
commands for specifying vertex coordinates, vertex colors, normal coordinates,
texture coordinates, generic vertex attributes, and fog coordinates (Vertex, Color,
SecondaryColor, Index, Normal, TexCoord and MultiTexCoord, VertexAttrib,
FogCoord), the ArrayElement command (see section 2.8), the EvalCoord and
EvalPoint commands (see section 5.1), commands for specifying lighting mate-
rial parameters (Material commands; see section 2.13.2), display list invocation
commands (CallList and CallLists; see section 5.5), and the EdgeFlag command.
Executing any other GL command between the execution of Begin and the corre-
sponding execution of End results in the error INVALID_OPERATION. Executing

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.7. VERTEX SPECIFICATION 30

Begin after Begin has already been executed but before an End is executed gen-
erates the INVALID_OPERATION error, as does executing End without a previous
corresponding Begin.

Execution of the commands EnableClientState, DisableClientState, Push-
ClientAttrib, PopClientAttrib, ColorPointer, FogCoordPointer, EdgeFlag-
Pointer, IndexPointer, NormalPointer, TexCoordPointer, SecondaryCol-
orPointer, VertexPointer, VertexAttribPointer, ClientActiveTexture, Inter-
leavedArrays, and PixelStore is not allowed within any Begin / End pair, but
an error may or may not be generated if such execution occurs. If an error is not
generated, GL operation is undefined. (These commands are described in sections
2.8, 3.7.1, and chapter 6.)

2.7 Vertex Specification

Vertices are specified by giving their coordinates in two, three, or four dimensions.
This is done using one of several versions of the Vertex command:

void Vertex{234}{sifd}(T coords);
void Vertex{234}{sifd}v(const T coords);

Vertex coordinates may be stored as packed components within a larger natural
type. Such data may be specified using

void VertexP{234}ui(enum type,uint coords)
void VertexP{234}uiv(enum type,const uint *coords)

These commands specify up to four coordinates as described above, packed
into a single natural type as described in section 2.8.1. The type parameter must
be INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV, specifying
signed or unsigned data respectively. The first two (x, y), three (x, y, z), or four
(x, y, z, w) components of the packed data are consumed by VertexP2ui, Vert-
exP3ui, and VertexP4ui, respectively. For VertexP*uiv, coords contains the ad-
dress of a single uint containing the packed coordinate components.

A call to any Vertex command specifies four coordinates: x, y, z, and w. The
x coordinate is the first coordinate, y is second, z is third, and w is fourth. A call
to Vertex*2* sets the x and y coordinates; the z coordinate is implicitly set to zero
and the w coordinate to one. Vertex*3* sets x, y, and z to the provided values
and w to one. Vertex*4* sets all four coordinates, allowing the specification of an
arbitrary point in projective three-space. Invoking a Vertex command outside of a
Begin / End pair results in undefined behavior.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.7. VERTEX SPECIFICATION 31

Current values are used in associating auxiliary data with a vertex as described
in section 2.5. A current value may be changed at any time by issuing an appropri-
ate command. The commands

void TexCoord{1234}{sifd}(T coords);
void TexCoord{1234}{sifd}v(const T coords);

specify the current homogeneous texture coordinates, named s, t, r, and q.
Texture coordinates may be stored as packed components within a larger natu-

ral type. Such data may be specified using

void TexCoordP{1234}ui(enum type,uint coords)
void TexCoordP{1234}uiv(enum type,const uint

*coords)

This command specifies up to four components as described above, packed
into a single natural type as described in section 2.8.1. The type parameter must
be INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV, specifying
signed or unsigned data, respectively. The first one (x), two (x, y), three (x, y, z),
or four (x, y, z, w) components of the packed data are consumed by TexCo-
ordP1ui*, TexCoordP2ui*, TexCoordP3ui*, and TexCoordP4ui*, respectively.
For TexCoordP*uiv, coords contains the address of a single uint containing the
packed texture coordinate components.

The TexCoord*1* family of commands set the s coordinate to the provided
single argument while setting t and r to 0 and q to 1. Similarly, TexCoord*2* sets
s and t to the specified values, r to 0 and q to 1; TexCoord*3* sets s, t, and r, with
q set to 1, and TexCoord*4* sets all four texture coordinates.

Implementations must support at least two sets of texture coordinates. The
commands

void MultiTexCoord{1234}{sifd}(enum texture,T coords)
void MultiTexCoord{1234}{sifd}v(enum texture,const T

coords)
void MultiTexCoordP{1234}ui(enum texture,enum

type,uint coords)
void MultiTexCoordP{1234}uiv(enum texture,enum

type,const uint *coords)

take the coordinate set to be modified as the texture parameter. texture is a symbolic
constant of the form TEXTUREi, indicating that texture coordinate set i is to be
modified. The constants obey TEXTUREi = TEXTURE0 + i (i is in the range 0 to

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.7. VERTEX SPECIFICATION 32

k− 1, where k is the implementation-dependent number of texture coordinate sets
defined by MAX_TEXTURE_COORDS).

The TexCoord commands are exactly equivalent to the corresponding Multi-
TexCoord commands with texture set to TEXTURE0.

Gets of CURRENT_TEXTURE_COORDS return the texture coordinate set defined
by the value of ACTIVE_TEXTURE.

Specifying an invalid texture coordinate set for the texture argument of Multi-
TexCoord results in undefined behavior.

The current normal is set using

void Normal3{bsifd}(T coords);
void Normal3{bsifd}v(const T coords);

Byte, short, or integer values passed to Normal are converted to floating-point
values as described in equation 2.2 for the corresponding (signed) type.

Normals may be stored as packed components within a larger natural type.
Such data may be specified using

void NormalP3ui(enum type,uint normal)
void NormalP3uiv(enum type,uint *normal)

This specifies a three component normal, packed into the first three (x, y, z)
components of the natural type as described in section 2.8.1. type must be INT_-

2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV, specifying signed or
unsigned data, respectively. For NormalP3uiv, normal contains the address of a
single uint containing the packed normal components.

The current fog coordinate is set using

void FogCoord{fd}(T coord);
void FogCoord{fd}v(const T coord);

There are several ways to set the current color and secondary color. The GL
stores a current single-valued color index, as well as a current four-valued RGBA
color and secondary color. Either the index or the color and secondary color are
significant depending as the GL is in color index mode or RGBA mode. The mode
selection is made when the GL is initialized.

The commands to set RGBA colors are

void Color{34}{bsifd ubusui}(T components);
void Color{34}{bsifd ubusui}v(const T components);
void SecondaryColor3{bsifd ubusui}(T components);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.7. VERTEX SPECIFICATION 33

void SecondaryColor3{bsifd ubusui}v(const
T components);

The Color command has two major variants: Color3 and Color4. The four value
versions set all four values. The three value versions set R, G, and B to the provided
values; A is set to 1.0. (The conversion of integer color components (R, G, B, and
A) to floating-point values is discussed in section 2.13.)

The secondary color has only the three value versions. Secondary A is always
set to 1.0.

Versions of the Color and SecondaryColor commands that take floating-point
values accept values nominally between 0.0 and 1.0. 0.0 corresponds to the min-
imum while 1.0 corresponds to the maximum (machine dependent) value that a
component may take on in the framebuffer (see section 2.13 on colors and color-
ing). Values outside [0, 1] are not clamped.

RGBA colors may be stored as packed components within a larger natural type.
Such data may be specified using

void ColorP{34}ui(enum type,uint coords)
void ColorP{34}uiv(enum type,const uint *coords)
void SecondaryColorP3ui(enum type,uint coords)
void SecondaryColorP3uiv(enum type,const uint

*coords)

The ColorP* commands set the primary color similarly to Color*, above. The
SecondaryColorP* commands set the secondary color similarly to Secondary-
Color*. type must be INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_-
10_REV, specifying signed or unsigned data, respectively. Colors are packed into
a single natural type as described in section 2.8.1. The first three (x, y, z) or four
(x, y, z, w) components of the packed data are consumed by *ColorP3ui* and
ColorP4ui, respectively. For ColorP*uiv and SecondaryColorP*uiv, coords
contains the address of a single uint containing the packed color components.

The command

void Index{sifd ub}(T index);
void Index{sifd ub}v(const T index);

updates the current (single-valued) color index. It takes one argument, the value
to which the current color index should be set. Values outside the (machine-
dependent) representable range of color indices are not clamped.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.7. VERTEX SPECIFICATION 34

Vertex shaders (see section 2.14) can be written to access an array of 4-
component generic vertex attributes in addition to the conventional attributes spec-
ified previously. The first slot of this array is numbered 0, and the size of the array
is specified by the implementation-dependent constant MAX_VERTEX_ATTRIBS.

Current generic attribute values define generic attributes for a vertex. The cur-
rent values of a generic shader attribute declared as a floating-point scalar, vector,
or matrix may be changed at any time by issuing one of the commands

void VertexAttrib{1234}{sfd}(uint index, T values);
void VertexAttrib{123}{sfd}v(uint index, const

T values);
void VertexAttrib4{bsifd ub us ui}v(uint index, const

T values);
void VertexAttrib4Nub(uint index, T values);
void VertexAttrib4N{bsi ub us ui}v(uint index, const

T values);

The VertexAttrib4N* commands specify fixed-point values that are converted
to a normalized [0, 1] or [−1, 1] range as described in equations 2.1 and 2.2, re-
spectively, while the other commands specify values that are converted directly to
the internal floating-point representation.

The resulting value(s) are loaded into the generic attribute at slot index, whose
components are named x, y, z, and w. The VertexAttrib1* family of commands
sets the x coordinate to the provided single argument while setting y and z to 0 and
w to 1. Similarly, VertexAttrib2* commands set x and y to the specified values,
z to 0 and w to 1; VertexAttrib3* commands set x, y, and z, with w set to 1, and
VertexAttrib4* commands set all four coordinates.

The VertexAttrib* entry points may also be used to load shader attributes de-
clared as a floating-point matrix. Each column of a matrix takes up one generic
4-component attribute slot out of the MAX_VERTEX_ATTRIBS available slots. Ma-
trices are loaded into these slots in column major order. Matrix columns are loaded
in increasing slot numbers.

The resulting attribute values are undefined if the base type of the shader at-
tribute at slot index is not floating-point (e.g. is signed or unsigned integer). To
load current values of a generic shader attribute declared as a signed or unsigned
scalar or vector, use the commands

void VertexAttribI{1234}{i ui}(uint index, T values);
void VertexAttribI{1234}{i ui}v(uint index, const

T values);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.7. VERTEX SPECIFICATION 35

void VertexAttribI4{bs ubus}v(uint index, const
T values);

These commands specify values that are extended to full signed or unsigned
integers, then loaded into the generic attribute at slot index in the same fashion as
described above.

The resulting attribute values are undefined if the base type of the shader at-
tribute at slot index is floating-point; if the base type is integer and unsigned in-
teger values are supplied (the VertexAttribI*ui, VertexAttribI*us, and Vertex-
AttribI*ub commands); or if the base type is unsigned integer and signed integer
values are supplied (the VertexAttribI*i, VertexAttribI*s, and VertexAttribI*b
commands)

Vertex data may be stored as packed components within a larger natural type.
Such data may be specified using

void VertexAttribP{1234}ui(uint index,enum
type,boolean normalized,uint value)

void VertexAttribP{1234}uiv(uint index,enum
type,boolean normalized,const uint *value)

These commands specify up to four attribute component values, packed into
a single natural type as described in section 2.8.1, and load it into the generic
attribute at slot index. The type parameter must be INT_2_10_10_10_REV or
UNSIGNED_INT_2_10_10_10_REV, specifying signed or unsigned data respec-
tively. The first one (x), two (x, y), three (x, y, z), or four (x, y, z, w) components
of the packed data are consumed by VertexAttribP1ui, VertexAttribP2ui, Ver-
texAttribP3ui, and VertexAttribP4ui, respectively. Data specified by VertexAt-
tribP* will be converted to floating point by normalizing if normalized is TRUE,
and converted directly to floating point otherwise. For VertexAttribP*uiv, value
contains the address of a single uint containing the packed attribute components.

The error INVALID_VALUE is generated by VertexAttrib* if index is greater
than or equal to MAX_VERTEX_ATTRIBS.

Setting generic vertex attribute zero specifies a vertex; the four vertex coordi-
nates are taken from the values of attribute zero. A Vertex2, Vertex3, or Vertex4
command is completely equivalent to the corresponding VertexAttrib* command
with an index of zero. Setting any other generic vertex attribute updates the current
values of the attribute. There are no current values for vertex attribute zero.

There is no aliasing among generic attributes and conventional attributes. In
other words, an application can set all MAX_VERTEX_ATTRIBS generic attributes
and all conventional attributes without fear of one particular attribute overwriting
the value of another attribute.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 36

The state required to support vertex specification consists of four floating-point
numbers per texture coordinate set to store the current texture coordinates s, t, r,
and q, three floating-point numbers to store the three coordinates of the current
normal, one floating-point number to store the current fog coordinate, four floating-
point values to store the current RGBA color, four floating-point values to store the
current RGBA secondary color, one floating-point value to store the current color
index, and the value of MAX_VERTEX_ATTRIBS − 1 four-component vectors to
store generic vertex attributes.

There is no notion of a current vertex, so no state is devoted to vertex coor-
dinates or generic attribute zero. The initial texture coordinates are (s, t, r, q) =
(0, 0, 0, 1) for each texture coordinate set. The initial current normal has coor-
dinates (0, 0, 1). The initial fog coordinate is zero. The initial RGBA color is
(R,G,B,A) = (1, 1, 1, 1) and the initial RGBA secondary color is (0, 0, 0, 1).
The initial color index is 1. The initial values for all generic vertex attributes are
(0.0, 0.0, 0.0, 1.0).

2.8 Vertex Arrays

The vertex specification commands described in section 2.7 accept data in almost
any format, but their use requires many command executions to specify even sim-
ple geometry. Vertex data may also be placed into arrays that are stored in the
client’s address space (described here) or in the server’s address space (described
in section 2.9). Blocks of data in these arrays may then be used to specify multiple
geometric primitives through the execution of a single GL command. The client
may specify up to seven plus the values of MAX_TEXTURE_COORDS and MAX_-

VERTEX_ATTRIBS arrays: one each to store vertex coordinates, normals, colors,
secondary colors, color indices, edge flags, fog coordinates, two or more texture
coordinate sets, and MAX_VERTEX_ATTRIBS arrays to store one or more generic
vertex attributes. The commands

void VertexPointer(int size, enum type, sizei stride,
const void *pointer);

void NormalPointer(enum type, sizei stride, const
void *pointer);

void ColorPointer(int size, enum type, sizei stride,
const void *pointer);

void SecondaryColorPointer(int size, enum type,
sizei stride, const void *pointer);

void IndexPointer(enum type, sizei stride, const
void *pointer);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 37

void EdgeFlagPointer(sizei stride, const void *pointer);
void FogCoordPointer(enum type, sizei stride, const

void *pointer);
void TexCoordPointer(int size, enum type, sizei stride,

const void *pointer);
void VertexAttribPointer(uint index, int size, enum type,

boolean normalized, sizei stride, const
void *pointer);

void VertexAttribIPointer(uint index, int size, enum type,
sizei stride, const void *pointer);

describe the locations and organizations of these arrays. For each command, type
specifies the data type of the values stored in the array. Because edge flags are al-
ways type boolean, EdgeFlagPointer has no type argument. size, when present,
indicates the number of values per vertex that are stored in the array as well as

their component ordering. Because normals are always specified with three val-
ues, NormalPointer has no size argument. Likewise, because color indices and
edge flags are always specified with a single value, IndexPointer and EdgeFlag-
Pointer also have no size argument. Table 2.5 indicates the allowable values
for size and type (when present). For type the values BYTE, SHORT, INT, FLOAT,
HALF_FLOAT, and DOUBLE indicate types byte, short, int, float, half,
and double, respectively; the values UNSIGNED_BYTE, UNSIGNED_SHORT, and
UNSIGNED_INT indicate types ubyte, ushort, and uint, respectively; and
the values INT_2_10_10_10_REV and UNSIGNED_INT_2_10_10_10_REV, in-
dicating respectively four signed or unsigned elements packed into a single uint,
both correspond to the term packed in that table.

An INVALID_VALUE error is generated if size is not one of the values allowed
in table 2.5 for the corresponding command.

An INVALID_OPERATION error is generated under any of the following con-
ditions:

• size is BGRA and type is not UNSIGNED_BYTE, INT_2_10_10_10_REV or
UNSIGNED_INT_2_10_10_10_REV;

• type is INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV,
and size is neither 4 or BGRA;

• for VertexAttribPointer only, size is BGRA and normalized is FALSE;

• any of the *Pointer commands specifying the location and organization of
vertex array data are called while a non-zero vertex array object is bound (see

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 38

section 2.10), zero is bound to the ARRAY_BUFFER buffer object binding
point (see section 2.9.6), and the pointer argument is not NULL2.

The index parameter in the VertexAttribPointer and VertexAttribIPointer
commands identifies the generic vertex attribute array being described. The er-
ror INVALID_VALUE is generated if index is greater than or equal to the value of
MAX_VERTEX_ATTRIBS. Generic attribute arrays with integer type arguments can
be handled in one of three ways: converted to float by normalizing to [0, 1] or
[−1, 1] as described in equations 2.1 and 2.2, respectively; converted directly to
float, or left as integers. Data for an array specified by VertexAttribPointer will
be converted to floating-point by normalizing if normalized is TRUE, and converted
directly to floating-point otherwise. Data for an array specified by VertexAttribI-
Pointer will always be left as integer values; such data are referred to as pure
integers.

The one, two, three, or four values in an array that correspond to a single vertex
comprise an array element. When size is BGRA, it indicates four values. The values
within each array element are stored sequentially in memory. However, if size is
BGRA, the first, second, third, and fourth values of each array element are taken
from the third, second, first, and fourth values in memory respectively. If stride
is specified as zero, then array elements are stored sequentially as well. The error
INVALID_VALUE is generated if stride is negative. Otherwise pointers to the ith
and (i + 1)st elements of an array differ by stride basic machine units (typically
unsigned bytes), the pointer to the (i + 1)st element being greater. For each com-
mand, pointer specifies the location in memory of the first value of the first element
of the array being specified.

An individual array is enabled or disabled by calling one of

void EnableClientState(enum array);
void DisableClientState(enum array);

with array set to VERTEX_ARRAY, NORMAL_ARRAY, COLOR_ARRAY,
SECONDARY_COLOR_ARRAY, INDEX_ARRAY, EDGE_FLAG_ARRAY, FOG_-

COORD_ARRAY, or TEXTURE_COORD_ARRAY, for the vertex, normal, color,
secondary color, color index, edge flag, fog coordinate, or texture coordinate array,
respectively.

An individual generic vertex attribute array is enabled or disabled by calling
one of

void EnableVertexAttribArray(uint index);
2 This error makes it impossible to create a vertex array object containing client array pointers,

while still allowing buffer objects to be unbound.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 39

Sizes and
Component Integer

Command Ordering Handling Types
VertexPointer 2, 3, 4 cast short, int, float,

half, double, packed
NormalPointer 3 normalize byte, short,

int, float, half,
double, packed

ColorPointer 3, 4, BGRA normalize byte, ubyte,
short, ushort,
int, uint, float,
half, double, packed

SecondaryColorPointer 3, BGRA normalize byte, ubyte,
short, ushort,
int, uint, float,
half, double, packed

IndexPointer 1 cast ubyte, short, int,
float, double

FogCoordPointer 1 n/a float, half,
double

TexCoordPointer 1, 2, 3, 4 cast short, int, float,
half, double, packed

EdgeFlagPointer 1 integer boolean
VertexAttribPointer 1, 2, 3, 4, BGRA flag byte, ubyte,

short, ushort,
int, uint, float,
half, double, packed

VertexAttribIPointer 1, 2, 3, 4 integer byte, ubyte, short,
ushort, int, uint

Table 2.5: Vertex array sizes (values per vertex) and data types. The “Integer
Handling” column indicates how fixed-point data types are handled: “cast” means
that they are converted to floating-point directly, “normalize” means that they are
converted to floating-point by normalizing to [0, 1] (for unsigned types) or [−1, 1]
(for signed types), “integer” means that they remain as integer values, and “flag”
means that either “cast” or “normalized” applies, depending on the setting of the
normalized flag in VertexAttribPointer. If size is BGRA, vertex array values are
always normalized, irrespective of the “normalize” table entry. packed is not a GL
type, but indicates commands accepting multiple components packed into a single
uint.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 40

void DisableVertexAttribArray(uint index);

where index identifies the generic vertex attribute array to enable or disable. The
error INVALID_VALUE is generated if index is greater than or equal to MAX_-

VERTEX_ATTRIBS.
The command

void VertexAttribDivisor(uint index, uint divisor);

modifies the rate at which generic vertex attributes advance when rendering multi-
ple instances of primitives in a single draw call. If divisor is zero, the attribute at
slot index advances once per vertex. If divisor is non-zero, the attribute advances
once per divisor instances of the set(s) of vertices being rendered. An attribute is
referred to as instanced if its divisor value is non-zero.

An INVALID_VALUE error is generated if index is greater than or equal to the
value of MAX_VERTEX_ATTRIBS.

The command

void ClientActiveTexture(enum texture);

is used to select the vertex array client state parameters to be modified by the Tex-
CoordPointer command and the array affected by EnableClientState and Dis-
ableClientState with parameter TEXTURE_COORD_ARRAY. This command sets the
client state variable CLIENT_ACTIVE_TEXTURE. Each texture coordinate set has
a client state vector which is selected when this command is invoked. This state
vector includes the vertex array state. This call also selects the texture coordinate
set state used for queries of client state.

Specifying an invalid texture generates the error INVALID_ENUM. Valid values
of texture are the same as for the MultiTexCoord commands described in sec-
tion 2.7.

The command

void ArrayElementInstanced(int i, int instance);

does not exist in the GL, but is used to describe functionality in the rest of this
section. This command transfers the ith element of every enabled, non-instanced
array, and the b instance

divisor c’th element of every enabled, instanced array, to the GL.
The effect of

ArrayElementInstanced(i, instance);

is the same as the effect of the command sequence

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 41

if (normal array enabled)
Normal3[type]v(normal array element i);

if (color array enabled)
Color[size][type]v(color array element i);

if (secondary color array enabled)
SecondaryColor3[type]v(secondary color array element i);

if (fog coordinate array enabled)
FogCoord[type]v(fog coordinate array element i);

for (j = 0; j < textureUnits; j++) {
if (texture coordinate set j array enabled)

MultiTexCoord[size][type]v(TEXTURE0 + j, texcoord(j, i));
}
if (color index array enabled)

Index[type]v(color index array element i);
if (edge flag array enabled)

EdgeFlagv(edge flag array element i);
for (j = 1; j < genericAttributes; j++) {

if (generic vertex attribute j array enabled) {
if (vertex attrib array divisor j > 0)

k = floor(instance / vertex attrib array divisor j);
else

k = i;
VertexAttrib[size][type]v(j, genattrib(j, k));

}
}
if (generic vertex attribute array 0 enabled) {

if (vertex attrib array divisor 0 > 0)
k = floor(instance / vertex attrib array divisor 0);

else
k = i;

VertexAttrib[size][type]v(0, genattrib(0, k));
} else if (vertex array enabled) {

Vertex[size][type]v(vertex array element i);
}

genattrib(attrib, i) represents the ith element of the vertex array for
generic attribute attrib, and texcoord(coord, i) represents the ith element
of the vertex array for texture coordinate set coord. textureUnits and genericAt-
tributes give the number of texture coordinate sets and generic vertex attributes
supported by the implementation, respectively. “[size]” and “[type]” correspond

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 42

to the size and type of the corresponding array. For generic vertex attributes, it is
assumed that a complete set of vertex attribute commands exists, even though not
all such commands are provided by the GL.

When an array contains packed data, the pseudocode above will use the packed
equivalent with the type of that data. For example, when a generic vertex attribute
array contains packed data, the VertexAttribP[size]uiv command will be called
instead of VertexAttrib[size][type]v.

Similarly when a generic vertex attribute array contains pure integer data, Ver-
texAttribI[size][type]v will be called; and when a generic attribute array normal-
ization flag is set, and the array data type is not FLOAT, HALF_FLOAT, or DOUBLE,
VertexAttrib[size]N[type]v will be called.

Changes made to array data between the execution of Begin and the corre-
sponding execution of End may affect calls to ArrayElementInstanced that are
made within the same Begin / End period in non-sequential ways. That is, a call
to ArrayElementInstanced that precedes a change to array data may access the
changed data, and a call that follows a change to array data may access original
data.

Specifying i < 0 results in undefined behavior. Generating the error
INVALID_VALUE is recommended in this case.

The command

void ArrayElement(int i);

behaves identically to

ArrayElementInstanced(i, 0).

Primitive restarting is enabled or disabled by calling one of the commands

void Enable(enum target);

and

void Disable(enum target);

with target PRIMITIVE_RESTART. The command

void PrimitiveRestartIndex(uint index);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 43

specifies the index of a vertex array element that is treated specially when prim-
itive restarting is enabled. This value is called the primitive restart index. When
ArrayElementInstanced is called between an execution of Begin and the corre-
sponding execution of End, if i is equal to the primitive restart index, then no
vertex data is dereferenced, and no current vertex state is modified. Instead, it is
as if End were called, followed by a call to Begin where mode is the same as the
mode used by the previous Begin.

When one of the *BaseVertex drawing commands specified in section 2.8.2 is
used, the primitive restart comparison occurs before the basevertex offset is added
to the array index.

2.8.1 Packed Vertex Data Formats

UNSIGNED_INT_2_10_10_10_REV and INT_2_10_10_10_REV vertex data for-
mats describe packed, 4 component formats stored in a single 32-bit word.

For the UNSIGNED_INT_2_10_10_10_REV vertex data format, the first (x),
second (y), and third (z) components are represented as 10-bit unsigned integer
values and the fourth (w) omponent is represented as a 2-bit unsigned integer value.

For the INT_2_10_10_10_REV vertex data format, the x, y and z compo-
nents are represented as 10-bit signed two’s complement integer values and the w
component is represented as a 2-bit signed two’s complement integer value.

The normalized value is used to indicate whether to normalize the data to [0, 1]
(for unsigned types) or [−1, 1] (for signed types). During normalization, the con-
version rules specified in equations 2.1 and 2.2 are followed.

Tables 2.6 and 2.7 describe how these components are laid out in a 32-bit word.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w z y x

Table 2.6: Packed component layout for non-BGRA formats. Bit numbers are indi-
cated for each component.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

w x y z

Table 2.7: Packed component layout for BGRA format. Bit numbers are indicated
for each component.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 44

2.8.2 Drawing Commands

The command

void DrawArraysOneInstance(enum mode, int first,
sizei count, int instance);

does not exist in the GL, but is used to describe functionality in the rest of this
section. This command constructs a sequence of geometric primitives using ele-
ments first through first + count − 1 of each enabled array. mode specifies what
kind of primitives are constructed, and accepts the same token values as the mode
parameter of the Begin command. If mode is not a valid primitive type, an
INVALID_ENUM error is generated. If count is negative, an INVALID_VALUE error
is generated.

The effect of

DrawArraysOneInstance(mode, first, count, instance);

is the same as the effect of the command sequence

Begin(mode);
for (int i = 0; i < count ; i++)

ArrayElementInstanced(first + i, instance);
End();

with one exception: the current normal coordinate, color, secondary color, color
index, edge flag, fog coordinate, texture coordinates, and generic attribute values
are each indeterminate after execution of DrawArraysOneInstance, if the corre-
sponding array is enabled. Current values corresponding to disabled arrays are not
modified by the execution of DrawArraysOneInstance.

Specifying first < 0 results in undefined behavior. Generating the error
INVALID_VALUE is recommended in this case.

The command

void DrawArrays(enum mode, int first, sizei count);

is equivalent to the command sequence

DrawArraysOneInstance(mode, first, count, 0);

The internal counter instanceID is a 32-bit integer value which may be read by
a vertex shader as gl_InstanceID, as described in section 2.14.4. The value of
this counter is always zero, except as noted below.

The command

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 45

void DrawArraysInstanced(enum mode, int first,
sizei count, sizei primcount);

behaves identically to DrawArrays except that primcount instances of the range
of elements are executed, the value of instanceID advances for each iteration, and
the instanced elements advance per instance depending on the value of the divisor
for that vertex attribute set with VertexAttribDivisor. It has the same effect as:

if (mode or count is invalid)
generate appropriate error

else {
for (i = 0; i < primcount; i++) {

instanceID = i;
DrawArraysOneInstance(mode, first, count, i);

}
instanceID = 0;

}

The command

void MultiDrawArrays(enum mode, const int *first,
const sizei *count, sizei primcount);

behaves identically to DrawArraysInstanced except that primcount separate
ranges of elements are specified instead, all elements are treated as though they are
not instanced, and the value of instanceID stays at 0. It has the same effect as:

if (mode is invalid)
generate appropriate error

else {
for (i = 0; i < primcount; i++) {

if (count[i] > 0)
DrawArraysOneInstance(mode, first[i], count[i], 0);

}
}

The command

void DrawElementsOneInstance(enum mode, sizei count,
enum type, const void *indices);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 46

does not exist in the GL, but is used to describe functionality in the rest of this sec-
tion. This command constructs a sequence of geometric primitives using the count
elements whose indices are stored in indices. type must be one of UNSIGNED_-
BYTE, UNSIGNED_SHORT, or UNSIGNED_INT, indicating that the index values are
of GL type ubyte, ushort, or uint respectively. mode specifies what kind of
primitives are constructed, and accepts the same token values as the mode parame-
ter of the Begin command.

The effect of

DrawElementsOneInstance(mode, count, type, indices);

is the same as the effect of the command sequence

Begin(mode);
for (int i = 0; i < count ; i++)

ArrayElementInstanced(indices[i], instance);
End();

with one exception: the current normal coordinates, color, secondary color, color
index, edge flag, fog coordinate, texture coordinates, and generic attributes are
each indeterminate after execution of DrawElementsOneInstance, if the corre-
sponding array is enabled. Current values corresponding to disabled arrays are not
modified by the execution of DrawElementsOneInstance.

The command

void DrawElements(enum mode, sizei count, enum type,
const void *indices);

behaves identically to DrawElementsOneInstance with the instance parameter set
to zero; the effect of calling

DrawElements(mode, count, type, indices);

is equivalent to the command sequence:

if (mode, count or type is invalid)
generate appropriate error

else
DrawElementsOneInstance(mode, count, type, indices, 0);

The command

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 47

void DrawElementsInstanced(enum mode, sizei count,
enum type, const void *indices, sizei primcount);

behaves identically to DrawElements except that primcount instances of the set of
elements are executed, the value of instanceID advances between each set, and the
instance advances between each set. It has the same effect as:

if (mode, count, or type is invalid)
generate appropriate error

else {
for (int i = 0; i < primcount; i++) {

instanceID = i;
DrawElementsOneInstance(mode, count, type, indices, i);

}
instanceID = 0;

}

The command

void MultiDrawElements(enum mode, const
sizei *count, enum type, const void **indices,
sizei primcount);

behaves identically to DrawElementsInstanced except that primcount separate
sets of elements are specified instead, all elements are treated as though they are
not instanced, and the value of instanceID stays at 0. It has the same effect as:

if (mode, count, or type is invalid)
generate appropriate error

else {
for (int i = 0; i < primcount; i++)

DrawElementsOneInstance(mode, count[i], type, indices[i], 0);
}

The command

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enum type, const
void *indices);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 48

is a restricted form of DrawElements. mode, count, type, and indices match the
corresponding arguments to DrawElements, with the additional constraint that all
index values identified by indices must lie between start and end inclusive.

Implementations denote recommended maximum amounts of vertex and index
data, which may be queried by calling GetIntegerv with the symbolic constants
MAX_ELEMENTS_VERTICES and MAX_ELEMENTS_INDICES. If end − start + 1
is greater than the value of MAX_ELEMENTS_VERTICES, or if count is greater than
the value of MAX_ELEMENTS_INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start, end] be
referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

The error INVALID_VALUE is generated if end < start. Invalid mode, count,
or type parameters generate the same errors as would the corresponding call to
DrawElements. It is an error for index values other than the primitive restart
index to lie outside the range [start, end], but implementations are not required to
check for this. Such indices will cause implementation-dependent behavior.

The commands

void DrawElementsBaseVertex(enum mode, sizei count,
enum type, const void *indices, int basevertex);

void DrawRangeElementsBaseVertex(enum mode,
uint start, uint end, sizei count, enum type, const
void *indices, int basevertex);

void DrawElementsInstancedBaseVertex(enum mode,
sizei count, enum type, const void *indices,
sizei primcount, int basevertex);

are equivalent to the commands with the same base name (without the BaseVertex
suffix), except that the ith element transferred by the corresponding draw call will
be taken from element indices[i] + basevertex of each enabled array. If the result-
ing value is larger than the maximum value representable by type, it should behave
as if the calculation were upconverted to 32-bit unsigned integers (with wrapping
on overflow conditions). The operation is undefined if the sum would be negative
and should be handled as described in section 2.9.4. For DrawRangeElementsBa-
seVertex, the index values must lie between start and end inclusive, prior to adding
the basevertex offset. Index values lying outside the range [start, end] are treated
in the same way as DrawRangeElements.

The command

void MultiDrawElementsBaseVertex(enum mode, const

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 49

sizei *count, enum type, const void **indices,
sizei primcount, const int *basevertex);

behaves identically to DrawElementsBaseVertex, except that primcount separate
lists of elements are specified instead. It has the same effect as:

for (int i = 0; i < primcount; i++)
if (count[i] > 0)

DrawElementsBaseVertex(mode, count[i], type,
indices[i], basevertex[i]);

The command

void InterleavedArrays(enum format, sizei stride, const
void *pointer);

efficiently initializes the six arrays and their enables to one of 14 configurations.
format must be one of 14 symbolic constants: V2F, V3F, C4UB_V2F, C4UB_-
V3F, C3F_V3F, N3F_V3F, C4F_N3F_V3F, T2F_V3F, T4F_V4F, T2F_C4UB_V3F,
T2F_C3F_V3F, T2F_N3F_V3F, T2F_C4F_N3F_V3F, or T4F_C4F_N3F_V4F.

The effect of

InterleavedArrays(format, stride, pointer);

is the same as the effect of the command sequence

if (format or stride is invalid)
generate appropriate error

else {
int str;
set et, ec, en, st, sc, sv, tc, pc, pn, pv, and s as a function

of table 2.8 and the value of format.
str = stride;
if (str is zero)
str = s;

DisableClientState(EDGE_FLAG_ARRAY);
DisableClientState(INDEX_ARRAY);
DisableClientState(SECONDARY_COLOR_ARRAY);
DisableClientState(FOG_COORD_ARRAY);
if (et) {

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 50

format et ec en st sc sv tc

V2F False False False 2
V3F False False False 3
C4UB_V2F False True False 4 2 UNSIGNED_BYTE

C4UB_V3F False True False 4 3 UNSIGNED_BYTE

C3F_V3F False True False 3 3 FLOAT

N3F_V3F False False True 3
C4F_N3F_V3F False True True 4 3 FLOAT

T2F_V3F True False False 2 3
T4F_V4F True False False 4 4
T2F_C4UB_V3F True True False 2 4 3 UNSIGNED_BYTE

T2F_C3F_V3F True True False 2 3 3 FLOAT

T2F_N3F_V3F True False True 2 3
T2F_C4F_N3F_V3F True True True 2 4 3 FLOAT

T4F_C4F_N3F_V4F True True True 4 4 4 FLOAT

format pc pn pv s

V2F 0 2f
V3F 0 3f
C4UB_V2F 0 c c+ 2f
C4UB_V3F 0 c c+ 3f
C3F_V3F 0 3f 6f
N3F_V3F 0 3f 6f
C4F_N3F_V3F 0 4f 7f 10f
T2F_V3F 2f 5f
T4F_V4F 4f 8f
T2F_C4UB_V3F 2f c+ 2f c+ 5f
T2F_C3F_V3F 2f 5f 8f
T2F_N3F_V3F 2f 5f 8f
T2F_C4F_N3F_V3F 2f 6f 9f 12f
T4F_C4F_N3F_V4F 4f 8f 11f 15f

Table 2.8: Variables that direct the execution of InterleavedArrays. f is
sizeof(FLOAT). c is 4 times sizeof(UNSIGNED_BYTE), rounded up to
the nearest multiple of f . All pointer arithmetic is performed in units of
sizeof(UNSIGNED_BYTE).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 51

EnableClientState(TEXTURE_COORD_ARRAY);
TexCoordPointer(st, FLOAT, str, pointer);

} else
DisableClientState(TEXTURE_COORD_ARRAY);

if (ec) {
EnableClientState(COLOR_ARRAY);
ColorPointer(sc, tc, str, pointer + pc);

} else
DisableClientState(COLOR_ARRAY);

if (en) {
EnableClientState(NORMAL_ARRAY);
NormalPointer(FLOAT, str, pointer + pn);

} else
DisableClientState(NORMAL_ARRAY);

EnableClientState(VERTEX_ARRAY);
VertexPointer(sv, FLOAT, str, pointer + pv);

}

If the number of supported texture units (the value of MAX_TEXTURE_COORDS)
is m and the number of supported generic vertex attributes (the value of MAX_-
VERTEX_ATTRIBS) is n, then the state required to implement vertex arrays consists
of an integer for the client active texture unit selector, 7 + m + n boolean values,
7 + m + n memory pointers, 7 + m + n integer stride values, 7 + m + n sym-
bolic constants representing array types, 3 + m + n integers representing values
per element, n boolean values indicating normalization, n boolean values indicat-
ing whether the attribute values are pure integers, n integers representing vertex
attribute divisors, and an unsigned integer representing the restart index.

In the initial state, the client active texture unit selector is TEXTURE0, the
boolean values are each false, the memory pointers are each NULL, the strides are
each zero, the array types are each FLOAT, the integers representing values per
element are each four, the normalized and pure integer flags are each false, the
divisors are each zero, and the restart index is zero.

2.9 Buffer Objects

Vertex array data (described in section 2.8) are stored in client memory. It is some-
times desirable to store frequently used client data, such as vertex array and pixel
data, in high-performance server memory. GL buffer objects provide a mechanism
that clients can use to allocate, initialize, and render from such memory. The name
space for buffer objects is the unsigned integers, with zero reserved for the GL.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 52

The command

void GenBuffers(sizei n, uint *buffers);

returns n previously unused buffer object names in buffers. These names are
marked as used, for the purposes of GenBuffers only, but they acquire buffer state
only when they are first bound with BindBuffer (see below), just as if they were
unused.

Buffer objects are deleted by calling

void DeleteBuffers(sizei n, const uint *buffers);

buffers contains n names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. Unused names in buffers
are silently ignored, as is the value zero.

2.9.1 Creating and Binding Buffer Objects

A buffer object is created by binding an unused name to a buffer target. The
binding is effected by calling

void BindBuffer(enum target, uint buffer);

target must be one of the targets listed in table 2.9. If the buffer object named
buffer has not been previously bound, or has been deleted since the last binding,
the GL creates a new state vector, initialized with a zero-sized memory buffer and
comprising the state values listed in table 2.10.

Buffer objects created by binding an unused name to any of the valid targets
are formally equivalent, but the GL may make different choices about storage lo-
cation and layout based on the initial binding.

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding to target is broken.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object. Operations on the target also affect any
other bindings of that object.

If a buffer object is deleted while it is bound, all bindings to that object in
the current context (i.e. in the thread that called DeleteBuffers) are reset to zero.
Bindings to that buffer in other contexts and other threads are not affected, but
attempting to use a deleted buffer in another thread produces undefined results,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 53

Target name Purpose Described in section(s)
ARRAY_BUFFER Vertex attributes 2.9.6
COPY_READ_BUFFER Buffer copy source 2.9.5
COPY_WRITE_BUFFER Buffer copy destination 2.9.5
ELEMENT_ARRAY_BUFFER Vertex array indices 2.9.7
PIXEL_PACK_BUFFER Pixel read target 4.3.2, 6.1
PIXEL_UNPACK_BUFFER Texture data source 3.7
TEXTURE_BUFFER Texture data buffer 3.9.7
TRANSFORM_FEEDBACK_BUFFER Transform feedback buffer 2.19
UNIFORM_BUFFER Uniform block storage 2.14.4

Table 2.9: Buffer object binding targets.

Name Type Initial Value Legal Values
BUFFER_SIZE int64 0 any non-negative integer
BUFFER_USAGE enum STATIC_DRAW STREAM_DRAW, STREAM_READ,

STREAM_COPY, STATIC_DRAW,
STATIC_READ, STATIC_COPY,
DYNAMIC_DRAW, DYNAMIC_READ,
DYNAMIC_COPY

BUFFER_ACCESS enum READ_WRITE READ_ONLY, WRITE_ONLY,
READ_WRITE

BUFFER_ACCESS_FLAGS int 0 See section 2.9.3
BUFFER_MAPPED boolean FALSE TRUE, FALSE
BUFFER_MAP_POINTER void* NULL address
BUFFER_MAP_OFFSET int64 0 any non-negative integer
BUFFER_MAP_LENGTH int64 0 any non-negative integer

Table 2.10: Buffer object parameters and their values.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 54

including but not limited to possible GL errors and rendering corruption. Using
a deleted buffer in another context or thread may not, however, result in program
termination.

Initially, each buffer object target is bound to zero. There is no buffer object
corresponding to the name zero, so client attempts to modify or query buffer object
state for a target bound to zero generate an INVALID_OPERATION error.

Binding Buffer Objects to Indexed Targets

Buffer objects may be bound to indexed targets by calling one of the commands

void BindBufferRange(enum target, uint index,
uint buffer, intptr offset, sizeiptr size);

void BindBufferBase(enum target, uint index, uint buffer);

target must be TRANSFORM_FEEDBACK_BUFFER or UNIFORM_BUFFER. Addi-
tional language specific to each target is included in sections referred to for each
target in table 2.9.

Each target represents an indexed array of buffer object binding points, as well
as a single general binding point that can be used by other buffer object manipu-
lation functions (e.g. BindBuffer, MapBuffer). Both commands bind the buffer
object named by buffer to both the general binding point, and to the binding point
in the array given by index. The error INVALID_VALUE is generated if index is
greater than or equal to the number of target-specific indexed binding points.

For BindBufferRange, offset specifies a starting offset into the buffer object
buffer, and size specifies the amount of data that can be read from the buffer object
while used as an indexed target. Both offset and size are in basic machine units.
The error INVALID_VALUE is generated if size is less than or equal to zero or if
offset + size is greater than the value of BUFFER_SIZE. Additional errors may be
generated if offset violates target-specific alignment requirements.

BindBufferBase is equivalent to calling BindBufferRange with offset zero
and size equal to the size of buffer.

2.9.2 Creating Buffer Object Data Stores

The data store of a buffer object is created and initialized by calling

void BufferData(enum target, sizeiptr size, const
void *data, enum usage);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 55

with target set to one of the targets listed in table 2.9, size set to the size of the data
store in basic machine units, and data pointing to the source data in client memory.
If data is non-null, then the source data is copied to the buffer object’s data store.
If data is null, then the contents of the buffer object’s data store are undefined.

usage is specified as one of nine enumerated values, indicating the expected
application usage pattern of the data store. The values are:

STREAM_DRAW The data store contents will be specified once by the application,
and used at most a few times as the source for GL drawing and image speci-
fication commands.

STREAM_READ The data store contents will be specified once by reading data from
the GL, and queried at most a few times by the application.

STREAM_COPY The data store contents will be specified once by reading data from
the GL, and used at most a few times as the source for GL drawing and image
specification commands.

STATIC_DRAW The data store contents will be specified once by the application,
and used many times as the source for GL drawing and image specification
commands.

STATIC_READ The data store contents will be specified once by reading data from
the GL, and queried many times by the application.

STATIC_COPY The data store contents will be specified once by reading data from
the GL, and used many times as the source for GL drawing and image spec-
ification commands.

DYNAMIC_DRAW The data store contents will be respecified repeatedly by the ap-
plication, and used many times as the source for GL drawing and image
specification commands.

DYNAMIC_READ The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMIC_COPY The data store contents will be respecified repeatedly by reading
data from the GL, and used many times as the source for GL drawing and
image specification commands.

usage is provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 56

Name Value
BUFFER_SIZE size
BUFFER_USAGE usage
BUFFER_ACCESS READ_WRITE

BUFFER_ACCESS_FLAGS 0
BUFFER_MAPPED FALSE

BUFFER_MAP_POINTER NULL

BUFFER_MAP_OFFSET 0
BUFFER_MAP_LENGTH 0

Table 2.11: Buffer object initial state.

BufferData deletes any existing data store, and sets the values of the buffer
object’s state variables as shown in table 2.11.

Clients must align data elements consistent with the requirements of the client
platform, with an additional base-level requirement that an offset within a buffer to
a datum comprising N basic machine units be a multiple of N .

If the GL is unable to create a data store of the requested size, the error OUT_-
OF_MEMORY is generated.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the command

void BufferSubData(enum target, intptr offset,
sizeiptr size, const void *data);

with target set to one of the targets listed in table 2.9. offset and size indicate the
range of data in the buffer object that is to be replaced, in terms of basic machine
units. data specifies a region of client memory size basic machine units in length,
containing the data that replace the specified buffer range. An INVALID_VALUE

error is generated if offset or size is less than zero or if offset + size is greater than
the value of BUFFER_SIZE. An INVALID_OPERATION error is generated if any
part of the specified buffer range is mapped with MapBufferRange or MapBuffer
(see section 2.9.3).

2.9.3 Mapping and Unmapping Buffer Data

All or part of the data store of a buffer object may be mapped into the client’s
address space by calling

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 57

void *MapBufferRange(enum target, intptr offset,
sizeiptr length, bitfield access);

with target set to one of the targets listed in table 2.9. offset and length indicate the
range of data in the buffer object that is to be mapped, in terms of basic machine
units. access is a bitfield containing flags which describe the requested mapping.
These flags are described below.

If no error occurs, a pointer to the beginning of the mapped range is returned
once all pending operations on that buffer have completed, and may be used to
modify and/or query the corresponding range of the buffer, according to the fol-
lowing flag bits set in access:

• MAP_READ_BIT indicates that the returned pointer may be used to read
buffer object data. No GL error is generated if the pointer is used to query
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

• MAP_WRITE_BIT indicates that the returned pointer may be used to modify
buffer object data. No GL error is generated if the pointer is used to modify
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

Pointer values returned by MapBufferRange may not be passed as parameter
values to GL commands. For example, they may not be used to specify array
pointers, or to specify or query pixel or texture image data; such actions produce
undefined results, although implementations may not check for such behavior for
performance reasons.

Mappings to the data stores of buffer objects may have nonstandard perfor-
mance characteristics. For example, such mappings may be marked as uncacheable
regions of memory, and in such cases reading from them may be very slow. To en-
sure optimal performance, the client should use the mapping in a fashion consistent
with the values of BUFFER_USAGE and access. Using a mapping in a fashion in-
consistent with these values is liable to be multiple orders of magnitude slower
than using normal memory.

The following optional flag bits in access may be used to modify the mapping:

• MAP_INVALIDATE_RANGE_BIT indicates that the previous contents of the
specified range may be discarded. Data within this range are undefined with
the exception of subsequently written data. No GL error is generated if sub-
sequent GL operations access unwritten data, but the result is undefined and
system errors (possibly including program termination) may occur. This flag
may not be used in combination with MAP_READ_BIT.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 58

Name Value
BUFFER_ACCESS Depends on access1

BUFFER_ACCESS_FLAGS access
BUFFER_MAPPED TRUE

BUFFER_MAP_POINTER pointer to the data store
BUFFER_MAP_OFFSET offset
BUFFER_MAP_LENGTH length

Table 2.12: Buffer object state set by MapBufferRange.
1 BUFFER_ACCESS is set to READ_ONLY, WRITE_ONLY, or READ_WRITE if access
& (MAP_READ_BIT|MAP_WRITE_BIT) is respectively MAP_READ_BIT, MAP_-
WRITE_BIT, or MAP_READ_BIT|MAP_WRITE_BIT.

• MAP_INVALIDATE_BUFFER_BIT indicates that the previous contents of the
entire buffer may be discarded. Data within the entire buffer are undefined
with the exception of subsequently written data. No GL error is generated if
subsequent GL operations access unwritten data, but the result is undefined
and system errors (possibly including program termination) may occur. This
flag may not be used in combination with MAP_READ_BIT.

• MAP_FLUSH_EXPLICIT_BIT indicates that one or more discrete subranges
of the mapping may be modified. When this flag is set, modifications to
each subrange must be explicitly flushed by calling FlushMappedBuffer-
Range. No GL error is set if a subrange of the mapping is modified and
not flushed, but data within the corresponding subrange of the buffer are un-
defined. This flag may only be used in conjunction with MAP_WRITE_BIT.
When this option is selected, flushing is strictly limited to regions that are
explicitly indicated with calls to FlushMappedBufferRange prior to un-
map; if this option is not selected UnmapBuffer will automatically flush the
entire mapped range when called.

• MAP_UNSYNCHRONIZED_BIT indicates that the GL should not attempt to
synchronize pending operations on the buffer prior to returning from Map-
BufferRange. No GL error is generated if pending operations which source
or modify the buffer overlap the mapped region, but the result of such previ-
ous and any subsequent operations is undefined.

A successful MapBufferRange sets buffer object state values as shown in ta-
ble 2.12.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 59

Errors
If an error occurs, MapBufferRange returns a NULL pointer.
An INVALID_VALUE error is generated if offset or length is negative, if offset+

length is greater than the value of BUFFER_SIZE, or if access has any bits set other
than those defined above.

An INVALID_OPERATION error is generated for any of the following condi-
tions:

• The buffer is already in a mapped state.

• Neither MAP_READ_BIT nor MAP_WRITE_BIT is set.

• MAP_READ_BIT is set and any of MAP_INVALIDATE_RANGE_BIT, MAP_-
INVALIDATE_BUFFER_BIT, or MAP_UNSYNCHRONIZED_BIT is set.

• MAP_FLUSH_EXPLICIT_BIT is set and MAP_WRITE_BIT is not set.

An OUT_OF_MEMORY error is generated if MapBufferRange fails because
memory for the mapping could not be obtained.

No error is generated if memory outside the mapped range is modified or
queried, but the result is undefined and system errors (possibly including program
termination) may occur.

The entire data store of a buffer object can be mapped into the client’s address
space by calling

void *MapBuffer(enum target, enum access);

MapBuffer is equivalent to calling MapBufferRange with the same target, offset
of zero, length equal to the value of BUFFER_SIZE, and the access bitfield
value passed to MapBufferRange equal to

• MAP_READ_BIT, if mbaccess is READ_ONLY

• MAP_WRITE_BIT, if mbaccess is WRITE_ONLY

• MAP_READ_BIT|MAP_WRITE_BIT, if mbaccess is READ_WRITE

and mbaccess is the value of the access enum parameter passed to MapBuffer.
INVALID_ENUM is generated if access is not one of the values described above.

Other errors are generated as described above for MapBufferRange.
If a buffer is mapped with the MAP_FLUSH_EXPLICIT_BIT flag, modifications

to the mapped range may be indicated by calling

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 60

void FlushMappedBufferRange(enum target, intptr offset,
sizeiptr length);

with target set to one of the targets listed in table 2.9. offset and length indi-
cate a modified subrange of the mapping, in basic machine units. The specified
subrange to flush is relative to the start of the currently mapped range of buffer.
FlushMappedBufferRange may be called multiple times to indicate distinct sub-
ranges of the mapping which require flushing.

Errors
An INVALID_VALUE error is generated if offset or length is negative, or if

offset + length exceeds the size of the mapping.
An INVALID_OPERATION error is generated if zero is bound to target.
An INVALID_OPERATION error is generated if the buffer bound to target is

not mapped, or is mapped without the MAP_FLUSH_EXPLICIT_BIT flag.

Unmapping Buffers

After the client has specified the contents of a mapped buffer range, and before the
data in that range are dereferenced by any GL commands, the mapping must be
relinquished by calling

boolean UnmapBuffer(enum target);

with target set to one of the targets listed in table 2.9. Unmapping a mapped buffer
object invalidates the pointer to its data store and sets the object’s BUFFER_-

MAPPED, BUFFER_MAP_POINTER, BUFFER_ACCESS_FLAGS, BUFFER_MAP_-

OFFSET, and BUFFER_MAP_LENGTH state variables to the initial values shown in
table 2.11.

UnmapBuffer returns TRUE unless data values in the buffer’s data store have
become corrupted during the period that the buffer was mapped. Such corruption
can be the result of a screen resolution change or other window system-dependent
event that causes system heaps such as those for high-performance graphics mem-
ory to be discarded. GL implementations must guarantee that such corruption can
occur only during the periods that a buffer’s data store is mapped. If such corrup-
tion has occurred, UnmapBuffer returns FALSE, and the contents of the buffer’s
data store become undefined.

If the buffer data store is already in the unmapped state, UnmapBuffer returns
FALSE, and an INVALID_OPERATION error is generated. However, unmapping
that occurs as a side effect of buffer deletion or reinitialization is not an error.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 61

Effects of Mapping Buffers on Other GL Commands

Most, but not all GL commands will detect attempts to read data from a mapped
buffer object. When such an attempt is detected, an INVALID_OPERATION error
will be generated. Any command which does not detect these attempts, and per-
forms such an invalid read, has undefined results and may result in GL interruption
or termination.

2.9.4 Effects of Accessing Outside Buffer Bounds

Most, but not all GL commands operating on buffer objects will detect attempts to
read from or write to a location in a bound buffer object at an offset less than zero,
or greater than or equal to the buffer’s size. When such an attempt is detected, a
GL error will be generated. Any command which does not detect these attempts,
and performs such an invalid read or write, has undefined results, and may result
in GL interruption or termination.

2.9.5 Copying Between Buffers

All or part of the data store of a buffer object may be copied to the data store of
another buffer object by calling

void *CopyBufferSubData(enum readtarget,
enum writetarget, intptr readoffset, intptr writeoffset,
sizeiptr size);

with readtarget and writetarget each set to one of the targets listed in table 2.9.
While any of these targets may be used, the COPY_READ_BUFFER and COPY_-

WRITE_BUFFER targets are provided specifically for copies, so that they can be
done without affecting other buffer binding targets that may be in use. writeoffset
and size specify the range of data in the buffer object bound to writetarget that is
to be replaced, in terms of basic machine units. readoffset and size specify the
range of data in the buffer object bound to readtarget that is to be copied to the
corresponding region of writetarget.

An INVALID_VALUE error is generated if any of readoffset, writeoffset, or size
are negative, if readoffset + size exceeds the size of the buffer object bound to
readtarget, or if writeoffset + size exceeds the size of the buffer object bound to
writetarget.

An INVALID_VALUE error is generated if the same buffer object is bound to
both readtarget and writetarget, and the ranges [readoffset , readoffset + size) and
[writeoffset ,writeoffset + size) overlap.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 62

An INVALID_OPERATION error is generated if zero is bound to readtarget or
writetarget.

An INVALID_OPERATION error is generated if the buffer objects bound to
either readtarget or writetarget are mapped.

2.9.6 Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objects with the same format
and layout options supported for client-side vertex arrays. However, it is expected
that GL implementations will (at minimum) be optimized for data with all compo-
nents represented as floats, as well as for color data with components represented
as either floats or unsigned bytes. A buffer object binding point is added to the
client state associated with each vertex array type. The commands that specify
the locations and organizations of vertex arrays copy the buffer object name that
is bound to ARRAY_BUFFER to the binding point corresponding to the vertex ar-
ray of the type being specified. For example, the VertexAttribPointer command
copies the value of ARRAY_BUFFER_BINDING (the queriable name of the buffer
binding corresponding to the target ARRAY_BUFFER) to the client state variable
VERTEX_ATTRIB_ARRAY_BUFFER_BINDING for the specified index.

Rendering commands ArrayElement, DrawArrays, and the other drawing
commands defined in section 2.8.2 operate as previously defined, except that data
for enabled vertex and attrib arrays are sourced from buffers if the array’s buffer
binding is non-zero. When an array is sourced from a buffer object, the pointer
value of that array is used to compute an offset, in basic machine units, into the
data store of the buffer object. This offset is computed by subtracting a null pointer
from the pointer value, where both pointers are treated as pointers to basic machine
units.

It is acceptable for vertex or attrib arrays to be sourced from any combination
of client memory and various buffer objects during a single rendering operation.

2.9.7 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with the same format op-
tions that are supported for client-side index arrays. Initially zero is bound to
ELEMENT_ARRAY_BUFFER, indicating that DrawElements and DrawRangeEle-
ments are to source their indices from arrays passed as their indices parameters,
and that MultiDrawElements is to source its indices from the array of pointers to
arrays passed in as its indices parameter.

A buffer object is bound to ELEMENT_ARRAY_BUFFER by calling BindBuffer
with target set to ELEMENT_ARRAY_BUFFER, and buffer set to the name of the

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.10. VERTEX ARRAY OBJECTS 63

buffer object. If no corresponding buffer object exists, one is initialized as defined
in section 2.9.

While a non-zero buffer object name is bound to ELEMENT_ARRAY_BUFFER,
DrawElements, DrawRangeElements, and DrawElementsInstanced source

their indices from that buffer object, using their indices parameters as offsets into
the buffer object in the same fashion as described in section 2.9.6. DrawElements-
BaseVertex, DrawRangeElementsBaseVertex, and DrawElementsInstanced-
BaseVertex also source their indices from that buffer object, adding the basevertex
offset to the appropriate vertex index as a final step before indexing into the vertex
buffer; this does not affect the calculation of the base pointer for the index array.
Finally, MultiDrawElements and MultiDrawElementsBaseVertex also source
their indices from that buffer object, using its indices parameter as a pointer to an
array of pointers that represent offsets into the buffer object.

In some cases performance will be optimized by storing indices and array data
in separate buffer objects, and by creating those buffer objects with the correspond-
ing binding points.

2.9.8 Buffer Object State

The state required to support buffer objects consists of binding names for each
of the buffer targets in table 2.9, and for each of the indexed buffer targets in sec-
tion 2.9.1. Additionally, each vertex array has an associated binding so there is a
buffer object binding for each of the vertex array, normal array, color array, index
array, multiple texture coordinate arrays, edge flag array, secondary color array, fog
coordinate array, and vertex attribute arrays. The initial values for all buffer object
bindings is zero.

The state of each buffer object consists of a buffer size in basic machine units, a
usage parameter, an access parameter, a mapped boolean, two integers for the offset
and size of the mapped region, a pointer to the mapped buffer (NULL if unmapped),
and the sized array of basic machine units for the buffer data.

2.10 Vertex Array Objects

The buffer objects that are to be used by the vertex stage of the GL are collected
together to form a vertex array object. All state related to the definition of data
used by the vertex processor is encapsulated in a vertex array object.

The command

void GenVertexArrays(sizei n, uint *arrays);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.11. RECTANGLES 64

returns n previous unused vertex array object names in arrays. These names are
marked as used, for the purposes of GenVertexArrays only, but they acquire array
state only when they are first bound.

Vertex array objects are deleted by calling

void DeleteVertexArrays(sizei n, const uint *arrays);

arrays contains n names of vertex array objects to be deleted. Once a vertex array
object is deleted it has no contents and its name is again unused. If a vertex array
object that is currently bound is deleted, the binding for that object reverts to zero
and the default vertex array becomes current. Unused names in arrays are silently
ignored, as is the value zero.

A vertex array object is created by binding a name returned by GenVertexAr-
rays with the command

void BindVertexArray(uint array);

array is the vertex array object name. The resulting vertex array object is a new
state vector, comprising all the state values listed in tables 6.9- 6.12.

BindVertexArray may also be used to bind an existing vertex array object.
If the bind is successful no change is made to the state of the bound vertex array
object, and any previous binding is broken.

The currently bound vertex array object is used for all commands which modify
vertex array state, such as VertexAttribPointer and EnableVertexAttribArray;
all commands which draw from vertex arrays, such as DrawArrays and DrawEle-
ments; and all queries of vertex array state (see chapter 6).

BindVertexArray fails and an INVALID_OPERATION error is generated if ar-
ray is not zero or a name returned from a previous call to GenVertexArrays, or if
such a name has since been deleted with DeleteVertexArrays.

2.11 Rectangles

There is a set of GL commands to support efficient specification of rectangles as
two corner vertices.

void Rect{sifd}(T x1, T y1, T x2, T y2);
void Rect{sifd}v(const T v1[2], const T v2[2]);

Each command takes either four arguments organized as two consecutive pairs of
(x, y) coordinates, or two pointers to arrays each of which contains an x value
followed by a y value. The effect of the Rect command

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 65

Rect (x1, y1, x2, y2);

is exactly the same as the following sequence of commands:

Begin(POLYGON);
Vertex2(x1, y1);
Vertex2(x2, y1);
Vertex2(x2, y2);
Vertex2(x1, y2);

End();

The appropriate Vertex2 command would be invoked depending on which of the
Rect commands is issued.

2.12 Fixed-Function Vertex Transformations

This section and the following discussion through section 2.13 describe the state
values and operations necessary for transforming vertex attributes according to a
fixed-functionality method. An alternate programmable method for transforming
vertex attributes is described in section 2.14.

Vertices, normals, and texture coordinates are transformed before their coordi-
nates are used to produce an image in the framebuffer. We begin with a description
of how vertex coordinates are transformed and how this transformation is con-
trolled.

Figure 2.9 diagrams the sequence of transformations that are applied to ver-
tices. The vertex coordinates that are presented to the GL are termed object coor-
dinates. The model-view matrix is applied to these coordinates to yield eye coordi-
nates. Then another matrix, called the projection matrix, is applied to eye coordi-
nates to yield clip coordinates. Clip coordinates are further processed as described
in section 2.16.

Object coordinates, eye coordinates, and clip coordinates are four-dimensional,
consisting of x, y, z, and w coordinates (in that order). The model-view and pro-
jection matrices are thus 4× 4.

If a vertex in object coordinates is given by


xo

yo

zo
wo

 and the model-view matrix

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 66

Object

Coordinates Coordinates

Eye

Coordinates

Window

Coordinates

Normalized
DeviceModel−View

Matrix

Perspective
Division

Viewport
Transformation

Coordinates

ClipProjection

Matrix

Figure 2.9. Vertex transformation sequence.

is M , then the vertex’s eye coordinates are found as
xe

ye

ze
we

 = M


xo

yo

zo
wo

 .

Similarly, if P is the projection matrix, then the vertex’s clip coordinates are
xc

yc

zc
wc

 = P


xe

ye

ze
we

 .

2.12.1 Matrices

The projection matrix and model-view matrix are set and modified with a variety
of commands. The affected matrix is determined by the current matrix mode. The
current matrix mode is set with

void MatrixMode(enum mode);

which takes one of the pre-defined constants TEXTURE, MODELVIEW, COLOR, or
PROJECTION as the argument value. TEXTURE is described later in section 2.12.1,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 67

and COLOR is described in section 3.7.3. If the current matrix mode is MODELVIEW,
then matrix operations apply to the model-view matrix; if PROJECTION, then they
apply to the projection matrix.

The two basic commands for affecting the current matrix are

void LoadMatrix{fd}(const T m[16]);
void MultMatrix{fd}(const T m[16]);

LoadMatrix takes a pointer to a 4× 4 matrix stored in column-major order as 16
consecutive floating-point values, i.e. as

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

a4 a8 a12 a16

 .

(This differs from the standard row-major C ordering for matrix elements. If the
standard ordering is used, all of the subsequent transformation equations are trans-
posed, and the columns representing vectors become rows.)

The specified matrix replaces the current matrix with the one pointed to. Mult-
Matrix takes the same type argument as LoadMatrix, but multiplies the current
matrix by the one pointed to and replaces the current matrix with the product. If C
is the current matrix and M is the matrix pointed to by MultMatrix’s argument,
then the resulting current matrix, C ′, is

C ′ = C ·M.

The commands

void LoadTransposeMatrix{fd}(const T m[16]);
void MultTransposeMatrix{fd}(const T m[16]);

take pointers to 4×4 matrices stored in row-major order as 16 consecutive floating-
point values, i.e. as 

a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

 .

The effect of

LoadTransposeMatrix[fd](m);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 68

is the same as the effect of

LoadMatrix[fd](mT);

The effect of

MultTransposeMatrix[fd](m);

is the same as the effect of

MultMatrix[fd](mT);

The command

void LoadIdentity(void);

effectively calls LoadMatrix with the identity matrix:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

There are a variety of other commands that manipulate matrices. Rotate,
Translate, Scale, Frustum, and Ortho manipulate the current matrix. Each com-
putes a matrix and then invokes MultMatrix with this matrix. In the case of

void Rotate{fd}(T θ, T x, T y, T z);

θ gives an angle of rotation in degrees; the coordinates of a vector v are given by
v = (x y z)T . The computed matrix is a counter-clockwise rotation about the line
through the origin with the specified axis when that axis is pointing up (i.e. the
right-hand rule determines the sense of the rotation angle). The matrix is thus

0
R 0

0
0 0 0 1

 .

Let u = v/||v|| =
(
x′ y′ z′

)T . If

S =

 0 −z′ y′

z′ 0 −x′
−y′ x′ 0


OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 69

then
R = uuT + cos θ(I − uuT) + sin θS.

The arguments to

void Translate{fd}(T x, T y, T z);

give the coordinates of a translation vector as (x y z)T . The resulting matrix is a
translation by the specified vector:

1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

 .

void Scale{fd}(T x, T y, T z);

produces a general scaling along the x-, y-, and z- axes. The corresponding matrix
is 

x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1

 .

For

void Frustum(double l, double r, double b, double t,
double n, double f);

the coordinates (l b − n)T and (r t − n)T specify the points on the near clipping
plane that are mapped to the lower left and upper right corners of the window,
respectively (assuming that the eye is located at (0 0 0)T). f gives the distance
from the eye to the far clipping plane. If either n or f is less than or equal to zero,
l is equal to r, b is equal to t, or n is equal to f , the error INVALID_VALUE results.
The corresponding matrix is

2n
r−l 0 r+l

r−l 0
0 2n

t−b
t+b
t−b 0

0 0 −f+n
f−n − 2fn

f−n

0 0 −1 0

 .

void Ortho(double l, double r, double b, double t,
double n, double f);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 70

describes a matrix that produces parallel projection. (l b − n)T and (r t − n)T

specify the points on the near clipping plane that are mapped to the lower left and
upper right corners of the window, respectively. f gives the distance from the eye
to the far clipping plane. If l is equal to r, b is equal to t, or n is equal to f , the
error INVALID_VALUE results. The corresponding matrix is

2
r−l 0 0 − r+l

r−l

0 2
t−b 0 − t+b

t−b

0 0 − 2
f−n −f+n

f−n

0 0 0 1

 .

For each texture coordinate set, a 4× 4 matrix is applied to the corresponding
texture coordinates. This matrix is applied as

m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

m4 m8 m12 m16



s
t
r
q

 ,

where the left matrix is the current texture matrix. The matrix is applied to the
coordinates resulting from texture coordinate generation (which may simply be the
current texture coordinates), and the resulting transformed coordinates become the
texture coordinates associated with a vertex. Setting the matrix mode to TEXTURE

causes the already described matrix operations to apply to the texture matrix.
The active texture unit selector (see section 3.9) specifies the texture coordi-

nate set accessed by commands involving texture coordinate processing. Such
commands include those accessing the current matrix stack (if MATRIX_MODE is
TEXTURE), TexEnv commands controlling point sprite coordinate replacement
(see section 3.4), TexGen (section 2.12.3), Enable/Disable (if any texture co-
ordinate generation enum is selected), as well as queries of the current texture
coordinates and current raster texture coordinates. If the texture coordinate set
number corresponding to the current value of ACTIVE_TEXTURE is greater than
or equal to the implementation-dependent constant MAX_TEXTURE_COORDS, the
error INVALID_OPERATION is generated by any such command.

There is a stack of matrices for each of matrix modes MODELVIEW,
PROJECTION, and COLOR, and for each texture unit. For MODELVIEW mode, the
stack depth is at least 32 (that is, there is a stack of at least 32 model-view ma-
trices). For the other modes, the depth is at least 2. Texture matrix stacks for all
texture units have the same depth. The current matrix in any mode is the matrix on
the top of the stack for that mode.

void PushMatrix(void);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 71

pushes the stack down by one, duplicating the current matrix in both the top of the
stack and the entry below it.

void PopMatrix(void);

pops the top entry off of the stack, replacing the current matrix with the matrix
that was the second entry in the stack. The pushing or popping takes place on the
stack corresponding to the current matrix mode. Popping a matrix off a stack with
only one entry generates the error STACK_UNDERFLOW; pushing a matrix onto a
full stack generates STACK_OVERFLOW.

When the current matrix mode is TEXTURE, the texture matrix stack of the
active texture unit is pushed or popped.

The state required to implement transformations consists of a four-valued in-
teger indicating the current matrix mode, one stack of at least two 4 × 4 matrices
for each of COLOR, PROJECTION, and each texture coordinate set, TEXTURE; and
a stack of at least 32 4 × 4 matrices for MODELVIEW. Each matrix stack has an
associated stack pointer. Initially, there is only one matrix on each stack, and all
matrices are set to the identity. The initial matrix mode is MODELVIEW.

2.12.2 Normal Transformation

Finally, we consider how the model-view matrix and transformation state affect
normals. Before use in lighting, normals are transformed to eye coordinates by a
matrix derived from the model-view matrix. Rescaling and normalization opera-
tions are performed on the transformed normals to make them unit length prior to
use in lighting. Rescaling and normalization are controlled by calling Enable and
Disable with target equal to RESCALE_NORMAL or NORMALIZE. This requires two
bits of state. The initial state is for normals not to be rescaled or normalized.

If the model-view matrix is M , then the normal is transformed to eye coordi-
nates by: (

nx
′ ny

′ nz
′ q′

)
=
(
nx ny nz q

)
·M−1

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 72

where, if


x
y
z
w

 are the associated vertex coordinates, then

q =



0, w = 0,

−
„
nx ny nz

«0BBBB@
x

y

z

1CCCCA
w , w 6= 0

(2.7)

Implementations may choose instead to transform
(
nx ny nz

)
to eye coor-

dinates using (
nx
′ ny

′ nz
′) =

(
nx ny nz

)
·Mu

−1

where Mu is the upper leftmost 3x3 matrix taken from M .
Rescale multiplies the transformed normals by a scale factor(

nx
′′ ny

′′ nz
′′) = f

(
nx
′ ny

′ nz
′)

If rescaling is disabled, then f = 1. If rescaling is enabled, then f is computed
as (mij denotes the matrix element in row i and column j of M−1, numbering the
topmost row of the matrix as row 1 and the leftmost column as column 1)

f =
1√

m31
2 +m32

2 +m33
2

Note that if the normals sent to GL were unit length and the model-view matrix
uniformly scales space, then rescale makes the transformed normals unit length.

Alternatively, an implementation may choose f as

f =
1√

nx
′2 + ny

′2 + nz
′2

recomputing f for each normal. This makes all non-zero length normals unit length
regardless of their input length and the nature of the model-view matrix.

After rescaling, the final transformed normal used in lighting, nf , is computed
as

nf = m
(
nx
′′ ny

′′ nz
′′)

If normalization is disabled, then m = 1. Otherwise

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 73

m =
1√

nx
′′2 + ny

′′2 + nz
′′2

Because we specify neither the floating-point format nor the means for matrix
inversion, we cannot specify behavior in the case of a poorly-conditioned (nearly
singular) model-view matrix M . In case of an exactly singular matrix, the trans-
formed normal is undefined. If the GL implementation determines that the model-
view matrix is uninvertible, then the entries in the inverted matrix are arbitrary. In
any case, neither normal transformation nor use of the transformed normal may
lead to GL interruption or termination.

2.12.3 Generating Texture Coordinates

Texture coordinates associated with a vertex may either be taken from the current
texture coordinates or generated according to a function dependent on vertex coor-
dinates. The command

void TexGen{ifd}(enum coord, enum pname, T param);
void TexGen{ifd}v(enum coord, enum pname, const

T params);

controls texture coordinate generation. coord must be one of the constants S, T, R,
or Q, indicating that the pertinent coordinate is the s, t, r, or q coordinate, respec-
tively. In the first form of the command, param is a symbolic constant specifying a
single-valued texture generation parameter; in the second form, params is a pointer
to an array of values that specify texture generation parameters. pname must be one
of the three symbolic constants TEXTURE_GEN_MODE, OBJECT_PLANE, or EYE_-
PLANE. If pname is TEXTURE_GEN_MODE, then either params points to or param is
an integer that is one of the symbolic constants OBJECT_LINEAR, EYE_LINEAR,
SPHERE_MAP, REFLECTION_MAP, or NORMAL_MAP.

If TEXTURE_GEN_MODE indicates OBJECT_LINEAR, then the generation func-
tion for the coordinate indicated by coord is

g = p1xo + p2yo + p3zo + p4wo.

xo, yo, zo, and wo are the object coordinates of the vertex. p1, . . . , p4 are specified
by calling TexGen with pname set to OBJECT_PLANE in which case params points
to an array containing p1, . . . , p4. There is a distinct group of plane equation co-
efficients for each texture coordinate; coord indicates the coordinate to which the
specified coefficients pertain.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 74

If TEXTURE_GEN_MODE indicates EYE_LINEAR, then the function is

g = p′1xe + p′2ye + p′3ze + p′4we

where (
p′1 p′2 p′3 p′4

)
=
(
p1 p2 p3 p4

)
M−1

xe, ye, ze, and we are the eye coordinates of the vertex. p1, . . . , p4 are set by
calling TexGen with pname set to EYE_PLANE in correspondence with setting the
coefficients in the OBJECT_PLANE case. M is the model-view matrix in effect
when p1, . . . , p4 are specified. Computed texture coordinates may be inaccurate or
undefined if M is poorly conditioned or singular.

When used with a suitably constructed texture image, calling TexGen with
TEXTURE_GEN_MODE indicating SPHERE_MAP can simulate the reflected image
of a spherical environment on a polygon. SPHERE_MAP texture coordinates are
generated as follows. Denote the unit vector pointing from the origin to the vertex
(in eye coordinates) by u. Denote the current normal, after transformation to eye
coordinates, by nf . Let r =

(
rx ry rz

)T , the reflection vector, be given by

r = u− 2nf
T (nfu) ,

and let m = 2
√
r2x + r2y + (rz + 1)2. Then the value assigned to an s coordinate

(the first TexGen argument value is S) is s = rx/m+ 1
2 ; the value assigned to a t

coordinate is t = ry/m + 1
2 . Calling TexGen with a coord of either R or Q when

pname indicates SPHERE_MAP generates the error INVALID_ENUM.
If TEXTURE_GEN_MODE indicates REFLECTION_MAP, compute the reflection

vector r as described for the SPHERE_MAP mode. Then the value assigned to an s
coordinate is s = rx; the value assigned to a t coordinate is t = ry; and the value
assigned to an r coordinate is r = rz . Calling TexGen with a coord of Q when
pname indicates REFLECTION_MAP generates the error INVALID_ENUM.

If TEXTURE_GEN_MODE indicates NORMAL_MAP, compute the normal vector
nf as described in section 2.12.2. Then the value assigned to an s coordinate is
s = nf x; the value assigned to a t coordinate is t = nf y; and the value assigned
to an r coordinate is r = nf z (the values nf x, nf y, and nf z are the components
of nf .) Calling TexGen with a coord of Q when pname indicates NORMAL_MAP
generates the error INVALID_ENUM.

A texture coordinate generation function is enabled or disabled using En-
able and Disable with an argument of TEXTURE_GEN_S, TEXTURE_GEN_T,
TEXTURE_GEN_R, or TEXTURE_GEN_Q (each indicates the corresponding texture
coordinate). When enabled, the specified texture coordinate is computed according

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 75

[0,2k−1]

float

Convert to
[0.0,1.0]

[−2k,2k−1] Convert to
[−1.0,1.0]

Current
RGBA
Color Lighting

Clamp to
[0.0, 1.0]

Flatshade?

Primitive
Clipping

Color
Clipping

Convert to
fixed−point

Figure 2.10. Processing of RGBA colors. The heavy dotted lines indicate both
primary and secondary vertex colors, which are processed in the same fashion. k is
the minimum required bit width of the integer type representing a color component.

to the current EYE_LINEAR, OBJECT_LINEAR or SPHERE_MAP specification, de-
pending on the current setting of TEXTURE_GEN_MODE for that coordinate. When
disabled, subsequent vertices will take the indicated texture coordinate from the
current texture coordinates.

The state required for texture coordinate generation for each texture unit com-
prises a five-valued integer for each coordinate indicating coordinate generation
mode, and a bit for each coordinate to indicate whether texture coordinate genera-
tion is enabled or disabled. In addition, four coefficients are required for the four
coordinates for each of EYE_LINEAR and OBJECT_LINEAR. The initial state has
the texture generation function disabled for all texture coordinates. The initial val-
ues of pi for s are all 0 except p1 which is one; for t all the pi are zero except p2,
which is 1. The values of pi for r and q are all 0. These values of pi apply for both
the EYE_LINEAR and OBJECT_LINEAR versions. Initially all texture generation
modes are EYE_LINEAR.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 76

Convert to
float

[0,2n−1]

float

Current
Color
Index Lighting

Mask to

[0.0, 2n−1]

Flatshade?

Primitive
Clipping

Color
Clipping

Convert to
fixed−point

Figure 2.11. Processing of color indices. n is the number of bits in a color index.

2.13 Fixed-Function Vertex Lighting and Coloring

Figures 2.10 and 2.11 diagram the processing of RGBA colors and color indices
before rasterization. Incoming colors arrive in one of several formats. R, G, B, and
A components specified with unsigned and signed integer versions of the Color
command are converted to floating-point as described in equations 2.1 and 2.2, re-
spectively. As a result of limited precision, some converted values will not be rep-
resented exactly. In color index mode, a single-valued color index is not mapped.

Next, lighting, if enabled, produces either a color index or primary and sec-
ondary colors. If lighting is disabled, the current color index or current color (pri-
mary color) and current secondary color are used in further processing. After light-
ing, RGBA colors may be clamped to the range [0, 1] as described in section 2.13.6.
A color index is converted to fixed-point and then its integer portion is masked (see
section 2.13.6). After clamping or masking, a primitive may be flatshaded, indi-
cating that all vertices of the primitive are to have the same colors. Finally, if a
primitive is clipped, then colors (and texture coordinates) must be computed at the
vertices introduced or modified by clipping.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 77

2.13.1 Lighting

GL lighting computes colors for each vertex sent to the GL. This is accomplished
by applying an equation defined by a client-specified lighting model to a collection
of parameters that can include the vertex coordinates, the coordinates of one or
more light sources, the current normal, and parameters defining the characteristics
of the light sources and a current material. The following discussion assumes that
the GL is in RGBA mode. (Color index lighting is described in section 2.13.5.)

Lighting is turned on or off using the generic Enable or Disable commands
with the symbolic value LIGHTING. If lighting is off, the current color and current
secondary color are assigned to the vertex primary and secondary color, respec-
tively. If lighting is on, colors computed from the current lighting parameters are
assigned to the vertex primary and secondary colors.

Lighting Operation

A lighting parameter is of one of five types: color, position, direction, real, or
boolean. A color parameter consists of four floating-point values, one for each of
R, G, B, and A, in that order. There are no restrictions on the allowable values for
these parameters. A position parameter consists of four floating-point coordinates
(x, y, z, and w) that specify a position in object coordinates (w may be zero,
indicating a point at infinity in the direction given by x, y, and z). A direction
parameter consists of three floating-point coordinates (x, y, and z) that specify a
direction in object coordinates. A real parameter is one floating-point value. The
various values and their types are summarized in table 2.13. The result of a lighting
computation is undefined if a value for a parameter is specified that is outside the
range given for that parameter in the table.

There are n light sources, indexed by i = 0, . . . , n−1. (n is an implementation-
dependent maximum that must be at least 8.) Note that the default values for dcli

and scli differ for i = 0 and i > 0.
Before specifying the way that lighting computes colors, we introduce oper-

ators and notation that simplify the expressions involved. If c1 and c2 are col-
ors without alpha where c1 = (r1, g1, b1) and c2 = (r2, g2, b2), then define
c1 ∗ c2 = (r1r2, g1g2, b1b2). Addition of colors is accomplished by addition of
the components. Multiplication of colors by a scalar means multiplying each com-
ponent by that scalar. If d1 and d2 are directions, then define

d1 � d2 = max{d1 · d2, 0}.

(Directions are taken to have three coordinates.) If P1 and P2 are (homogeneous,
with four coordinates) points then let

−−−→
P1P2 be the unit vector that points from P1

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 78

Parameter Type Default Value Description
Material Parameters

acm color (0.2, 0.2, 0.2, 1.0) ambient color of material
dcm color (0.8, 0.8, 0.8, 1.0) diffuse color of material
scm color (0.0, 0.0, 0.0, 1.0) specular color of material
ecm color (0.0, 0.0, 0.0, 1.0) emissive color of material
srm real 0.0 specular exponent (range:

[0.0, 128.0])
am real 0.0 ambient color index
dm real 1.0 diffuse color index
sm real 1.0 specular color index

Light Source Parameters
acli color (0.0, 0.0, 0.0, 1.0) ambient intensity of light i

dcli(i = 0) color (1.0, 1.0, 1.0, 1.0) diffuse intensity of light 0
dcli(i > 0) color (0.0, 0.0, 0.0, 1.0) diffuse intensity of light i
scli(i = 0) color (1.0, 1.0, 1.0, 1.0) specular intensity of light 0
scli(i > 0) color (0.0, 0.0, 0.0, 1.0) specular intensity of light i

Ppli position (0.0, 0.0, 1.0, 0.0) position of light i
sdli direction (0.0, 0.0,−1.0) direction of spotlight for light i
srli real 0.0 spotlight exponent for light i

(range: [0.0, 128.0])
crli real 180.0 spotlight cutoff angle for light i

(range: [0.0, 90.0], 180.0)
k0i real 1.0 constant attenuation factor for

light i (range: [0.0,∞))
k1i real 0.0 linear attenuation factor for

light i (range: [0.0,∞))
k2i real 0.0 quadratic attenuation factor for

light i (range: [0.0,∞))
Lighting Model Parameters

acs color (0.2, 0.2, 0.2, 1.0) ambient color of scene
vbs boolean FALSE viewer assumed to be at

(0, 0, 0) in eye coordinates
(TRUE) or (0, 0,∞) (FALSE)

ces enum SINGLE_COLOR controls computation of colors
tbs boolean FALSE use two-sided lighting mode

Table 2.13: Summary of lighting parameters. The range of individual color com-
ponents is (−∞,+∞).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 79

to P2. Note that if P2 has a zero w coordinate and P1 has non-zero w coordinate,
then

−−−→
P1P2 is the unit vector corresponding to the direction specified by the x, y,

and z coordinates of P2; if P1 has a zero w coordinate and P2 has a non-zero w
coordinate then

−−−→
P1P2 is the unit vector that is the negative of that corresponding

to the direction specified by P1. If both P1 and P2 have zero w coordinates, then−−−→
P1P2 is the unit vector obtained by normalizing the direction corresponding to
P2 −P1.

If d is an arbitrary direction, then let d̂ be the unit vector in d’s direction. Let
‖P1P2‖ be the distance between P1 and P2. Finally, let V be the point corre-
sponding to the vertex being lit, and n be the corresponding normal. Let Pe be the
eyepoint ((0, 0, 0, 1) in eye coordinates).

Lighting produces two colors at a vertex: a primary color cpri and a secondary
color csec. The values of cpri and csec depend on the light model color control, ces.
If ces = SINGLE_COLOR, then the equations to compute cpri and csec are

cpri = ecm

+ acm ∗ acs

+
n−1∑
i=0

(atti)(spoti) [acm ∗ acli

+ (n�
−−→
VPpli)dcm ∗ dcli

+ (fi)(n� ĥi)srmscm ∗ scli]
csec = (0, 0, 0, 1)

If ces = SEPARATE_SPECULAR_COLOR, then

cpri = ecm

+ acm ∗ acs

+
n−1∑
i=0

(atti)(spoti) [acm ∗ acli

+ (n�
−−→
VPpli)dcm ∗ dcli]

csec =
n−1∑
i=0

(atti)(spoti)(fi)(n� ĥi)srmscm ∗ scli

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 80

where

fi =

{
1, n�

−−→
VPpli 6= 0,

0, otherwise,
(2.8)

hi =

{ −−→
VPpli +

−−→
VPe, vbs = TRUE,

−−→
VPpli +

(
0 0 1

)T
, vbs = FALSE,

(2.9)

atti =


1

k0i + k1i‖VPpli‖ + k2i‖VPpli‖2
, if Ppli’s w 6= 0,

1.0, otherwise.
(2.10)

spoti =


(
−−−→
PpliV � ŝdli)srli , crli 6= 180.0,

−−−→
PpliV � ŝdli ≥ cos(crli),

0.0, crli 6= 180.0,
−−−→
PpliV � ŝdli < cos(crli),

1.0, crli = 180.0.
(2.11)

All computations are carried out in eye coordinates.
The value of A produced by lighting is the alpha value associated with dcm.

A is always associated with the primary color cpri; the alpha component of csec is
always 1.

Results of lighting are undefined if the we coordinate (w in eye coordinates) of
V is zero.

Lighting may operate in two-sided mode (tbs = TRUE), in which a front color
is computed with one set of material parameters (the front material) and a back
color is computed with a second set of material parameters (the back material).
This second computation replaces n with −n. If tbs = FALSE, then the back color
and front color are both assigned the color computed using the front material with
n.

Additionally, vertex and geometry shaders can operate in two-sided color
mode. When a vertex or geometry shader is active, front and back colors
can be computed by the shader and written to the gl_FrontColor, gl_-

BackColor, gl_FrontSecondaryColor and gl_BackSecondaryColor out-
puts. If VERTEX_PROGRAM_TWO_SIDE is enabled, the GL chooses between front
and back colors, as described below. Otherwise, the front color output is always

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 81

selected. Two-sided color mode is enabled and disabled by calling Enable or Dis-
able with the symbolic value VERTEX_PROGRAM_TWO_SIDE.

The selection between back and front colors depends on the primitive of which
the vertex being lit is a part. If the primitive is a point or a line segment, the front
color is always selected. If it is a polygon, then the selection is performed based
on the sign of the (clipped or unclipped) polygon’s area a computed in window
coordinates, as described in equation 3.8 of section 3.6.1. If the sign of a (including
the possible reversal of this sign as indicated by the last call to FrontFace) is
positive, the color of each vertex of the polygon becomes the front color computed
for that vertex; otherwise the back color is selected.

2.13.2 Lighting Parameter Specification

Lighting parameters are divided into three categories: material parameters, light
source parameters, and lighting model parameters (see table 2.13). Sets of lighting
parameters are specified with

void Material{if}(enum face, enum pname, T param);
void Material{if}v(enum face, enum pname, const

T params);
void Light{if}(enum light, enum pname, T param);
void Light{if}v(enum light, enum pname, const T params);
void LightModel{if}(enum pname, T param);
void LightModel{if}v(enum pname, const T params);

pname is a symbolic constant indicating which parameter is to be set (see ta-
ble 2.14). In the vector versions of the commands, params is a pointer to a group
of values to which to set the indicated parameter. The number of values pointed to
depends on the parameter being set. In the non-vector versions, param is a value
to which to set a single-valued parameter. (If param corresponds to a multi-valued
parameter, the error INVALID_ENUM results.) For the Material command, face
must be one of FRONT, BACK, or FRONT_AND_BACK, indicating that the property
name of the front or back material, or both, respectively, should be set. In the case
of Light, light is a symbolic constant of the form LIGHTi, indicating that light i is
to have the specified parameter set. The constants obey LIGHTi = LIGHT0 + i.

Table 2.14 gives, for each of the three parameter groups, the correspondence
between the pre-defined constant names and their names in the lighting equations,
along with the number of values that must be specified with each. Color param-
eters specified with Material and Light are converted to floating-point values (if
specified as integers) as described in equation 2.2. The error INVALID_VALUE

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 82

occurs if a specified lighting parameter lies outside the allowable range given in
table 2.13. (The symbol “∞” indicates the maximum representable magnitude for
the indicated type.)

Material properties can be changed inside a Begin / End pair by calling Ma-
terial. However, when a vertex shader is active such property changes are not
guaranteed to update material parameters, defined in table 2.14, until the following
End command.

The current model-view matrix is applied to the position parameter indicated
with Light for a particular light source when that position is specified. These
transformed values are the values used in the lighting equation.

The spotlight direction is transformed when it is specified using only the upper
leftmost 3x3 portion of the model-view matrix. That is, if Mu is the upper left 3x3
matrix taken from the current model-view matrix M , then the spotlight directiondx

dy

dz


is transformed to d′xd′y

d′z

 = Mu

dx

dy

dz

 .

An individual light is enabled or disabled by calling Enable or Disable with the
symbolic value LIGHTi (i is in the range 0 to n−1, where n is the implementation-
dependent number of lights). If light i is disabled, the ith term in the lighting
equation is effectively removed from the summation.

2.13.3 ColorMaterial

It is possible to attach one or more material properties to the current color, so
that they continuously track its component values. This behavior is enabled and
disabled by calling Enable or Disable with the symbolic value COLOR_MATERIAL.

The command that controls which of these modes is selected is

void ColorMaterial(enum face, enum mode);

face is one of FRONT, BACK, or FRONT_AND_BACK, indicating whether the front
material, back material, or both are affected by the current color. mode is one
of EMISSION, AMBIENT, DIFFUSE, SPECULAR, or AMBIENT_AND_DIFFUSE and
specifies which material property or properties track the current color. If mode
is EMISSION, AMBIENT, DIFFUSE, or SPECULAR, then the value of ecm, acm,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 83

Parameter Name Number of values
Material Parameters (Material)

acm AMBIENT 4
dcm DIFFUSE 4

acm,dcm AMBIENT_AND_DIFFUSE 4
scm SPECULAR 4
ecm EMISSION 4
srm SHININESS 1

am, dm, sm COLOR_INDEXES 3
Light Source Parameters (Light)

acli AMBIENT 4
dcli DIFFUSE 4
scli SPECULAR 4
Ppli POSITION 4
sdli SPOT_DIRECTION 3
srli SPOT_EXPONENT 1
crli SPOT_CUTOFF 1
k0 CONSTANT_ATTENUATION 1
k1 LINEAR_ATTENUATION 1
k2 QUADRATIC_ATTENUATION 1

Lighting Model Parameters (LightModel)
acs LIGHT_MODEL_AMBIENT 4
vbs LIGHT_MODEL_LOCAL_VIEWER 1
tbs LIGHT_MODEL_TWO_SIDE 1
ces LIGHT_MODEL_COLOR_CONTROL 1

Table 2.14: Correspondence of lighting parameter symbols to names. AMBIENT_-
AND_DIFFUSE is used to set acm and dcm to the same value.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 84

Current
Color

Front Ambient
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled. Down otherwise.

Material*(FRONT,AMBIENT)
To lighting equations

Front Diffuse
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled. Down otherwise.

Material*(FRONT,DIFFUSE)
To lighting equations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is SPECULAR, and ColorMaterial is
enabled. Down otherwise.

Material*(FRONT,SPECULAR)
To lighting equations

Front Emission
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is EMISSION, and ColorMaterial is
enabled. Down otherwise.

Material*(FRONT,EMISSION)
To lighting equations

Front Specular
Color

Color*() To subsequent vertex operations

State values flow continuously along this path

State values flow along this path only when a command is issued

Figure 2.12. ColorMaterial operation. Material properties are continuously up-
dated from the current color while ColorMaterial is enabled and has the appro-
priate mode. Only the front material properties are included in this figure. The
back material properties are treated identically, except that face must be BACK or
FRONT_AND_BACK.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 85

dcm or scm, respectively, will track the current color. If mode is AMBIENT_AND_-
DIFFUSE, both acm and dcm track the current color. The replacements made to
material properties are permanent; the replaced values remain until changed by
either sending a new color or by setting a new material value when ColorMaterial
is not currently enabled to override that particular value. When COLOR_MATERIAL
is enabled, the indicated parameter or parameters always track the current color.
For instance, calling

ColorMaterial(FRONT, AMBIENT)

while COLOR_MATERIAL is enabled sets the front material acm to the value of the
current color.

Material properties can be changed inside a Begin / End pair indirectly by
enabling ColorMaterial mode and making Color calls. However, when a ver-
tex shader is active such property changes are not guaranteed to update material
parameters, defined in table 2.14, until the following End command.

2.13.4 Lighting State

The state required for lighting consists of all of the lighting parameters (front and
back material parameters, lighting model parameters, and at least 8 sets of light pa-
rameters), a bit indicating whether a back color distinct from the front color should
be computed, at least 8 bits to indicate which lights are enabled, a five-valued vari-
able indicating the current ColorMaterial mode, a bit indicating whether or not
COLOR_MATERIAL is enabled, and a single bit to indicate whether lighting is en-
abled or disabled. In the initial state, all lighting parameters have their default val-
ues. Back color evaluation does not take place, ColorMaterial is FRONT_AND_-
BACK and AMBIENT_AND_DIFFUSE, and both lighting and COLOR_MATERIAL are
disabled.

2.13.5 Color Index Lighting

A simplified lighting computation applies in color index mode that uses many of
the parameters controlling RGBA lighting, but none of the RGBA material param-
eters. First, the RGBA diffuse and specular intensities of light i (dcli and scli,
respectively) determine color index diffuse and specular light intensities, dli and
sli from

dli = (.30)R(dcli) + (.59)G(dcli) + (.11)B(dcli)

and
sli = (.30)R(scli) + (.59)G(scli) + (.11)B(scli).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 86

R(x) indicates the R component of the color x and similarly for G(x) and B(x).
Next, let

s =
n∑

i=0

(atti)(spoti)(sli)(fi)(n� ĥi)srm

where atti and spoti are given by equations 2.10 and 2.11, respectively, and fi and
ĥi are given by equations 2.8 and 2.9, respectively. Let s′ = min{s, 1}. Finally,
let

d =
n∑

i=0

(atti)(spoti)(dli)(n�
−−→
VPpli).

Then color index lighting produces a value c, given by

c = am + d(1− s′)(dm − am) + s′(sm − am).

The final color index is
c′ = min{c, sm}.

The values am, dm and sm are material properties described in tables 2.13 and 2.14.
Any ambient light intensities are incorporated into am. As with RGBA lighting,
disabled lights cause the corresponding terms from the summations to be omitted.
The interpretation of tbs and the calculation of front and back colors is carried out
as has already been described for RGBA lighting.

The values am, dm, and sm are set with Material using a pname of COLOR_-
INDEXES. Their initial values are 0, 1, and 1, respectively. The additional state
consists of three floating-point values. These values have no effect on RGBA light-
ing.

2.13.6 Clamping or Masking

When the GL is in RGBA mode and vertex color clamping is enabled, all com-
ponents of both primary and secondary colors are clamped to the range [0, 1] af-
ter lighting. If color clamping is disabled, the primary and secondary colors are
unmodified. Vertex color clamping is controlled by calling ClampColor, as de-
scribed in section 3.7.5, with a target of CLAMP_VERTEX_COLOR.

For a color index, the index is first converted to fixed-point with an unspecified
number of bits to the right of the binary point; the nearest fixed-point value is
selected. Then, the bits to the right of the binary point are left alone while the
integer portion is masked (bitwise ANDed) with 2n − 1, where n is the number of
bits in a color in the color index buffer (buffers are discussed in chapter 4).

The state required for vertex color clamping is a three-valued integer, initially
set to TRUE.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 87

2.14 Vertex Shaders

The sequence of operations described in sections 2.12 through 2.13 is a fixed-
function method for processing vertex data. Applications can also use vertex
shaders to describe the operations that occur on vertex values and their associ-
ated data.

A vertex shader is an array of strings containing source code for the operations
that are meant to occur on each vertex that is processed. The language used for
vertex shaders is described in the OpenGL Shading Language Specification.

To use a vertex shader, shader source code is first loaded into a shader ob-
ject and then compiled. One or more vertex shader objects are then attached to
a program object. A program object is then linked, which generates executable
code from all the compiled shader objects attached to the program. When a linked
program object is used as the current program object, the executable code for the
vertex shaders it contains is used to process vertices.

In addition to vertex shaders, geometry shaders and fragment shaders can be
created, compiled, and linked into program objects. Geometry shaders affect the
processing of primitives assembled from vertices (see section 2.15). Fragment
shaders affect the processing of fragments during rasterization (see section 3.12).
A single program object can contain all of vertex, geometry, and fragment shaders.

When the program object currently in use includes a vertex shader, its vertex
shader is considered active and is used to process vertices. If the program object
has no vertex shader, or no program object is currently in use, the fixed-function
method for processing vertices is used instead.

A vertex shader can reference a number of variables as it executes. Vertex
attributes are the per-vertex values specified in section 2.7. Uniforms are per-
program variables that are constant during program execution. Samplers are a
special form of uniform used for texturing (section 3.9). Varying variables hold
the results of vertex shader execution that are used later in the pipeline. Each of
these variable types is described in more detail below.

2.14.1 Shader Objects

The source code that makes up a program that gets executed by one of the pro-
grammable stages is encapsulated in one or more shader objects.

The name space for shader objects is the unsigned integers, with zero reserved
for the GL. This name space is shared with program objects. The following sections
define commands that operate on shader and program objects by name. Commands
that accept shader or program object names will generate the error INVALID_-
VALUE if the provided name is not the name of either a shader or program object

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 88

and INVALID_OPERATION if the provided name identifies an object that is not the
expected type.

To create a shader object, use the command

uint CreateShader(enum type);

The shader object is empty when it is created. The type argument specifies the type
of shader object to be created. For vertex shaders, type must be VERTEX_SHADER.
A non-zero name that can be used to reference the shader object is returned. If an
error occurs, zero will be returned.

The command

void ShaderSource(uint shader, sizei count, const
char **string, const int *length);

loads source code into the shader object named shader. string is an array of count
pointers to optionally null-terminated character strings that make up the source
code. The length argument is an array with the number of chars in each string (the
string length). If an element in length is negative, its accompanying string is null-
terminated. If length is NULL, all strings in the string argument are considered null-
terminated. The ShaderSource command sets the source code for the shader to
the text strings in the string array. If shader previously had source code loaded into
it, the existing source code is completely replaced. Any length passed in excludes
the null terminator in its count.

The strings that are loaded into a shader object are expected to form the source
code for a valid shader as defined in the OpenGL Shading Language Specification.

Once the source code for a shader has been loaded, a shader object can be
compiled with the command

void CompileShader(uint shader);

Each shader object has a boolean status, COMPILE_STATUS, that is modified as
a result of compilation. This status can be queried with GetShaderiv (see sec-
tion 6.1.17). This status will be set to TRUE if shader was compiled without errors
and is ready for use, and FALSE otherwise. Compilation can fail for a variety of
reasons as listed in the OpenGL Shading Language Specification. If Compile-
Shader failed, any information about a previous compile is lost. Thus a failed
compile does not restore the old state of shader.

Changing the source code of a shader object with ShaderSource does not
change its compile status or the compiled shader code.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 89

Each shader object has an information log, which is a text string that is over-
written as a result of compilation. This information log can be queried with Get-
ShaderInfoLog to obtain more information about the compilation attempt (see
section 6.1.17).

An INVALID_OPERATION error is generated if shader is not the name of a
valid shader object generated by CreateShader.

Shader objects can be deleted with the command

void DeleteShader(uint shader);

If shader is not attached to any program object, it is deleted immediately. Oth-
erwise, shader is flagged for deletion and will be deleted when it is no longer
attached to any program object. If an object is flagged for deletion, its boolean
status bit DELETE_STATUS is set to true. The value of DELETE_STATUS can be
queried with GetShaderiv (see section 6.1.17). DeleteShader will silently ignore
the value zero.

2.14.2 Program Objects

The shader objects that are to be used by the programmable stages of the GL are
collected together to form a program object. The programs that are executed by
these programmable stages are called executables. All information necessary for
defining an executable is encapsulated in a program object. A program object is
created with the command

uint CreateProgram(void);

Program objects are empty when they are created. A non-zero name that can be
used to reference the program object is returned. If an error occurs, zero will be
returned.

To attach a shader object to a program object, use the command

void AttachShader(uint program, uint shader);

The error INVALID_OPERATION is generated if shader is already attached to pro-
gram.

Shader objects may be attached to program objects before source code has
been loaded into the shader object, or before the shader object has been compiled.
Multiple shader objects of the same type may be attached to a single program
object, and a single shader object may be attached to more than one program object.

To detach a shader object from a program object, use the command

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 90

void DetachShader(uint program, uint shader);

The error INVALID_OPERATION is generated if shader is not attached to program.
If shader has been flagged for deletion and is not attached to any other program
object, it is deleted.

In order to use the shader objects contained in a program object, the program
object must be linked. The command

void LinkProgram(uint program);

will link the program object named program. Each program object has a boolean
status, LINK_STATUS, that is modified as a result of linking. This status can be
queried with GetProgramiv (see section 6.1.17). This status will be set to TRUE if
a valid executable is created, and FALSE otherwise. Linking can fail for a variety
of reasons as specified in the OpenGL Shading Language Specification. Linking
will also fail if one or more of the shader objects, attached to program are not
compiled successfully, or if more active uniform or active sampler variables are
used in program than allowed (see sections 2.14.4, 2.14.5, and 2.15.3).

Linking will also fail if the program object contains objects to form a geometry
shader (see section 2.15), and

• the program contains no objects to form a vertex shader;

• the input primitive type, output primitive type, or maximum output vertex
count is not specified in any compiled geometry shader object; or

• the input primitive type, output primitive type, or maximum output vertex
count is specified differently in multiple geometry shader objects.

If LinkProgram failed, any information about a previous link of that program
object is lost. Thus, a failed link does not restore the old state of program.

Each program object has an information log that is overwritten as a result of a
link operation. This information log can be queried with GetProgramInfoLog to
obtain more information about the link operation or the validation information (see
section 6.1.17).

If a valid executable is created, it can be made part of the current rendering
state with the command

void UseProgram(uint program);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 91

This command will install the executable code as part of current rendering state if
the program object program contains valid executable code, i.e. has been linked
successfully. If UseProgram is called with program set to 0, it is as if the GL
had no programmable stages and the fixed-function paths will be used instead.
If program has not been successfully linked, the error INVALID_OPERATION is
generated and the current rendering state is not modified.

While a program object is in use, applications are free to modify attached
shader objects, compile attached shader objects, attach additional shader objects,
and detach shader objects. These operations do not affect the link status or exe-
cutable code of the program object.

If the program object that is in use is re-linked successfully, the LinkProgram
command will install the generated executable code as part of the current rendering
state if the specified program object was already in use as a result of a previous call
to UseProgram.

If that program object that is in use is re-linked unsuccessfully, the link status
will be set to FALSE, but existing executable and associated state will remain part
of the current rendering state until a subsequent call to UseProgram removes it
from use. After such a program is removed from use, it can not be made part of the
current rendering state until it is successfully re-linked.

Program objects can be deleted with the command

void DeleteProgram(uint program);

If program is not the current program for any GL context, it is deleted immediately.
Otherwise, program is flagged for deletion and will be deleted when it is no longer
the current program for any context. When a program object is deleted, all shader
objects attached to it are detached. DeleteProgram will silently ignore the value
zero.

2.14.3 Vertex Attributes

Vertex shaders can access built-in vertex attribute variables corresponding to the
per-vertex state set by commands such as Vertex, Normal, and Color. Vertex
shaders can also define named attribute variables, which are bound to the generic
vertex attributes that are set by VertexAttrib*. This binding can be specified by
the application before the program is linked, or automatically assigned by the GL
when the program is linked.

When an attribute variable declared as a float, vec2, vec3 or vec4 is bound
to a generic attribute index i, its value(s) are taken from the x, (x, y), (x, y, z), or
(x, y, z, w) components, respectively, of the generic attribute i. When an attribute

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 92

variable is declared as a mat2, mat3x2 or mat4x2, its matrix columns are taken
from the (x, y) components of generic attributes i and i+1 (mat2), from attributes
i through i + 2 (mat3x2), or from attributes i through i + 3 (mat4x2). When an
attribute variable is declared as a mat2x3, mat3 or mat4x3, its matrix columns
are taken from the (x, y, z) components of generic attributes i and i+ 1 (mat2x3),
from attributes i through i+2 (mat3), or from attributes i through i+3 (mat4x3).
When an attribute variable is declared as a mat2x4, mat3x4 or mat4, its matrix
columns are taken from the (x, y, z, w) components of generic attributes i and i+1
(mat2x4), from attributes i through i + 2 (mat3x4), or from attributes i through
i+ 3 (mat4).

An attribute variable (either conventional or generic) is considered active if it is
determined by the compiler and linker that the attribute may be accessed when the
shader is executed. Attribute variables that are declared in a vertex shader but never
used will not count against the limit. In cases where the compiler and linker cannot
make a conclusive determination, an attribute will be considered active. A program
object will fail to link if the sum of the active generic and active conventional
attributes exceeds MAX_VERTEX_ATTRIBS.

To determine the set of active vertex attributes used by a program, and to de-
termine their types, use the command:

void GetActiveAttrib(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

This command provides information about the attribute selected by index. An in-
dex of 0 selects the first active attribute, and an index of ACTIVE_ATTRIBUTES−1
selects the last active attribute. The value of ACTIVE_ATTRIBUTES can be queried
with GetProgramiv (see section 6.1.17). If index is greater than or equal to
ACTIVE_ATTRIBUTES, the error INVALID_VALUE is generated. Note that index
simply identifies a member in a list of active attributes, and has no relation to the
generic attribute that the corresponding variable is bound to.

The parameter program is the name of a program object for which the com-
mand LinkProgram has been issued in the past. It is not necessary for program to
have been linked successfully. The link could have failed because the number of
active attributes exceeded the limit.

The name of the selected attribute is returned as a null-terminated string in
name. The actual number of characters written into name, excluding the null termi-
nator, is returned in length. If length is NULL, no length is returned. The maximum
number of characters that may be written into name, including the null terminator,
is specified by bufSize. The returned attribute name can be the name of a generic

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 93

attribute or a conventional attribute (which begin with the prefix "gl_", see the
OpenGL Shading Language Specification for a complete list). The length of
the longest attribute name in program is given by ACTIVE_ATTRIBUTE_MAX_-

LENGTH, which can be queried with GetProgramiv (see section 6.1.17).
For the selected attribute, the type of the attribute is returned into type.

The size of the attribute is returned into size. The value in size is in units of
the type returned in type. The type returned can be any of FLOAT, FLOAT_-
VEC2, FLOAT_VEC3, FLOAT_VEC4, FLOAT_MAT2, FLOAT_MAT3, FLOAT_MAT4,
FLOAT_MAT2x3, FLOAT_MAT2x4, FLOAT_MAT3x2, FLOAT_MAT3x4, FLOAT_-
MAT4x2, FLOAT_MAT4x3, INT, INT_VEC2, INT_VEC3, INT_VEC4, UNSIGNED_-
INT, UNSIGNED_INT_VEC2, UNSIGNED_INT_VEC3, or UNSIGNED_INT_VEC4.

If an error occurred, the return parameters length, size, type and name will be
unmodified.

This command will return as much information about active attributes as pos-
sible. If no information is available, length will be set to zero and name will be an
empty string. This situation could arise if GetActiveAttrib is issued after a failed
link.

After a program object has been linked successfully, the bindings of attribute
variable names to indices can be queried. The command

int GetAttribLocation(uint program, const char *name);

returns the generic attribute index that the attribute variable named name was bound
to when the program object named program was last linked. name must be a null-
terminated string. If name is active and is an attribute matrix, GetAttribLocation
returns the index of the first column of that matrix. If program has not been suc-
cessfully linked, the error INVALID_OPERATION is generated. If name is not an
active attribute, if name is a conventional attribute, or if an error occurs, -1 will be
returned.

The binding of an attribute variable to a generic attribute index can also be
specified explicitly. The command

void BindAttribLocation(uint program, uint index, const
char *name);

specifies that the attribute variable named name in program program should be
bound to generic vertex attribute index when the program is next linked. If name
was bound previously, its assigned binding is replaced with index. name must be a
null-terminated string. The error INVALID_VALUE is generated if index is equal or
greater than MAX_VERTEX_ATTRIBS. BindAttribLocation has no effect until the

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 94

program is linked. In particular, it doesn’t modify the bindings of active attribute
variables in a program that has already been linked.

Built-in attribute variables are automatically bound to conventional attributes,
and can not have an assigned binding. The error INVALID_OPERATION is gener-
ated if name starts with the reserved "gl_" prefix.

When a program is linked, any active attributes without a binding specified ei-
ther through BindAttribLocation or explicitly set within the shader text will au-
tomatically be bound to vertex attributes by the GL. Such bindings can be queried
using the command GetAttribLocation. LinkProgram will fail if the assigned
binding of an active attribute variable would cause the GL to reference a non-
existent generic attribute (one greater than or equal to the value of MAX_VERTEX_-
ATTRIBS). LinkProgram will fail if the attribute bindings assigned by BindAttri-
bLocation do not leave not enough space to assign a location for an active matrix
attribute or an active attribute array, both of which require multiple contiguous
generic attributes. If an active attribute has a binding explicitly set within the shader
text and a different binding assigned by BindAttribLocation, the assignment in
the shader text is used. LinkProgram will also fail if the vertex shaders used
in the program object contain assignments (not removed during pre-processing) to
an attribute variable bound to generic attribute zero and to the conventional vertex
position (gl_Vertex).

BindAttribLocation may be issued before any vertex shader objects are at-
tached to a program object. Hence it is allowed to bind any name (except a name
starting with "gl_") to an index, including a name that is never used as an at-
tribute in any vertex shader object. Assigned bindings for attribute variables that
do not exist or are not active are ignored.

The values of generic attributes sent to generic attribute index i are part of
current state, just like the conventional attributes. If a new program object has
been made active, then these values will be tracked by the GL in such a way that
the same values will be observed by attributes in the new program object that are
also bound to index i.

It is possible for an application to bind more than one attribute name to the
same location. This is referred to as aliasing. This will only work if only one of
the aliased attributes is active in the executable program, or if no path through the
shader consumes more than one attribute of a set of attributes aliased to the same
location. A link error can occur if the linker determines that every path through the
shader consumes multiple aliased attributes, but implementations are not required
to generate an error in this case. The compiler and linker are allowed to assume that
no aliasing is done, and may employ optimizations that work only in the absence
of aliasing. It is not possible to alias generic attributes with conventional ones.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 95

2.14.4 Uniform Variables

Shaders can declare named uniform variables, as described in the OpenGL Shading
Language Specification. Values for these uniforms are constant over a primitive,
and typically they are constant across many primitives. Uniforms are program
object-specific state. They retain their values once loaded, and their values are
restored whenever a program object is used, as long as the program object has not
been re-linked. A uniform is considered active if it is determined by the compiler
and linker that the uniform will actually be accessed when the executable code
is executed. In cases where the compiler and linker cannot make a conclusive
determination, the uniform will be considered active.

Sets of uniforms can be grouped into uniform blocks. The values of each uni-
form in such a set are extracted from the data store of a buffer object corresponding
to the uniform block. OpenGL Shading Language syntax serves to delimit named
blocks of uniforms that can be backed by a buffer object. These are referred to
as named uniform blocks, and are assigned a uniform block index. Uniforms that
are declared outside of a named uniform block are said to be part of the default
uniform block. Default uniform blocks have no name or uniform block index. Like
uniforms, uniform blocks can be active or inactive. Active uniform blocks are those
that contain active uniforms after a program has been compiled and linked.

The amount of storage available for uniform variables in the default uniform
block accessed by a vertex shader is specified by the value of the implementation-
dependent constant MAX_VERTEX_UNIFORM_COMPONENTS. The total amount of
combined storage available for uniform variables in all uniform blocks accessed
by a vertex shader (including the default uniform block) is specified by the value
of the implementation-dependent constant MAX_COMBINED_VERTEX_UNIFORM_-
COMPONENTS. These values represent the numbers of individual floating-point, in-
teger, or boolean values that can be held in uniform variable storage for a vertex
shader. A link error is generated if an attempt is made to utilize more than the space
available for vertex shader uniform variables.

When a program is successfully linked, all active uniforms belonging to the
program object’s default uniform block are initialized as defined by the version of
the OpenGL Shading Language used to compile the program. A successful link
will also generate a location for each active uniform in the default uniform block.
The values of active uniforms in the default uniform block can be changed using
this location and the appropriate Uniform* command (see below). These locations
are invalidated and new ones assigned after each successful re-link.

Similarly, when a program is successfully linked, all active uniforms belong-
ing to the program’s named uniform blocks are assigned offsets (and strides for
array and matrix type uniforms) within the uniform block according to layout rules

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 96

described below. Uniform buffer objects provide the storage for named uniform
blocks, so the values of active uniforms in named uniform blocks may be changed
by modifying the contents of the buffer object using commands such as Buffer-
Data, BufferSubData, MapBuffer, and UnmapBuffer. Uniforms in a named
uniform block are not assigned a location and may not be modified using the
Uniform* commands. The offsets and strides of all active uniforms belonging to
named uniform blocks of a program object are invalidated and new ones assigned
after each successful re-link.

To find the location within a program object of an active uniform variable as-
sociated with the default uniform block, use the command

int GetUniformLocation(uint program, const
char *name);

This command will return the location of uniform variable name if it is as-
sociated with the default uniform block. name must be a null-terminated string,
without white space. The value -1 will be returned if if name starts with the re-
served prefix "gl_", if name does not correspond to an active uniform variable
name in program, or if name is associated with a named uniform block.

If program has not been successfully linked, the error INVALID_OPERATION
is generated. After a program is linked, the location of a uniform variable will not
change, unless the program is re-linked.

A valid name cannot be a structure, an array of structures, or any portion of
a single vector or a matrix. In order to identify a valid name, the "." (dot) and
"[]" operators can be used in name to specify a member of a structure or element
of an array.

The first element of a uniform array is identified using the name of the uniform
array appended with "[0]". Except if the last part of the string name indicates a
uniform array, then the location of the first element of that array can be retrieved
by either using the name of the uniform array, or the name of the uniform array
appended with "[0]".

Named uniform blocks, like uniforms, are identified by name strings. Uniform
block indices corresponding to uniform block names can be queried by calling

uint GetUniformBlockIndex(uint program, const
char *uniformBlockName);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 97

uniformBlockName must contain a null-terminated string specifying the name
of a uniform block.

GetUniformBlockIndex returns the uniform block index for the uniform block
named uniformBlockName of program. If uniformBlockName does not identify an
active uniform block of program, or an error occurred, then INVALID_INDEX is
returned. The indices of the active uniform blocks of a program are assigned in
consecutive order, beginning with zero.

An active uniform block’s name string can be queried from its uniform block
index by calling

void GetActiveUniformBlockName(uint program,
uint uniformBlockIndex, sizei bufSize, sizei *length,
char *uniformBlockName);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformBlockIndex must be an active uniform block index of program, in the
range zero to the value of ACTIVE_UNIFORM_BLOCKS - 1. The value of ACTIVE_-
UNIFORM_BLOCKS can be queried with GetProgramiv (see section 6.1.17). If
uniformBlockIndex is greater than or equal to the value of ACTIVE_UNIFORM_-
BLOCKS, the error INVALID_VALUE is generated.

The string name of the uniform block identified by uniformBlockIndex is re-
turned into uniformBlockName. The name is null-terminated. The actual number
of characters written into uniformBlockName, excluding the null terminator, is re-
turned in length. If length is NULL, no length is returned.

bufSize contains the maximum number of characters (including the null termi-
nator) that will be written back to uniformBlockName.

If an error occurs, nothing will be written to uniformBlockName or length.
Information about an active uniform block can be queried by calling

void GetActiveUniformBlockiv(uint program,
uint uniformBlockIndex, enum pname, int *params);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformBlockIndex is an active uniform block index of program. If uniform-
BlockIndex is greater than or equal to the value of ACTIVE_UNIFORM_BLOCKS, or

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 98

is not the index of an active uniform block in program, the error INVALID_VALUE
is generated.

If no error occurs, the uniform block parameter(s) specified by pname are re-
turned in params. Otherwise, nothing will be written to params.

If pname is UNIFORM_BLOCK_BINDING, then the index of the uniform buffer
binding point last selected by the uniform block specified by uniformBlockIndex
for program is returned. If no uniform block has been previously specified, zero is
returned.

If pname is UNIFORM_BLOCK_DATA_SIZE, then the implementation-
dependent minimum total buffer object size, in basic machine units, required to
hold all active uniforms in the uniform block identified by uniformBlockIndex is
returned. It is neither guaranteed nor expected that a given implementation will
arrange uniform values as tightly packed in a buffer object. The exception to this
is the std140 uniform block layout, which guarantees specific packing behavior
and does not require the application to query for offsets and strides. In this case the
minimum size may still be queried, even though it is determined in advance based
only on the uniform block declaration (see “Standard Uniform Block Layout” in
section 2.14.4).

The total amount of buffer object storage available for any given uniform block
is subject to an implementation-dependent limit. The maximum amount of avail-
able space, in basic machine units, can be queried by calling GetIntegerv with
the constant MAX_UNIFORM_BLOCK_SIZE. If the amount of storage required for a
uniform block exceeds this limit, a program may fail to link.

If pname is UNIFORM_BLOCK_NAME_LENGTH, then the total length (includ-
ing the null terminator) of the name of the uniform block identified by uniform-
BlockIndex is returned.

If pname is UNIFORM_BLOCK_ACTIVE_UNIFORMS, then the number of active
uniforms in the uniform block identified by uniformBlockIndex is returned.

If pname is UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES, then a list of the
active uniform indices for the uniform block identified by uniformBlockIndex is
returned. The number of elements that will be written to params is the value of
UNIFORM_BLOCK_ACTIVE_UNIFORMS for uniformBlockIndex.

If pname is UNIFORM_BLOCK_REFERENCED_BY_-

VERTEX_SHADER, UNIFORM_BLOCK_REFERENCED_BY_GEOMETRY_SHADER, or
UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_SHADER, then a boolean value
indicating whether the uniform block identified by uniformBlockIndex is refer-
enced by the vertex, geometry, or fragment programming stages of program, re-
spectively, is returned.

Each active uniform, whether in a named uniform block or in the default block,
is assigned an index when a program is linked. Indices are assigned in consecutive

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 99

order, beginning with zero. The indices assigned to a set of uniforms in a program
may be queried by calling

void GetUniformIndices(uint program,
sizei uniformCount, const char **uniformNames,
uint *uniformIndices);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformCount indicates both the number of elements in the array of names
uniformNames and the number of indices that may be written to uniformIndices.

uniformNames contains a list of uniformCount name strings identifying the uni-
form names to be queried for indices. For each name string in uniformNames, the
index assigned to the active uniform of that name will be written to the correspond-
ing element of uniformIndices. If a string in uniformNames is not the name of an
active uniform, the value INVALID_INDEX will be written to the corresponding
element of uniformIndices.

If an error occurs, nothing is written to uniformIndices.
The name of an active uniform may be queried from the corresponding uniform

index by calling

void GetActiveUniformName(uint program,
uint uniformIndex, sizei bufSize, sizei *length,
char *uniformName);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformIndex must be an active uniform index of the program program, in
the range zero to the value of ACTIVE_UNIFORMS - 1. The value of ACTIVE_-
UNIFORMS can be queried with GetProgramiv. If uniformIndex is greater than or
equal to the value of ACTIVE_UNIFORMS, the error INVALID_VALUE is generated.

The name of the uniform identified by uniformIndex is returned as a null-
terminated string in uniformName. The actual number of characters written into
uniformName, excluding the null terminator, is returned in length. If length is
NULL, no length is returned. The maximum number of characters that may be writ-
ten into uniformName, including the null terminator, is specified by bufSize. The

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 100

returned uniform name can be the name of built-in uniform state as well. The com-
plete list of built-in uniform state is described in section 7.5 of the OpenGL Shad-
ing Language Specification. The length of the longest uniform name in program
is given by the value of ACTIVE_UNIFORM_MAX_LENGTH, which can be queried
with GetProgramiv.

If GetActiveUniformName is not successful, nothing is written to length or
uniformName.

Each uniform variable, declared in a shader, is broken down into one or more
strings using the "." (dot) and "[]" operators, if necessary, to the point that it is
legal to pass each string back into GetUniformLocation, for default uniform block
uniform names, or GetUniformIndices, for named uniform block uniform names.

Information about active uniforms can be obtained by calling either

void GetActiveUniform(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

or

void GetActiveUniformsiv(uint program,
sizei uniformCount, const uint *uniformIndices,
enum pname, int *params);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

These commands provide information about the uniform or uniforms selected
by index or uniformIndices, respectively. In GetActiveUniform, an index of 0
selects the first active uniform, and an index of the value of ACTIVE_UNIFORMS
- 1 selects the last active uniform. In GetActiveUniformsiv, uniformIndices is an
array of such active uniform indices. If any index is greater than or equal to the
value of ACTIVE_UNIFORMS, the error INVALID_VALUE is generated.

For the selected uniform, GetActiveUniform returns the uniform name as a
null-terminated string in name. The actual number of characters written into name,
excluding the null terminator, is returned in length. If length is NULL, no length
is returned. The maximum number of characters that may be written into name,
including the null terminator, is specified by bufSize. The returned uniform name
can be the name of built-in uniform state as well. The complete list of built-in

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 101

uniform state is described in section 7.5 of the OpenGL Shading Language Speci-
fication. The length of the longest uniform name in program is given by ACTIVE_-
UNIFORM_MAX_LENGTH.

Each uniform variable, declared in a shader, is broken down into one or more
strings using the "." (dot) and "[]" operators, if necessary, to the point that it is
legal to pass each string back into GetUniformLocation, for default uniform block
uniform names, or GetUniformIndices, for named uniform block uniform names.

For the selected uniform, GetActiveUniform returns the type of the uniform
into type and the size of the uniform is into size. The value in size is in units of the
uniform type, which can be any of the type name tokens in table 2.15, correspond-
ing to OpenGL Shading Language type keywords also shown in that table.

If one or more elements of an array are active, GetActiveUniform will return
the name of the array in name, subject to the restrictions listed above. The type of
the array is returned in type. The size parameter contains the highest array element
index used, plus one. The compiler or linker determines the highest index used.
There will be only one active uniform reported by the GL per uniform array.

GetActiveUniform will return as much information about active uniforms as
possible. If no information is available, length will be set to zero and name will be
an empty string. This situation could arise if GetActiveUniform is issued after a
failed link.

If an error occurs, nothing is written to length, size, type, or name.

Type Name Token Keyword
FLOAT float

FLOAT_VEC2 vec2

FLOAT_VEC3 vec3

FLOAT_VEC4 vec4

INT int

INT_VEC2 ivec2

INT_VEC3 ivec3

INT_VEC4 ivec4

UNSIGNED_INT unsigned int

UNSIGNED_INT_VEC2 uvec2

UNSIGNED_INT_VEC3 uvec3

UNSIGNED_INT_VEC4 uvec4

BOOL bool

BOOL_VEC2 bvec2

(Continued on next page)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 102

OpenGL Shading Language Type Tokens (continued)
Type Name Token Keyword
BOOL_VEC3 bvec3

BOOL_VEC4 bvec4

FLOAT_MAT2 mat2

FLOAT_MAT3 mat3

FLOAT_MAT4 mat4

FLOAT_MAT2x3 mat2x3

FLOAT_MAT2x4 mat2x4

FLOAT_MAT3x2 mat3x2

FLOAT_MAT3x4 mat3x4

FLOAT_MAT4x2 mat4x2

FLOAT_MAT4x3 mat4x3

SAMPLER_1D sampler1D

SAMPLER_2D sampler2D

SAMPLER_3D sampler3D

SAMPLER_CUBE samplerCube

SAMPLER_1D_SHADOW sampler1DShadow

SAMPLER_2D_SHADOW sampler2DShadow

SAMPLER_1D_ARRAY sampler1DArray

SAMPLER_2D_ARRAY sampler2DArray

SAMPLER_1D_ARRAY_SHADOW sampler1DArrayShadow

SAMPLER_2D_ARRAY_SHADOW sampler2DArrayShadow

SAMPLER_2D_MULTISAMPLE sampler2DMS

SAMPLER_2D_MULTISAMPLE_-

ARRAY

sampler2DMSArray

SAMPLER_CUBE_SHADOW samplerCubeShadow

SAMPLER_BUFFER samplerBuffer

SAMPLER_2D_RECT sampler2DRect

SAMPLER_2D_RECT_SHADOW sampler2DRectShadow

INT_SAMPLER_1D isampler1D

INT_SAMPLER_2D isampler2D

INT_SAMPLER_3D isampler3D

INT_SAMPLER_CUBE isamplerCube

INT_SAMPLER_1D_ARRAY isampler1DArray

INT_SAMPLER_2D_ARRAY isampler2DArray

(Continued on next page)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 103

OpenGL Shading Language Type Tokens (continued)
Type Name Token Keyword
INT_SAMPLER_2D_-

MULTISAMPLE

isampler2DMS

INT_SAMPLER_2D_-

MULTISAMPLE_ARRAY

isampler2DMSArray

INT_SAMPLER_BUFFER isamplerBuffer

INT_SAMPLER_2D_RECT isampler2DRect

UNSIGNED_INT_SAMPLER_1D usampler1D

UNSIGNED_INT_SAMPLER_2D usampler2D

UNSIGNED_INT_SAMPLER_3D usampler3D

UNSIGNED_INT_SAMPLER_-

CUBE

usamplerCube

UNSIGNED_INT_SAMPLER_-

1D_ARRAY

usampler1DArray

UNSIGNED_INT_SAMPLER_-

2D_ARRAY

usampler2DArray

UNSIGNED_INT_SAMPLER_-

2D_MULTISAMPLE

usampler2DMS

UNSIGNED_INT_SAMPLER_-

2D_MULTISAMPLE_ARRAY

usampler2DMSArray

UNSIGNED_INT_SAMPLER_-

BUFFER

usamplerBuffer

UNSIGNED_INT_SAMPLER_-

2D_RECT

usampler2DRect

Table 2.15: OpenGL Shading Language type tokens returned by
GetActiveUniform and GetActiveUniformsiv, and correspond-
ing shading language keywords declaring each such type.

For GetActiveUniformsiv, uniformCount indicates both the number of ele-
ments in the array of indices uniformIndices and the number of parameters written
to params upon successful return. pname identifies a property of each uniform in
uniformIndices that should be written into the corresponding element of params.
If an error occurs, nothing will be written to params.

If pname is UNIFORM_TYPE, then an array identifying the types of the uniforms
specified by the corresponding array of uniformIndices is returned. The returned
types can be any of the values in table 2.15.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 104

If pname is UNIFORM_SIZE, then an array identifying the size of the uniforms
specified by the corresponding array of uniformIndices is returned. The sizes re-
turned are in units of the type returned by a query of UNIFORM_TYPE. For active
uniforms that are arrays, the size is the number of active elements in the array; for
all other uniforms, the size is one.

If pname is UNIFORM_NAME_LENGTH, then an array identifying the length,
including the terminating null character, of the uniform name strings specified by
the corresponding array of uniformIndices is returned.

If pname is UNIFORM_BLOCK_INDEX, then an array identifying the uniform
block index of each of the uniforms specified by the corresponding array of unifor-
mIndices is returned. The index of a uniform associated with the default uniform
block is -1.

If pname is UNIFORM_OFFSET, then an array of uniform buffer offsets is re-
turned. For uniforms in a named uniform block, the returned value will be its offset,
in basic machine units, relative to the beginning of the uniform block in the buffer
object data store. For uniforms in the default uniform block, -1 will be returned.

If pname is UNIFORM_ARRAY_STRIDE, then an array identifying the stride
between elements, in basic machine units, of each of the uniforms specified by
the corresponding array of uniformIndices is returned. The stride of a uniform
associated with the default uniform block is -1. Note that this information only
makes sense for uniforms that are arrays. For uniforms that are not arrays, but are
declared in a named uniform block, an array stride of zero is returned.

If pname is UNIFORM_MATRIX_STRIDE, then an array identifying the stride
between columns of a column-major matrix or rows of a row-major matrix, in ba-
sic machine units, of each of the uniforms specified by the corresponding array of
uniformIndices is returned. The matrix stride of a uniform associated with the de-
fault uniform block is -1. Note that this information only makes sense for uniforms
that are matrices. For uniforms that are not matrices, but are declared in a named
uniform block, a matrix stride of zero is returned.

If pname is UNIFORM_IS_ROW_MAJOR, then an array identifying whether each
of the uniforms specified by the corresponding array of uniformIndices is a row-
major matrix or not is returned. A value of one indicates a row-major matrix, and
a value of zero indicates a column-major matrix, a matrix in the default uniform
block, or a non-matrix.

Loading Uniform Variables In The Default Uniform Block

To load values into the uniform variables of the default uniform block of the pro-
gram object that is currently in use, use the commands

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 105

void Uniform{1234}{if}(int location, T value);
void Uniform{1234}{if}v(int location, sizei count, const

T value);
void Uniform{1234}ui(int location, T value);
void Uniform{1234}uiv(int location, sizei count, const

T value);
void UniformMatrix{234}fv(int location, sizei count,

boolean transpose, const float *value);
void UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv(

int location, sizei count, boolean transpose, const
float *value);

The given values are loaded into the default uniform block uniform variable loca-
tion identified by location.

The Uniform*f{v} commands will load count sets of one to four floating-point
values into a uniform location defined as a float, a floating-point vector, an array of
floats, or an array of floating-point vectors.

The Uniform*i{v} commands will load count sets of one to four integer val-
ues into a uniform location defined as a sampler, an integer, an integer vector, an
array of samplers, an array of integers, or an array of integer vectors. Only the
Uniform1i{v} commands can be used to load sampler values (see below).

The Uniform*ui{v} commands will load count sets of one to four unsigned
integer values into a uniform location defined as a unsigned integer, an unsigned
integer vector, an array of unsigned integers or an array of unsigned integer vectors.

The UniformMatrix{234}fv commands will load count 2× 2, 3× 3, or 4× 4
matrices (corresponding to 2, 3, or 4 in the command name) of floating-point values
into a uniform location defined as a matrix or an array of matrices. If transpose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

The UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv commands will load count
2×3, 3×2, 2×4, 4×2, 3×4, or 4×3 matrices (corresponding to the numbers in the
command name) of floating-point values into a uniform location defined as a matrix
or an array of matrices. The first number in the command name is the number of
columns; the second is the number of rows. For example, UniformMatrix2x4fv
is used to load a matrix consisting of two columns and four rows. If transpose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

When loading values for a uniform declared as a boolean, a boolean vector,
an array of booleans, or an array of boolean vectors, the Uniform*i{v}, Uni-
form*ui{v}, and Uniform*f{v} set of commands can be used to load boolean

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 106

values. Type conversion is done by the GL. The uniform is set to FALSE if the
input value is 0 or 0.0f, and set to TRUE otherwise. The Uniform* command used
must match the size of the uniform, as declared in the shader. For example, to
load a uniform declared as a bvec2, any of the Uniform2{if ui}* commands may
be used. An INVALID_OPERATION error will be generated if an attempt is made
to use a non-matching Uniform* command. In this example using Uniform1iv
would generate an error.

For all other uniform types the Uniform* command used must match the
size and type of the uniform, as declared in the shader. No type conversions are
done. For example, to load a uniform declared as a vec4, Uniform4f{v} must be
used. To load a 3 × 3 matrix, UniformMatrix3fv must be used. An INVALID_-

OPERATION error will be generated if an attempt is made to use a non-matching
Uniform* command. In this example, using Uniform4i{v} would generate an
error.

When loading N elements starting at an arbitrary position k in a uniform de-
clared as an array, elements k through k + N − 1 in the array will be replaced
with the new values. Values for any array element that exceeds the highest array
element index used, as reported by GetActiveUniform, will be ignored by the GL.

If the value of location is -1, the Uniform* commands will silently ignore the
data passed in, and the current uniform values will not be changed.

If any of the following conditions occur, an INVALID_OPERATION error is
generated by the Uniform* commands, and no uniform values are changed:

• if the size indicated in the name of the Uniform* command used does not
match the size of the uniform declared in the shader,

• if the uniform declared in the shader is not of type boolean and the type
indicated in the name of the Uniform* command used does not match the
type of the uniform,

• if count is greater than one, and the uniform declared in the shader is not an
array variable,

• if no variable with a location of location exists in the program object cur-
rently in use and location is not -1, or

• if there is no program object currently in use.

Uniform Blocks

The values of uniforms arranged in named uniform blocks are extracted from buffer
object storage. The mechanisms for placing individual uniforms in a buffer object

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 107

and connecting a uniform block to an individual buffer object are described below.
There is a set of implementation-dependent maximums for the number of

active uniform blocks used by each shader (vertex, geometry, and fragment).
If the number of uniform blocks used by any shader in the program exceeds
its corresponding limit, the program will fail to link. The limits for vertex,
geometry, and fragment shaders can be obtained by calling GetIntegerv with
pname values of MAX_VERTEX_UNIFORM_BLOCKS, MAX_GEOMETRY_UNIFORM_-
BLOCKS, and MAX_FRAGMENT_UNIFORM_BLOCKS, respectively.

Additionally, there is an implementation-dependent limit on the sum of the
number of active uniform blocks used by each shader of a program. If a uniform
block is used by multiple shaders, each such use counts separately against this
combined limit. The combined uniform block use limit can be obtained by calling
GetIntegerv with a pname of MAX_COMBINED_UNIFORM_BLOCKS.

When a named uniform block is declared by multiple shaders in a program, it
must be declared identically in each shader. The uniforms within the block must
be declared with the same names and types, and in the same order. If a program
contains multiple shaders with different declarations for the same named uniform
block differs between shader, the program will fail to link.

Uniform Buffer Object Storage

When stored in buffer objects associated with uniform blocks, uniforms are repre-
sented in memory as follows:

• Members of type bool are extracted from a buffer object by reading a single
uint-typed value at the specified offset. All non-zero values correspond to
true, and zero corresponds to false.

• Members of type int are extracted from a buffer object by reading a single
int-typed value at the specified offset.

• Members of type uint are extracted from a buffer object by reading a single
uint-typed value at the specified offset.

• Members of type float are extracted from a buffer object by reading a
single float-typed value at the specified offset.

• Vectors with N elements with basic data types of bool, int, uint, or
float are extracted as N values in consecutive memory locations begin-
ning at the specified offset, with components stored in order with the first
(X) component at the lowest offset. The GL data type used for component
extraction is derived according to the rules for scalar members above.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 108

• Column-major matrices with C columns and R rows (using the type
matCxR, or simply matC if C = R) are treated as an array of C floating-
point column vectors, each consisting of R components. The column vec-
tors will be stored in order, with column zero at the lowest offset. The dif-
ference in offsets between consecutive columns of the matrix will be re-
ferred to as the column stride, and is constant across the matrix. The column
stride, UNIFORM_MATRIX_STRIDE, is an implementation-dependent value
and may be queried after a program is linked.

• Row-major matrices with C columns and R rows (using the type matCxR,
or simply matC if C = R) are treated as an array of R floating-point row
vectors, each consisting of C components. The row vectors will be stored in
order, with row zero at the lowest offset. The difference in offsets between
consecutive rows of the matrix will be referred to as the row stride, and is
constant across the matrix. The row stride, UNIFORM_MATRIX_STRIDE, is
an implementation-dependent value and may be queried after a program is
linked.

• Arrays of scalars, vectors, and matrices are stored in memory by element
order, with array member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array stride,
UNIFORM_ARRAY_STRIDE, is an implementation-dependent value and may
be queried after a program is linked.

Standard Uniform Block Layout

By default, uniforms contained within a uniform block are extracted from buffer
storage in an implementation-dependent manner. Applications may query the off-
sets assigned to uniforms inside uniform blocks with query functions provided by
the GL.

The layout qualifier provides shaders with control of the layout of uniforms
within a uniform block. When the std140 layout is specified, the offset of each
uniform in a uniform block can be derived from the definition of the uniform block
by applying the set of rules described below.

If a uniform block is declared in multiple shaders linked together into a single
program, the link will fail unless the uniform block declaration, including layout
qualifier, are identical in all such shaders.

When using the std140 storage layout, structures will be laid out in buffer
storage with its members stored in monotonically increasing order based on their
location in the declaration. A structure and each structure member have a base

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 109

offset and a base alignment, from which an aligned offset is computed by rounding
the base offset up to a multiple of the base alignment. The base offset of the first
member of a structure is taken from the aligned offset of the structure itself. The
base offset of all other structure members is derived by taking the offset of the
last basic machine unit consumed by the previous member and adding one. Each
structure member is stored in memory at its aligned offset. The members of a top-
level uniform block are laid out in buffer storage by treating the uniform block as
a structure with a base offset of zero.

1. If the member is a scalar consuming N basic machine units, the base align-
ment is N .

2. If the member is a two- or four-component vector with components consum-
ing N basic machine units, the base alignment is 2N or 4N , respectively.

3. If the member is a three-component vector with components consuming N
basic machine units, the base alignment is 4N .

4. If the member is an array of scalars or vectors, the base alignment and array
stride are set to match the base alignment of a single array element, according
to rules (1), (2), and (3), and rounded up to the base alignment of a vec4. The
array may have padding at the end; the base offset of the member following
the array is rounded up to the next multiple of the base alignment.

5. If the member is a column-major matrix with C columns and R rows, the
matrix is stored identically to an array of C column vectors with R compo-
nents each, according to rule (4).

6. If the member is an array of S column-major matrices with C columns and
R rows, the matrix is stored identically to a row of S × C column vectors
with R components each, according to rule (4).

7. If the member is a row-major matrix with C columns andR rows, the matrix
is stored identically to an array of R row vectors with C components each,
according to rule (4).

8. If the member is an array of S row-major matrices with C columns and R
rows, the matrix is stored identically to a row of S × R row vectors with C
components each, according to rule (4).

9. If the member is a structure, the base alignment of the structure is N , where
N is the largest base alignment value of any of its members, and rounded

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 110

up to the base alignment of a vec4. The individual members of this sub-
structure are then assigned offsets by applying this set of rules recursively,
where the base offset of the first member of the sub-structure is equal to the
aligned offset of the structure. The structure may have padding at the end;
the base offset of the member following the sub-structure is rounded up to
the next multiple of the base alignment of the structure.

10. If the member is an array of S structures, the S elements of the array are laid
out in order, according to rule (9).

Uniform Buffer Object Bindings

The value an active uniform inside a named uniform block is extracted from the
data store of a buffer object bound to one of an array of uniform buffer binding
points. The number of binding points can be queried using GetIntegerv with the
constant MAX_UNIFORM_BUFFER_BINDINGS.

Regions of buffer objects are bound as storage for uniform blocks by calling
one of the commands BindBufferRange or BindBufferBase (see section 2.9.1)
with target set to UNIFORM_BUFFER. In addition to the general errors described in
section 2.9.1, BindBufferRange will generate an INVALID_VALUE error if index
is greater than or equal to the value of MAX_UNIFORM_BUFFER_BINDINGS, or if
offset is not a multiple of the implementation-dependent alignment requirement
(the value of UNIFORM_BUFFER_OFFSET_ALIGNMENT).

Each of a program’s active uniform blocks has a corresponding uniform buffer
object binding point. This binding point can be assigned by calling:

void UniformBlockBinding(uint program,
uint uniformBlockIndex, uint uniformBlockBinding);

program is a name of a program object for which the command LinkProgram has
been issued in the past.

An INVALID_VALUE error is generated if uniformBlockIndex is not an active
uniform block index of program, or if uniformBlockBinding is greater than or equal
to the value of MAX_UNIFORM_BUFFER_BINDINGS.

If successful, UniformBlockBinding specifies that program will use the data
store of the buffer object bound to the binding point uniformBlockBinding to extract
the values of the uniforms in the uniform block identified by uniformBlockIndex.

When executing shaders that access uniform blocks, the binding point corre-
sponding to each active uniform block must be populated with a buffer object with
a size no smaller than the minimum required size of the uniform block (the value

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 111

of UNIFORM_BLOCK_DATA_SIZE). For binding points populated by BindBuffer-
Range, the size in question is the value of the size parameter. If any active uniform
block is not backed by a sufficiently large buffer object, the results of shader ex-
ecution are undefined, and may result in GL interruption or termination. Shaders
may be executed to process the primitives and vertices specified between Begin
and End, or by vertex array commands (see section 2.8). Shaders may also be
executed as a result of DrawPixels, Bitmap, or RasterPos* commands.

When a program object is linked or re-linked, the uniform buffer object binding
point assigned to each of its active uniform blocks is reset to zero.

2.14.5 Samplers

Samplers are special uniforms used in the OpenGL Shading Language to identify
the texture object used for each texture lookup. The value of a sampler indicates
the texture image unit being accessed. Setting a sampler’s value to i selects texture
image unit number i. The values of i range from zero to the implementation-
dependent maximum supported number of texture image units.

The type of the sampler identifies the target on the texture image unit. The
texture object bound to that texture image unit’s target is then used for the texture
lookup. For example, a variable of type sampler2D selects target TEXTURE_2D
on its texture image unit. Binding of texture objects to targets is done as usual with
BindTexture. Selecting the texture image unit to bind to is done as usual with
ActiveTexture.

The location of a sampler needs to be queried with GetUniformLocation, just
like any uniform variable. Sampler values need to be set by calling Uniform1i{v}.
Loading samplers with any of the other Uniform* entry points is not allowed and
will result in an INVALID_OPERATION error.

It is not allowed to have variables of different sampler types pointing to the
same texture image unit within a program object. This situation can only be de-
tected at the next rendering command issued, and an INVALID_OPERATION error
will then be generated.

Active samplers are samplers actually being used in a program object. The
LinkProgram command determines if a sampler is active or not. The LinkPro-
gram command will attempt to determine if the active samplers in the shader(s)
contained in the program object exceed the maximum allowable limits. If it de-
termines that the count of active samplers exceeds the allowable limits, then the
link fails (these limits can be different for different types of shaders). Each active
sampler variable counts against the limit, even if multiple samplers refer to the
same texture image unit. If this cannot be determined at link time, for example if
the program object only contains a vertex shader, then it will be determined at the

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 112

next rendering command issued, and an INVALID_OPERATION error will then be
generated.

2.14.6 Varying Variables

A vertex shader may define one or more varying variables (see the OpenGL Shad-
ing Language Specification). Varying variables are outputs of a vertex shader. The
OpenGL Shading Language Specification also defines a set of built-in varying and
special variables that vertex shaders can write to (see sections 7.1 and 7.6 of the
OpenGL Shading Language Specification). These varying variables are either used
as the mechanism to communicate values to a geometry shader, if one is active, or
to communicate values to the fragment shader and to the fixed-function processing
that occurs after vertex shading.

If a geometry shader is not active, the values of all varying and special vari-
ables are expected to be interpolated across the primitive being rendered, unless
flatshaded. Otherwise the values of all varying and special variables are collected
by the primitive assembly stage and passed on to the geometry shader once enough
data for one primitive has been collected (see section 2.15).

The number of components (individual scalar numeric values) of varying and
special variables that can be written by the vertex shader, whether or not a geometry
shader is active, is given by the value of the implementation-dependent constant
MAX_VERTEX_OUTPUT_COMPONENTS. Outputs declared as vectors, matrices, and
arrays will all consume multiple components.

When a program is linked, all components of any varying and special vari-
able written by a vertex shader will count against this limit. A program whose
vertex shader writes more than the value of MAX_VERTEX_OUTPUT_COMPONENTS
components worth of varying variables may fail to link, unless device-dependent
optimizations are able to make the program fit within available hardware resources.

Additionally, when linking a program containing only a vertex and frag-
ment shader, there is a limit on the total number of components used as vertex
shader outputs or fragment shader inputs. This limit is given by the value of the
implementation-dependent constant MAX_VARYING_COMPONENTS. Each varying
or special variable component used as either a vertex shader output or fragment
shader input count against this limit, except for the components of gl_Position.
A program containing only a vertex and fragment shader that accesses more than
this limit’s worth of components of varying and special variables may fail to link,
unless device-dependent optimizations are able to make the program fit within
available hardware resources.

Each program object can specify a set of one or more vertex or geometry shader
output variables to be recorded in transform feedback mode (see section 2.19).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 113

When a geometry shader is active (see section 2.15), transform feedback records
the values of the selected geometry shader output variables from the emitted ver-
tices. Otherwise, the values of the selected vertex shader output variables are
recorded. The values to record are specified with the command

void TransformFeedbackVaryings(uint program,
sizei count, const char **varyings, enum bufferMode);

program specifies the program object. count specifies the number of vary-
ing variables used for transform feedback. varyings is an array of count zero-
terminated strings specifying the names of the varying variables to use for trans-
form feedback. The varying variables specified in varyings can be either built-in
varying variables (beginning with "gl_") or user-defined ones. Varying vari-
ables are written out in the order they appear in the array varyings. bufferMode is
either INTERLEAVED_ATTRIBS or SEPARATE_ATTRIBS, and identifies the mode
used to capture the varying variables when transform feedback is active. The error
INVALID_VALUE is generated if bufferMode is SEPARATE_ATTRIBS and count is
greater than the value of the implementation-dependent limit MAX_TRANSFORM_-
FEEDBACK_SEPARATE_ATTRIBS.

The state set by TransformFeedbackVaryings has no effect on the execu-
tion of the program until program is subsequently linked. When LinkProgram is
called, the program is linked so that the values of the specified varying variables
for the vertices of each primitive generated by the GL are written to a single buffer
object (if the buffer mode is INTERLEAVED_ATTRIBS) or multiple buffer objects
(if the buffer mode is SEPARATE_ATTRIBS). A program will fail to link if:

• the count specified by TransformFeedbackVaryings is non-zero, but the
program object has no vertex or geometry shader;

• any variable name specified in the varyings array is not declared as an output
in the vertex shader (or the geometry shader, if active).

• any two entries in the varyings array specify the same varying variable;

• the total number of components to capture in any varying variable in varyings
is greater than the constant MAX_TRANSFORM_FEEDBACK_SEPARATE_-

COMPONENTS and the buffer mode is SEPARATE_ATTRIBS; or

• the total number of components to capture is greater than the constant
MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS and the buffer
mode is INTERLEAVED_ATTRIBS.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 114

To determine the set of varying variables in a linked program object that will
be captured in transform feedback mode, the command:

void GetTransformFeedbackVarying(uint program,
uint index, sizei bufSize, sizei *length, sizei *size,
enum *type, char *name);

provides information about the varying variable selected by index. An index of 0
selects the first varying variable specified in the varyings array of TransformFeed-
backVaryings, and an index of TRANSFORM_FEEDBACK_VARYINGS-1 selects the
last such varying variable. The value of TRANSFORM_FEEDBACK_VARYINGS can
be queried with GetProgramiv (see section 6.1.17). If index is greater than or
equal to TRANSFORM_FEEDBACK_VARYINGS, the error INVALID_VALUE is gen-
erated. The parameter program is the name of a program object for which the com-
mand LinkProgram has been issued in the past. If program has not been linked,
the error INVALID_OPERATION is generated. If a new set of varying variables is
specified by TransformFeedbackVaryings after a program object has been linked,
the information returned by GetTransformFeedbackVarying will not reflect those
variables until the program is re-linked.

The name of the selected varying is returned as a null-terminated string in
name. The actual number of characters written into name, excluding the null termi-
nator, is returned in length. If length is NULL, no length is returned. The maximum
number of characters that may be written into name, including the null termina-
tor, is specified by bufSize. The returned varying name can be the name of a user
defined varying variable or the name of a built-in varying (which begin with the
prefix gl_, see the OpenGL Shading Language Specification for a complete list).

The length of the longest varying name in program is given by TRANSFORM_-

FEEDBACK_VARYING_MAX_LENGTH, which can be queried with GetProgramiv
(see section 6.1.17).

For the selected varying variable, its type is returned into type. The size of
the varying is returned into size. The value in size is in units of the type returned
in type. The type returned can be any of the scalar, vector, or matrix attribute
types returned by GetActiveAttrib. If an error occurred, the return parameters
length, size, type and name will be unmodified. This command will return as much
information about the varying variables as possible. If no information is available,
length will be set to zero and name will be an empty string. This situation could
arise if GetTransformFeedbackVarying is called after a failed link.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 115

2.14.7 Shader Execution

If a successfully linked program object that contains a vertex shader is made current
by calling UseProgram, the executable version of the vertex shader is used to
process incoming vertex values, rather than the fixed-function vertex processing
described in sections 2.12 through 2.13. In particular,

• The model-view and projection matrices are not applied to vertex coordi-
nates (section 2.12).

• The texture matrices are not applied to texture coordinates (section 2.12.1).

• Normals are not transformed to eye coordinates, and are not rescaled or nor-
malized (section 2.12.2).

• Normalization of AUTO_NORMAL evaluated normals is not performed. (sec-
tion 5.1).

• Texture coordinates are not generated automatically (section 2.12.3).

• Per vertex lighting is not performed (section 2.13.1).

• Color material computations are not performed (section 2.13.3).

• Color index lighting is not performed (section 2.13.5).

• All of the above applies when setting the current raster position (sec-
tion 2.24).

If a geometry shader (see section 2.15) is active, vertices processed by the
vertex shader are passed to the geometry shader for further processing. Otherwise,
the following operations are applied to vertices processed by the vertex shader:

• Color clamping or masking (section 2.13.6).

• Perspective division on clip coordinates (section 2.16).

• Viewport mapping, including depth range scaling (section 2.16.1).

• Flatshading (section 2.21).

• Clipping, including client-defined clip planes (section 2.22).

• Front face determination (section 2.13.1).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 116

• Color, texture coordinate, fog, point-size and generic attribute clipping (sec-
tion 2.22.1).

• Final color processing (section 2.23).

There are several special considerations for vertex shader execution described
in the following sections.

Shader Only Texturing

This section describes texture functionality that is only accessible through vertex,
geometry, or fragment shaders. Also refer to section 3.9 and to section 8.7 of the
OpenGL Shading Language Specification,

Texel Fetches

The OpenGL Shading Language texel fetch functions provide the ability to extract
a single texel from a specified texture image. The integer coordinates passed to
the texel fetch functions are used directly as the texel coordinates (i, j, k) into the
texture image. This in turn means the texture image is point-sampled (no filtering
is performed).

The OpenGL Shading Language texel fetch functions provide the ability to ex-
tract a single texel from a specified texture image. The integer coordinates passed
to the texel fetch functions are used directly as the texel coordinates (i, j, k) into
the texture image. This in turn means the texture image is point-sampled (no filter-
ing is performed), but the remaining steps of texture access (described below) are
still applied.

The level of detail accessed is computed by adding the specified level-of-detail
parameter lod to the base level of the texture, levelbase.

The texel fetch functions can not perform depth comparisons or access cube
maps. Unlike filtered texel accesses, texel fetches do not support LOD clamping or
any texture wrap mode, and require a mipmapped minification filter to access any
level of detail other than the base level.

The results of the texel fetch are undefined if any of the following conditions
hold:

• the computed level of detail is less than the texture’s base level (levelbase) or
greater than the maximum level (levelmax)

• the computed level of detail is not the texture’s base level and the texture’s
minification filter is NEAREST or LINEAR

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 117

• the layer specified for array textures is negative or greater than the number
of layers in the array texture,

• the texel coordinates (i, j, k) refer to a texel outside the defined extents of
the specified level of detail, where any of

i < −bs i ≥ ws − bs
j < −bs j ≥ hs − bs
k < −bs k ≥ ds − bs

and the size parameters bs, ws, hs, and ds refer to the border size, width,
height, and depth of the image, as in equation 3.17

• the texture being accessed is not complete, as defined in section 3.9.14.

Multisample Texel Fetches

Multisample buffers do not have mipmaps, and there is no level of detail parameter
for multisample texel fetches. Instead, an integer parameter selects the sample
number to be fetched from the buffer. The number identifying the sample is the
same as the value used to query the sample location using GetMultisamplefv.
Multisample textures support only NEAREST filtering.

Additionally, this fetch may only be performed on a multisample texture sam-
pler. No other sample or fetch commands may be performed on a multisample
texture sampler.

Texture Size Query

The OpenGL Shading Language texture size functions provide the ability to query
the size of a texture image. The LOD value lod passed in as an argument to the
texture size functions is added to the levelbase of the texture to determine a tex-
ture image level. The dimensions of that image level, excluding a possible bor-
der, are then returned. If the computed texture image level is outside the range
[levelbase, levelmax], the results are undefined. When querying the size of an array
texture, both the dimensions and the layer index are returned.

Texture Access

Shaders have the ability to do a lookup into a texture map. The maximum num-
ber of texture image units available to vertex, geometry, or fragment shaders
are respectively the values of the implementation-dependent constants MAX_-

VERTEX_TEXTURE_IMAGE_UNITS, MAX_GEOMETRY_TEXTURE_IMAGE_UNITS,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 118

and MAX_TEXTURE_IMAGE_UNITS. The vertex shader, geometry shader, and frag-
ment processing combined cannot use more than the value of MAX_COMBINED_-
TEXTURE_IMAGE_UNITS texture image units. If more than one of the vertex
shader, geometry shader, and fragment processing stage access the same texture
image unit, each such access counts separately against the MAX_COMBINED_-

TEXTURE_IMAGE_UNITS limit.
When a texture lookup is performed in a vertex or geometry shader, the filtered

texture value τ is computed in the manner described in sections 3.9.11 and 3.9.12,
and converted to a texture base color Cb as shown in table 3.25, followed by
application of the texture swizzle as described in section 3.9.16 to compute the
texture source color Cs and As.

The resulting four-component vector (Rs, Gs, Bs, As) is returned to the
shader. Texture lookup functions (see section 8.7 of the OpenGL Shading Lan-
guage Specification) may return floating-point, signed, or unsigned integer values
depending on the function and the internal format of the texture.

In a vertex or geometry shader, it is not possible to perform automatic level-of-
detail calculations using partial derivatives of the texture coordinates with respect
to window coordinates as described in section 3.9.11. Hence, there is no automatic
selection of an image array level. Minification or magnification of a texture map
is controlled by a level-of-detail value optionally passed as an argument in the
texture lookup functions. If the texture lookup function supplies an explicit level-
of-detail value l, then the pre-bias level-of-detail value λbase(x, y) = l (replacing
equation 3.18). If the texture lookup function does not supply an explicit level-of-
detail value, then λbase(x, y) = 0. The scale factor ρ(x, y) and its approximation
function f(x, y) (see equation 3.22) are ignored.

Texture lookups involving textures with depth component data can either re-
turn the depth data directly or return the results of a comparison with a reference
depth value specified in the coordinates passed to the texture lookup function, as
described in section 3.9.17. The comparison operation is requested in the shader by
using any of the shadow sampler types (sampler1DShadow, sampler2DShadow,
or sampler2DRectShadow), and in the texture using the TEXTURE_COMPARE_-
MODE parameter. These requests must be consistent; the results of a texture lookup
are undefined if any of the following conditions are true:

• The sampler used in a texture lookup function is not one of the shadow
sampler types, the texture object’s internal format is DEPTH_COMPONENT

or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE is not NONE.

• The sampler used in a texture lookup function is one of the shadow sam-
pler types, the texture object’s internal format is DEPTH_COMPONENT or
DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE is NONE.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 119

• The sampler used in a texture lookup function is one of the shadow sampler
types, and the texture object’s internal format is not DEPTH_COMPONENT or
DEPTH_STENCIL.

The stencil index texture internal component is ignored if the base internal
format is DEPTH_STENCIL.

Using a sampler in a vertex or geometry shader will return (R,G,B,A) =
(0, 0, 0, 1) if the sampler’s associated texture is not complete, as defined in sec-
tion 3.9.14.

Shader Inputs

Besides having access to vertex attributes and uniform variables, vertex shaders
can access the read-only built-in variables gl_VertexID and gl_InstanceID.

gl_VertexID holds the integer index i explicitly passed to ArrayElement to
specify the vertex, or implicitly passed by DrawArrays or one of the other drawing
commands defined in section 2.8.2. The value of gl_VertexID is defined if and
only if:

• the vertex comes from a vertex array command that specifies a complete
primitive (a vertex array drawing command other than ArrayElement).

• all enabled vertex arrays have non-zero buffer object bindings, and

• the vertex does not come from a display list, even if the display list was
compiled using one of the vertex array commands described above with data
sourced from buffer objects.

gl_InstanceID holds the integer index of the current primitive in an in-
stanced draw call (see section 2.8.2).

Section 7.1 of the OpenGL Shading Language Specification also describes
these variables.

Shader Outputs

A vertex shader can write to built-in as well as user-defined varying variables.
These values are expected to be interpolated across the primitive it outputs, unless
they are specified to be flat shaded. Refer to section 2.21 and sections 4.3.6, 7.1,
and 7.6 of the OpenGL Shading Language Specification for more detail.

The built-in output variables gl_FrontColor, gl_BackColor, gl_-

FrontSecondaryColor, and gl_BackSecondaryColor hold the front and
back colors for the primary and secondary colors for the current vertex.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 120

The built-in output variable gl_TexCoord[] is an array and holds the set of
texture coordinates for the current vertex.

The built-in output variable gl_FogFragCoord is used as the c value de-
scribed in section 3.11.

The built-in special variable gl_Position is intended to hold the homoge-
neous vertex position. Writing gl_Position is optional.

The built-in special variables gl_ClipVertex and gl_ClipDistance re-
spectively hold the vertex coordinate and clip distance(s) used in the clipping stage,
as described in section 2.22. If clipping is enabled, only one of gl_ClipVertex
and gl_ClipDistance should be written.

The built in special variable gl_PointSize, if written, holds the size of the
point to be rasterized, measured in pixels.

Position Invariance

If a vertex shader uses the built-in function ftransform to generate a vertex posi-
tion, then this generally guarantees that the transformed position will be the same
whether using this vertex shader or the fixed-function pipeline. This allows for cor-
rect multi-pass rendering algorithms, where some passes use fixed-function vertex
transformation and other passes use a vertex shader. If a vertex shader does not use
ftransform to generate a position, transformed positions are not guaranteed to
match, even if the sequence of instructions used to compute the position match the
sequence of transformations described in section 2.12.

Validation

It is not always possible to determine at link time if a program object actually will
execute. Therefore validation is done when the first rendering command is issued,
to determine if the currently active program object can be executed. If it cannot be
executed then no fragments will be rendered, and the error INVALID_OPERATION
will be generated.

This error is generated by Begin, RasterPos, or any command that performs
an implicit Begin if:

• any two active samplers in the current program object are of different types,
but refer to the same texture image unit,

• any active sampler in the current program object refers to a texture image
unit where fixed-function fragment processing accesses a texture target that
does not match the sampler type, or

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 121

• the sum of the number of active samplers in the program and the number of
texture image units enabled for fixed-function fragment processing exceeds
the combined limit on the total number of texture image units allowed.

Fixed-function fragment processing operations will be performed if the pro-
gram object in use has no fragment shader.

The INVALID_OPERATION error reported by these rendering commands may
not provide enough information to find out why the currently active program object
would not execute. No information at all is available about a program object that
would still execute, but is inefficient or suboptimal given the current GL state. As
a development aid, use the command

void ValidateProgram(uint program);

to validate the program object program against the current GL state. Each program
object has a boolean status, VALIDATE_STATUS, that is modified as a result of
validation. This status can be queried with GetProgramiv (see section 6.1.17).
If validation succeeded this status will be set to TRUE, otherwise it will be set to
FALSE. If validation succeeded the program object is guaranteed to execute, given
the current GL state. If validation failed, the program object is guaranteed to not
execute, given the current GL state.

ValidateProgram will check for all the conditions that could lead to an
INVALID_OPERATION error when rendering commands are issued, and may check
for other conditions as well. For example, it could give a hint on how to optimize
some piece of shader code. The information log of program is overwritten with
information on the results of the validation, which could be an empty string. The
results written to the information log are typically only useful during application
development; an application should not expect different GL implementations to
produce identical information.

A shader should not fail to compile, and a program object should not fail to
link due to lack of instruction space or lack of temporary variables. Implementa-
tions should ensure that all valid shaders and program objects may be successfully
compiled, linked and executed.

Undefined Behavior

When using array or matrix variables in a shader, it is possible to access a vari-
able with an index computed at run time that is outside the declared extent of the
variable. Such out-of-bounds accesses have undefined behavior, and system er-
rors (possibly including program termination) may occur. The level of protection
provided against such errors in the shader is implementation-dependent.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 122

2.14.8 Required State

The GL maintains state to indicate which shader and program object names are in
use. Initially, no shader or program objects exist, and no names are in use.

The state required per shader object consists of:

• An unsigned integer specifying the shader object name.

• An integer holding the value of SHADER_TYPE.

• A boolean holding the delete status, initially FALSE.

• A boolean holding the status of the last compile, initially FALSE.

• An array of type char containing the information log, initially empty.

• An integer holding the length of the information log.

• An array of type char containing the concatenated shader string, initially
empty.

• An integer holding the length of the concatenated shader string.

The state required per program object consists of:

• An unsigned integer indicating the program object name.

• A boolean holding the delete status, initially FALSE.

• A boolean holding the status of the last link attempt, initially FALSE.

• A boolean holding the status of the last validation attempt, initally FALSE.

• An integer holding the number of attached shader objects.

• A list of unsigned integers to keep track of the names of the shader objects
attached.

• An array of type char containing the information log, initially empty.

• An integer holding the length of the information log.

• An integer holding the number of active uniforms.

• For each active uniform, three integers, holding its location, size, and type,
and an array of type char holding its name.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.15. GEOMETRY SHADERS 123

• An array holding the values of each active uniform.

• An integer holding the number of active attributes.

• For each active attribute, three integers holding its location, size, and type,
and an array of type char holding its name.

Additional state required to support vertex shaders consists of:

• A bit indicating whether or not vertex program two-sided color mode is en-
abled, initially disabled.

• A bit indicating whether or not program point size mode (section 3.4.1) is
enabled, initially disabled.

Additionally, one unsigned integer is required to hold the name of the current pro-
gram object, if any.

2.15 Geometry Shaders

After vertices are processed, they are arranged into primitives, as described in sec-
tion 2.6.1. This section describes optional geometry shaders, an additional pipeline
stage defining operations to further process those primitives. Geometry shaders are
defined by source code in the OpenGL Shading Language, in the same manner as
vertex shaders. They operate on a single primitive at a time and emit one or more
output primitives, all of the same type, which are then processed like an equivalent
OpenGL primitive specified by the application. The original primitive is discarded
after geometry shader execution. The inputs available to a geometry shader are the
transformed attributes of all the vertices that belong to the primitive. Additional
adjacency primitives are available which also make the transformed attributes of
neighboring vertices available to the shader. The results of the shader are a new set
of transformed vertices, arranged into primitives by the shader.

The geometry shader pipeline stage is inserted after primitive assembly, prior
to transform feedback (section 2.19).

A geometry shader only applies when the GL is in RGBA mode. Its operation
in color index mode is undefined.

Geometry shaders are created as described in section 2.14.1 using a type of
GEOMETRY_SHADER. They are attached to and used in program objects as described
in section 2.14.2. When the program object currently in use includes a geometry
shader, its geometry shader is considered active, and is used to process primitives.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.15. GEOMETRY SHADERS 124

If the program object has no geometry shader, or no program object is in use, this
stage is bypassed.

A program object that includes a geometry shader must also include a vertex
shader; otherwise a link error will occur.

2.15.1 Geometry Shader Input Primitives

A geometry shader can operate on one of five input primitive types. Depending on
the input primitive type, one to six input vertices are available when the shader is
executed. Each input primitive type supports a subset of the primitives provided
by the GL. If a geometry shader is active, Begin, and any command that performs
an implicit Begin, will generate an INVALID_OPERATION error if the primitive
mode parameter is incompatible with the input primitive type of the currently active
program object, as discussed below.

A geometry shader that accesses more input vertices than are available for a
given input primitive type can be successfully compiled, because the input prim-
itive type is not part of the shader object. However, a program object containing
a shader object that accesses more input vertices than are available for the input
primitive type of the program object will not link.

The input primitive type is specified in the geometry shader source code using
an input layout qualifier, as described in the OpenGL Shading Language Specifi-
cation. A program will fail to link if the input primitive type is not specified by
any geometry shader object attached to the program, or if it is specified differently
by multiple geometry shader objects. The input primitive type may be queried by
calling GetProgramiv with the symbolic constant GEOMETRY_INPUT_TYPE. The
supported types and the corresponding OpenGL Shading Language input layout
qualifier keywords are:

Points (points)
Geometry shaders that operate on points are valid only for the POINTS primi-

tive type. There is only a single vertex available for each geometry shader invoca-
tion.

Lines (lines)
Geometry shaders that operate on line segments are valid only for the LINES,

LINE_STRIP, and LINE_LOOP primitive types. There are two vertices available
for each geometry shader invocation. The first vertex refers to the vertex at the
beginning of the line segment and the second vertex refers to the vertex at the end
of the line segment. See also section 2.15.4.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.15. GEOMETRY SHADERS 125

Lines with Adjacency (lines_adjacency)
Geometry shaders that operate on line segments with adjacent vertices are valid

only for the LINES_ADJACENCY and LINE_STRIP_ADJACENCY primitive types.
There are four vertices available for each program invocation. The second vertex
refers to attributes of the vertex at the beginning of the line segment and the third
vertex refers to the vertex at the end of the line segment. The first and fourth
vertices refer to the vertices adjacent to the beginning and end of the line segment,
respectively.

Triangles (triangles)
Geometry shaders that operate on triangles are valid for the TRIANGLES,

TRIANGLE_STRIP and TRIANGLE_FAN primitive types. There are three vertices
available for each program invocation. The first, second and third vertices refer to
attributes of the first, second and third vertex of the triangle, respectively.

Triangles with Adjacency (triangles_adjacency)
Geometry shaders that operate on triangles with adjacent vertices are valid

for the TRIANGLES_ADJACENCY and TRIANGLE_STRIP_ADJACENCY primitive
types. There are six vertices available for each program invocation. The first, third
and fifth vertices refer to attributes of the first, second and third vertex of the tri-
angle, respectively. The second, fourth and sixth vertices refer to attributes of the
vertices adjacent to the edges from the first to the second vertex, from the second
to the third vertex, and from the third to the first vertex, respectively.

2.15.2 Geometry Shader Output Primitives

A geometry shader can generate primitives of one of three types. The supported
output primitive types are points (POINTS), line strips (LINE_STRIP), and triangle
strips (TRIANGLE_STRIP). The vertices output by the geometry shader are assem-
bled into points, lines, or triangles based on the output primitive type in the man-
ner described in section 2.6.1. The resulting primitives are then further processed
as described in section 2.15.4. If the number of vertices emitted by the geometry
shader is not sufficient to produce a single primitive, nothing is drawn. The number
of vertices output by the geometry shader is limited to a maximum count specified
in the shader.

The output primitive type and maximum output vertex count are specified in
the geometry shader source code using an output layout qualifier, as described in
section 4.3.8.1 of the OpenGL Shading Language Specification. A program will
fail to link if either the output primitive type or maximum output vertex count are
not specified by any geometry shader object attached to the program, or if they

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.15. GEOMETRY SHADERS 126

are specified differently by multiple geometry shader objects. The output primi-
tive type and maximum output vertex count of a linked program may be queried
by calling GetProgramiv with the symbolic constants GEOMETRY_OUTPUT_TYPE
and GEOMETRY_VERTICES_OUT, respectively.

2.15.3 Geometry Shader Variables

Geometry shaders can access uniforms belonging to the current program ob-
ject. The amount of storage available for geometry shader uniform variables is
specified by the implementation dependent constant MAX_GEOMETRY_UNIFORM_-
COMPONENTS. This value represents the number of individual floating-point, inte-
ger, or boolean values that can be held in uniform variable storage for a geometry
shader. A link error will be generated if an attempt is made to utilize more than the
space available for geometry shader uniform variables. Uniforms are manipulated
as described in section 2.14.4. Geometry shaders also have access to samplers to
perform texturing operations, as described in sections 2.14.5 and 3.9.

Geometry shaders can access the transformed attributes of all vertices for their
input primitive type using input varying variables. A vertex shader writing to out-
put varying variables generates the values of these input varying variables, includ-
ing values for built-in as well as user-defined varying variables. Values for any
varying variables that are not written by a vertex shader are undefined. Addition-
ally, a geometry shader has access to a built-in variable that holds the ID of the
current primitive. This ID is generated by the primitive assembly stage that sits in
between the vertex and geometry shader.

Additionally, geometry shaders can write to one or more varying variables for
each vertex they output. These values are optionally flatshaded (using the OpenGL
Shading Language varying qualifier flat) and clipped, then the clipped values
interpolated across the primitive (if not flatshaded). The results of these interpo-
lations are available to the fragment shader, if one is active. Geometry shaders
can also write to a set of built-in varying variables defined in the OpenGL Shading
Language, corresponding to the values required for fixed-function processing that
occurs after geometry processing.

2.15.4 Geometry Shader Execution Environment

If a successfully linked program object that contains a geometry shader is made
current by calling UseProgram, the executable version of the geometry shader is
used to process primitives resulting from the primitive assembly stage.

The following operations are applied to the primitives that are the result of
executing a geometry shader:

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.15. GEOMETRY SHADERS 127

• Color clamping or masking (section 2.13.6).

• Perspective division on clip coordinates (section 2.16).

• Viewport mapping, including depth range scaling (section 2.16.1).

• Flatshading (section 2.21).

• Clipping, including client-defined clip planes (section 2.22).

• Front face determination (section 2.13.1).

• Color, texture coordinate, fog, point-size and generic attribute clipping (sec-
tion 2.22.1).

• Final color processing (section 2.23).

There are several special considerations for geometry shader execution de-
scribed in the following sections.

Texture Access

The Shader Only Texturing subsection of section 2.14.7 describes texture lookup
functionality accessible to a vertex shader. The texel fetch and texture size query
functionality described there also applies to geometry shaders.

Geometry Shader Inputs

Section 7.1 of the OpenGL Shading Language Specification describes the built-in
variable array gl_in[] available as input to a geometry shader. gl_in[] receives
values from equivalent built-in output variables written by the vertex shader, and
each array element of gl_in[] is a structure holding values for a specific vertex of
the input primitive. The length of gl_in[] is determined by the geometry shader
input type (see section 2.15.1). The members of each element of the gl_in[]

array are:

• Structure member gl_ClipDistance[] holds the per-vertex array of clip
distances, as written by the vertex shader to its built-in output variable gl_-
ClipDistance[].

• Structure member gl_ClipVertex holds the per-vertex position in clip co-
ordinates, as written by the vertex shader to its built-in output variable gl_-
ClipVertex.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.15. GEOMETRY SHADERS 128

• Structure members gl_FrontColor, gl_BackColor, gl_-

FrontSecondaryColor and gl_BackSecondaryColor hold the
per-vertex front and back colors of the primary and secondary colors, as
written by the vertex shader to the corresponding built-in output variables.

• Structure member gl_FogFragCoord holds the per-vertex fog coordi-
nate, as written by the vertex shader to its built-in output variable gl_-

FogFragCoord.

• Structure member gl_TexCoord[] holds the per-vertex array of texture co-
ordinates written by the vertex shader to its built-in output varying variable
gl_TexCoord[].

• Structure member gl_PointSize holds the per-vertex point size written
by the vertex shader to its built-in output varying variable gl_PointSize.
If the vertex shader does not write gl_PointSize, the value of gl_-

PointSize is undefined, regardless of the value of the enable PROGRAM_-
POINT_SIZE.

• Structure member gl_Position holds the per-vertex position, as written
by the vertex shader to its built-in output variable gl_Position. Note that
writing to gl_Position from either the vertex or geometry shader is op-
tional (also see section 7.1 of the OpenGL Shading Language Specification)

Geometry shaders also have available the built-in special variable gl_-

PrimitiveIDIn, which is not an array and has no vertex shader equivalent. It
is filled with the number of primitives processed since the last time Begin was
called (directly or indirectly via vertex array functions). The first primitive gener-
ated after a Begin is numbered zero, and the primitive ID counter is incremented
after every individual point, line, or triangle primitive is processed. For triangles
drawn in point or line mode, the primitive ID counter is incremented only once,
even though multiple points or lines may eventually be drawn. Restarting a prim-
itive topology using the primitive restart index has no effect on the primitive ID
counter.

Similarly to the built-in varying variables, each user-defined input varying vari-
able has a value for each vertex and thus needs to be declared as arrays or inside
input blocks declared as arrays. Declaring an array size is optional. If no size is
specified, it will be inferred by the linker from the input primitive type. If a size
is specified, it must match the number of vertices for the input primitive type; oth-
erwise, a link error will occur. The OpenGL Shading Language doesn’t support
multi-dimensional arrays; therefore, user-defined geometry shader inputs corre-
sponding to vertex shader outputs declared as arrays must be declared as array

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.15. GEOMETRY SHADERS 129

members of an input block that is itself declared as an array. See sections 4.3.6
and 7.6 of the OpenGL Shading Language Specification for more information.

Similarly to the limit on vertex shader output components (see section 2.14.6),
there is a limit on the number of components of built-in and user-defined input
varying variables that can be read by the geometry shader, given by the value of
the implementation-dependent constant MAX_GEOMETRY_INPUT_COMPONENTS.

When a program is linked, all components of any varying and special variable
read by a geometry shader will count against this limit. A program whose geometry
shader exceeds this limit may fail to link, unless device-dependent optimizations
are able to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.14.6).

Geometry Shader Outputs

A geometry shader is limited in the number of vertices it may emit per invocation.
The maximum number of vertices a geometry shader can possibly emit is spec-
ified in the geometry shader source and may be queried after linking by calling
GetProgramiv with the symbolic constant GEOMETRY_VERTICES_OUT. If a sin-
gle invocation of a geometry shader emits more vertices than this value, the emitted
vertices may have no effect.

There are two implementation-dependent limits on the value of GEOMETRY_-
VERTICES_OUT; it may not exceed the value of MAX_GEOMETRY_OUTPUT_-

VERTICES, and the product of the total number of vertices and the sum of all
components of all active varying variables may not exceed the value of MAX_-
GEOMETRY_TOTAL_OUTPUT_COMPONENTS. LinkProgram will fail if it deter-
mines that the total component limit would be violated.

A geometry shader can write to built-in as well as user-defined varying vari-
ables. These values are expected to be interpolated across the primitive it outputs,
unless they are specified to be flat shaded. To enable seamlessly inserting or re-
moving a geometry shader from a program object, the rules, names and types of the
output built-in varying variables and user-defined varying variables are the same as
for the vertex shader. Refer to section 2.14.6, and sections 4.3.6, 7.1, and 7.6 of the
OpenGL Shading Language Specification for more detail.

After a geometry shader emits a vertex, all built-in and user-defined output vari-
ables are undefined, as described in section 8.10 of the OpenGL Shading Language
Specification.

The built-in output variables gl_FrontColor, gl_BackColor, gl_-

FrontSecondaryColor, and gl_BackSecondaryColor hold the front and
back colors for the primary and secondary colors for the current vertex.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.15. GEOMETRY SHADERS 130

The built-in output variable gl_TexCoord[] is an array and holds the set of
texture coordinates for the current vertex.

The built-in output variable gl_FogFragCoord is used as the c value, as de-
scribed in section 3.11.

The built-in special variable gl_Position is intended to hold the homoge-
neous vertex position. Writing gl_Position is optional.

The built-in special variable gl_ClipVertex holds the vertex coordinate used
in the clipping stage, as described in section 2.22.

The built-in special variable gl_ClipDistance holds the clip distance used
in the clipping stage, as described in section 2.22.

The built-in special variable gl_PointSize, if written, holds the size of the
point to be rasterized, measured in pixels.

The built-in special variable gl_PrimitiveID holds the primitive ID counter
read by the fragment shader, replacing the value of gl_PrimitiveID generated
by drawing commands when no geometry shader is active. The geometry shader
must write to gl_PrimitiveID for the provoking vertex (see section 2.21) of a
primitive being generated, or the primitive ID counter read by the fragment shader
for that primitive is undefined.

The built-in special variable gl_Layer is used in layered rendering, and dis-
cussed further in the next section.

Similarly to the limit on vertex shader output components (see section 2.14.6),
there is a limit on the number of components of built-in and user-defined output
varying variables that can be written by the geometry shader, given by the value of
the implementation-dependent constant MAX_GEOMETRY_OUTPUT_COMPONENTS.

When a program is linked, all components of any varying and special vari-
able written by a geometry shader will count against this limit. A program whose
geometry shader exceeds this limit may fail to link, unless device-dependent opti-
mizations are able to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.14.6).

Layered Rendering

Geometry shaders can be used to render to one of several different layers of cube
map textures, three-dimensional textures, or one-or two-dimensional texture ar-
rays. This functionality allows an application to bind an entire complex texture
to a framebuffer object, and render primitives to arbitrary layers computed at run
time. For example, it can be used to project and render a scene onto all six faces
of a cubemap texture in one pass. The layer to render to is specified by writing

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.16. COORDINATE TRANSFORMATIONS 131

to the built-in output variable gl_Layer. Layered rendering requires the use of
framebuffer objects (see section 4.4.7).

Primitive Type Mismatches and Drawing Commands

A geometry shader will fail to execute if a mismatch exists between the type of
primitive being drawn and the input primitive type of the shader. If it cannot be
executed then no fragments will be rendered, and the error INVALID_OPERATION
will be generated.

This error is generated by Begin, RasterPos, or any command that performs
an implicit Begin if a geometry shader is active and:

• the input primitive type of the current geometry shader is POINTS and mode
is not POINTS;

• the input primitive type of the current geometry shader is LINES and mode
is not LINES, LINE_STRIP, or LINE_LOOP;

• the input primitive type of the current geometry shader is TRIANGLES and
mode is not TRIANGLES, TRIANGLE_STRIP or TRIANGLE_FAN;

• the input primitive type of the current geometry shader is LINES_-

ADJACENCY and mode is not LINES_ADJACENCY or LINE_STRIP_-

ADJACENCY; or,

• the input primitive type of the current geometry shader is TRIANGLES_-

ADJACENCY and mode is not TRIANGLES_ADJACENCY or TRIANGLE_-

STRIP_ADJACENCY.

2.16 Coordinate Transformations

Clip coordinates for a vertex result from fixed-function transformation of the vertex
coordinates, or from vertex or, if active, geometry shader execution, which yields
a vertex coordinate gl_Position. Perspective division on clip coordinates yields
normalized device coordinates, followed by a viewport transformation to convert
these coordinates into window coordinates.

If a vertex in clip coordinates is given by


xc

yc

zc
wc



OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.16. COORDINATE TRANSFORMATIONS 132

then the vertex’s normalized device coordinates arexd

yd

zd

 =

 xc
wc
yc

wc
zc
wc

 .

2.16.1 Controlling the Viewport

The viewport transformation is determined by the viewport’s width and height in
pixels, px and py, respectively, and its center (ox, oy) (also in pixels). The vertex’s

window coordinates,

xw

yw

zw

 , are given by

xw

yw

zw

 =

 px

2 xd + ox
py

2 yd + oy
f−n

2 zd + n+f
2

 .

The factor and offset applied to zd encoded by n and f are set using

void DepthRange(clampd n, clampd f);

zw is represented as either fixed- or floating-point depending on whether the frame-
buffer’s depth buffer uses a fixed- or floating-point representation. If the depth
buffer uses fixed-point, we assume that it represents each value k/(2m− 1), where
k ∈ {0, 1, . . . , 2m − 1}, as k (e.g. 1.0 is represented in binary as a string of all
ones). The parameters n and f are clamped to the range [0, 1], as are all arguments
of type clampd or clampf.

Viewport transformation parameters are specified using

void Viewport(int x, int y, sizei w, sizei h);

where x and y give the x and y window coordinates of the viewport’s lower left
corner and w and h give the viewport’s width and height, respectively. The viewport
parameters shown in the above equations are found from these values as

ox = x+ w
2

oy = y + h
2

px = w
py = h.

Viewport width and height are clamped to implementation-dependent maxi-
mums when specified. The maximum width and height may be found by issuing

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.17. ASYNCHRONOUS QUERIES 133

an appropriate Get command (see chapter 6). The maximum viewport dimensions
must be greater than or equal to the larger of the visible dimensions of the display
being rendered to (if a display exists), and the largest renderbuffer image which
can be successfully created and attached to a framebuffer object (see chapter 4).
INVALID_VALUE is generated if either w or h is negative.

The state required to implement the viewport transformation is four integers
and two clamped floating-point values. In the initial state, w and h are set to the
width and height, respectively, of the window into which the GL is to do its ren-
dering. If the default framebuffer is bound but no default framebuffer is associated
with the GL context (see chapter 4), then w and h are initially set to zero. ox, oy,
n, and f are set to w

2 , h
2 , 0.0, and 1.0, respectively.

2.17 Asynchronous Queries

Asynchronous queries provide a mechanism to return information about the pro-
cessing of a sequence of GL commands. There are four query types supported
by the GL. Primitive queries with a target of PRIMITIVES_GENERATED (see
section 2.20) return information on the number of primitives processed by the
GL. Primitive queries with a target of TRANSFORM_FEEDBACK_PRIMITIVES_-
WRITTEN (see section 2.20) return information on the number of primitives written
to one more buffer objects. Occlusion queries (see section 4.1.7) count the number
of fragments or samples that pass the depth test, or set a boolean to true when any
fragments or samples pass the depth test. Timer queries (see section 5.4) record
the amount of time needed to fully process these commands or the current time of
the GL.

The results of asynchronous queries are not returned by the GL immediately
after the completion of the last command in the set; subsequent commands can
be processed while the query results are not complete. When available, the query
results are stored in an associated query object. The commands described in sec-
tion 6.1.13 provide mechanisms to determine when query results are available and
return the actual results of the query. The name space for query objects is the
unsigned integers, with zero reserved by the GL.

Each type of query supported by the GL has an active query object name. If
the active query object name for a query type is non-zero, the GL is currently
tracking the information corresponding to that query type and the query results
will be written into the corresponding query object. If the active query object for a
query type name is zero, no such information is being tracked.

A query object is created and made active by calling

void BeginQuery(enum target, uint id);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.17. ASYNCHRONOUS QUERIES 134

target indicates the type of query to be performed; valid values of target are defined
in subsequent sections. If id is an unused query object name, the name is marked
as used and associated with a new query object of the type specified by target.
Otherwise id must be the name of an existing query object of that type.

BeginQuery sets the active query object name for the query type given by tar-
get to id. If BeginQuery is called with an id of zero, if the active query object name
for target is non-zero (for the targets SAMPLES_PASSED and ANY_SAMPLES_-

PASSED, if the active query for either target is non-zero), if id is the name of an
existing query object whose type does not match target, if id is the active query
object name for any query type, or if id is the active query object for condtional
rendering (see section 2.18), the error INVALID_OPERATION is generated.

The command

void EndQuery(enum target);

marks the end of the sequence of commands to be tracked for the query type given
by target. The active query object for target is updated to indicate that query results
are not available, and the active query object name for target is reset to zero. When
the commands issued prior to EndQuery have completed and a final query result
is available, the query object active when EndQuery is called is updated by the
GL. The query object is updated to indicate that the query results are available and
to contain the query result. If the active query object name for target is zero when
EndQuery is called, the error INVALID_OPERATION is generated.

The command

void GenQueries(sizei n, uint *ids);

returns n previously unused query object names in ids. These names are marked
as used, but no object is associated with them until the first time they are used by
BeginQuery.

Query objects are deleted by calling

void DeleteQueries(sizei n, const uint *ids);

ids contains n names of query objects to be deleted. After a query object is deleted,
its name is again unused. Unused names in ids are silently ignored. If an active
query object is deleted its name immediately becomes unused, but the underlying
object is not deleted until it is no longer active (see section D.1).

Query objects contain two pieces of state: a single bit indicating whether a
query result is available, and an integer containing the query result value. The

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.18. CONDITIONAL RENDERING 135

number of bits used to represent the query result is implementation-dependent. In
the initial state of a query object, the result is available and its value is zero.

The necessary state for each query type is an unsigned integer holding the
active query object name (zero if no query object is active), and any state necessary
to keep the current results of an asynchronous query in progress. Only a single type
of occlusion query can be active at one time, so the required state for occlusion
queries is shared.

2.18 Conditional Rendering

Conditional rendering can be used to discard rendering commands based on the
result of an occlusion query. Conditional rendering is started and stopped using the
commands

void BeginConditionalRender(uint id, enum mode);
void EndConditionalRender(void);

id specifies the name of an occlusion query object whose results are used to deter-
mine if the rendering commands are discarded. If the result (SAMPLES_PASSED) of
the query is zero, or if the result (ANY_SAMPLES_PASSED) is false, all rendering
commands between BeginConditionalRender and the corresponding EndCondi-
tionalRender are discarded. In this case, Begin, End, all vertex array commands
(see section 2.8) performing an implicit Begin and End, DrawPixels (see sec-
tion 3.7.5), Bitmap (see section 3.8), Accum (see section 4.2.4), EvalMesh1 and
EvalMesh2 (see section 5.1), and CopyPixels (see section 4.3.3), as well as Clear
and ClearBuffer* (see section 4.2.3), have no effect. The effect of commands set-
ting current vertex state, such as Color or VertexAttrib, are undefined. If the result
(SAMPLES_PASSED) of the query is non-zero, or if the result (ANY_SAMPLES_-
PASSED) is true, such commands are not discarded.

mode specifies how BeginConditionalRender interprets the results of the oc-
clusion query given by id. If mode is QUERY_WAIT, the GL waits for the results of
the query to be available and then uses the results to determine if subsquent render-
ing commands are discarded. If mode is QUERY_NO_WAIT, the GL may choose to
unconditionally execute the subsequent rendering commands without waiting for
the query to complete.

If mode is QUERY_BY_REGION_WAIT, the GL will also wait for occlusion
query results and discard rendering commands if the result of the occlusion query is
zero. If the query result is non-zero, subsequent rendering commands are executed,
but the GL may discard the results of the commands for any region of the frame-
buffer that did not contribute to the sample count in the specified occlusion query.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.19. TRANSFORM FEEDBACK 136

Any such discarding is done in an implementation-dependent manner, but the ren-
dering command results may not be discarded for any samples that contributed
to the occlusion query sample count. If mode is QUERY_BY_REGION_NO_WAIT,
the GL operates as in QUERY_BY_REGION_WAIT, but may choose to uncondition-
ally execute the subsequent rendering commands without waiting for the query to
complete.

If BeginConditionalRender is called while conditional rendering is in
progress, the error INVALID_OPERATION is generated. If id is not the name of
an existing query object, the error INVALID_VALUE is generated. If id is the name
of a query object with a target other than SAMPLES_PASSED or ANY_SAMPLES_-
PASSED, or if id is the name of a query currently in progress, the error INVALID_-
OPERATION is generated.

If EndConditionalRender is called while conditional rendering is not in
progress, the error INVALID_OPERATION is generated.

2.19 Transform Feedback

In transform feedback mode, attributes of the vertices of transformed primitives
processed by a vertex shader, or primitives generated by a geometry shader if one
is active, are written out to one or more buffer objects. The vertices are fed back
after vertex color clamping, but before flatshading and clipping. If a geometry
shader is active, the vertices recorded are those emitted from the geometry shader.
The transformed vertices may be optionally discarded after being stored into one
or more buffer objects, or they can be passed on down to the clipping stage for
further processing. The set of attributes captured is determined when a program is
linked.

Transform feedback is started and finished by calling

void BeginTransformFeedback(enum primitiveMode);

and

void EndTransformFeedback(void);

respectively. Transform feedback is said to be active after a call to BeginTrans-
formFeedback and inactive after a call to EndTransformFeedback. primitive-
Mode is one of TRIANGLES, LINES, or POINTS, and specifies the output type of
primitives that will be recorded into the buffer objects bound for transform feed-
back (see below). primitiveMode restricts the primitive types that may be rendered
while transform feedback is active, as shown in table 2.16.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.19. TRANSFORM FEEDBACK 137

Transform Feedback Allowed render primitive
primitiveMode (Begin) modes
POINTS POINTS

LINES LINES, LINE_LOOP, LINE_STRIP
TRIANGLES TRIANGLES, TRIANGLE_STRIP, TRIANGLE_FAN

QUADS, QUAD_STRIP, POLYGON

Table 2.16: Legal combinations of the transform feedback primitive mode, as
passed to BeginTransformFeedback, and the current primitive mode.

Transform feedback commands must be paired; the error INVALID_-

OPERATION is generated by BeginTransformFeedback if transform feedback is
active, and by EndTransformFeedback if transform feedback is inactive.

Transform feedback mode captures the values of varying variables written by
an active vertex or geometry shader. The error INVALID_OPERATION is generated
by BeginTransformFeedback if no vertex or geometry shader is active.

When transform feedback is active, all geometric primitives generated must be
compatible with the value of primitiveMode passed to BeginTransformFeedback.
The error INVALID_OPERATION is generated by Begin or any operation that im-
plicitly calls Begin (such as DrawElements) if mode is not one of the allowed
modes in table 2.16. If a geometry shader is active, its output primitive type is used
instead of of the mode parameter passed to drawing commands.

Regions of buffer objects are bound as the targets of transform feedback by
calling one of the commands BindBufferRange or BindBufferBase (see sec-
tion 2.9.1) with target set to TRANSFORM_FEEDBACK_BUFFER. In addition to
the general errors described in section 2.9.1, BindBufferRange will generate an
INVALID_VALUE error if index is greater than or equal to the value of MAX_-
TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS, or if offset is not a multiple of 4.

When an individual point, line, or triangle primitive reaches the transform feed-
back stage while transform feedback is active, the values of the specified varying
variables of the vertex are appended to the buffer objects bound to the transform
feedback binding points. The attributes of the first vertex received after Begin-
TransformFeedback are written at the starting offsets of the bound buffer objects
set by BindBufferRange, and subsequent vertex attributes are appended to the
buffer object. When capturing line and triangle primitives, all attributes of the first
vertex are written first, followed by attributes of the subsequent vertices. When
writing varying variables that are arrays, individual array elements are written in
order. For multi-component varying variables or varying array elements, the indi-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.19. TRANSFORM FEEDBACK 138

vidual components are written in order. The value for any attribute specified to be
streamed to a buffer object but not actually written by a vertex or geometry shader
is undefined.

When quads and polygons are provided to transform feedback with a primitive
mode of TRIANGLES, they will be tessellated and recorded as triangles (the order of
tessellation within a primitive is undefined). Individual lines or triangles of a strip
or fan primitive will be extracted and recorded separately. Incomplete primitives
are not recorded.

Transform feedback can operate in either INTERLEAVED_ATTRIBS or
SEPARATE_ATTRIBS mode. In INTERLEAVED_ATTRIBS mode, the values of one
or more varyings are written, interleaved, into the buffer object bound to the first
transform feedback binding point (index = 0). If more than one varying variable is
written, they will be recorded in the order specified by TransformFeedbackVary-
ings (see section 2.14.6). In SEPARATE_ATTRIBS mode, the first varying variable
specified by TransformFeedbackVaryings is written to the first transform feed-
back binding point; subsequent varying variables are written to the subsequent
transform feedback binding points. The total number of variables that may be cap-
tured in separate mode is given by MAX_TRANSFORM_FEEDBACK_SEPARATE_-

ATTRIBS.
If recording the vertices of a primitive to the buffer objects being used for trans-

form feedback purposes would result in either exceeding the limits of any buffer
object’s size, or in exceeding the end position offset + size − 1, as set by Bind-
BufferRange, then no vertices of that primitive are recorded in any buffer object,
and the counter corresponding to the asynchronous query target TRANSFORM_-
FEEDBACK_PRIMITIVES_WRITTEN (see section 2.20) is not incremented.

In either separate or interleaved modes, all transform feedback binding points
that will be written to must have buffer objects bound when BeginTransformFeed-
back is called. The error INVALID_OPERATION is generated by BeginTrans-
formFeedback if any binding point used in transform feedback mode does not
have a buffer object bound. In interleaved mode, only the first buffer object bind-
ing point is ever written to. The error INVALID_OPERATION is also generated
by BeginTransformFeedback if no binding points would be used, either because
no program object is active or because the active program object has specified no
varying variables to record.

While transform feedback is active, the set of attached buffer objects and the set
of varying variables captured may not be changed. If transform feedback is active,
the error INVALID_OPERATION is generated by UseProgram, by LinkProgram
if program is the currently active program object, and by BindBufferRange or
BindBufferBase if target is TRANSFORM_FEEDBACK_BUFFER.

Buffers should not be bound or in use for both transform feedback and other

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.20. PRIMITIVE QUERIES 139

purposes in the GL. Specifically, if a buffer object is simultaneously bound to a
transform feedback buffer binding point and elsewhere in the GL, any writes to
or reads from the buffer generate undefined values. Examples of such bindings
include DrawPixels and ReadPixels to a pixel buffer object binding point and
client access to a buffer mapped with MapBuffer.

However, if a buffer object is written and read sequentially by transform feed-
back and other mechanisms, it is the responsibility of the GL to ensure that data
are accessed consistently, even if the implementation performs the operations in a
pipelined manner. For example, MapBuffer may need to block pending the com-
pletion of a previous transform feedback operation.

2.20 Primitive Queries

Primitive queries use query objects to track the number of primitives generated by
the GL and to track the number of primitives written to transform feedback buffers.

When BeginQuery is called with a target of PRIMITIVES_GENERATED, the
primitives-generated count maintained by the GL is set to zero. When the generated
primitive query is active, the primitives-generated count is incremented every time
a primitive reaches the transform feedback stage (see section 2.19), whether or
not transform feedback is active. This counter counts the number of primitives
emitted by a geometry shader, if active, possibly further tessellated into separate
primitives during the transform-feedback stage, if enabled.

When BeginQuery is called with a target of TRANSFORM_FEEDBACK_-

PRIMITIVES_WRITTEN, the transform-feedback-primitives-written count main-
tained by the GL is set to zero. When the transform feedback primitive written
query is active, the transform-feedback-primitives-written count is incremented ev-
ery time a primitive is recorded into a buffer object. If transform feedback is not
active, this counter is not incremented. If the primitive does not fit in the buffer
object, the counter is not incremented.

These two queries can be used together to determine if all primitives have been
written to the bound feedback buffers; if both queries are run simultaneously and
the query results are equal, all primitives have been written to the buffer(s). If the
number of primitives written is less than the number of primitives generated, the
buffer is full.

2.21 Flatshading

For fixed-function vertex processing, flatshading a primitive means to assign all
vertices of the primitive the same primary and secondary colors (in RGBA mode) or

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.21. FLATSHADING 140

the same color index (in color index mode). If a vertex shader is active, flatshading
a varying output means to assign all vertices of the primitive the same value for
that output.

The color and/or varying output values assigned are those of the provoking
vertex of the primitive. The provoking vertex is controlled with the command

void ProvokingVertex(enum provokeMode);

provokeMode must be either FIRST_VERTEX_CONVENTION or LAST_VERTEX_-
CONVENTION, and controls selection of the vertex whose values are assigned to
flatshaded colors and varying outputs, as shown in table 2.17

The provoking vertex behavior of quad primitives is implementation depen-
dent, and may be determined by calling GetBooleanv with the symbolic constant
QUADS_FOLLOW_PROVOKING_VERTEX. A return value of TRUE indicates that the
provoking vertex mode is respected for quad primitives, while a return value of
FALSE indicates that the implementation always behave as though the provoking
vertex mode were LAST_VERTEX_CONVENTION.

Flatshading of colors in fixed-function vertex processing, and of the built-in
varying variables gl_FrontColor,
gl_BackColor, gl_FrontSecondaryColor and gl_BackSecondaryColor

when a vertex shader is active, is controlled with the command

void ShadeModel(enum mode);

mode must be SMOOTH or FLAT. If mode is SMOOTH, vertex colors are treated in-
dividually. If mode is FLAT, flatshading is enabled and colors are taken from the
provoking vertex of the primitive. The colors selected are those derived from cur-
rent values, generated by lighting, or generated by vertex shading, if lighting is
disabled, enabled, or a vertex shader is in use, respectively.

If a vertex or geometry shader is active, user-defined varying outputs may be
flatshaded by using the flat qualifier when declaring the ouput, as described in
section 4.3.6 of the OpenGL Shading Language Specification

The state required for flatshading is one bit for the shade mode, one bit for the
provoking vertex mode, and one implementation-dependent bit for the provoking
vertex behavior of quad primitives. The initial value of the shade mode is SMOOTH
and the initial value of the provoking vertex mode is LAST_VERTEX_CONVENTION.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.21. FLATSHADING 141

Primitive type of polygon i First vertex convention Last vertex convention
point i i

independent line 2i− 1 2i
line loop i i+ 1, if i < n

1, if i = n

line strip i i+ 1
independent triangle 3i− 2 3i
triangle strip i i+ 2
triangle fan i+ 1 i+ 2
independent quad 4i− 3 4i 1

4i 4i 2

quad strip 2i− 1 2i+ 2 1

2i+ 2 2i+ 2 2

single polygon (i = 1) 1 1
line adjacency 4i− 2 4i− 1
line strip adjacency i+ 1 i+ 2
triangle adjacency 6i− 5 6i− 1
triangle strip adjacency 2i− 1 2i+ 3

Table 2.17: Provoking vertex selection. The vertex colors and/or varying values
used for flatshading the ith primitive generated by the indicated Begin / End type
are derived from the corresponding values of the vertex whose index is shown in

the table. Vertices are numbered 1 through n, where n is the number of vertices
between the Begin / End pair.
1 If the value of QUADS_FOLLOW_PROVOKING_VERTEX is TRUE.
2 If the value of QUADS_FOLLOW_PROVOKING_VERTEX is FALSE.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.22. PRIMITIVE CLIPPING 142

2.22 Primitive Clipping

Primitives are clipped to the clip volume. In clip coordinates, the view volume is
defined by

−wc ≤ xc ≤ wc

−wc ≤ yc ≤ wc

−wc ≤ zc ≤ wc.

This view volume may be further restricted by as many as n client-defined clip
planes to generate the clip volume. Each client-defined plane specifies a half-
space. (n is an implementation-dependent maximum that must be at least 8.)
The clip volume is the intersection of all such half-spaces with the view volume (if
no client-defined clip planes are enabled, the clip volume is the view volume).

A client-defined clip plane is specified with

void ClipPlane(enum p, const double eqn[4]);

The value of the first argument, p, is a symbolic constant, CLIP_PLANEi, where i is
an integer between 0 and n− 1, indicating one of n client-defined clip planes. eqn
is an array of four double-precision floating-point values. These are the coefficients
of a plane equation in object coordinates: p1, p2, p3, and p4 (in that order). The
inverse of the current model-view matrix is applied to these coefficients, at the time
they are specified, yielding(

p′1 p′2 p′3 p′4
)

=
(
p1 p2 p3 p4

)
M−1

(where M is the current model-view matrix; the resulting plane equation is unde-
fined if M is singular and may be inaccurate if M is poorly-conditioned) to obtain
the plane equation coefficients in eye coordinates. All points with eye coordinates(
xe ye ze we

)T that satisfy

(
p′1 p′2 p′3 p′4

)
xe

ye

ze
we

 ≥ 0

lie in the half-space defined by the plane; points that do not satisfy this condition
do not lie in the half-space.

When a vertex shader is active, the vector
(
xe ye ze we

)T is no longer
computed. Instead, the value of the gl_ClipVertex built-in variable is used in
its place. If gl_ClipVertex is not written by the vertex shader, its value is un-
defined, which implies that the results of clipping to any client-defined clip planes

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.22. PRIMITIVE CLIPPING 143

are also undefined. The user must ensure that the clip vertex and client-defined clip
planes are defined in the same coordinate space.

A vertex shader may, instead of writing to gl_ClipVertex write a single clip
distance for each supported clip plane to elements of the gl_ClipDistance[]

array. The half-space corresponding to clip plane n is then given by the set of
points satisfying the inequality

cn(P) ≥ 0,

where cn(P) is the value of clip distance n at point P . For point primitives,
cn(P) is simply the clip distance for the vertex in question. For line and triangle
primitives, per-vertex clip distances are interpolated using a weighted mean, with
weights derived according to the algorithms described in sections 3.5 and 3.6.

Client-defined clip planes are enabled with the generic Enable command and
disabled with the Disable command. The value of the argument to either command
is CLIP_DISTANCEi, where i is an integer between 0 and n − 1; specifying a
value of i enables or disables the plane equation with index i. The constants obey
CLIP_DISTANCEi = CLIP_DISTANCE0 + i.

Depth clamping is enabled with the generic Enable command and disabled
with the Disable command. The value of the argument to either command is
DEPTH_CLAMP. If depth clamping is enabled, the

−wc ≤ zc ≤ wc

plane equation is ignored by view volume clipping (effectively, there is no near or
far plane clipping).

If the primitive under consideration is a point, then clipping passes it un-
changed if it lies within the clip volume; otherwise, it is discarded.

If the primitive is a line segment, then clipping does nothing to it if it lies
entirely within the clip volume, and discards it if it lies entirely outside the volume.

If part of the line segment lies in the volume and part lies outside, then the
line segment is clipped and new vertex coordinates are computed for one or both
vertices. A clipped line segment endpoint lies on both the original line segment
and the boundary of the clip volume.

This clipping produces a value, 0 ≤ t ≤ 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices’ coordinates are P1

and P2, then t is given by

P = tP1 + (1− t)P2.

The value of t is used to clip color, secondary color, texture coordinate, fog coor-
dinate, and vertex shader varying variables as described in section 2.22.1.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.22. PRIMITIVE CLIPPING 144

If the primitive is a polygon, then it is passed if every one of its edges lies
entirely inside the clip volume and either clipped or discarded otherwise. Polygon
clipping may cause polygon edges to be clipped, but because polygon connectivity
must be maintained, these clipped edges are connected by new edges that lie along
the clip volume’s boundary. Thus, clipping may require the introduction of new
vertices into a polygon. Edge flags are associated with these vertices so that edges
introduced by clipping are flagged as boundary (edge flag TRUE), and so that orig-
inal edges of the polygon that become cut off at these vertices retain their original
flags.

If it happens that a polygon intersects an edge of the clip volume’s boundary,
then the clipped polygon must include a point on this boundary edge. This point
must lie in the intersection of the boundary edge and the convex hull of the vertices
of the original polygon. We impose this requirement because the polygon may not
be exactly planar.

Primitives rendered with user-defined clip planes must satisfy a complementar-
ity criterion. Suppose a single clip plane with coefficients

(
p′1 p′2 p′3 p′4

)
(or a

number of similarly specified clip planes) is enabled and a series of primitives are
drawn. Next, suppose that the original clip plane is respecified with coefficients(
−p′1 −p′2 −p′3 −p′4

)
(and correspondingly for any other clip planes) and the

primitives are drawn again (and the GL is otherwise in the same state). In this
case, primitives must not be missing any pixels, nor may any pixels be drawn twice
in regions where those primitives are cut by the clip planes.

The state required for clipping is at least 8 bits indicating which of the client-
defined plane equations are enabled, and at least 8 corresponding sets of plane
equations (each consisting of four double-precision floating-point coefficients) In
the initial state, all plane equations are disabled and all client-defined plane equa-
tion coefficients are zero.

2.22.1 Color and Associated Data Clipping

After lighting, clamping or masking and possible flatshading, colors are
clipped. Those colors associated with a vertex that lies within the clip volume
are unaffected by clipping. If a primitive is clipped, however, the colors assigned
to vertices produced by clipping are clipped.

Let the colors assigned to the two vertices P1 and P2 of an unclipped edge be
c1 and c2. The value of t (section 2.22) for a clipped point P is used to obtain the
color associated with P as

c = tc1 + (1− t)c2.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.23. FINAL COLOR PROCESSING 145

(For a color index color, multiplying a color by a scalar means multiplying the
index by the scalar. For an RGBA color, it means multiplying each of R, G, B,
and A by the scalar. Both primary and secondary colors are treated in the same
fashion.)

Polygon clipping may create a clipped vertex along an edge of the clip volume’s
boundary. This situation is handled by noting that polygon clipping proceeds by
clipping against one plane of the clip volume’s boundary at a time. Color clipping
is done in the same way, so that clipped points always occur at the intersection of
polygon edges (possibly already clipped) with the clip volume’s boundary.

Texture and fog coordinates, vertex shader varying variables (section 2.14.6),
and point sizes computed on a per vertex basis must also be clipped when a prim-
itive is clipped. The method is exactly analogous to that used for color clipping.

For vertex shader varying variables specified to be interpolated without per-
spective correction (using the noperspective qualifier), the value of t used to
obtain the varying value associated with P will be adjusted to produce results that
vary linearly in screen space.

Varying outputs of integer or unsigned integer type must always be declared
with the flat qualifier. Since such varyings are constant over the primitive being
rasterized (see sections 3.5.1 and 3.6.1), no interpolation is performed.

2.23 Final Color Processing

In RGBA mode with vertex color clamping disabled, the floating- point RGBA
components are not modified.

In RGBA mode with vertex color clamping enabled, each color component
may be converted to a signed or unsigned normalized fixed-point value as described
in equations 2.4 and 2.6 (depending on the framebuffer format).

GL implementations are not required to convert clamped color components to
fixed-point.

Because a number of the form k/(2m − 1) may not be represented exactly as
a limited-precision floating-point quantity, we place a further requirement on the
fixed-point conversion of RGBA components. Suppose that lighting is disabled, the
color associated with a vertex has not been clipped, and one of Colorub, Colorus,
or Colorui was used to specify that color. When these conditions are satisfied, an
RGBA component must convert to a value that matches the component as specified
in the Color command: if m is less than the number of bits b with which the
component was specified, then the converted value must equal the most significant
m bits of the specified value; otherwise, the most significant b bits of the converted
value must equal the specified value.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.24. CURRENT RASTER POSITION 146

A color index is converted (by rounding to nearest) to a fixed-point value with
at least as many bits as there are in the color index portion of the framebuffer.

2.24 Current Raster Position

The current raster position is used by commands that directly affect pixels in the
framebuffer. These commands, which bypass vertex transformation and primitive
assembly, are described in the next chapter. The current raster position, however,
shares some of the characteristics of a vertex.

The current raster position is set using one of the commands

void RasterPos{234}{sifd}(T coords);
void RasterPos{234}{sifd}v(const T coords);

RasterPos4 takes four values indicating x, y, z, and w. RasterPos3 (or Raster-
Pos2) is analogous, but sets only x, y, and z with w implicitly set to 1 (or only x
and y with z implicitly set to 0 and w implicitly set to 1).

Gets of CURRENT_RASTER_TEXTURE_COORDS are affected by the setting of
the state ACTIVE_TEXTURE.

The coordinates are treated as if they were specified in a Vertex command. If
a vertex shader is active, this vertex shader is executed using the x, y, z, and w
coordinates as the object coordinates of the vertex. Otherwise, the x, y, z, and
w coordinates are transformed by the current model-view and projection matri-
ces. These coordinates, along with current values, are used to generate primary
and secondary colors and texture coordinates just as is done for a vertex. The col-
ors and texture coordinates so produced replace the colors and texture coordinates
stored in the current raster position’s associated data. If a vertex shader is active
then the current raster distance is set to the value of the shader built in varying
gl_FogFragCoord. Otherwise, if the value of the fog source (see section 3.11)
is FOG_COORD, then the current raster distance is set to the value of the current
fog coordinate. Otherwise, the current raster distance is set to the distance from
the origin of the eye coordinate system to the vertex as transformed by only the
current model-view matrix. This distance may be approximated as discussed in
section 3.11.

If depth clamping (see section 2.22) is enabled, then raster position zw is first
clamped to the range [min(n, f),max(n, f)], where n and f are the current near
and far depth range values (see section 2.16.1).

Since vertex shaders may be executed when the raster position is set, any at-
tributes not written by the shader will result in undefined state in the current raster

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.24. CURRENT RASTER POSITION 147

position. Vertex shaders should output all varying variables that would be used
when rasterizing pixel primitives using the current raster position.

The transformed coordinates are passed to clipping as if they represented a
point. If the “point” is not culled, then the projection to window coordinates is
computed (section 2.16) and saved as the current raster position, and the valid bit
is set. If the “point” is culled, the current raster position and its associated data
become indeterminate and the valid bit is cleared. Figure 2.13 summarizes the
behavior of the current raster position.

Alternately, the current raster position may be set by one of the WindowPos
commands:

void WindowPos{23}{sifd}(T coords);
void WindowPos{23}{sifd}v(const T coords);

WindowPos3 takes three values indicating x, y and z, while WindowPos2
takes two values indicating x and y with z implicitly set to 0. The current raster
position, (xw, yw, zw, wc), is defined by:

xw = x

yw = y

zw =


n, z ≤ 0
f, z ≥ 1
n+ z(f − n), otherwise

wc = 1

where n and f are the values passed to DepthRange (see section 2.16.1).
Lighting, texture coordinate generation and transformation, and clipping are

not performed by the WindowPos functions. Instead, in RGBA mode, the current
raster color and secondary color are obtained from the current color and secondary
color, respectively. If vertex color clamping is enabled, the current raster color and
secondary color are clamped to [0, 1]. In color index mode, the current raster color
index is set to the current color index. The current raster texture coordinates are set
to the current texture coordinates, and the valid bit is set.

If the value of the fog source is FOG_COORD_SRC, then the current raster dis-
tance is set to the value of the current fog coordinate. Otherwise, the raster distance
is set to 0.

The current raster position requires six single-precision floating-point values
for its xw, yw, and zw window coordinates, itswc clip coordinate, its raster distance

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.24. CURRENT RASTER POSITION 148

Rasterpos In

Current
Normal

Lighting

Vertex/Normal
Transformation

Clip Project

Current
Raster

Position

Valid

Raster
Position

Raster
Distance

Associated
Data

Current
Color &

Materials

Texture
Matrix 0Current

Texture
Coord Set 0

Texgen

Texture
Matrix 3Current

Texture
Coord Set 3

Texgen

Texture
Matrix 2Current

Texture
Coord Set 2

Texgen

Texture
Matrix 1Current

Texture
Coord Set 1

Texgen

Figure 2.13. The current raster position and how it is set. Four texture units are
shown; however, multitexturing may support a different number of units depending
on the implementation.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.24. CURRENT RASTER POSITION 149

(used as the fog coordinate in raster processing), a single valid bit, four floating-
point values to store the current RGBA color, four floating-point values to store the
current RGBA secondary color, one floating-point value to store the current color
index, and 4 floating-point values for texture coordinates for each texture unit. In
the initial state, the coordinates and texture coordinates are all (0, 0, 0, 1), the eye
coordinate distance is 0, the fog coordinate is 0, the valid bit is set, the associated
RGBA color is (1, 1, 1, 1), the associated RGBA secondary color is (0, 0, 0, 1), and
the associated color index color is 1. In RGBA mode, the associated color index
always has its initial value; in color index mode, the RGBA color and secondary
color always maintain their initial values.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information as color and depth.
Thus, rasterizing a primitive consists of two parts. The first is to determine which
squares of an integer grid in window coordinates are occupied by the primitive. The
second is assigning a depth value and one or more color values to each such square.
The results of this process are passed on to the next stage of the GL (per-fragment
operations), which uses the information to update the appropriate locations in the
framebuffer. Figure 3.1 diagrams the rasterization process. The color values as-
signed to a fragment are initially determined by the rasterization operations (sec-
tions 3.4 through 3.8) and modified by either the execution of the texturing, color
sum, and fog operations defined in sections 3.9, 3.10, and 3.11, or by a fragment
shader as defined in section 3.12. The final depth value is initially determined by
the rasterization operations and may be modified or replaced by a fragment shader.
The results from rasterizing a point, line, polygon, pixel rectangle or bitmap can be
routed through a fragment shader.

A grid square along with its z (depth) and assigned colors, fog coordinate, and
texture coordinates, or varying shader output parameters is called a fragment; the
parameters are collectively dubbed the fragment’s associated data. A fragment is
located by its lower left corner, which lies on integer grid coordinates. Rasteriza-
tion operations also refer to a fragment’s center, which is offset by (1/2, 1/2) from
its lower left corner (and so lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules are not
affected by the actual aspect ratio of the grid squares. Display of non-square grids,
however, will cause rasterized points and line segments to appear fatter in one
direction than the other. We assume that fragments are square, since it simplifies
antialiasing and texturing.

150

151

Point
Rasterization

Polygon
Rasterization

Line
Rasterization

Bitmap
Rasterization

Pixel
Rectangle

Rasterization

Fog

Color Sum

Texturing
Fragment
Program

From
Primitive
Assembly

DrawPixels

Bitmap Fragments

Fixed function or fragment
shader selection

Figure 3.1. Rasterization.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.1. DISCARDING PRIMITIVES BEFORE RASTERIZATION 152

Several factors affect rasterization. Primitives may be discarded before ras-
terization. Lines and polygons may be stippled. Points may be given differing
diameters and line segments differing widths. A point, line segment, or polygon
may be antialiased.

3.1 Discarding Primitives Before Rasterization

Primitives can be optionally discarded before rasterization by calling Enable and
Disable with RASTERIZER_DISCARD. When enabled, primitives are discarded im-
mediately before the rasterization stage, but after the optional transform feedback
stage (see section 2.19). When disabled, primitives are passed through to the ras-
terization stage to be processed normally. When enabled, RASTERIZER_DISCARD
also causes the Accum, Bitmap, CopyPixels, DrawPixels, Clear, and Clear-
Buffer* commands to be ignored.

3.2 Invariance

Consider a primitive p′ obtained by translating a primitive p through an offset (x, y)
in window coordinates, where x and y are integers. As long as neither p′ nor p is
clipped, it must be the case that each fragment f ′ produced from p′ is identical to
a corresponding fragment f from p except that the center of f ′ is offset by (x, y)
from the center of f .

3.3 Antialiasing

Antialiasing of a point, line, or polygon is effected in one of two ways depending
on whether the GL is in RGBA or color index mode.

In RGBA mode, the R, G, and B values of the rasterized fragment are left
unaffected, but the A value is multiplied by a floating-point value in the range
[0, 1] that describes a fragment’s screen pixel coverage. The per-fragment stage of
the GL can be set up to use the A value to blend the incoming fragment with the
corresponding pixel already present in the framebuffer.

In color index mode, the least significant b bits (to the left of the binary point)
of the color index are used for antialiasing; b = min{4,m}, wherem is the number
of bits in the color index portion of the framebuffer. The antialiasing process sets
these b bits based on the fragment’s coverage value: the bits are set to zero for no
coverage and to all ones for complete coverage.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.3. ANTIALIASING 153

The details of how antialiased fragment coverage values are computed are dif-
ficult to specify in general. The reason is that high-quality antialiasing may take
into account perceptual issues as well as characteristics of the monitor on which
the contents of the framebuffer are displayed. Such details cannot be addressed
within the scope of this document. Further, the coverage value computed for a
fragment of some primitive may depend on the primitive’s relationship to a num-
ber of grid squares neighboring the one corresponding to the fragment, and not just
on the fragment’s grid square. Another consideration is that accurate calculation
of coverage values may be computationally expensive; consequently we allow a
given GL implementation to approximate true coverage values by using a fast but
not entirely accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact an-
tialiasing in the prototypical case that each displayed pixel is a perfect square of
uniform intensity. The square is called a fragment square and has lower left corner
(x, y) and upper right corner (x+1, y+1). We recognize that this simple box filter
may not produce the most favorable antialiasing results, but it provides a simple,
well-defined model.

A GL implementation may use other methods to perform antialiasing, subject
to the following conditions:

1. If f1 and f2 are two fragments, and the portion of f1 covered by some prim-
itive is a subset of the corresponding portion of f2 covered by the primitive,
then the coverage computed for f1 must be less than or equal to that com-
puted for f2.

2. The coverage computation for a fragment f must be local: it may depend
only on f ’s relationship to the boundary of the primitive being rasterized. It
may not depend on f ’s x and y coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasterizing a
particular primitive must be constant, independent of any rigid motions in
window coordinates, as long as none of those fragments lies along window
edges.

In some implementations, varying degrees of antialiasing quality may be obtained
by providing GL hints (section 5.8), allowing a user to make an image quality
versus speed tradeoff.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.3. ANTIALIASING 154

3.3.1 Multisampling

Multisampling is a mechanism to antialias all GL primitives: points, lines, poly-
gons, bitmaps, and images. The technique is to sample all primitives multiple times
at each pixel. The color sample values are resolved to a single, displayable color
each time a pixel is updated, so the antialiasing appears to be automatic at the
application level. Because each sample includes color, depth, and stencil informa-
tion, the color (including texture operation), depth, and stencil functions perform
equivalently to the single-sample mode.

An additional buffer, called the multisample buffer, is added to the framebuffer.
Pixel sample values, including color, depth, and stencil values, are stored in this
buffer. Samples contain separate color values for each fragment color. When
the framebuffer includes a multisample buffer, it does not include depth or sten-
cil buffers, even if the multisample buffer does not store depth or stencil values.
Color buffers do coexist with the multisample buffer, however.

Multisample antialiasing is most valuable for rendering polygons, because it
requires no sorting for hidden surface elimination, and it correctly handles adjacent
polygons, object silhouettes, and even intersecting polygons. If only points or
lines are being rendered, the “smooth” antialiasing mechanism provided by the
base GL may result in a higher quality image. This mechanism is designed to
allow multisample and smooth antialiasing techniques to be alternated during the
rendering of a single scene.

If the value of SAMPLE_BUFFERS is one, the rasterization of all primitives
is changed, and is referred to as multisample rasterization. Otherwise, primitive
rasterization is referred to as single-sample rasterization. The value of SAMPLE_-
BUFFERS is queried by calling GetIntegerv with pname set to SAMPLE_BUFFERS.

During multisample rendering the contents of a pixel fragment are changed
in two ways. First, each fragment includes a coverage value with SAMPLES bits.
The value of SAMPLES is an implementation-dependent constant, and is queried by
calling GetIntegerv with pname set to SAMPLES.

The location of a given sample is queried with the command

void GetMultisamplefv(enum pname, uint index,
float *val);

pname must be SAMPLE_POSITION, and index corresponds to the sample for
which the location should be returned. The sample location is returned as two
floating point values in val[0] and val[1], each between 0 and 1, corresponding to
the x and y locations respectively in GL pixel space of that sample. (0.5, 0.5) thus
corresponds to the pixel center. The error INVALID_VALUE is generated if index
is greater than or equal to the value of SAMPLES. If the multisample mode does not

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.4. POINTS 155

have fixed sample locations, the returned values may only reflect the locations of
samples within some pixels.

Second, each fragment includes SAMPLES depth values and sets of associated
data, instead of the single depth value and set of associated data that is maintained
in single-sample rendering mode. An implementation may choose to assign the
same associated data to more than one sample. The location for evaluating such
associated data can be anywhere within the pixel including the fragment center or
any of the sample locations. The different associated data values need not all be
evaluated at the same location. Each pixel fragment thus consists of integer x and y
grid coordinates, SAMPLES depth values and sets of associated data, and a coverage
value with a maximum of SAMPLES bits.

Multisample rasterization is enabled or disabled by calling Enable or Disable
with the symbolic constant MULTISAMPLE.

If MULTISAMPLE is disabled, multisample rasterization of all primitives is
equivalent to single-sample (fragment-center) rasterization, except that the frag-
ment coverage value is set to full coverage. The color and depth values and the
sets of texture coordinates may all be set to the values that would have been as-
signed by single-sample rasterization, or they may be assigned as described below
for multisample rasterization.

If MULTISAMPLE is enabled, multisample rasterization of all primitives differs
substantially from single-sample rasterization. It is understood that each pixel in
the framebuffer has SAMPLES locations associated with it. These locations are
exact positions, rather than regions or areas, and each is referred to as a sample
point. The sample points associated with a pixel may be located inside or outside
of the unit square that is considered to bound the pixel. Furthermore, the relative
locations of sample points may be identical for each pixel in the framebuffer, or
they may differ.

If the sample locations differ per pixel, they should be aligned to window, not
screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in section 3.2 is relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

3.4 Points

A point is drawn by generating a set of fragments in the shape of a square or circle
centered around the vertex of the point. Each vertex has an associated point size
that controls the size of that square or circle.

If no vertex or geometry shader is active, then the rasterization of points is
controlled with

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.4. POINTS 156

void PointSize(float size);

size specifies the requested size of a point. The default value is 1.0. A value less
than or equal to zero results in the error INVALID_VALUE.

The requested point size is multiplied with a distance attenuation factor,
clamped to a specified point size range, and further clamped to the implementation-
dependent point size range to produce the derived point size:

derived size = clamp

(
size×

√(
1

a+ b ∗ d+ c ∗ d2

))
where d is the eye-coordinate distance from the eye, (0, 0, 0, 1) in eye coordinates,
to the vertex, and a, b, and c are distance attenuation function coefficients.

If multisampling is not enabled, the derived size is passed on to rasterization as
the point width.

If a vertex or geometry shader is active and point size mode is enabled, then
the derived point size is taken from the (potentially clipped) shader built-in gl_-

PointSize written by the geometry shader, or written by the vertex shader if no
geometry shader is active, and clamped to the implementation-dependent point size
range. If the value written to gl_PointSize is less than or equal to zero, results
are undefined. If a vertex and/or geometry shader is active and point size mode is
disabled, then the derived point size is taken from the point size state as specified
by the PointSize command. In this case no distance attenuation is performed.
Program point size mode is enabled and disabled by calling Enable or Disable
with the symbolic value PROGRAM_POINT_SIZE.

If multisampling is enabled, an implementation may optionally fade the point
alpha (see section 3.14) instead of allowing the point width to go below a given
threshold. In this case, the width of the rasterized point is

width =
{
derived size derived size ≥ threshold
threshold otherwise

(3.1)

and the fade factor is computed as follows:

fade =

{
1 derived size ≥ threshold(

derived size
threshold

)2
otherwise

(3.2)

The distance attenuation function coefficients a, b, and c, the bounds of the first
point size range clamp, and the point fade threshold are specified with

void PointParameter{if}(enum pname, T param);
void PointParameter{if}v(enum pname, const T params);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.4. POINTS 157

If pname is POINT_SIZE_MIN or POINT_SIZE_MAX, then param specifies,
or params points to the lower or upper bound respectively to which the derived
point size is clamped. If the lower bound is greater than the upper bound, the point
size after clamping is undefined. If pname is POINT_DISTANCE_ATTENUATION,
then params points to the coefficients a, b, and c. If pname is POINT_-

FADE_THRESHOLD_SIZE, then param specifies, or params points to the point fade
threshold. Values of POINT_SIZE_MIN, POINT_SIZE_MAX, or POINT_FADE_-

THRESHOLD_SIZE less than zero result in the error INVALID_VALUE.
Point antialiasing is enabled or disabled by calling Enable or Disable with the

symbolic constant POINT_SMOOTH. The default state is for point antialiasing to be
disabled.

Point sprites are enabled or disabled by calling Enable or Disable with the
symbolic constant POINT_SPRITE. The default state is for point sprites to be dis-
abled. When point sprites are enabled, the state of the point antialiasing enable is
ignored. In a deprecated context, point sprites are always enabled.

The point sprite texture coordinate replacement mode is set with one of the
TexEnv* commands described in section 3.9.16, where target is POINT_SPRITE
and pname is COORD_REPLACE. The possible values for param are FALSE and
TRUE. The default value for each texture coordinate set is for point sprite texture
coordinate replacement to be disabled.

The point sprite texture coordinate origin is set with the PointParame-
ter* commands where pname is POINT_SPRITE_COORD_ORIGIN and param is
LOWER_LEFT or UPPER_LEFT. The default value is UPPER_LEFT.

3.4.1 Basic Point Rasterization

In the default state, a point is rasterized by truncating its xw and yw coordinates
(recall that the subscripts indicate that these are x and y window coordinates) to
integers. This (x, y) address, along with data derived from the data associated
with the vertex corresponding to the point, is sent as a single fragment to the per-
fragment stage of the GL.

The effect of a point width other than 1.0 depends on the state of point antialias-
ing and point sprites. If antialiasing and point sprites are disabled, the actual width
is determined by rounding the supplied width to the nearest integer, then clamp-
ing it to the implementation-dependent maximum non-antialiased point width.
This implementation-dependent value must be no less than the implementation-
dependent maximum antialiased point width, rounded to the nearest integer value,
and in any event no less than 1. If rounding the specified width results in the value

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.4. POINTS 158

� � �
� � �

� � �
� � �

Odd Width Even Width

3.5 4.5 5.52.51.5 3.5 4.5 5.52.51.5

1.5

2.5

3.5

4.5

0.50.5

0.5

5.5

Figure 3.2. Rasterization of non-antialiased wide points. The crosses show fragment
centers produced by rasterization for any point that lies within the shaded region.
The dotted grid lines lie on half-integer coordinates.

0, then it is as if the value were 1. If the resulting width is odd, then the point

(x, y) = (bxwc+
1
2
, bywc+

1
2

)

is computed from the vertex’s xw and yw, and a square grid of the odd width cen-
tered at (x, y) defines the centers of the rasterized fragments (recall that fragment
centers lie at half-integer window coordinate values). If the width is even, then the
center point is

(x, y) = (bxw +
1
2
c, byw +

1
2
c);

the rasterized fragment centers are the half-integer window coordinate values
within the square of the even width centered on (x, y). See figure 3.2.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.4. POINTS 159

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

1.00.0 3.02.0 5.04.0 6.0
0.0

1.0

2.0

3.0

4.0

5.0

6.0

Figure 3.3. Rasterization of antialiased wide points. The black dot indicates the
point to be rasterized. The shaded region has the specified width. The X marks
indicate those fragment centers produced by rasterization. A fragment’s computed
coverage value is based on the portion of the shaded region that covers the corre-
sponding fragment square. Solid lines lie on integer coordinates.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.4. POINTS 160

All fragments produced in rasterizing a non-antialiased point are assigned the
same associated data, which are those of the vertex corresponding to the point.

If antialiasing is enabled and point sprites are disabled, then point rasterization
produces a fragment for each fragment square that intersects the region lying within
the circle having diameter equal to the current point width and centered at the
point’s (xw, yw) (figure 3.3). The coverage value for each fragment is the window
coordinate area of the intersection of the circular region with the corresponding
fragment square (but see section 3.3). This value is saved and used in the final
step of rasterization (section 3.13). The data associated with each fragment are
otherwise the data associated with the point being rasterized.

Not all widths need be supported when point antialiasing is on, but the width
1.0 must be provided. If an unsupported width is requested, the nearest supported
width is used instead. The range of supported widths and the width of evenly-
spaced gradations within that range are implementation-dependent. The range and
gradations may be obtained using the query mechanism described in chapter 6. If,
for instance, the width range is from 0.1 to 2.0 and the gradation width is 0.1, then
the widths 0.1, 0.2, . . . , 1.9, 2.0 are supported.

If point sprites are enabled, then point rasterization produces a fragment for
each framebuffer pixel whose center lies inside a square centered at the point’s
(xw, yw), with side length equal to the current point size.

All fragments produced in rasterizing a point sprite are assigned the same as-
sociated data, which are those of the vertex corresponding to the point. However,
the fragment shader builtin gl_PointCoord contains point sprite texture coor-
dinates. Additionally, for each texture coordinate set where COORD_REPLACE is
TRUE, these texture coordinates are replaced with point sprite texture coordinates.

The s point sprite texture coordinate varies from 0 to 1 across the point hori-
zontally left-to-right. If POINT_SPRITE_COORD_ORIGIN is LOWER_LEFT, the t
coordinate varies from 0 to 1 vertically bottom-to-top. Otherwise if the point sprite
texture coordinate origin is UPPER_LEFT, the t coordinate varies from 0 to 1 verti-
cally top-to-bottom. The r and q coordinates are replaced with the constants 0 and
1, respectively.

The following formula is used to evaluate the s and t point sprite texture coor-
dinates:

s =
1
2

+

(
xf + 1

2 − xw

)
size

(3.3)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.4. POINTS 161

t =

 1
2 + (yf+ 1

2
−yw)

size , POINT_SPRITE_COORD_ORIGIN = LOWER_LEFT

1
2 −

(yf+ 1
2
−yw)

size , POINT_SPRITE_COORD_ORIGIN = UPPER_LEFT

(3.4)
where size is the point’s size, xf and yf are the (integral) window coordinates of
the fragment, and xw and yw are the exact, unrounded window coordinates of the
vertex for the point.

The widths supported for point sprites must be a superset of those supported
for antialiased points. There is no requirement that these widths must be equally
spaced. If an unsupported width is requested, the nearest supported width is used
instead.

3.4.2 Point Rasterization State

The state required to control point rasterization consists of the floating-point point
width, two floating-point values specifying the minimum and maximum point size,
three floating-point values specifying the distance attenuation coefficients, a bit in-
dicating whether or not antialiasing is enabled, a bit indicating whether or not point
sprites are enabled, a bit for the point sprite texture coordinate replacement mode
for each texture coordinate set, a bit indicating whether or not vertex program
point size mode is enabled, a bit for the point sprite texture coordinate origin, and
a floating-point value specifying the point fade threshold size.

3.4.3 Point Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then points
are rasterized using the following algorithm, regardless of whether point antialias-
ing (POINT_SMOOTH) is enabled or disabled. Point rasterization produces a frag-
ment for each framebuffer pixel with one or more sample points that intersect a
region centered at the point’s (xw, yw). This region is a circle having diameter
equal to the current point width if POINT_SPRITE is disabled, or a square with
side equal to the current point width if POINT_SPRITE is enabled. Coverage bits
that correspond to sample points that intersect the region are 1, other coverage bits
are 0. All data associated with each sample for the fragment are the data associ-
ated with the point being rasterized, with the exception of texture coordinates when
POINT_SPRITE is enabled; these texture coordinates are computed as described in
section 3.4.

Point size range and number of gradations are equivalent to those supported for
antialiased points when POINT_SPRITE is disabled. The set of point sizes sup-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.5. LINE SEGMENTS 162

ported is equivalent to those for point sprites without multisample when POINT_-

SPRITE is enabled.

3.5 Line Segments

A line segment results from a line strip Begin / End object, a line loop, or a
series of separate line segments. Line segment rasterization is controlled by several
variables. Line width, which may be set by calling

void LineWidth(float width);

with an appropriate positive floating-point width, controls the width of rasterized
line segments. The default width is 1.0. Values less than or equal to 0.0 generate
the error INVALID_VALUE. Antialiasing is controlled with Enable and Disable us-
ing the symbolic constant LINE_SMOOTH. Finally, line segments may be stippled.
Stippling is controlled by a GL command that sets a stipple pattern (see below).

3.5.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either x-major
or y-major. x-major line segments have slope in the closed interval [−1, 1]; all
other line segments are y-major (slope is determined by the segment’s endpoints).
We shall specify rasterization only for x-major segments except in cases where the
modifications for y-major segments are not self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments that
are produced by rasterizing a line segment. For each fragment f with center at win-
dow coordinates xf and yf , define a diamond-shaped region that is the intersection
of four half planes:

Rf = { (x, y) | |x− xf |+ |y − yf | < 1/2.}

Essentially, a line segment starting at pa and ending at pb produces those frag-
ments f for which the segment intersects Rf , except if pb is contained in Rf . See
figure 3.4.

To avoid difficulties when an endpoint lies on a boundary of Rf we (in princi-
ple) perturb the supplied endpoints by a tiny amount. Let pa and pb have window
coordinates (xa, ya) and (xb, yb), respectively. Obtain the perturbed endpoints p′a
given by (xa, ya) − (ε, ε2) and p′b given by (xb, yb) − (ε, ε2). Rasterizing the line
segment starting at pa and ending at pb produces those fragments f for which the
segment starting at p′a and ending on p′b intersects Rf , except if p′b is contained in

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.5. LINE SEGMENTS 163

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

Figure 3.4. Visualization of Bresenham’s algorithm. A portion of a line segment is
shown. A diamond shaped region of height 1 is placed around each fragment center;
those regions that the line segment exits cause rasterization to produce correspond-
ing fragments.

Rf . ε is chosen to be so small that rasterizing the line segment produces the same
fragments when δ is substituted for ε for any 0 < δ ≤ ε.

When pa and pb lie on fragment centers, this characterization of fragments
reduces to Bresenham’s algorithm with one modification: lines produced in this
description are “half-open,” meaning that the final fragment (corresponding to pb)
is not drawn. This means that when rasterizing a series of connected line segments,
shared endpoints will be produced only once rather than twice (as would occur with
Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may be difficult
to implement, other line segment rasterization algorithms are allowed, subject to
the following rules:

1. The coordinates of a fragment produced by the algorithm may not deviate by
more than one unit in either x or y window coordinates from a corresponding
fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may differ from
that produced by the diamond-exit rule by no more than one.

3. For an x-major line, no two fragments may be produced that lie in the same

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.5. LINE SEGMENTS 164

window-coordinate column (for a y-major line, no two fragments may ap-
pear in the same row).

4. If two line segments share a common endpoint, and both segments are either
x-major (both left-to-right or both right-to-left) or y-major (both bottom-to-
top or both top-to-bottom), then rasterizing both segments may not produce
duplicate fragments, nor may any fragments be omitted so as to interrupt
continuity of the connected segments.

Next we must specify how the data associated with each rasterized fragment
are obtained. Let the window coordinates of a produced fragment center be given
by pr = (xd, yd) and let pa = (xa, ya) and pb = (xb, yb). Set

t =
(pr − pa) · (pb − pa)

‖pb − pa‖2
. (3.5)

(Note that t = 0 at pa and t = 1 at pb.) The value of an associated datum f for
the fragment, whether it be primary or secondary R, G, B, or A (in RGBA mode)
or a color index (in color index mode), the fog coordinate, an s, t, r, or q texture
coordinate, or the clip w coordinate, is found as

f =
(1− t)fa/wa + tfb/wb

(1− t)/wa + t/wb
(3.6)

where fa and fb are the data associated with the starting and ending endpoints of
the segment, respectively; wa and wb are the clip w coordinates of the starting and
ending endpoints of the segments, respectively. However, depth values for lines
must be interpolated by

z = (1− t)za + tzb (3.7)

where za and zb are the depth values of the starting and ending endpoints of the
segment, respectively.

When using a vertex shader, the noperspective and flat keywords used
to declare varying shader outputs affect how they are interpolated. When neither
keyword is specified, interpolation is performed as described in equation 3.6. When
the noperspective keyword is specified, interpolation is performed in the same
fashion as for depth values, as described in equation 3.7. When the flat keyword
is specified, no interpolation is performed, and varying outputs are taken from the
corresponding varying value of the provoking vertex corresponding to that primi-
tive (see section 2.21).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.5. LINE SEGMENTS 165

3.5.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments of width
one using the default line stipple of FFFF16. We now describe the rasterization
of line segments for general values of the line segment rasterization parameters.

Line Stipple

The command

void LineStipple(int factor, ushort pattern);

defines a line stipple. pattern is an unsigned short integer. The line stipple is taken
from the lowest order 16 bits of pattern. It determines those fragments that are to
be drawn when the line is rasterized. factor is a count that is used to modify the
effective line stipple by causing each bit in pattern to be used factor times. factor
is clamped to the range [1, 256]. Line stippling may be enabled or disabled using
Enable or Disable with the constant LINE_STIPPLE. When disabled, it is as if the
line stipple has its default value.

Line stippling masks certain fragments that are produced by rasterization so
that they are not sent to the per-fragment stage of the GL. The masking is achieved
using three parameters: the 16-bit line stipple p, the line repeat count r, and an
integer stipple counter s. Let

b = bs/rc mod 16,

Then a fragment is produced if the bth bit of p is 1, and not produced otherwise.
The bits of p are numbered with 0 being the least significant and 15 being the
most significant. The initial value of s is zero; s is incremented after production
of each fragment of a line segment (fragments are produced in order, beginning at
the starting point and working towards the ending point). s is reset to 0 whenever
a Begin occurs, and before every line segment in a group of independent segments
(as specified when Begin is invoked with LINES).

If the line segment has been clipped, then the value of s at the beginning of the
line segment is indeterminate.

Wide Lines

The actual width of non-antialiased lines is determined by rounding the supplied
width to the nearest integer, then clamping it to the implementation-dependent
maximum non-antialiased line width. This implementation-dependent value must
be no less than the implementation-dependent maximum antialiased line width,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.5. LINE SEGMENTS 166

width = 2 width = 3

Figure 3.5. Rasterization of non-antialiased wide lines. x-major line segments are
shown. The heavy line segment is the one specified to be rasterized; the light seg-
ment is the offset segment used for rasterization. x marks indicate the fragment
centers produced by rasterization.

rounded to the nearest integer value, and in any event no less than 1. If rounding
the specified width results in the value 0, then it is as if the value were 1.

Non-antialiased line segments of width other than one are rasterized by off-
setting them in the minor direction (for an x-major line, the minor direction is
y, and for a y-major line, the minor direction is x) and replicating fragments in
the minor direction (see figure 3.5). Let w be the width rounded to the nearest
integer (if w = 0, then it is as if w = 1). If the line segment has endpoints
given by (x0, y0) and (x1, y1) in window coordinates, the segment with endpoints
(x0, y0− (w− 1)/2) and (x1, y1− (w− 1)/2) is rasterized, but instead of a single
fragment, a column of fragments of height w (a row of fragments of length w for
a y-major segment) is produced at each x (y for y-major) location. The lowest
fragment of this column is the fragment that would be produced by rasterizing the
segment of width 1 with the modified coordinates. The whole column is not pro-
duced if the stipple bit for the column’s x location is zero; otherwise, the whole
column is produced.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.5. LINE SEGMENTS 167

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

Figure 3.6. The region used in rasterizing and finding corresponding coverage val-
ues for an antialiased line segment (an x-major line segment is shown).

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment squares
intersect a rectangle centered on the line segment. Two of the edges are parallel to
the specified line segment; each is at a distance of one-half the current width from
that segment: one above the segment and one below it. The other two edges pass
through the line endpoints and are perpendicular to the direction of the specified
line segment. Coverage values are computed for each fragment by computing the
area of the intersection of the rectangle with the fragment square (see figure 3.6;
see also section 3.3). Equation 3.6 is used to compute associated data values just as
with non-antialiased lines; equation 3.5 is used to find the value of t for each frag-
ment whose square is intersected by the line segment’s rectangle. Not all widths
need be supported for line segment antialiasing, but width 1.0 antialiased segments
must be provided. As with the point width, a GL implementation may be queried
for the range and number of gradations of available antialiased line widths.

For purposes of antialiasing, a stippled line is considered to be a sequence of
contiguous rectangles centered on the line segment. Each rectangle has width equal
to the current line width and length equal to 1 pixel (except the last, which may be
shorter). These rectangles are numbered from 0 to n, starting with the rectangle
incident on the starting endpoint of the segment. Each of these rectangles is ei-
ther eliminated or produced according to the procedure given under Line Stipple,
above, where “fragment” is replaced with “rectangle.” Each rectangle so produced

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.6. POLYGONS 168

is rasterized as if it were an antialiased polygon, described below (but culling, non-
default settings of PolygonMode, and polygon stippling are not applied).

3.5.3 Line Rasterization State

The state required for line rasterization consists of the floating-point line width, a
bit indicating whether line antialiasing is on or off, a 16-bit line stipple, the line
stipple repeat count, and a bit indicating whether stippling is enabled or disabled.
In addition, during rasterization an integer stipple counter must be maintained to
implement line stippling. The initial value of the line width is 1.0. The initial
state of line segment antialiasing is disabled. The initial value of the line stipple is
FFFF16 (a stipple of all ones). The initial value of the line stipple repeat count is
one. The initial state of line stippling is disabled.

3.5.4 Line Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then lines
are rasterized using the following algorithm, regardless of whether line antialiasing
(LINE_SMOOTH) is enabled or disabled. Line rasterization produces a fragment for
each framebuffer pixel with one or more sample points that intersect the rectangular
region that is described in the Antialiasing portion of section 3.5.2 (Other Line
Segment Features). If line stippling is enabled, the rectangular region is subdivided
into adjacent unit-length rectangles, with some rectangles eliminated according to
the procedure given in section 3.5.2, where “fragment” is replaced by “rectangle”.

Coverage bits that correspond to sample points that intersect a retained rectan-
gle are 1, other coverage bits are 0. Each depth value and set of associated data is
produced by substituting the corresponding sample location into equation 3.5, then
using the result to evaluate equation 3.7. An implementation may choose to as-
sign the associated data to more than one sample by evaluating equation 3.5 at any
location within the pixel including the fragment center or any one of the sample
locations, then substituting into equation 3.6. The different associated data values
need not be evaluated at the same location.

Line width range and number of gradations are equivalent to those supported
for antialiased lines.

3.6 Polygons

A polygon results from a triangle arising from a triangle strip, triangle fan, or series
of separate triangles, a polygon Begin / End object, or a quadrilateral arising from a

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.6. POLYGONS 169

quadrilateral strip, series of separate quadrilaterals, or Rect command. Like points
and line segments, polygon rasterization is controlled by several variables. Poly-
gon antialiasing is controlled with Enable and Disable with the symbolic constant
POLYGON_SMOOTH. The analog to line segment stippling for polygons is polygon
stippling, described below.

3.6.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygon is back-facing
or front-facing. This determination is made based on the sign of the (clipped or
unclipped) polygon’s area computed in window coordinates. One way to compute
this area is

a =
1
2

n−1∑
i=0

xi
wy

i⊕1
w − xi⊕1

w yi
w (3.8)

where xi
w and yi

w are the x and y window coordinates of the ith vertex of
the n-vertex polygon (vertices are numbered starting at zero for purposes of this
computation) and i⊕1 is (i+1) mod n. The interpretation of the sign of this value
is controlled with

void FrontFace(enum dir);

Setting dir to CCW (corresponding to counter-clockwise orientation of the pro-
jected polygon in window coordinates) uses a as computed above. Setting dir to
CW (corresponding to clockwise orientation) indicates that the sign of a should be
reversed prior to use. Front face determination requires one bit of state, and is
initially set to CCW.

If the sign of a (including the possible reversal of this sign as determined by
FrontFace) is positive, the polygon is front-facing; otherwise, it is back-facing.
This determination is used in conjunction with the CullFace enable bit and mode
value to decide whether or not a particular polygon is rasterized. The CullFace
mode is set by calling

void CullFace(enum mode);

mode is a symbolic constant: one of FRONT, BACK or FRONT_AND_BACK. Culling
is enabled or disabled with Enable or Disable using the symbolic constant CULL_-
FACE. Front-facing polygons are rasterized if either culling is disabled or the Cull-
Face mode is BACK while back-facing polygons are rasterized only if either culling

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.6. POLYGONS 170

is disabled or the CullFace mode is FRONT. The initial setting of the CullFace
mode is BACK. Initially, culling is disabled.

The rule for determining which fragments are produced by polygon rasteriza-
tion is called point sampling. The two-dimensional projection obtained by taking
the x and y window coordinates of the polygon’s vertices is formed. Fragment
centers that lie inside of this polygon are produced by rasterization. Special treat-
ment is given to a fragment whose center lies on a polygon boundary edge. In
such a case we require that if two polygons lie on either side of a common edge
(with identical endpoints) on which a fragment center lies, then exactly one of the
polygons results in the production of the fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a poly-
gon, we begin by specifying how these values are produced for fragments in a
triangle. Define barycentric coordinates for a triangle. Barycentric coordinates are
a set of three numbers, a, b, and c, each in the range [0, 1], with a + b + c = 1.
These coordinates uniquely specify any point p within the triangle or on the trian-
gle’s boundary as

p = apa + bpb + cpc,

where pa, pb, and pc are the vertices of the triangle. a, b, and c can be found as

a =
A(ppbpc)
A(papbpc)

, b =
A(ppapc)
A(papbpc)

, c =
A(ppapb)
A(papbpc)

,

where A(lmn) denotes the area in window coordinates of the triangle with vertices
l, m, and n.

Denote an associated datum at pa, pb, or pc as fa, fb, or fc, respectively. Then
the value f of a datum at a fragment produced by rasterizing a triangle is given by

f =
afa/wa + bfb/wb + cfc/wc

a/wa + b/wb + c/wc
(3.9)

where wa, wb and wc are the clip w coordinates of pa, pb, and pc, respectively.
a, b, and c are the barycentric coordinates of the fragment for which the data are
produced. a, b, and c must correspond precisely to the exact coordinates of the
center of the fragment. Another way of saying this is that the data associated with
a fragment must be sampled at the fragment’s center. However, depth values for
polygons must be interpolated by

z = aza + bzb + czc (3.10)

where za, zb, and zc are the depth values of pa, pb, and pc, respectively.
When using a vertex shader, the noperspective and flat keywords used

to declare varying shader outputs affect how they are interpolated. When neither

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.6. POLYGONS 171

keyword is specified, interpolation is performed as described in equation 3.9. When
the noperspective keyword is specified, interpolation is performed in the same
fashion as for depth values, as described in equation 3.10. When the flat key-
word is specified, no interpolation is performed, and varying outputs are taken
from the corresponding varying value of the provoking vertex corresponding to
that primitive (see section 2.21).

For a polygon with more than three edges, we require only that a convex
combination of the values of the datum at the polygon’s vertices can be used to
obtain the value assigned to each fragment produced by the rasterization algorithm.
That is, it must be the case that at every fragment

f =
n∑

i=1

aifi

where n is the number of vertices in the polygon, fi is the value of the f at vertex
i; for each i 0 ≤ ai ≤ 1 and

∑n
i=1 ai = 1. The values of the ai may differ from

fragment to fragment, but at vertex i, aj = 0, j 6= i and ai = 1.
One algorithm that achieves the required behavior is to triangulate a polygon

(without adding any vertices) and then treat each triangle individually as already
discussed. A scan-line rasterizer that linearly interpolates data along each edge
and then linearly interpolates data across each horizontal span from edge to edge
also satisfies the restrictions (in this case, the numerator and denominator of equa-
tion 3.9 should be iterated independently and a division performed for each frag-
ment).

3.6.2 Stippling

Polygon stippling works much the same way as line stippling, masking out certain
fragments produced by rasterization so that they are not sent to the next stage of
the GL. This is the case regardless of the state of polygon antialiasing. Stippling is
controlled with

void PolygonStipple(const ubyte *pattern);

pattern is a pointer to memory into which a 32× 32 pattern is packed. The pattern
is unpacked from memory according to the procedure given in section 3.7.5 for
DrawPixels; it is as if the height and width passed to that command were both equal
to 32, the type were BITMAP, and the format were COLOR_INDEX. The unpacked
values (before any conversion or arithmetic would have been performed) form a
stipple pattern of zeros and ones.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.6. POLYGONS 172

If xw and yw are the window coordinates of a rasterized polygon fragment,
then that fragment is sent to the next stage of the GL if and only if the bit of the
pattern (xw mod 32, yw mod 32) is 1.

Polygon stippling may be enabled or disabled with Enable or Disable using the
constant POLYGON_STIPPLE. When disabled, it is as if the stipple pattern were all
ones.

3.6.3 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever the
interior of the polygon intersects that fragment’s square. A coverage value is com-
puted at each such fragment, and this value is saved to be applied as described
in section 3.13. An associated datum is assigned to a fragment by integrating the
datum’s value over the region of the intersection of the fragment square with the
polygon’s interior and dividing this integrated value by the area of the intersection.
For a fragment square lying entirely within the polygon, the value of a datum at the
fragment’s center may be used instead of integrating the value across the fragment.

Polygon stippling operates in the same way whether polygon antialiasing is
enabled or not. The polygon point sampling rule defined in section 3.6.1, however,
is not enforced for antialiased polygons.

3.6.4 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using

void PolygonMode(enum face, enum mode);

face is one of FRONT, BACK, or FRONT_AND_BACK, indicating that the rasterizing
method described by mode respectively replaces the rasterizing method for front-
facing polygons, back-facing polygons, or both front- and back-facing polygons.
mode is one of the symbolic constants POINT, LINE, or FILL. Calling Polygon-
Mode with POINT causes certain vertices of a polygon to be treated, for rasteriza-
tion purposes, just as if they were enclosed within a Begin(POINTS) and End pair.
The vertices selected for this treatment are those that have been tagged as having a
polygon boundary edge beginning on them (see section 2.6.2). LINE causes edges
that are tagged as boundary to be rasterized as line segments. (The line stipple
counter is reset at the beginning of the first rasterized edge of the polygon, but not
for subsequent edges.) FILL is the default mode of polygon rasterization, cor-
responding to the description in sections 3.6.1, 3.6.2, and 3.6.3. Note that these

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.6. POLYGONS 173

modes affect only the final rasterization of polygons: in particular, a polygon’s ver-
tices are lit, and the polygon is clipped and possibly culled before these modes are
applied.

Polygon antialiasing applies only to the FILL state of PolygonMode. For
POINT or LINE, point antialiasing or line segment antialiasing, respectively, ap-
ply.

3.6.5 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon may
be offset by a single value that is computed for that polygon. The function that
determines this value is specified by calling

void PolygonOffset(float factor, float units);

factor scales the maximum depth slope of the polygon, and units scales an
implementation-dependent constant that relates to the usable resolution of the
depth buffer. The resulting values are summed to produce the polygon offset value.
Both factor and units may be either positive or negative.

The maximum depth slope m of a triangle is

m =

√(
∂zw
∂xw

)2

+
(
∂zw
∂yw

)2

(3.11)

where (xw, yw, zw) is a point on the triangle. m may be approximated as

m = max
{∣∣∣∣ ∂zw∂xw

∣∣∣∣ , ∣∣∣∣∂zw∂yw

∣∣∣∣} . (3.12)

If the polygon has more than three vertices, one or more values of m may be used
during rasterization. Each may take any value in the range [min,max], wheremin
and max are the smallest and largest values obtained by evaluating equation 3.11
or equation 3.12 for the triangles formed by all three-vertex combinations.

The minimum resolvable difference r is an implementation-dependent param-
eter that depends on the depth buffer representation. It is the smallest difference in
window coordinate z values that is guaranteed to remain distinct throughout poly-
gon rasterization and in the depth buffer. All pairs of fragments generated by the
rasterization of two polygons with otherwise identical vertices, but zw values that
differ by r, will have distinct depth values.

For fixed-point depth buffer representations, r is constant throughout the range
of the entire depth buffer. For floating-point depth buffers, there is no single min-
imum resolvable difference. In this case, the minimum resolvable difference for a

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.6. POLYGONS 174

given polygon is dependent on the maximum exponent, e, in the range of z values
spanned by the primitive. If n is the number of bits in the floating-point mantissa,
the minimum resolvable difference, r, for the given primitive is defined as

r = 2e−n.

The offset value o for a polygon is

o = m× factor + r × units. (3.13)

m is computed as described above. If the depth buffer uses a fixed-point represen-
tation, m is a function of depth values in the range [0, 1], and o is applied to depth
values in the same range.

Boolean state values POLYGON_OFFSET_POINT, POLYGON_OFFSET_LINE,
and POLYGON_OFFSET_FILL determine whether o is applied during the rasteriza-
tion of polygons in POINT, LINE, and FILL modes. These boolean state values are
enabled and disabled as argument values to the commands Enable and Disable.
If POLYGON_OFFSET_POINT is enabled, o is added to the depth value of each
fragment produced by the rasterization of a polygon in POINT mode. Likewise,
if POLYGON_OFFSET_LINE or POLYGON_OFFSET_FILL is enabled, o is added to
the depth value of each fragment produced by the rasterization of a polygon in
LINE or FILL modes, respectively.

For fixed-point depth buffers, fragment depth values are always limited to the
range [0, 1], either by clamping after offset addition is performed (preferred), or by
clamping the vertex values used in the rasterization of the polygon. Fragment depth
values are clamped even when the depth buffer uses a floating-point representation.

3.6.6 Polygon Multisample Rasterization

If MULTISAMPLE is enabled and the value of SAMPLE_BUFFERS is one, then poly-
gons are rasterized using the following algorithm, regardless of whether polygon
antialiasing (POLYGON_SMOOTH) is enabled or disabled. Polygon rasterization pro-
duces a fragment for each framebuffer pixel with one or more sample points that
satisfy the point sampling criteria described in section 3.6.1, including the special
treatment for sample points that lie on a polygon boundary edge. If a polygon
is culled, based on its orientation and the CullFace mode, then no fragments are
produced during rasterization. Fragments are culled by the polygon stipple just as
they are for aliased and antialiased polygons.

Coverage bits that correspond to sample points that satisfy the point sampling
criteria are 1, other coverage bits are 0. Each associated datum is produced as
described in section 3.6.1, but using the corresponding sample location instead of

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 175

the fragment center. An implementation may choose to assign the same associated
data values to more than one sample by barycentric evaluation using any location
within the pixel including the fragment center or one of the sample locations. The
color value and the set of texture coordinates need not be evaluated at the same
location.

When using a vertex shader, the noperspective and flat qualifiers affect
how varying shader outputs are interpolated in the same fashion as described for
for basic polygon rasterization in section 3.6.1.

The rasterization described above applies only to the FILL state of Polygon-
Mode. For POINT and LINE, the rasterizations described in sections 3.4.3 (Point
Multisample Rasterization) and 3.5.4 (Line Multisample Rasterization) apply.

3.6.7 Polygon Rasterization State

The state required for polygon rasterization consists of a polygon stipple pattern,
whether stippling is enabled or disabled, the current state of polygon antialiasing
(enabled or disabled), the current values of the PolygonMode setting for each of
front- and back-facing polygons, whether point, line, and fill mode polygon offsets
are enabled or disabled, and the factor and bias values of the polygon offset equa-
tion. The initial stipple pattern is all ones; initially stippling is disabled. The initial
setting of polygon antialiasing is disabled. The initial state for PolygonMode is
FILL for both front- and back-facing polygons. The initial polygon offset factor
and bias values are both 0; initially polygon offset is disabled for all modes.

3.7 Pixel Rectangles

Rectangles of color, depth, and certain other values may be specified to the GL
using TexImage*D (see section 3.9.3) or converted to fragments using the Draw-
Pixels command (described in section 3.7.5) Some of the parameters and opera-
tions governing the operation of these commands are shared by CopyPixels (used
to copy pixels from one framebuffer location to another) and ReadPixels (used
to obtain pixel values from the framebuffer); the discussion of CopyPixels and
ReadPixels, however, is deferred until chapter 4 after the framebuffer has been
discussed in detail. Nevertheless, we note in this section when parameters and
state pertaining to these commands also pertain to CopyPixels or ReadPixels.

A number of parameters control the encoding of pixels in buffer object or client
memory (for reading and writing) and how pixels are processed before being placed
in or after being read from the framebuffer (for reading, writing, and copying).
These parameters are set with three commands: PixelStore, PixelTransfer, and

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 176

Parameter Name Type Initial Value Valid Range
UNPACK_SWAP_BYTES boolean FALSE TRUE/FALSE
UNPACK_LSB_FIRST boolean FALSE TRUE/FALSE
UNPACK_ROW_LENGTH integer 0 [0,∞)
UNPACK_SKIP_ROWS integer 0 [0,∞)
UNPACK_SKIP_PIXELS integer 0 [0,∞)
UNPACK_ALIGNMENT integer 4 1,2,4,8
UNPACK_IMAGE_HEIGHT integer 0 [0,∞)
UNPACK_SKIP_IMAGES integer 0 [0,∞)

Table 3.1: PixelStore parameters pertaining to one or more of DrawPixels, Col-
orTable, ColorSubTable, ConvolutionFilter1D, ConvolutionFilter2D, Separa-
bleFilter2D, PolygonStipple, TexImage1D, TexImage2D, TexImage3D, Tex-
SubImage1D, TexSubImage2D, and TexSubImage3D.

PixelMap.

3.7.1 Pixel Storage Modes and Pixel Buffer Objects

Pixel storage modes affect the operation of TexImage*D, TexSubImage*D,
DrawPixels, and ReadPixels (as well as other commands; see sections 3.6.2
and 3.8) when one of these commands is issued. This may differ from the time
that the command is executed if the command is placed in a display list (see sec-
tion 5.5). Pixel storage modes are set with

void PixelStore{if}(enum pname, T param);

pname is a symbolic constant indicating a parameter to be set, and param is the
value to set it to. Table 3.1 summarizes the pixel storage parameters, their types,
their initial values, and their allowable ranges. Setting a parameter to a value out-
side the given range results in the error INVALID_VALUE.

The version of PixelStore that takes a floating-point value may be used to
set any type of parameter; if the parameter is boolean, then it is set to FALSE if
the passed value is 0.0 and TRUE otherwise, while if the parameter is an integer,
then the passed value is rounded to the nearest integer. The integer version of
the command may also be used to set any type of parameter; if the parameter is
boolean, then it is set to FALSE if the passed value is 0 and TRUE otherwise, while
if the parameter is a floating-point value, then the passed value is converted to
floating-point.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 177

In addition to storing pixel data in client memory, pixel data may also be
stored in buffer objects (described in section 2.9). The current pixel unpack and
pack buffer objects are designated by the PIXEL_UNPACK_BUFFER and PIXEL_-

PACK_BUFFER targets respectively.
Initially, zero is bound for the PIXEL_UNPACK_BUFFER, indicating that im-

age specification commands such as DrawPixels source their pixels from client
memory pointer parameters. However, if a non-zero buffer object is bound as the
current pixel unpack buffer, then the pointer parameter is treated as an offset into
the designated buffer object.

3.7.2 The Imaging Subset

Some pixel transfer and per-fragment operations are only made available in GL
implementations which incorporate the optional imaging subset. The imaging sub-
set includes both new commands, and new enumerants allowed as parameters to
existing commands. If the subset is supported, all of these calls and enumerants
must be implemented as described later in the GL specification. If the subset is
not supported, calling any unsupported command generates the error INVALID_-
OPERATION, and using any of the new enumerants generates the error INVALID_-
ENUM.

The individual operations available only in the imaging subset are described in
section 3.7.3. Imaging subset operations include:

1. Color tables, including all commands and enumerants described in sub-
sections Color Table Specification, Alternate Color Table Specification
Commands, Color Table State and Proxy State, Color Table Lookup,
Post Convolution Color Table Lookup, and Post Color Matrix Color Ta-
ble Lookup, as well as the query commands described in section 6.1.8.

2. Convolution, including all commands and enumerants described in sub-
sections Convolution Filter Specification, Alternate Convolution Filter
Specification Commands, and Convolution, as well as the query com-
mands described in section 6.1.9.

3. Color matrix, including all commands and enumerants described in subsec-
tions Color Matrix Specification and Color Matrix Transformation, as
well as the simple query commands described in section 6.1.7.

4. Histogram and minmax, including all commands and enumerants described
in subsections Histogram Table Specification, Histogram State and
Proxy State, Histogram, Minmax Table Specification, and Minmax, as
well as the query commands described in section 6.1.10 and section 6.1.11.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 178

Parameter Name Type Initial Value Valid Range
MAP_COLOR boolean FALSE TRUE/FALSE
MAP_STENCIL boolean FALSE TRUE/FALSE
INDEX_SHIFT integer 0 (−∞,∞)
INDEX_OFFSET integer 0 (−∞,∞)
x_SCALE float 1.0 (−∞,∞)
DEPTH_SCALE float 1.0 (−∞,∞)
x_BIAS float 0.0 (−∞,∞)
DEPTH_BIAS float 0.0 (−∞,∞)
POST_CONVOLUTION_x_SCALE float 1.0 (−∞,∞)
POST_CONVOLUTION_x_BIAS float 0.0 (−∞,∞)
POST_COLOR_MATRIX_x_SCALE float 1.0 (−∞,∞)
POST_COLOR_MATRIX_x_BIAS float 0.0 (−∞,∞)

Table 3.2: PixelTransfer parameters. x is RED, GREEN, BLUE, or ALPHA.

The imaging subset is supported only if the EXTENSIONS string includes
the substring ”GL_ARB_imaging” Querying EXTENSIONS is described in sec-
tion 6.1.5.

If the imaging subset is not supported, the related pixel transfer operations are
not performed; pixels are passed unchanged to the next operation.

3.7.3 Pixel Transfer Modes

Pixel transfer modes affect the operation of DrawPixels (section 3.7.5), ReadPix-
els (section 4.3.2), and CopyPixels (section 4.3.3) at the time when one of these
commands is executed (which may differ from the time the command is issued).
Some pixel transfer modes are set with

void PixelTransfer{if}(enum param, T value);

param is a symbolic constant indicating a parameter to be set, and value is the value
to set it to. Table 3.2 summarizes the pixel transfer parameters that are set with
PixelTransfer, their types, their initial values, and their allowable ranges. Setting
a parameter to a value outside the given range results in the error INVALID_-
VALUE. The same versions of the command exist as for PixelStore, and the same
rules apply to accepting and converting passed values to set parameters.

The pixel map lookup tables are set with

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 179

Map Name Address Value Init. Size Init. Value
PIXEL_MAP_I_TO_I color idx color idx 1 0.0
PIXEL_MAP_S_TO_S stencil idx stencil idx 1 0
PIXEL_MAP_I_TO_R color idx R 1 0.0
PIXEL_MAP_I_TO_G color idx G 1 0.0
PIXEL_MAP_I_TO_B color idx B 1 0.0
PIXEL_MAP_I_TO_A color idx A 1 0.0
PIXEL_MAP_R_TO_R R R 1 0.0
PIXEL_MAP_G_TO_G G G 1 0.0
PIXEL_MAP_B_TO_B B B 1 0.0
PIXEL_MAP_A_TO_A A A 1 0.0

Table 3.3: PixelMap parameters.

void PixelMap{ui us f}v(enum map, sizei size, const
T values);

map is a symbolic map name, indicating the map to set, size indicates the size of
the map, and values refers to an array of size map values.

The entries of a table may be specified using one of three types: single-
precision floating-point, unsigned short integer, or unsigned integer, depending on
which of the three versions of PixelMap is called. A table entry is converted to
the appropriate type when it is specified. An entry giving a color component value
is converted as described in equation 2.1 and then clamped to the range [0, 1]. An
entry giving a color index value is converted from an unsigned short integer or un-
signed integer to floating-point. An entry giving a stencil index is converted from
single-precision floating-point to an integer by rounding to nearest. The various ta-
bles and their initial sizes and entries are summarized in table 3.3. A table that takes
an index as an address must have size = 2n or the error INVALID_VALUE results.
The maximum allowable size of each table is specified by the implementation-
dependent value MAX_PIXEL_MAP_TABLE, but must be at least 32 (a single maxi-
mum applies to all tables). The error INVALID_VALUE is generated if a size larger
than the implemented maximum, or less than one, is given to PixelMap.

If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_-
UNPACK_BUFFER_BINDING), values is an offset into the pixel unpack buffer; oth-
erwise, values is a pointer to client memory. All pixel storage and pixel transfer
modes are ignored when specifying a pixel map. n machine units are read where n
is the size of the pixel map times the size of a float, uint, or ushort datum in
basic machine units, depending on the respective PixelMap version. If a pixel un-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 180

pack buffer object is bound and data+n is greater than the size of the pixel buffer,
an INVALID_OPERATION error results. If a pixel unpack buffer object is bound
and values is not evenly divisible by the number of basic machine units needed to
store in memory a float, uint, or ushort datum depending on their respective
PixelMap version, an INVALID_OPERATION error results.

Color Table Specification

Color lookup tables are specified with

void ColorTable(enum target, enum internalformat,
sizei width, enum format, enum type, const
void *data);

target must be one of the regular color table names listed in table 3.4 to define
the table. A proxy table name is a special case discussed later in this section.
width, format, type, and data specify an image in memory with the same mean-
ing and allowed values as the corresponding arguments to DrawPixels (see sec-
tion 3.7.5), with height taken to be 1. The maximum allowable width of a ta-
ble is implementation-dependent, but must be at least 32. The formats COLOR_-
INDEX, DEPTH_COMPONENT, DEPTH_STENCIL, and STENCIL_INDEX and the
type BITMAP are not allowed.

The specified image is taken from memory and processed just as if DrawPixels
were called, stopping after the final expansion to RGBA. The R, G, B, and A com-
ponents of each pixel are then scaled by the four COLOR_TABLE_SCALE param-
eters and biased by the four COLOR_TABLE_BIAS parameters. These parameters
are set by calling ColorTableParameterfv as described below. If fragment color
clamping is enabled or internalformat is fixed-point, components are clamped to
[0, 1]. Otherwise, components are not modified.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with the base internal format specified by (or derived from) inter-
nalformat, in the same manner as for textures (section 3.9.3). internalformat must
be one of the formats in table 3.16 or tables 3.17- 3.19, with the exception of the
RED, RG, DEPTH_COMPONENT, and DEPTH_STENCIL base and sized internal for-
mats in those tables, all sized internal formats with non-fixed internal data types
(see section 3.9), and sized internal format RGB9_E5.

The color lookup table is redefined to have width entries, each with the speci-
fied internal format. The table is formed with indices 0 through width − 1. Table
location i is specified by the ith image pixel, counting from zero.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 181

Table Name Type
COLOR_TABLE regular
POST_CONVOLUTION_COLOR_TABLE

POST_COLOR_MATRIX_COLOR_TABLE

PROXY_COLOR_TABLE proxy
PROXY_POST_CONVOLUTION_COLOR_TABLE

PROXY_POST_COLOR_MATRIX_COLOR_TABLE

Table 3.4: Color table names. Regular tables have associated image data. Proxy
tables have no image data, and are used only to determine if an image can be loaded
into the corresponding regular table.

The error INVALID_VALUE is generated if width is not zero or a non-negative
power of two. The error TABLE_TOO_LARGE is generated if the specified color
lookup table is too large for the implementation.

The scale and bias parameters for a table are specified by calling

void ColorTableParameter{if}v(enum target, enum pname,
const T params);

target must be a regular color table name. pname is one of COLOR_TABLE_SCALE
or COLOR_TABLE_BIAS. params points to an array of four values: red, green, blue,
and alpha, in that order.

A GL implementation may vary its allocation of internal component resolution
based on any ColorTable parameter, but the allocation must not be a function of
any other factor, and cannot be changed once it is established. Allocations must
be invariant; the same allocation must be made each time a color table is specified
with the same parameter values. These allocation rules also apply to proxy color
tables, which are described later in this section.

Alternate Color Table Specification Commands

Color tables may also be specified using image data taken directly from the frame-
buffer, and portions of existing tables may be respecified.

The command

void CopyColorTable(enum target, enum internalformat,
int x, int y, sizei width);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 182

defines a color table in exactly the manner of ColorTable, except that table data
are taken from the framebuffer, rather than from client memory. target must be a
regular color table name. x, y, and width correspond precisely to the corresponding
arguments of CopyPixels (refer to section 4.3.3); they specify the image’s width
and the lower left (x, y) coordinates of the framebuffer region to be copied. The
image is taken from the framebuffer exactly as if these arguments were passed to
CopyPixels with argument type set to COLOR and height set to 1, stopping after the
final expansion to RGBA.

Subsequent processing is identical to that described for ColorTable, begin-
ning with scaling by COLOR_TABLE_SCALE. Parameters target, internalformat and
width are specified using the same values, with the same meanings, as the equiva-
lent arguments of ColorTable. format is taken to be RGBA.

Two additional commands,

void ColorSubTable(enum target, sizei start, sizei count,
enum format, enum type, const void *data);

void CopyColorSubTable(enum target, sizei start, int x,
int y, sizei count);

respecify only a portion of an existing color table. No change is made to the inter-
nalformat or width parameters of the specified color table, nor is any change made
to table entries outside the specified portion. target must be a regular color table
name.

ColorSubTable arguments format, type, and data match the corresponding ar-
guments to ColorTable, meaning that they are specified using the same values,
and have the same meanings. Likewise, CopyColorSubTable arguments x, y, and
count match the x, y, and width arguments of CopyColorTable. Both of the Color-
SubTable commands interpret and process pixel groups in exactly the manner of
their ColorTable counterparts, except that the assignment of R, G, B, and A pixel
group values to the color table components is controlled by the internalformat of
the table, not by an argument to the command.

Arguments start and count of ColorSubTable and CopyColorSubTable spec-
ify a subregion of the color table starting at index start and ending at index
start + count − 1. Counting from zero, the nth pixel group is assigned to the
table entry with index count + n. The error INVALID_VALUE is generated if
start+ count > width.

Calling CopyColorTable or CopyColorSubTable will result in an
INVALID_FRAMEBUFFER_OPERATION error if the object bound to READ_-

FRAMEBUFFER_BINDING is not framebuffer complete (see section 4.4.4).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 183

Color Table State and Proxy State

The state necessary for color tables can be divided into two categories. For each
of the three tables, there is an array of values. Each array has associated with it
a width, an integer describing the internal format of the table, six integer values
describing the resolutions of each of the red, green, blue, alpha, luminance, and
intensity components of the table, and two groups of four floating-point numbers to
store the table scale and bias. Each initial array is null (zero width, internal format
RGBA, with zero-sized components). The initial value of the scale parameters is
(1,1,1,1) and the initial value of the bias parameters is (0,0,0,0).

In addition to the color lookup tables, partially instantiated proxy color lookup
tables are maintained. Each proxy table includes width and internal format state
values, as well as state for the red, green, blue, alpha, luminance, and intensity
component resolutions. Proxy tables do not include image data, nor do they include
scale and bias parameters. When ColorTable is executed with target specified as
one of the proxy color table names listed in table 3.4, the proxy state values of the
table are recomputed and updated. If the table is too large, no error is generated, but
the proxy format, width and component resolutions are set to zero. If the color table
would be accommodated by ColorTable called with target set to the corresponding
regular table name (COLOR_TABLE is the regular name corresponding to PROXY_-
COLOR_TABLE, for example), the proxy state values are set exactly as though the
regular table were being specified. Calling ColorTable with a proxy target has no
effect on the image or state of any actual color table.

There is no image associated with any of the proxy targets. They cannot be
used as color tables, and they must never be queried using GetColorTable. The
error INVALID_ENUM is generated if this is attempted.

Convolution Filter Specification

A two-dimensional convolution filter image is specified by calling

void ConvolutionFilter2D(enum target, enum internalformat,
sizei width, sizei height, enum format, enum type,
const void *data);

target must be CONVOLUTION_2D. width, height, format, type, and data specify an
image in memory with the same meaning and allowed values as the correspond-
ing parameters to DrawPixels. The formats COLOR_INDEX, DEPTH_COMPONENT,
DEPTH_STENCIL, and STENCIL_INDEX and the type BITMAP are not allowed.

The specified image is extracted from memory and processed just as if
DrawPixels were called, stopping after the final expansion to RGBA. The

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 184

R, G, B, and A components of each pixel are then scaled by the four two-
dimensional CONVOLUTION_FILTER_SCALE parameters and biased by the four
two-dimensional CONVOLUTION_FILTER_BIAS parameters. These parameters
are set by calling ConvolutionParameterfv as described below. No clamping
takes place at any time during this process.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with the base internal format specified by (or derived from) internal-
format, in the same manner as for textures (section 3.9.3). internalformat accepts
the same values as the corresponding argument of ColorTable.

The red, green, blue, alpha, luminance, and/or intensity components of the
pixels are stored in floating point, rather than integer format. They form a two-
dimensional image indexed with coordinates i, j such that i increases from left to
right, starting at zero, and j increases from bottom to top, also starting at zero.
Image location i, j is specified by the N th pixel, counting from zero, where

N = i+ j ∗ width

The error INVALID_VALUE is generated if width or height is greater than
the maximum supported value. These values are queried with GetConvo-
lutionParameteriv, setting target to CONVOLUTION_2D and pname to MAX_-

CONVOLUTION_WIDTH or MAX_CONVOLUTION_HEIGHT, respectively.
The scale and bias parameters for a two-dimensional filter are specified by

calling

void ConvolutionParameter{if}v(enum target, enum pname,
const T params);

with target CONVOLUTION_2D. pname is one of CONVOLUTION_FILTER_SCALE
or CONVOLUTION_FILTER_BIAS. params points to an array of four values: red,
green, blue, and alpha, in that order.

A one-dimensional convolution filter is defined using

void ConvolutionFilter1D(enum target, enum internalformat,
sizei width, enum format, enum type, const
void *data);

target must be CONVOLUTION_1D. internalformat, width, format, and type have
identical semantics and accept the same values as do their two-dimensional coun-
terparts. data must point to a one-dimensional image, however.

The image is extracted from memory and processed as if ConvolutionFilter2D
were called with a height of 1, except that it is scaled and biased by the one-
dimensional CONVOLUTION_FILTER_SCALE and CONVOLUTION_FILTER_BIAS

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 185

parameters. These parameters are specified exactly as the two-dimensional param-
eters, except that ConvolutionParameterfv is called with target CONVOLUTION_-
1D.

The image is formed with coordinates i such that i increases from left to right,
starting at zero. Image location i is specified by the ith pixel, counting from zero.

The error INVALID_VALUE is generated if width is greater than the maximum
supported value. This value is queried using GetConvolutionParameteriv, setting
target to CONVOLUTION_1D and pname to MAX_CONVOLUTION_WIDTH.

Special facilities are provided for the definition of two-dimensional sepa-
rable filters – filters whose image can be represented as the product of two
one-dimensional images, rather than as full two-dimensional images. A two-
dimensional separable convolution filter is specified with

void SeparableFilter2D(enum target, enum internalformat,
sizei width, sizei height, enum format, enum type,
const void *row, const void *column);

target must be SEPARABLE_2D. internalformat specifies the formats of the table
entries of the two one-dimensional images that will be retained. row points to a
width pixel wide image of the specified format and type. column points to a height
pixel high image, also of the specified format and type.

The two images are extracted from memory and processed as if Convolu-
tionFilter1D were called separately for each, except that each image is scaled
and biased by the two-dimensional separable CONVOLUTION_FILTER_SCALE and
CONVOLUTION_FILTER_BIAS parameters. These parameters are specified ex-
actly as the one-dimensional and two-dimensional parameters, except that Con-
volutionParameteriv is called with target SEPARABLE_2D.

Alternate Convolution Filter Specification Commands

One and two-dimensional filters may also be specified using image data taken di-
rectly from the framebuffer.

The command

void CopyConvolutionFilter2D(enum target,
enum internalformat, int x, int y, sizei width,
sizei height);

defines a two-dimensional filter in exactly the manner of ConvolutionFilter2D,
except that image data are taken from the framebuffer, rather than from client
memory. target must be CONVOLUTION_2D. x, y, width, and height correspond

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 186

precisely to the corresponding arguments of CopyPixels (refer to section 4.3.3);
they specify the image’s width and height, and the lower left (x, y) coordinates
of the framebuffer region to be copied. The image is taken from the framebuffer
exactly as if these arguments were passed to CopyPixels with argument type set to
COLOR, stopping after the final expansion to RGBA.

Subsequent processing is identical to that described for ConvolutionFilter2D,
beginning with scaling by CONVOLUTION_FILTER_SCALE. Parameters target, in-
ternalformat, width, and height are specified using the same values, with the same
meanings, as the equivalent arguments of ConvolutionFilter2D. format is taken to
be RGBA.

The command

void CopyConvolutionFilter1D(enum target,
enum internalformat, int x, int y, sizei width);

defines a one-dimensional filter in exactly the manner of ConvolutionFilter1D,
except that image data are taken from the framebuffer, rather than from client mem-
ory. target must be CONVOLUTION_1D. x, y, and width correspond precisely to the
corresponding arguments of CopyPixels (refer to section 4.3.3); they specify the
image’s width and the lower left (x, y) coordinates of the framebuffer region to
be copied. The image is taken from the framebuffer exactly as if these arguments
were passed to CopyPixels with argument type set to COLOR and height set to 1,
stopping after the final expansion to RGBA.

Subsequent processing is identical to that described for ConvolutionFilter1D,
beginning with scaling by CONVOLUTION_FILTER_SCALE. Parameters target, in-
ternalformat, and width are specified using the same values, with the same mean-
ings, as the equivalent arguments of ConvolutionFilter2D. format is taken to be
RGBA.

Calling CopyConvolutionFilter1D or CopyConvolutionFilter2D will result
in an INVALID_FRAMEBUFFER_OPERATION error if the object bound to READ_-

FRAMEBUFFER_BINDING is not framebuffer complete (see section 4.4.4).

Convolution Filter State

The required state for convolution filters includes a one-dimensional image array,
two one-dimensional image arrays for the separable filter, and a two-dimensional
image array. Each filter has associated with it a width and height (two-dimensional
and separable only), an integer describing the internal format of the filter, and two
groups of four floating-point numbers to store the filter scale and bias.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 187

Each initial convolution filter is null (zero width and height, internal format
RGBA, with zero-sized components). The initial value of all scale parameters is
(1,1,1,1) and the initial value of all bias parameters is (0,0,0,0).

Color Matrix Specification

Setting the matrix mode to COLOR causes the matrix operations described in sec-
tion 2.12.1 to apply to the top matrix on the color matrix stack. All matrix opera-
tions have the same effect on the color matrix as they do on the other matrices.

Histogram Table Specification

The histogram table is specified with

void Histogram(enum target, sizei width,
enum internalformat, boolean sink);

target must be HISTOGRAM if a histogram table is to be specified. target value
PROXY_HISTOGRAM is a special case discussed later in this section. width speci-
fies the number of entries in the histogram table, and internalformat specifies the
format of each table entry. The maximum allowable width of the histogram table
is implementation-dependent, but must be at least 32. sink specifies whether pixel
groups will be consumed by the histogram operation (TRUE) or passed on to the
minmax operation (FALSE).

If no error results from the execution of Histogram, the specified histogram
table is redefined to have width entries, each with the specified internal format.
The entries are indexed 0 through width− 1. Each component in each entry is set
to zero. The values in the previous histogram table, if any, are lost.

The error INVALID_VALUE is generated if width is not zero or a non-negative
power of two. The error TABLE_TOO_LARGE is generated if the specified his-
togram table is too large for the implementation. internalformat accepts the same
values as the corresponding argument of ColorTable, with the exception of the
values 1, 2, 3, and 4.

A GL implementation may vary its allocation of internal component resolution
based on any Histogram parameter, but the allocation must not be a function of any
other factor, and cannot be changed once it is established. In particular, allocations
must be invariant; the same allocation must be made each time a histogram is
specified with the same parameter values. These allocation rules also apply to the
proxy histogram, which is described later in this section.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 188

Histogram State and Proxy State

The state necessary for histogram operation is an array of values, with which is
associated a width, an integer describing the internal format of the histogram, five
integer values describing the resolutions of each of the red, green, blue, alpha,
and luminance components of the table, and a flag indicating whether or not pixel
groups are consumed by the operation. The initial array is null (zero width, internal
format RGBA, with zero-sized components). The initial value of the flag is false.

In addition to the histogram table, a partially instantiated proxy histogram table
is maintained. It includes width, internal format, and red, green, blue, alpha, and
luminance component resolutions. The proxy table does not include image data or
the flag. When Histogram is executed with target set to PROXY_HISTOGRAM, the
proxy state values are recomputed and updated. If the histogram array is too large,
no error is generated, but the proxy format, width, and component resolutions are
set to zero. If the histogram table would be accomodated by Histogram called
with target set to HISTOGRAM, the proxy state values are set exactly as though
the actual histogram table were being specified. Calling Histogram with target
PROXY_HISTOGRAM has no effect on the actual histogram table.

There is no image associated with PROXY_HISTOGRAM. It cannot be used as
a histogram, and its image must never queried using GetHistogram. The error
INVALID_ENUM results if this is attempted.

Minmax Table Specification

The minmax table is specified with

void Minmax(enum target, enum internalformat,
boolean sink);

target must be MINMAX. internalformat specifies the format of the table entries.
sink specifies whether pixel groups will be consumed by the minmax operation
(TRUE) or passed on to final conversion (FALSE).

internalformat accepts the same values as the corresponding argument of Col-
orTable, with the exception of the values 1, 2, 3, and 4, as well as the INTENSITY
base and sized internal formats. The resulting table always has 2 entries, each with
values corresponding only to the components of the internal format.

The state necessary for minmax operation is a table containing two elements
(the first element stores the minimum values, the second stores the maximum val-
ues), an integer describing the internal format of the table, and a flag indicating
whether or not pixel groups are consumed by the operation. The initial state is
a minimum table entry set to the maximum representable value and a maximum

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 189

table entry set to the minimum representable value. Internal format is set to RGBA

and the initial value of the flag is false.

3.7.4 Transfer of Pixel Rectangles

The process of transferring pixels encoded in buffer object or client memory is
diagrammed in figure 3.7. We describe the stages of this process in the order in
which they occur.

Commands accepting or returning pixel rectangles take the following argu-
ments (as well as additional arguments specific to their function):

format is a symbolic constant indicating what the values in memory represent.
width and height are the width and height, respectively, of the pixel rectangle

to be transferred.
data refers to the data to be drawn. These data are represented with one of

several GL data types, specified by type. The correspondence between the type
token values and the GL data types they indicate is given in table 3.5.

Not all combinations of format and type are valid. If type is BITMAP and format
is not COLOR_INDEX or STENCIL_INDEX then the error INVALID_ENUM occurs.
If format is DEPTH_STENCIL and type is not UNSIGNED_INT_24_8 or FLOAT_-
32_UNSIGNED_INT_24_8_REV, then the error INVALID_ENUM occurs. If format
is one of the integer component formats as defined in table 3.6 and type is FLOAT,
the error INVALID_ENUM occurs. Some additional constraints on the combina-
tions of format and type values that are accepted are discussed below. Additional
restrictions may be imposed by specific commands.

Unpacking

Data are taken from the currently bound pixel unpack buffer or client memory as a
sequence of signed or unsigned bytes (GL data types byte and ubyte), signed or
unsigned short integers (GL data types short and ushort), signed or unsigned
integers (GL data types int and uint), or floating point values (GL data types
half and float). These elements are grouped into sets of one, two, three, or
four values, depending on the format, to form a group. Table 3.6 summarizes the
format of groups obtained from memory; it also indicates those formats that yield
indices and those that yield floating-point or integer components.

If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_-
UNPACK_BUFFER_BINDING), data is an offset into the pixel unpack buffer and
the pixels are unpacked from the buffer relative to this offset; otherwise, data is a
pointer to client memory and the pixels are unpacked from client memory relative
to the pointer. If a pixel unpack buffer object is bound and unpacking the pixel data

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 190

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

unpack

convert
to float

convert
L to RGB

RGBA, L

Pixel Storage
Operations

byte, short, int, o r float pixel
data stream (index or component)

color
index

post
convolution

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

scale
and bias

Pixel Transfer
Operations

color table
lookup

convolution
scale a nd bias

histogram

minmax

color table
lookup

RGBA to RGBA
lookup

shift
and offset

index to index
look up

index to RGBA
looku p

color table
lookup

color matrix
scale and bias

post
color matrix

color index pixel
data out

RGBA pixel
data out

clamp
to [0,1]

mask to
(2n − 1)

final
conversion

Figure 3.7. Transfer of pixel rectangles to the GL. Output is RGBA pixels if the GL
is in RGBA mode, color index pixels otherwise. Operations in dashed boxes may
be enabled or disabled. RGBA and color index pixel paths are shown; depth and
stencil pixel paths are not shown.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 191

type Parameter Corresponding Special
Token Name GL Data Type Interpretation
UNSIGNED_BYTE ubyte No
BITMAP ubyte Yes
BYTE byte No
UNSIGNED_SHORT ushort No
SHORT short No
UNSIGNED_INT uint No
INT int No
HALF_FLOAT half No
FLOAT float No
UNSIGNED_BYTE_3_3_2 ubyte Yes
UNSIGNED_BYTE_2_3_3_REV ubyte Yes
UNSIGNED_SHORT_5_6_5 ushort Yes
UNSIGNED_SHORT_5_6_5_REV ushort Yes
UNSIGNED_SHORT_4_4_4_4 ushort Yes
UNSIGNED_SHORT_4_4_4_4_REV ushort Yes
UNSIGNED_SHORT_5_5_5_1 ushort Yes
UNSIGNED_SHORT_1_5_5_5_REV ushort Yes
UNSIGNED_INT_8_8_8_8 uint Yes
UNSIGNED_INT_8_8_8_8_REV uint Yes
UNSIGNED_INT_10_10_10_2 uint Yes
UNSIGNED_INT_2_10_10_10_REV uint Yes
UNSIGNED_INT_24_8 uint Yes
UNSIGNED_INT_10F_11F_11F_REV uint Yes
UNSIGNED_INT_5_9_9_9_REV uint Yes
FLOAT_32_UNSIGNED_INT_24_8_REV n/a Yes

Table 3.5: Pixel data type parameter values and the corresponding GL data types.
Refer to table 2.2 for definitions of GL data types. Special interpretations are
described near the end of section 3.8.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 192

Format Name Element Meaning and Order Target Buffer
COLOR_INDEX Color Index Color Index
STENCIL_INDEX Stencil Index Stencil
DEPTH_COMPONENT Depth Depth
DEPTH_STENCIL Depth and Stencil Index Depth and Stencil
RED R Color
GREEN G Color
BLUE B Color
ALPHA A Color
RG R, G Color
RGB R, G, B Color
RGBA R, G, B, A Color
BGR B, G, R Color
BGRA B, G, R, A Color
LUMINANCE Luminance Color
LUMINANCE_ALPHA Luminance, A Color
RED_INTEGER iR Color
GREEN_INTEGER iG Color
BLUE_INTEGER iB Color
ALPHA_INTEGER iA Color
RG_INTEGER iR, iG Color
RGB_INTEGER iR, iG, iB Color
RGBA_INTEGER iR, iG, iB, iA Color
BGR_INTEGER iB, iG, iR Color
BGRA_INTEGER iB, iG, iR, iA Color

Table 3.6: Pixel data formats. The second column gives a description of and the
number and order of elements in a group. Unless specified as an index, formats
yield components. Components are floating-point unless prefixed with the letter
’i’, which indicates they are integer.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 193

Element Size Default Bit Ordering Modified Bit Ordering
8 bit [7..0] [7..0]
16 bit [15..0] [7..0][15..8]
32 bit [31..0] [7..0][15..8][23..16][31..24]

Table 3.7: Bit ordering modification of elements when UNPACK_SWAP_BYTES is
enabled. These reorderings are defined only when GL data type ubyte has 8 bits,
and then only for GL data types with 8, 16, or 32 bits. Bit 0 is the least significant.

according to the process described below would access memory beyond the size of
the pixel unpack buffer’s memory size, an INVALID_OPERATION error results. If a
pixel unpack buffer object is bound and data is not evenly divisible by the number
of basic machine units needed to store in memory the corresponding GL data type
from table 3.5 for the type parameter (or not evenly divisible by 4 for type FLOAT_-
32_UNSIGNED_INT_24_8_REV, which does not have a corresponding GL data
type), an INVALID_OPERATION error results.

By default the values of each GL data type are interpreted as they would be
specified in the language of the client’s GL binding. If UNPACK_SWAP_BYTES is
enabled, however, then the values are interpreted with the bit orderings modified
as per table 3.7. The modified bit orderings are defined only if the GL data type
ubyte has eight bits, and then for each specific GL data type only if that type is
represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This rect-
angle consists of a series of rows, with the first element of the first group of the
first row pointed to by data. If the value of UNPACK_ROW_LENGTH is not positive,
then the number of groups in a row is width; otherwise the number of groups is
UNPACK_ROW_LENGTH. If p indicates the location in memory of the first element
of the first row, then the first element of the N th row is indicated by

p+Nk (3.14)

where N is the row number (counting from zero) and k is defined as

k =
{
nl s ≥ a,
a
s

⌈
snl
a

⌉
s < a

(3.15)

where n is the number of elements in a group, l is the number of groups in
the row, a is the value of UNPACK_ALIGNMENT, and s is the size, in units of GL
ubytes, of an element. If the number of bits per element is not 1, 2, 4, or 8 times
the number of bits in a GL ubyte, then k = nl for all values of a.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 194

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

SKIP_ROWS

SKIP_PIXELS

ROW_LENGTH

subimage

Figure 3.8. Selecting a subimage from an image. The indicated parameter names
are prefixed by UNPACK_ for DrawPixels and by PACK_ for ReadPixels.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer parameters:
UNPACK_ROW_LENGTH, UNPACK_SKIP_ROWS, and UNPACK_SKIP_PIXELS. Be-
fore obtaining the first group from memory, the data pointer is advanced by
(UNPACK_SKIP_PIXELS)n + (UNPACK_SKIP_ROWS)k elements. Then width
groups are obtained from contiguous elements in memory (without advancing the
pointer), after which the pointer is advanced by k elements. height sets of width
groups of values are obtained this way. See figure 3.8.

Special Interpretations
A type matching one of the types in table 3.8 is a special case in which all

the components of each group are packed into a single unsigned byte, unsigned
short, or unsigned int, depending on the type. If type is FLOAT_32_UNSIGNED_-
INT_24_8_REV, the components of each group are contained within two 32-bit
words; the first word contains the float component, and the second word contains
a packed 24-bit unused field, followed by an 8-bit component. The number of
components per packed pixel is fixed by the type, and must match the number of
components per group indicated by the format parameter, as listed in table 3.8.
The error INVALID_OPERATION is generated by any command processing pixel
rectangles if a mismatch occurs.

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in tables 3.9- 3.12. Each bitfield is interpreted as

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 195

type Parameter GL Data Number of Matching
Token Name Type Components Pixel Formats
UNSIGNED_BYTE_3_3_2 ubyte 3 RGB, RGB_INTEGER
UNSIGNED_BYTE_2_3_3_REV ubyte 3 RGB, RGB_INTEGER
UNSIGNED_SHORT_5_6_5 ushort 3 RGB, RGB_INTEGER
UNSIGNED_SHORT_5_6_5_REV ushort 3 RGB, RGB_INTEGER
UNSIGNED_SHORT_4_4_4_4 ushort 4 RGBA, BGRA, RGBA_INTEGER, BGRA_INTEGER
UNSIGNED_SHORT_4_4_4_4_REV ushort 4 RGBA, BGRA, RGBA_INTEGER, BGRA_INTEGER
UNSIGNED_SHORT_5_5_5_1 ushort 4 RGBA, BGRA, RGBA_INTEGER, BGRA_INTEGER
UNSIGNED_SHORT_1_5_5_5_REV ushort 4 RGBA, BGRA, RGBA_INTEGER, BGRA_INTEGER
UNSIGNED_INT_8_8_8_8 uint 4 RGBA, BGRA, RGBA_INTEGER, BGRA_INTEGER
UNSIGNED_INT_8_8_8_8_REV uint 4 RGBA, BGRA, RGBA_INTEGER, BGRA_INTEGER
UNSIGNED_INT_10_10_10_2 uint 4 RGBA, BGRA, RGBA_INTEGER, BGRA_INTEGER
UNSIGNED_INT_2_10_10_10_REV uint 4 RGBA, BGRA, RGBA_INTEGER, BGRA_INTEGER
UNSIGNED_INT_24_8 uint 2 DEPTH_STENCIL

UNSIGNED_INT_10F_11F_11F_REV uint 3 RGB

UNSIGNED_INT_5_9_9_9_REV uint 4 RGB

FLOAT_32_UNSIGNED_INT_24_8_REV n/a 2 DEPTH_STENCIL

Table 3.8: Packed pixel formats.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 196

an unsigned integer value. If the base GL type is supported with more than the
minimum precision (e.g. a 9-bit byte) the packed components are right-justified in
the pixel.

Components are normally packed with the first component in the most signif-
icant bits of the bitfield, and successive component occupying progressively less
significant locations. Types whose token names end with _REV reverse the compo-
nent packing order from least to most significant locations. In all cases, the most
significant bit of each component is packed in the most significant bit location of
its location in the bitfield.

UNSIGNED_BYTE_3_3_2:

7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED_BYTE_2_3_3_REV:

7 6 5 4 3 2 1 0

3rd 2nd 1st Component

Table 3.9: UNSIGNED_BYTE formats. Bit numbers are indicated for each compo-
nent.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 197

UNSIGNED_SHORT_5_6_5:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED_SHORT_5_6_5_REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3rd 2nd 1st Component

UNSIGNED_SHORT_4_4_4_4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED_SHORT_4_4_4_4_REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED_SHORT_5_5_5_1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED_SHORT_1_5_5_5_REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 3.10: UNSIGNED_SHORT formats

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 198

UNSIGNED_INT_8_8_8_8:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED_INT_8_8_8_8_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED_INT_10_10_10_2:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED_INT_2_10_10_10_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED_INT_24_8:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd

UNSIGNED_INT_10F_11F_11F_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3rd 2nd 1st Component

UNSIGNED_INT_5_9_9_9_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 3.11: UNSIGNED_INT formats

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 199

FLOAT_32_UNSIGNED_INT_24_8_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Unused 2nd

Table 3.12: FLOAT_UNSIGNED_INT formats

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 200

Format First Second Third Fourth
Component Component Component Component

RGB red green blue
RGBA red green blue alpha
BGRA blue green red alpha
DEPTH_STENCIL depth stencil

Table 3.13: Packed pixel field assignments.

The assignment of component to fields in the packed pixel is as described in
table 3.13.

Byte swapping, if enabled, is performed before the components are extracted
from each pixel. The above discussions of row length and image extraction are
valid for packed pixels, if “group” is substituted for “component” and the number
of components per group is understood to be one.

A type of UNSIGNED_INT_10F_11F_11F_REV and format of RGB is a special
case in which the data are a series of GL uint values. Each uint value specifies 3
packed components as shown in table 3.11. The 1st, 2nd, and 3rd components are
called fred (11 bits), fgreen (11 bits), and fblue (10 bits) respectively.

fred and fgreen are treated as unsigned 11-bit floating-point values and con-
verted to floating-point red and green components respectively as described in sec-
tion 2.1.3. fblue is treated as an unsigned 10-bit floating-point value and converted
to a floating-point blue component as described in section 2.1.4.

A type of UNSIGNED_INT_5_9_9_9_REV and format of RGB is a special case
in which the data are a series of GL uint values. Each uint value specifies 4
packed components as shown in table 3.11. The 1st, 2nd, 3rd, and 4th components
are called pred, pgreen, pblue, and pexp respectively and are treated as unsigned
integers. These are then used to compute floating-point RGB components (ignoring
the “Conversion to floating-point” section below in this case) as follows:

red = pred2pexp−B−N

green = pgreen2pexp−B−N

blue = pblue2pexp−B−N

where B = 15 (the exponent bias) and N = 9 (the number of mantissa bits).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 201

Conversion to floating-point

This step applies only to groups of floating-point components. It is not performed
on indices or integer components. For groups containing both components and
indices, such as DEPTH_STENCIL, the indices are not converted.

Each element in a group is converted to a floating-point value. For unsigned
integer elements, equation 2.1 is used. For signed integer elements, equation 2.2
is used unless the final destination of the transferred element is a texture or frame-
buffer component in one of the SNORM formats described in table 3.17, in which
case equation 2.3 is used instead.

Conversion to RGB

This step is applied only if the format is LUMINANCE or LUMINANCE_ALPHA. If
the format is LUMINANCE, then each group of one element is converted to a group
of R, G, and B (three) elements by copying the original single element into each of
the three new elements. If the format is LUMINANCE_ALPHA, then each group of
two elements is converted to a group of R, G, B, and A (four) elements by copying
the first original element into each of the first three new elements and copying the
second original element to the A (fourth) new element.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group is con-
verted to a group of 4 elements as follows: if a group does not contain an A ele-
ment, then A is added and set to 1 for integer components or 1.0 for floating-point
components. If any of R, G, or B is missing from the group, each missing element
is added and assigned a value of 0 for integer components or 0.0 for floating-point
components.

Pixel Transfer Operations

This step is actually a sequence of steps. Because the pixel transfer operations
are performed equivalently during the drawing, copying, and reading of pixels,
and during the specification of texture images (either from memory or from the
framebuffer), they are described separately in section 3.7.6. After the processing
described in that section is completed, groups are processed as described in the
following sections.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 202

3.7.5 Rasterization of Pixel Rectangles

Pixels are drawn using

void DrawPixels(sizei width, sizei height, enum format,
enum type, const void *data);

If the GL is in color index mode and format is not one of COLOR_-

INDEX, STENCIL_INDEX, DEPTH_COMPONENT, or DEPTH_STENCIL, then the er-
ror INVALID_OPERATION occurs. Results of rasterization are undefined if any
of the selected draw buffers of the draw framebuffer have an integer format and
no fragment shader is active. If format contains integer components, as shown in
table 3.6, an INVALID_OPERATION error is generated.

Calling DrawPixels will result in an INVALID_FRAMEBUFFER_OPERATION

error if the object bound to DRAW_FRAMEBUFFER_BINDING is not framebuffer
complete (see section 4.4.4).

Calling DrawPixels with a type of BITMAP is a special case in which the data
are a series of GL ubyte values. Each ubyte value specifies 8 1-bit elements
with its 8 least-significant bits. The 8 single-bit elements are ordered from most
significant to least significant if the value of UNPACK_LSB_FIRST is FALSE; oth-
erwise, the ordering is from least significant to most significant. The values of bits
other than the 8 least significant in each ubyte are not significant.

The first element of the first row is the first bit (as defined above) of the ubyte
pointed to by the pointer passed to DrawPixels. The first element of the second
row is the first bit (again as defined above) of the ubyte at location p+ k, where
k is computed as

k = a

⌈
l

8a

⌉
(3.16)

There is a mechanism for selecting a sub-rectangle of elements from a BITMAP
image as well. Before obtaining the first element from memory, the pointer sup-
plied to DrawPixels is effectively advanced by UNPACK_SKIP_ROWS∗k ubytes.
Then UNPACK_SKIP_PIXELS 1-bit elements are ignored, and the subsequent
width 1-bit elements are obtained, without advancing the ubyte pointer, after
which the pointer is advanced by k ubytes. height sets of width elements are
obtained this way.

Once pixels are transferred, DrawPixels performs final conversion on pixel
values, then converts them to fragments as described below. Fragments generated
by DrawPixels are then processed in the same fashion as fragments generated by
rasterization of a primitive.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 203

Final Conversion

For a color index, final conversion consists of masking the bits of the index to the
left of the binary point by 2n − 1, where n is the number of bits in an index buffer.

For integer RGBA components, no conversion is performed. For floating-
point RGBA components, if fragment color clamping is enabled, each element
is clamped to [0, 1], and may be converted to fixed-point according to equation 2.4.
If fragment color clamping is disabled, RGBA components are unmodified. Frag-
ment color clamping is controlled by calling

void ClampColor(enum target, enum clamp);

with target set to CLAMP_FRAGMENT_COLOR. If clamp is TRUE, fragment color
clamping is enabled; if clamp is FALSE, fragment color clamping is disabled. If
clamp is FIXED_ONLY, fragment color clamping is enabled if all enabled color
buffers have fixed-point components.

For a depth component, an element is processed according to the depth buffer’s
representation. For fixed-point depth buffers, the element is first clamped to the
range [0, 1] and then converted to fixed-point as if it were a window z value (see
section 2.16.1). Conversion is not necessary when the depth buffer uses a floating-
point representation, but clamping is.

Stencil indices are masked by 2n − 1, where n is the number of bits in the
stencil buffer.

The state required for fragment color clamping is a three-valued integer. The
initial value of fragment color clamping is FIXED_ONLY.

Conversion to Fragments

The conversion of a group to fragments is controlled with

void PixelZoom(float zx, float zy);

Let (xrp, yrp) be the current raster position (section 2.24). (If the current raster
position is invalid, then DrawPixels is ignored; pixel transfer operations do not
update the histogram or minmax tables, and no fragments are generated. However,
the histogram and minmax tables are updated even if the corresponding fragments
are later rejected by the pixel ownership (section 4.1.1) or scissor (section 4.1.2)
tests.) If a particular group (index or components) is the nth in a row and belongs to
the mth row, consider the region in window coordinates bounded by the rectangle
with corners

(xrp + zxn, yrp + zym) and (xrp + zx(n+ 1), yrp + zy(m+ 1))

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 204

(either zx or zy may be negative). A fragment representing group (n,m) is pro-
duced for each framebuffer pixel inside, or on the bottom or left boundary, of this
rectangle.

A fragment arising from a group consisting of color data takes on the color
index or color components of the group and the current raster position’s associated
depth value, while a fragment arising from a depth component takes that compo-
nent’s depth value and the current raster position’s associated color index or color
components. In both cases, the fog coordinate is taken from the current raster posi-
tion’s associated raster distance, the secondary color is taken from the current raster
position’s associated secondary color, and texture coordinates are taken from the
current raster position’s associated texture coordinates. Groups arising from Draw-
Pixels with a format of DEPTH_STENCIL or STENCIL_INDEX are treated specially
and are described in section 4.3.1.

3.7.6 Pixel Transfer Operations

The GL defines six kinds of pixel groups:

1. Floating-point RGBA component: Each group comprises four color compo-
nents in floating-point format: red, green, blue, and alpha.

2. Integer RGBA component: Each group comprises four color components in
integer format: red, green, blue, and alpha.

3. Depth component: Each group comprises a single depth component.

4. Color index: Each group comprises a single color index.

5. Stencil index: Each group comprises a single stencil index.

6. Depth/stencil: Each group comprises a single depth component and a single
stencil index.

Each operation described in this section is applied sequentially to each pixel
group in an image. Many operations are applied only to pixel groups of certain
kinds; if an operation is not applicable to a given group, it is skipped. None of the
operations defined in this section affect integer RGBA component pixel groups.

This step applies only to RGBA component and depth component groups, and
to the depth components in depth/stencil groups. Each component is multiplied
by an appropriate signed scale factor: RED_SCALE for an R component, GREEN_-
SCALE for a G component, BLUE_SCALE for a B component, and ALPHA_SCALE

for an A component, or DEPTH_SCALE for a depth component. Then the result

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 205

is added to the appropriate signed bias: RED_BIAS, GREEN_BIAS, BLUE_BIAS,
ALPHA_BIAS, or DEPTH_BIAS.

Arithmetic on Indices

This step applies only to color index and stencil index groups, and to the stencil
indices in depth/stencil groups. If the index is a floating-point value, it is converted
to fixed-point, with an unspecified number of bits to the right of the binary point
and at least dlog2(MAX_PIXEL_MAP_TABLE)e bits to the left of the binary point.
Indices that are already integers remain so; any fraction bits in the resulting fixed-
point value are zero.

The fixed-point index is then shifted by |INDEX_SHIFT| bits, left if
INDEX_SHIFT > 0 and right otherwise. In either case the shift is zero-filled.
Then, the signed integer offset INDEX_OFFSET is added to the index.

RGBA to RGBA Lookup

This step applies only to RGBA component groups, and is skipped if MAP_COLOR
is FALSE. First, each component is clamped to the range [0, 1]. There is a ta-
ble associated with each of the R, G, B, and A component elements: PIXEL_-

MAP_R_TO_R for R, PIXEL_MAP_G_TO_G for G, PIXEL_MAP_B_TO_B for B, and
PIXEL_MAP_A_TO_A for A. Each element is multiplied by an integer one less than
the size of the corresponding table, and, for each element, an address is found by
rounding this value to the nearest integer. For each element, the addressed value in
the corresponding table replaces the element.

Color Index Lookup

This step applies only to color index groups. If the GL command that invokes the
pixel transfer operation requires that RGBA component pixel groups be generated,
then a conversion is performed at this step. RGBA component pixel groups are
required if

1. The groups will be rasterized, and the GL is in RGBA mode, or

2. The groups will be loaded as an image into texture memory, or

3. The groups will be returned to client memory with a format other than
COLOR_INDEX.

If RGBA component groups are required, then the integer part of the index is used
to reference 4 tables of color components: PIXEL_MAP_I_TO_R, PIXEL_MAP_-
I_TO_G, PIXEL_MAP_I_TO_B, and PIXEL_MAP_I_TO_A. Each of these tables

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 206

must have 2n entries for some integer value of n (n may be different for each
table). For each table, the index is first rounded to the nearest integer; the result
is ANDed with 2n − 1, and the resulting value used as an address into the table.
The indexed value becomes an R, G, B, or A value, as appropriate. The group of
four elements so obtained replaces the index, changing the group’s type to RGBA
component.

If RGBA component groups are not required, and if MAP_COLOR is enabled,
then the index is looked up in the PIXEL_MAP_I_TO_I table (otherwise, the index
is not looked up). Again, the table must have 2n entries for some integer n. The
index is first rounded to the nearest integer; the result is ANDed with 2n − 1, and
the resulting value used as an address into the table. The value in the table replaces
the index. The floating-point table value is first rounded to a fixed-point value with
unspecified precision. The group’s type remains color index.

Stencil Index Lookup

This step applies only to stencil index groups, and to the stencil indices in
depth/stencil groups. If MAP_STENCIL is enabled, then the index is looked up
in the PIXEL_MAP_S_TO_S table (otherwise, the index is not looked up). The ta-
ble must have 2n entries for some integer n. The integer index is ANDed with
2n − 1, and the resulting value used as an address into the table. The integer value
in the table replaces the index.

Color Table Lookup

This step applies only to RGBA component groups. Color table lookup is only
done if COLOR_TABLE is enabled. If a zero-width table is enabled, no lookup is
performed.

The internal format of the table determines which components of the group
will be replaced (see table 3.14). The components to be replaced are converted
to indices by clamping to [0, 1], multiplying by an integer one less than the width
of the table, and rounding to the nearest integer. Components are replaced by the
table entry at the index.

The required state is one bit indicating whether color table lookup is enabled
or disabled. In the initial state, lookup is disabled.

Convolution

This step applies only to RGBA component groups. If CONVOLUTION_1D

is enabled, the one-dimensional convolution filter is applied only to the one-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 207

Base Internal Format R G B A
ALPHA At

LUMINANCE Lt Lt Lt

LUMINANCE_ALPHA Lt Lt Lt At

INTENSITY It It It It
RGB Rt Gt Bt

RGBA Rt Gt Bt At

Table 3.14: Color table lookup. Rt, Gt, Bt, At, Lt, and It are color table values
that are assigned to pixel components R, G, B, and A depending on the table
format. When there is no assignment, the component value is left unchanged by
lookup.

dimensional texture images passed to TexImage1D, TexSubImage1D, Copy-
TexImage1D, and CopyTexSubImage1D. If CONVOLUTION_2D is enabled, the
two-dimensional convolution filter is applied only to the two-dimensional im-
ages passed to DrawPixels, CopyPixels, ReadPixels, TexImage2D, TexSubIm-
age2D, CopyTexImage2D, CopyTexSubImage2D, and CopyTexSubImage3D.
If SEPARABLE_2D is enabled, and CONVOLUTION_2D is disabled, the separable
two-dimensional convolution filter is instead applied these images.

The convolution operation is a sum of products of source image pixels and
convolution filter pixels. Source image pixels always have four components: red,
green, blue, and alpha, denoted in the equations below as Rs, Gs, Bs, and As.
Filter pixels may be stored in one of five formats, with 1, 2, 3, or 4 components.
These components are denoted as Rf , Gf , Bf , Af , Lf , and If in the equations
below. The result of the convolution operation is the 4-tuple R,G,B,A. Depending
on the internal format of the filter, individual color components of each source
image pixel are convolved with one filter component, or are passed unmodified.
The rules for this are defined in table 3.15.

The convolution operation is defined differently for each of the three convolu-
tion filters. The variables Wf and Hf refer to the dimensions of the convolution
filter. The variables Ws and Hs refer to the dimensions of the source pixel image.

The convolution equations are defined as follows, where C refers to the filtered
result, Cf refers to the one- or two-dimensional convolution filter, and Crow and
Ccolumn refer to the two one-dimensional filters comprising the two-dimensional
separable filter. C ′s depends on the source image color Cs and the convolution bor-
der mode as described below. Cr, the filtered output image, depends on all of these
variables and is described separately for each border mode. The pixel indexing

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 208

Base Filter Format R G B A
ALPHA Rs Gs Bs As ∗Af

LUMINANCE Rs ∗ Lf Gs ∗ Lf Bs ∗ Lf As

LUMINANCE_ALPHA Rs ∗ Lf Gs ∗ Lf Bs ∗ Lf As ∗Af

INTENSITY Rs ∗ If Gs ∗ If Bs ∗ If As ∗ If
RGB Rs ∗Rf Gs ∗Gf Bs ∗Bf As

RGBA Rs ∗Rf Gs ∗Gf Bs ∗Bf As ∗Af

Table 3.15: Computation of filtered color components depending on filter image
format. C ∗ F indicates the convolution of image component C with filter F .

nomenclature is decribed in the Convolution Filter Specification subsection of
section 3.7.3.

One-dimensional filter:

C[i′] =
Wf−1∑
n=0

C ′s[i
′ + n] ∗ Cf [n]

Two-dimensional filter:

C[i′, j′] =
Wf−1∑
n=0

Hf−1∑
m=0

C ′s[i
′ + n, j′ +m] ∗ Cf [n,m]

Two-dimensional separable filter:

C[i′, j′] =
Wf−1∑
n=0

Hf−1∑
m=0

C ′s[i
′ + n, j′ +m] ∗ Crow[n] ∗ Ccolumn[m]

If Wf of a one-dimensional filter is zero, then C[i] is always set to zero. Like-
wise, if either Wf or Hf of a two-dimensional filter is zero, then C[i, j] is always
set to zero.

The convolution border mode for a specific convolution filter is specified by
calling

void ConvolutionParameter{if}(enum target, enum pname,
T param);

where target is the name of the filter, pname is CONVOLUTION_BORDER_MODE, and
param is one of REDUCE, CONSTANT_BORDER or REPLICATE_BORDER.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 209

Border Mode REDUCE

The width and height of source images convolved with border mode REDUCE are
reduced by Wf − 1 and Hf − 1, respectively. If this reduction would generate
a resulting image with zero or negative width and/or height, the output is simply
null, with no error generated. The coordinates of the image that results from a con-
volution with border mode REDUCE are zero through Ws −Wf in width, and zero
through Hs −Hf in height. In cases where errors can result from the specification
of invalid image dimensions, it is these resulting dimensions that are tested, not
the dimensions of the source image. (A specific example is TexImage1D and Tex-
Image2D, which specify constraints for image dimensions. Even if TexImage1D
or TexImage2D is called with a null pixel pointer, the dimensions of the result-
ing texture image are those that would result from the convolution of the specified
image).

When the border mode is REDUCE, C ′s equals the source image color Cs and
Cr equals the filtered result C.

For the remaining border modes, define Cw = bWf/2c and Ch = bHf/2c.
The coordinates (Cw, Ch) define the center of the convolution filter.

Border Mode CONSTANT_BORDER

If the convolution border mode is CONSTANT_BORDER, the output image has the
same dimensions as the source image. The result of the convolution is the same as
if the source image were surrounded by pixels with the same color as the current
convolution border color. Whenever the convolution filter extends beyond one of
the edges of the source image, the constant-color border pixels are used as input
to the filter. The current convolution border color is set by calling Convolution-
Parameterfv or ConvolutionParameteriv with pname set to CONVOLUTION_-

BORDER_COLOR and params containing four values that comprise the RGBA color
to be used as the image border. Integer color components are interpreted linearly
such that the largest positive integer maps to 1.0, and the smallest negative inte-
ger maps to -1.0. Floating point color components are not clamped when they are
specified.

For a one-dimensional filter, the result color is defined by

Cr[i] = C[i− Cw]

where C[i′] is computed using the following equation for C ′s[i
′]:

C ′s[i
′] =

{
Cs[i′], 0 ≤ i′ < Ws

Cc, otherwise

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 210

and Cc is the convolution border color.
For a two-dimensional or two-dimensional separable filter, the result color is

defined by

Cr[i, j] = C[i− Cw, j − Ch]

where C[i′, j′] is computed using the following equation for C ′s[i
′, j′]:

C ′s[i
′, j′] =

{
Cs[i′, j′], 0 ≤ i′ < Ws, 0 ≤ j′ < Hs

Cc, otherwise

Border Mode REPLICATE_BORDER

The convolution border mode REPLICATE_BORDER also produces an output im-
age with the same dimensions as the source image. The behavior of this mode is
identical to that of the CONSTANT_BORDER mode except for the treatment of pixel
locations where the convolution filter extends beyond the edge of the source im-
age. For these locations, it is as if the outermost one-pixel border of the source
image was replicated. Conceptually, each pixel in the leftmost one-pixel column
of the source image is replicated Cw times to provide additional image data along
the left edge, each pixel in the rightmost one-pixel column is replicated Cw times
to provide additional image data along the right edge, and each pixel value in the
top and bottom one-pixel rows is replicated to create Ch rows of image data along
the top and bottom edges. The pixel value at each corner is also replicated in order
to provide data for the convolution operation at each corner of the source image.

For a one-dimensional filter, the result color is defined by

Cr[i] = C[i− Cw]

where C[i′] is computed using the following equation for C ′s[i
′]:

C ′s[i
′] = Cs[clamp(i′,Ws)]

and the clamping function clamp(val,max) is defined as

clamp(val,max) =


0, val < 0
val, 0 ≤ val < max
max− 1, val ≥ max

For a two-dimensional or two-dimensional separable filter, the result color is
defined by

Cr[i, j] = C[i− Cw, j − Ch]

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 211

where C[i′, j′] is computed using the following equation for C ′s[i
′, j′]:

C ′s[i
′, j′] = Cs[clamp(i′,Ws), clamp(j′, Hs)]

If a convolution operation is performed, each component of the resulting image
is scaled by the corresponding PixelTransfer parameters: POST_CONVOLUTION_-
RED_SCALE for an R component, POST_CONVOLUTION_GREEN_SCALE for a G
component, POST_CONVOLUTION_BLUE_SCALE for a B component, and POST_-
CONVOLUTION_ALPHA_SCALE for an A component. The result is added to the
corresponding bias: POST_CONVOLUTION_RED_BIAS, POST_CONVOLUTION_-
GREEN_BIAS, POST_CONVOLUTION_BLUE_BIAS, or POST_CONVOLUTION_-

ALPHA_BIAS.
The required state is three bits indicating whether each of one-dimensional,

two-dimensional, or separable two-dimensional convolution is enabled or disabled,
an integer describing the current convolution border mode, and four floating-point
values specifying the convolution border color. In the initial state, all convolu-
tion operations are disabled, the border mode is REDUCE, and the border color is
(0, 0, 0, 0).

Post Convolution Color Table Lookup

This step applies only to RGBA component groups. Post convolution color table
lookup is enabled or disabled by calling Enable or Disable with the symbolic con-
stant POST_CONVOLUTION_COLOR_TABLE. The post convolution table is defined
by calling ColorTable with a target argument of POST_CONVOLUTION_COLOR_-
TABLE. In all other respects, operation is identical to color table lookup, as defined
earlier in section 3.7.6.

The required state is one bit indicating whether post convolution table lookup
is enabled or disabled. In the initial state, lookup is disabled.

Color Matrix Transformation

This step applies only to RGBA component groups. The components are
transformed by the color matrix. Each transformed component is multi-
plied by an appropriate signed scale factor: POST_COLOR_MATRIX_RED_SCALE
for an R component, POST_COLOR_MATRIX_GREEN_SCALE for a G compo-
nent, POST_COLOR_MATRIX_BLUE_SCALE for a B component, and POST_-

COLOR_MATRIX_ALPHA_SCALE for an A component. The result is added
to a signed bias: POST_COLOR_MATRIX_RED_BIAS, POST_COLOR_MATRIX_-
GREEN_BIAS, POST_COLOR_MATRIX_BLUE_BIAS, or POST_COLOR_MATRIX_-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 212

ALPHA_BIAS. The resulting components replace each component of the original
group.

That is, if Mc is the color matrix, a subscript of s represents the scale term for
a component, and a subscript of b represents the bias term, then the components

R
G
B
A


are transformed to

R′

G′

B′

A′

 =


Rs 0 0 0
0 Gs 0 0
0 0 Bs 0
0 0 0 As

Mc


R
G
B
A

+


Rb

Gb

Bb

Ab

 .

Post Color Matrix Color Table Lookup

This step applies only to RGBA component groups. Post color matrix color ta-
ble lookup is enabled or disabled by calling Enable or Disable with the symbolic
constant POST_COLOR_MATRIX_COLOR_TABLE. The post color matrix table is de-
fined by calling ColorTable with a target argument of POST_COLOR_MATRIX_-
COLOR_TABLE. In all other respects, operation is identical to color table lookup, as
defined in section 3.7.6.

The required state is one bit indicating whether post color matrix lookup is
enabled or disabled. In the initial state, lookup is disabled.

Histogram

This step applies only to RGBA component groups. Histogram operation is
enabled or disabled by calling Enable or Disable with the symbolic constant
HISTOGRAM.

If the width of the table is non-zero, then indices Ri, Gi, Bi, and Ai are de-
rived from the red, green, blue, and alpha components of each pixel group (without
modifying these components) by clamping each component to [0, 1], multiplying
by one less than the width of the histogram table, and rounding to the nearest in-
teger. If the format of the HISTOGRAM table includes red or luminance, the red or
luminance component of histogram entry Ri is incremented by one. If the format
of the HISTOGRAM table includes green, the green component of histogram entry
Gi is incremented by one. The blue and alpha components of histogram entries

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 213

Bi and Ai are incremented in the same way. If a histogram entry component is
incremented beyond its maximum value, its value becomes undefined; this is not
an error.

If the Histogram sink parameter is FALSE, histogram operation has no effect
on the stream of pixel groups being processed. Otherwise, all RGBA pixel groups
are discarded immediately after the histogram operation is completed. Because
histogram precedes minmax, no minmax operation is performed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

Minmax

This step applies only to RGBA component groups. Minmax operation is enabled
or disabled by calling Enable or Disable with the symbolic constant MINMAX.

If the format of the minmax table includes red or luminance, the red compo-
nent value replaces the red or luminance value in the minimum table element if
and only if it is less than that component. Likewise, if the format includes red or
luminance and the red component of the group is greater than the red or luminance
value in the maximum element, the red group component replaces the red or lumi-
nance maximum component. If the format of the table includes green, the green
group component conditionally replaces the green minimum and/or maximum if
it is smaller or larger, respectively. The blue and alpha group components are
similarly tested and replaced, if the table format includes blue and/or alpha. The
internal type of the minimum and maximum component values is floating point,
with at least the same representable range as a floating point number used to rep-
resent colors (section 2.1.1). There are no semantics defined for the treatment of
group component values that are outside the representable range.

If the Minmax sink parameter is FALSE, minmax operation has no effect on
the stream of pixel groups being processed. Otherwise, all RGBA pixel groups are
discarded immediately after the minmax operation is completed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

3.7.7 Pixel Rectangle Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then pixel
rectangles are rasterized using the following algorithm. Let (Xrp, Yrp) be the cur-
rent raster position. (If the current raster position is invalid, then DrawPixels is

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.8. BITMAPS 214

ignored.) If a particular group (index or components) is the nth in a row and be-
longs to the mth row, consider the region in window coordinates bounded by the
rectangle with corners

(Xrp + Zx ∗ n, Yrp + Zy ∗m)

and
(Xrp + Zx ∗ (n+ 1), Yrp + Zy ∗ (m+ 1))

where Zx and Zy are the pixel zoom factors specified by PixelZoom, and may each
be either positive or negative. A fragment representing group (n,m) is produced
for each framebuffer pixel with one or more sample points that lie inside, or on
the bottom or left boundary, of this rectangle. Each fragment so produced takes its
associated data from the group and from the current raster position, in a manner
consistent with the discussion in the Conversion to Fragments subsection of sec-
tion 3.7.5. All depth and color sample values are assigned the same value, taken
either from their group (for depth and color component groups) or from the cur-
rent raster position (if they are not). All sample values are assigned the same fog
coordinate and the same set of texture coordinates, taken from the current raster
position.

A single pixel rectangle will generate multiple, perhaps very many fragments
for the same framebuffer pixel, depending on the pixel zoom factors.

3.8 Bitmaps

Bitmaps are rectangles of zeros and ones specifying a particular pattern of frag-
ments to be produced. Each of these fragments has the same associated data. These
data are those associated with the current raster position.

Bitmaps are sent using

void Bitmap(sizei w, sizei h, float xbo, float ybo,
float xbi, float ybi, const ubyte *data);

w and h comprise the integer width and height of the rectangular bitmap, respec-
tively. (xbo, ybo) gives the floating-point x and y values of the bitmap’s origin.
(xbi, ybi) gives the floating-point x and y increments that are added to the raster
position after the bitmap is rasterized. data is a pointer to a bitmap.

Like a polygon pattern, a bitmap is unpacked from memory according to the
procedure given in section 3.7.5 for DrawPixels; it is as if the width and height
passed to that command were equal tow and h, respectively, the type were BITMAP,
and the format were COLOR_INDEX. The unpacked values (before any conversion

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.8. BITMAPS 215

� � �
� � �
� � �

� � �
� � �
� � �� � �

� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �� � �

� � �
� � �

� � �
� � �
� � �� � �

� � �
� � �

	 	 	
	 	 	
	 	 	

� � �
� � �
� � �� � �

� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �� � �

� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �� � �

� � �
� � �

� � �
� � �
� � �� � �

� � �
� � �

� � �
� � �
� � �� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � � � � �

� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

! ! !
! ! !
! ! !

" " "
" " "
" " "

#
#
#

$ $ $
$ $ $
$ $ $

% % %
% % %
% % %

& & &
& & &
& & &

' ' '
' ' '
' ' '

h = 12

w = 8

ybo = 1.0

xbo = 2.5

Figure 3.9. A bitmap and its associated parameters. xbi and ybi are not shown.

or arithmetic would have been performed) form a stipple pattern of zeros and ones.
See figure 3.9.

A bitmap sent using Bitmap is rasterized as follows. First, if the current raster
position is invalid (the valid bit is reset), the bitmap is ignored. Otherwise, a rect-
angular array of fragments is constructed, with lower left corner at

(xll, yll) = (bxrp − xboc, byrp − yboc)

and upper right corner at (xll+w, yll+h) wherew and h are the width and height of
the bitmap, respectively. Fragments in the array are produced if the corresponding
bit in the bitmap is 1 and not produced otherwise. The associated data for each
fragment are those associated with the current raster position. Once the fragments
have been produced, the current raster position is updated:

(xrp, yrp)← (xrp + xbi, yrp + ybi).

The z and w values of the current raster position remain unchanged.
Calling Bitmap will result in an INVALID_FRAMEBUFFER_OPERATION error

if the object bound to DRAW_FRAMEBUFFER_BINDING is not framebuffer complete
(see section 4.4.4).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 216

Bitmap Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then
bitmaps are rasterized using the following algorithm. If the current raster position
is invalid, the bitmap is ignored. Otherwise, a screen-aligned array of pixel-size
rectangles is constructed, with its lower left corner at (Xrp, Yrp), and its upper
right corner at (Xrp + w, Yrp + h), where w and h are the width and height of
the bitmap. Rectangles in this array are eliminated if the corresponding bit in the
bitmap is 0, and are retained otherwise. Bitmap rasterization produces a fragment
for each framebuffer pixel with one or more sample points either inside or on the
bottom or left edge of a retained rectangle.

Coverage bits that correspond to sample points either inside or on the bottom
or left edge of a retained rectangle are 1, other coverage bits are 0. The associated
data for each sample are those associated with the current raster position. Once the
fragments have been produced, the current raster position is updated exactly as it
is in the single-sample rasterization case.

3.9 Texturing

Texturing maps a portion of one or more specified images onto each primitive
for which texturing is enabled. This mapping is accomplished in shaders by
sampling the color of an image at the location indicated by specified (s, t, r) texture
coordinates. It is accomplished in fixed-function processing by using the color of
an image at the location indicated by a texture coordinate set’s (s, t, r, q) values.
Texture lookups are typically used to modify a fragment’s RGBA color but may be
used for any purpose in a shader.

The internal data type of a texture may be signed or unsigned normalized fixed-
point, signed or unsigned integer, or floating-point, depending on the internal for-
mat of the texture. The correspondence between the internal format and the internal
data type is given in tables 3.17-3.19. Fixed-point and floating-point textures return
a floating-point value and integer textures return signed or unsigned integer values.
When a fragment shader is active, the shader is responsible for interpreting the re-
sult of a texture lookup as the correct data type, otherwise the result is undefined.
When not using a fragment shader, floating-point texture values are assumed, and
the results of using either signed normalized fixed-point or integer textures in this
case are undefined.

Each of the supported types of texture is a collection of images built from
one-, two-, or three-dimensional arrays of image elements referred to as texels.
One-, two-, and three-dimensional textures consist respectively of one-, two-, or
three-dimensional texel arrays. One- and two-dimensional array textures are ar-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 217

rays of one- or two-dimensional images, consisting of one or more layers. Two-
dimensional multisample and two-dimensional multisample array textures are spe-
cial two-dimensional and two-dimensional array textures, respectively, containing
multiple samples in each texel. Cube maps are special two-dimensional array tex-
tures with six layers that represent the faces of a cube. When accessing a cube map,
the texture coordinates are projected onto one of the six faces of the cube. Rect-
angular textures are special two-dimensional textures consisting of only a single
image and accessed using unnormalized coordinates. Buffer textures are special
one-dimensional textures whose texel arrays are stored in separate buffer objects.

Implementations must support texturing using multiple images. Each fragment
or vertex carries multiple sets of texture coordinates (s, t, r, q) which are used to
index separate images to produce color values which are collectively used to mod-
ify the resulting transformed vertex or fragment color. Texturing is specified only
for RGBA mode; its use in color index mode is undefined. The following subsec-
tions (up to and including section 3.9.11) specify the GL operation with a single
texture. Section 3.9.20 specifies the details of how multiple texture units interact.

The GL provides two ways to specify the details of how texturing of a primi-
tive is effected. The first is referred to as fixed-function fragment shading, or simply
fixed-function, and is described in this section. The second is referred to as a frag-
ment shader, and is described in section 3.12. The specification of the image to be
texture mapped and the means by which the image is filtered when applied to the
primitive are common to both methods and are discussed in this section. The fixed-
function method for determining what RGBA value is produced is also described in
this section. If a fragment shader is active, the method for determining the RGBA
value is specified by an application-supplied fragment shader as described in the
OpenGL Shading Language Specification.

When no fragment shader is active, the coordinates used for texturing are
(s/q, t/q, r/q), derived from the original texture coordinates (s, t, r, q). If the q
texture coordinate is less than or equal to zero, the coordinates used for texturing
are undefined. When a fragment shader is active, the (s, t, r, q) coordinates are
available to the fragment shader. The coordinates used for texturing in a fragment
shader are defined by the OpenGL Shading Language Specification.

The command

void ActiveTexture(enum texture);

specifies the active texture unit selector, ACTIVE_TEXTURE. Each texture unit con-
tains up to two distinct sub-units: a texture coordinate processing unit consisting of
a texture matrix stack and texture coordinate generation state and a texture image
unit consisting of all the texture state defined in section 3.9. In implementations

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 218

with a different number of supported texture coordinate sets and texture image
units, some texture units may consist of only one of the two sub-units.

The active texture unit selector selects the texture image unit accessed by com-
mands involving texture image processing (section 3.9). Such commands include
all variants of TexEnv (except for those controlling point sprite coordinate replace-
ment), TexParameter, TexImage, BindTexture, Enable/Disable for any texture
target (e.g., TEXTURE_2D), and queries of all such state. If the texture image unit
number corresponding to the current value of ACTIVE_TEXTURE is greater than
or equal to the implementation-dependent constant MAX_COMBINED_TEXTURE_-
IMAGE_UNITS, the error INVALID_OPERATION is generated by any such com-
mand.

The active texture unit selector also specifies the texture coordinate set accessed
by commands involving texture coordinate processing (see section 2.12.1).

ActiveTexture generates the error INVALID_ENUM if an invalid texture is spec-
ified. texture is a symbolic constant of the form TEXTUREi, indicating that texture
unit i is to be modified. The constants obey TEXTUREi = TEXTURE0 + i (i is in
the range 0 to k− 1, where k is the larger of the values of MAX_TEXTURE_COORDS
and MAX_COMBINED_TEXTURE_IMAGE_UNITS).

For backwards compatibility, the implementation-dependent constant MAX_-
TEXTURE_UNITS specifies the number of conventional texture units supported by
the implementation. Its value must be no larger than the minimum of MAX_-

TEXTURE_COORDS and MAX_COMBINED_TEXTURE_IMAGE_UNITS.
The state required for the active texture image unit selector is a single integer.

The initial value is TEXTURE0.

3.9.1 Texture Objects

Textures in GL are represented by named objects. The name space for texture ob-
jects is the unsigned integers, with zero reserved by the GL to represent the default
texture object. The default texture object is bound to each of the TEXTURE_-

1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_ARRAY, TEXTURE_2D_ARRAY,
TEXTURE_RECTANGLE, TEXTURE_BUFFER, TEXTURE_CUBE_MAP, TEXTURE_-
2D_MULTISAMPLE, and TEXTURE_2D_MULTISAMPLE_ARRAY targets during con-
text initialization.

A new texture object is created by binding an unused name to one of these
texture targets. The command

void GenTextures(sizei n, uint *textures);;

returns n previously unused texture names in textures. These names are marked
as used, for the purposes of GenTextures only, but they acquire texture state and

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 219

a dimensionality only when they are first bound, just as if they were unused. The
binding is effected by calling

void BindTexture(enum target, uint texture);

with target set to the desired texture target and texture set to the unused name. The
resulting texture object is a new state vector, comprising all the state and with the
same initial values listed in section 3.9.15 The new texture object bound to target
is, and remains a texture of the dimensionality and type specified by target until it
is deleted.

BindTexture may also be used to bind an existing texture object to any of
these targets. The error INVALID_OPERATION is generated if an attempt is made
to bind a texture object of different dimensionality than the specified target. If the
bind is successful no change is made to the state of the bound texture object, and
any previous binding to target is broken.

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return
state from the bound object. If texture mapping of the dimensionality of the target
to which a texture object is bound is enabled, the state of the bound texture object
directs the texturing operation.

Texture objects are deleted by calling

void DeleteTextures(sizei n, const uint *textures);

textures contains n names of texture objects to be deleted. After a texture object
is deleted, it has no contents or dimensionality, and its name is again unused. If
a texture that is currently bound to any of the target bindings of BindTexture is
deleted, it is as though BindTexture had been executed with the same target and
texture zero. Additionally, special care must be taken when deleting a texture if any
of the images of the texture are attached to a framebuffer object. See section 4.4.2
for details.

Unused names in textures are silently ignored, as is the name zero.
An implementation may choose to establish a working set of texture objects on

which binding operations are performed with higher performance. A texture object
that is currently part of the working set is said to be resident. The command

boolean AreTexturesResident(sizei n, const
uint *textures, boolean *residences);

returns TRUE if all of the n texture objects named in textures are resident, or if the
implementation does not distinguish a working set. If at least one of the texture

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 220

objects named in textures is not resident, then FALSE is returned, and the residence
of each texture object is returned in residences. Otherwise the contents of resi-
dences are not changed. If any of the names in textures are unused or are zero,
FALSE is returned, the error INVALID_VALUE is generated, and the contents of
residences are indeterminate. The residence status of a single bound texture object
can also be queried by calling GetTexParameteriv or GetTexParameterfv with
target set to the target to which the texture object is bound, and pname set to
TEXTURE_RESIDENT.

AreTexturesResident indicates only whether a texture object is currently resi-
dent, not whether it could not be made resident. An implementation may choose to
make a texture object resident only on first use, for example. The client may guide
the GL implementation in determining which texture objects should be resident by
specifying a priority for each texture object. The command

void PrioritizeTextures(sizei n, uint *textures, const
clampf *priorities);

sets the priorities of the n texture objects named in textures to the values in priori-
ties. Each priority value is clamped to the range [0,1] before it is assigned. Zero in-
dicates the lowest priority, with the least likelihood of being resident. One indicates
the highest priority, with the greatest likelihood of being resident. The priority of a
single bound texture object may also be changed by calling TexParameteri, Tex-
Parameterf, TexParameteriv, or TexParameterfv with target set to the target to
which the texture object is bound, pname set to TEXTURE_PRIORITY, and param
or params specifying the new priority value (which is clamped to the range [0,1]
before being assigned). PrioritizeTextures silently ignores attempts to prioritize
unused texture object names or zero (default textures).

The texture object name space, including the initial one-, two-, and three- di-
mensional, one- and two-dimensional array, rectangular, buffer, cube map, two-
dimensional multisample, and two-dimensional multisample array texture objects,
is shared among all texture units. A texture object may be bound to more than one
texture unit simultaneously. After a texture object is bound, any GL operations on
that target object affect any other texture units to which the same texture object is
bound.

Texture binding is affected by the setting of the state ACTIVE_TEXTURE. If a
texture object is deleted, it as if all texture units which are bound to that texture
object are rebound to texture object zero.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 221

3.9.2 Sampler Objects

The state necessary for texturing can be divided into two categories as described in
section 3.9.15. A GL texture object includes both categories. The first category
represents dimensionality and other image parameters, and the second category
represents sampling state. Additionally, a sampler object may be created to encap-
sulate only the second category - the sampling state - of a texture object.

A new sampler object is created by binding an unused name to a texture unit.
The command

void GenSamplers(sizei count, uint *samplers);

returns count previously unused sampler object names in samplers. The name zero
is reserved by the GL to represent no sampler being bound to a sampler unit. The
names are marked as used, for the purposes of GenSamplers only, but they acquire
state only when they are first used as a parameter to BindSampler, SamplerPa-
rameter*, GetSamplerParameter*, or IsSampler. When a sampler object is first
used in one of these functions, the resulting sampler object is initialized with a
new state vector, comprising all the state and with the same initial values listed in
table 6.26.

When a sampler object is bound to a texture unit, its state supersedes that of
the texture object bound to that texture unit. If the sampler name zero is bound to
a texture unit, the currently bound texture’s sampler state becomes active. A single
sampler object may be bound to multiple texture units simultaneously.

A sampler binding is effected by calling

void BindSampler(uint unit, uint sampler);

with unit set to the texture unit to which to bind the sampler and sampler set to the
name of a sampler object returned from a previous call to GenSampler.

If the bind is successful no change is made to the state of the bound sampler
object, and any previous binding to unit is broken.

BindSampler fails and an INVALID_OPERATION error is generated if sampler
is not zero or a name returned from a previous call to GenSamplers, or if such a
name has since been deleted with DeleteSamplers. An INVALID_VALUE error is
generated if unit is greater than or equal to the value of MAX_TEXTURE_IMAGE_-
UNITS.

If state is present in a sampler object bound to a texture unit that would have
been rejected by a call to TexParameter for the texture bound to that unit, the be-
havior of the implementation is as if the texture were incomplete. For example, if
TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_WRAP_R is set to REPEAT or

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 222

MIRRORED_REPEAT on the sampler object bound to a texture unit and the texture
bound to that unit is a rectangular texture, the texture will be considered incom-
plete.

The currently bound sampler may be queried by calling GetIntegerv with
pname set to SAMPLER_BINDING. When a sampler object is unbound from the
texture unit (by binding another sampler object, or the sampler object named zero,
to that texture unit) the modified state is again replaced with the sampler state as-
sociated with the texture object bound to that texture unit.

The parameters represented by a sampler object are a subset of those described
in section 3.9.8. Each parameter of a sampler object is set by calling

void SamplerParameter{if}v(uint sampler, enum pname,
T param);

void SamplerParameterI{u ui}v(uint sampler, enum pname,
T *params);

sampler is the name of a sampler object previously reserved by a call to
GenSamplers. pname is the name of a parameter to modify and param
is the new value of that parameter. An INVALID_VALUE error is gener-
ated if sampler is not the name of a sampler object previously returned
from a call to GenSamplers. The values accepted in the pname parameter
are TEXTURE_WRAP_S, TEXTURE_WRAP_T, TEXTURE_WRAP_R, TEXTURE_MIN_-
FILTER, TEXTURE_MAG_FILTER, TEXTURE_BORDER_COLOR, TEXTURE_MIN_-
LOD, TEXTURE_MAX_LOD, TEXTURE_LOD_BIAS, TEXTURE_COMPARE_MODE, and
TEXTURE_COMPARE_FUNC. Texture state listed in table 6.25 but not listed here and
in the sampler state in table 6.26 is not part of the sampler state, and remains in the
texture object.

If the values for TEXTURE_BORDER_COLOR are specified with a call to Sam-
plerParameterIiv or SamplerParameterIuiv, the values are unmodified and
stored with an internal data type of integer. If specified with SamplerParameteriv,
they are converted to floating-point using equation 2.1. Otherwise, the values are
unmodified and stored as floating-point.

An INVALID_ENUM error is generated if pname is not the name of a parame-
ter accepted by SamplerParameter*. If the value of param is not an acceptable
value for the parameter specified in pname, an error is generated as specified in the
description of TexParameter*.

Modifying a parameter of a sampler object affects all texture units to which
that sampler object is bound. Calling TexParameter has no effect on the sampler
object bound to the active texture unit. It will modify the parameters of the texture
object bound to that unit.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 223

Sampler objects are deleted by calling

void DeleteSamplers(sizei count, const uint *samplers);

samplers contains count names of sampler objects to be deleted. After a sampler
object is deleted, its name is again unused. If a sampler object that is currently
bound to a sampler unit is deleted, it is as though BindSampler is called with unit
set to the unit the sampler is bound to and sampler zero. Unused names in samplers
are silently ignored, as is the reserved name zero.

3.9.3 Texture Image Specification

The command

void TexImage3D(enum target, int level, int internalformat,
sizei width, sizei height, sizei depth, int border,
enum format, enum type, const void *data);

is used to specify a three-dimensional texture image. target must be one of
TEXTURE_3D for a three-dimensional texture or TEXTURE_2D_ARRAY for an two-
dimensional array texture. Additionally, target may be either PROXY_TEXTURE_-
3D for a three-dimensional proxy texture, or PROXY_TEXTURE_2D_ARRAY for a
two-dimensional proxy array texture, as discussed in section 3.9.15. format, type,
and data specify the format of the image data, the type of those data, and a refer-
ence to the image data in the currently bound pixel unpack buffer or client memory,
as described in section 3.7.4. The format STENCIL_INDEX is not allowed.

The groups in memory are treated as being arranged in a sequence of adjacent
rectangles. Each rectangle is a two-dimensional image, whose size and organiza-
tion are specified by the width and height parameters to TexImage3D. The val-
ues of UNPACK_ROW_LENGTH and UNPACK_ALIGNMENT control the row-to-row
spacing in these images as described in section 3.7.4. If the value of the integer
parameter UNPACK_IMAGE_HEIGHT is not positive, then the number of rows in
each two-dimensional image is height; otherwise the number of rows is UNPACK_-
IMAGE_HEIGHT. Each two-dimensional image comprises an integral number of
rows, and is exactly adjacent to its neighbor images.

The mechanism for selecting a sub-volume of a three-dimensional image relies
on the integer parameter UNPACK_SKIP_IMAGES. If UNPACK_SKIP_IMAGES is
positive, the pointer is advanced by UNPACK_SKIP_IMAGES times the number of
elements in one two-dimensional image before obtaining the first group from mem-
ory. Then depth two-dimensional images are processed, each having a subimage
extracted as described in section 3.7.4.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 224

The selected groups are transferred to the GL as described in section 3.7.4
and then clamped to the representable range of the internal format. If the inter-
nalformat of the texture is signed or unsigned integer, components are clamped
to [−2n−1, 2n−1 − 1] or [0, 2n − 1], respectively, where n is the number of bits
per component. For color component groups, if the internalformat of the texture
is signed or unsigned normalized fixed-point, components are clamped to [−1, 1]
or [0, 1], respectively. For depth component groups, the depth value is clamped
to [0, 1]. Otherwise, values are not modified. Stencil index values are masked by
2n − 1, where n is the number of stencil bits in the internal format resolution (see
below). If the base internal format is DEPTH_STENCIL and format is not DEPTH_-
STENCIL, then the values of the stencil index texture components are undefined.

Components are then selected from the resulting R, G, B, A, depth, or stencil
values to obtain a texture with the base internal format specified by (or derived
from) internalformat. Table 3.16 summarizes the mapping of R, G, B, A, depth,
or stencil values to texture components, as a function of the base internal format
of the texture image. internalformat may be specified as one of the internal format
symbolic constants listed in table 3.16, as one of the sized internal format symbolic
constants listed in tables 3.17- 3.19, as one of the generic compressed internal for-
mat symbolic constants listed in table 3.20, or as one of the specific compressed
internal format symbolic constants (if listed in table 3.20). internalformat may
(for backwards compatibility with the 1.0 version of the GL) also take on the inte-
ger values 1, 2, 3, and 4, which are equivalent to symbolic constants LUMINANCE,
LUMINANCE_ALPHA, RGB, and RGBA respectively. Specifying a value for inter-
nalformat that is not one of the above values generates the error INVALID_VALUE.

Textures with a base internal format of DEPTH_COMPONENT or DEPTH_-

STENCIL are supported by texture image specification commands only
if target is TEXTURE_1D, TEXTURE_2D, TEXTURE_1D_ARRAY, TEXTURE_-

2D_ARRAY, TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP, PROXY_TEXTURE_-
1D, PROXY_TEXTURE_2D, PROXY_TEXTURE_1D_ARRAY, PROXY_TEXTURE_-

2D_ARRAY, PROXY_TEXTURE_RECTANGLE, or PROXY_TEXTURE_CUBE_MAP. Us-
ing these formats in conjunction with any other target will result in an INVALID_-
OPERATION error.

Textures with a base internal format of DEPTH_COMPONENT or DEPTH_-

STENCIL require either depth component data or depth/stencil component data.
Textures with other base internal formats require RGBA component data. The error
INVALID_OPERATION is generated if one of the base internal format and format is
DEPTH_COMPONENT or DEPTH_STENCIL, and the other is neither of these values.

Textures with integer internal formats (see tables 3.17- 3.18) require integer
data. The error INVALID_OPERATION is generated if the internal format is inte-
ger and format is not one of the integer formats listed in table 3.6; if the internal

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 225

Base Internal Format RGBA, Depth, and Stencil Values Internal Components
ALPHA A A

DEPTH_COMPONENT Depth D

DEPTH_STENCIL Depth,Stencil D,S
LUMINANCE R L

LUMINANCE_ALPHA R,A L,A
INTENSITY R I

RED R R

RG R,G R,G
RGB R,G,B R,G,B
RGBA R,G,B,A R,G,B,A

Table 3.16: Conversion from RGBA, depth, and stencil pixel components to inter-
nal texture, table, or filter components. See section 3.9.16 for a description of the
texture components R, G, B, A, L, I , D, and S.

format is not integer and format is an integer format; or if format is an integer for-
mat and type is FLOAT, HALF_FLOAT, UNSIGNED_INT_10F_11F_11F_REV, or
UNSIGNED_INT_5_9_9_9_REV.

In addition to the specific compressed internal formats listed in table 3.20, the
GL provides a mechanism to obtain token values for all such formats provided
by extensions. The number of specific compressed internal formats supported
by the renderer can be obtained by querying the value of NUM_COMPRESSED_-
TEXTURE_FORMATS. The set of specific compressed internal formats supported by
the renderer can be obtained by querying the value of COMPRESSED_TEXTURE_-
FORMATS. The only values returned by this query are those corresponding to for-
mats suitable for general-purpose usage. The renderer will not enumerate formats
with restrictions that need to be specifically understood prior to use.

Generic compressed internal formats are never used directly as the internal for-
mats of texture images. If internalformat is one of the six generic compressed
internal formats, its value is replaced by the symbolic constant for a specific com-
pressed internal format of the GL’s choosing with the same base internal format.
If no specific compressed format is available, internalformat is instead replaced by
the corresponding base internal format. If internalformat is given as or mapped
to a specific compressed internal format, but the GL can not support images com-
pressed in the chosen internal format for any reason (e.g., the compression format
might not support 3D textures or borders), internalformat is replaced by the cor-
responding base internal format and the texture image will not be compressed by

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 226

the GL.
The internal component resolution is the number of bits allocated to each value

in a texture image. If internalformat is specified as a base internal format, the GL
stores the resulting texture with internal component resolutions of its own choos-
ing. If a sized internal format is specified, the mapping of the R, G, B, A, depth,
and stencil values to texture components is equivalent to the mapping of the cor-
responding base internal format’s components, as specified in table 3.16; the type
(unsigned int, float, etc.) is assigned the same type specified by internalformat;
and the memory allocation per texture component is assigned by the GL to match
the allocations listed in tables 3.17- 3.19 as closely as possible. (The definition of
closely is left up to the implementation. However, a non-zero number of bits must
be allocated for each component whose desired allocation in tables 3.17- 3.19 is
non-zero, and zero bits must be allocated for all other components).

Required Texture Formats

Implementations are required to support at least one allocation of internal com-
ponent resolution for each type (unsigned int, float, etc.) for each base internal
format.

In addition, implementations are required to support the following sized and
compressed internal formats. Requesting one of these sized internal formats for
any texture type will allocate at least the internal component sizes, and exactly the
component types shown for that format in tables 3.17- 3.19:

• Texture and renderbuffer color formats (see section 4.4.2).

– RGBA32F, RGBA32I, RGBA32UI, RGBA16, RGBA16F, RGBA16I,
RGBA16UI, RGBA8, RGBA8I, RGBA8UI, SRGB8_ALPHA8, RGB10_A2,
and RGB10_A2UI.

– R11F_G11F_B10F.

– RG32F, RG32I, RG32UI, RG16, RG16F, RG16I, RG16UI, RG8, RG8I,
and RG8UI.

– R32F, R32I, R32UI, R16F, R16I, R16UI, R16, R8, R8I, and R8UI.

– ALPHA8.

• Texture-only color formats:

– RGBA16_SNORM and RGBA8_SNORM.

– RGB32F, RGB32I, and RGB32UI.

– RGB16_SNORM, RGB16F, RGB16I, RGB16UI, and RGB16.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 227

– RGB8_SNORM, RGB8, RGB8I, RGB8UI, and SRGB8.

– RGB9_E5.

– RG16_SNORM, RG8_SNORM, COMPRESSED_RG_RGTC2 and
COMPRESSED_SIGNED_RG_RGTC2.

– R16_SNORM, R8_SNORM, COMPRESSED_RED_RGTC1 and
COMPRESSED_SIGNED_RED_RGTC1.

• Depth formats: DEPTH_COMPONENT32F, DEPTH_COMPONENT24, and
DEPTH_COMPONENT16.

• Combined depth+stencil formats: DEPTH32F_STENCIL8 and DEPTH24_-

STENCIL8.

Encoding of Special Internal Formats

If internalformat is R11F_G11F_B10F, the red, green, and blue bits are converted
to unsigned 11-bit, unsigned 11-bit, and unsigned 10-bit floating-point values as
described in sections 2.1.3 and 2.1.4.

If internalformat is RGB9_E5, the red, green, and blue bits are converted to a
shared exponent format according to the following procedure:

Components red, green, and blue are first clamped (in the process, mapping
NaN to zero) as follows:

redc = max(0,min(sharedexpmax, red))
greenc = max(0,min(sharedexpmax, green))
bluec = max(0,min(sharedexpmax, blue))

where

sharedexpmax =
(2N − 1)

2N
2Emax−B.

N is the number of mantissa bits per component (9), B is the exponent bias (15),
and Emax is the maximum allowed biased exponent value (31).

The largest clamped component, maxc, is determined:

maxc = max(redc, greenc, bluec)

A preliminary shared exponent expp is computed:

expp = max(−B − 1, blog2(maxc)c) + 1 +B

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 228

A refined shared exponent exps is computed:

maxs =
⌊ maxc

2expp−B−N
+ 0.5

⌋

exps =

{
expp, 0 ≤ maxs < 2N

expp + 1, maxs = 2N

Finally, three integer values in the range 0 to 2N − 1 are computed:

reds =
⌊

redc

2exps−B−N
+ 0.5

⌋
greens =

⌊ greenc

2exps−B−N
+ 0.5

⌋
blues =

⌊
bluec

2exps−B−N
+ 0.5

⌋
The resulting reds, greens, blues, and exps are stored in the red, green, blue,

and shared bits respectively of the texture image.
An implementation accepting pixel data of type UNSIGNED_INT_5_9_9_9_-

REV with format RGB is allowed to store the components “as is” if the implementa-
tion can determine the current pixel transfer state acts as an identity transform on
the components.

Sized Base R G B A Shared
Internal Format Internal Format bits bits bits bits bits
ALPHA4 ALPHA 4
ALPHA8 ALPHA 8
ALPHA12 ALPHA 12
ALPHA16 ALPHA 16
R8 RED 8
R8_SNORM RED s8
R16 RED 16
R16_SNORM RED s16
RG8 RG 8 8
RG8_SNORM RG s8 s8
RG16 RG 16 16
RG16_SNORM RG s16 s16

Sized internal color formats continued on next page

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 229

Sized internal color formats continued from previous page
Sized Base R G B A Shared
Internal Format Internal Format bits bits bits bits bits
R3_G3_B2 RGB 3 3 2
RGB4 RGB 4 4 4
RGB5 RGB 5 5 5
RGB8 RGB 8 8 8
RGB8_SNORM RGB s8 s8 s8
RGB10 RGB 10 10 10
RGB12 RGB 12 12 12
RGB16 RGB 16 16 16
RGB16_SNORM RGB s16 s16 s16
RGBA2 RGBA 2 2 2 2
RGBA4 RGBA 4 4 4 4
RGB5_A1 RGBA 5 5 5 1
RGBA8 RGBA 8 8 8 8
RGBA8_SNORM RGBA s8 s8 s8 s8
RGB10_A2 RGBA 10 10 10 2
RGB10_A2UI RGBA ui10 ui10 ui10 ui2
RGBA12 RGBA 12 12 12 12
RGBA16 RGBA 16 16 16 16
RGBA16_SNORM RGBA s16 s16 s16 s16
SRGB8 RGB 8 8 8
SRGB8_ALPHA8 RGBA 8 8 8 8
R16F RED f16
RG16F RG f16 f16
RGB16F RGB f16 f16 f16
RGBA16F RGBA f16 f16 f16 f16
R32F RED f32
RG32F RG f32 f32
RGB32F RGB f32 f32 f32
RGBA32F RGBA f32 f32 f32 f32
R11F_G11F_B10F RGB f11 f11 f10
RGB9_E5 RGB 9 9 9 5
R8I RED i8
R8UI RED ui8
R16I RED i16

Sized internal color formats continued on next page

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 230

Sized internal color formats continued from previous page
Sized Base R G B A Shared
Internal Format Internal Format bits bits bits bits bits
R16UI RED ui16
R32I RED i32
R32UI RED ui32
RG8I RG i8 i8
RG8UI RG ui8 ui8
RG16I RG i16 i16
RG16UI RG ui16 ui16
RG32I RG i32 i32
RG32UI RG ui32 ui32
RGB8I RGB i8 i8 i8
RGB8UI RGB ui8 ui8 ui8
RGB16I RGB i16 i16 i16
RGB16UI RGB ui16 ui16 ui16
RGB32I RGB i32 i32 i32
RGB32UI RGB ui32 ui32 ui32
RGBA8I RGBA i8 i8 i8 i8
RGBA8UI RGBA ui8 ui8 ui8 ui8
RGBA16I RGBA i16 i16 i16 i16
RGBA16UI RGBA ui16 ui16 ui16 ui16
RGBA32I RGBA i32 i32 i32 i32
RGBA32UI RGBA ui32 ui32 ui32 ui32

Table 3.17: Correspondence of sized internal color formats to base
internal formats, internal data type, and desired component reso-
lutions for each sized internal format. The component resolution
prefix indicates the internal data type: f is floating point, i is signed
integer, ui is unsigned integer, s is signed normalized fixed-point,
and no prefix is unsigned normalized fixed-point.

Sized Base A L I
Internal Format Internal Format bits bits bits
LUMINANCE4 LUMINANCE 4

Sized internal luminance formats continued on next page

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 231

Sized internal luminance formats continued from previous page
Sized Base A L I
Internal Format Internal Format bits bits bits
LUMINANCE8 LUMINANCE 8
LUMINANCE12 LUMINANCE 12
LUMINANCE16 LUMINANCE 16
LUMINANCE4_ALPHA4 LUMINANCE_ALPHA 4 4
LUMINANCE6_ALPHA2 LUMINANCE_ALPHA 2 6
LUMINANCE8_ALPHA8 LUMINANCE_ALPHA 8 8
LUMINANCE12_ALPHA4 LUMINANCE_ALPHA 4 12
LUMINANCE12_ALPHA12 LUMINANCE_ALPHA 12 12
LUMINANCE16_ALPHA16 LUMINANCE_ALPHA 16 16
INTENSITY4 INTENSITY 4
INTENSITY8 INTENSITY 8
INTENSITY12 INTENSITY 12
INTENSITY16 INTENSITY 16
SLUMINANCE LUMINANCE 8
SLUMINANCE8_ALPHA8 LUMINANCE_ALPHA 8 8
Table 3.18: Correspondence of sized internal luminance and inten-
sity formats to base internal formats, internal data type, and desired
component resolutions for each sized internal format. The compo-
nent resolution prefix indicates the internal data type: f is floating
point, i is signed integer, ui is unsigned integer, and no prefix is
fixed-point.

If a compressed internal format is specified, the mapping of the R, G, B, and
A values to texture components is equivalent to the mapping of the corresponding
base internal format’s components, as specified in table 3.16. The specified image
is compressed using a (possibly lossy) compression algorithm chosen by the GL.

A GL implementation may vary its allocation of internal component resolution
or compressed internal format based on any TexImage3D, TexImage2D (see be-
low), or TexImage1D (see below) parameter (except target), but the allocation and
chosen compressed image format must not be a function of any other state and can-
not be changed once they are established. In addition, the choice of a compressed
image format may not be affected by the data parameter. Allocations must be in-
variant; the same allocation and compressed image format must be chosen each

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 232

Sized Base D S
Internal Format Internal Format bits bits
DEPTH_COMPONENT16 DEPTH_COMPONENT 16
DEPTH_COMPONENT24 DEPTH_COMPONENT 24
DEPTH_COMPONENT32 DEPTH_COMPONENT 32
DEPTH_COMPONENT32F DEPTH_COMPONENT f32
DEPTH24_STENCIL8 DEPTH_STENCIL 24 8
DEPTH32F_STENCIL8 DEPTH_STENCIL f32 8

Table 3.19: Correspondence of sized internal depth and stencil formats to base
internal formats, internal data type, and desired component resolutions for each
sized internal format. The component resolution prefix indicates the internal data
type: f is floating point, i is signed integer, ui is unsigned integer, and no prefix is
fixed-point.

Compressed Internal Format Base Internal Format Type
COMPRESSED_ALPHA ALPHA Generic
COMPRESSED_LUMINANCE LUMINANCE Generic
COMPRESSED_LUMINANCE_ALPHA LUMINANCE_ALPHA Generic
COMPRESSED_INTENSITY INTENSITY Generic
COMPRESSED_RED RED Generic
COMPRESSED_RG RG Generic
COMPRESSED_RGB RGB Generic
COMPRESSED_RGBA RGBA Generic
COMPRESSED_SRGB RGB Generic
COMPRESSED_SRGB_ALPHA RGBA Generic
COMPRESSED_SLUMINANCE LUMINANCE Generic
COMPRESSED_SLUMINANCE_ALPHA LUMINANCE_ALPHA Generic
COMPRESSED_RED_RGTC1 RED Specific
COMPRESSED_SIGNED_RED_RGTC1 RED Specific
COMPRESSED_RG_RGTC2 RG Specific
COMPRESSED_SIGNED_RG_RGTC2 RG Specific

Table 3.20: Generic and specific compressed internal formats. The specific
RGTC formats are described in appendix C.1.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 233

time a texture image is specified with the same parameter values. These allocation
rules also apply to proxy textures, which are described in section 3.9.15.

The image itself (referred to by data) is a sequence of groups of values. The
first group is the lower left back corner of the texture image. Subsequent groups
fill out rows of width width from left to right; height rows are stacked from bottom
to top forming a single two-dimensional image slice; and depth slices are stacked
from back to front. When the final R, G, B, and A components have been computed
for a group, they are assigned to components of a texel as described by table 3.16.
Counting from zero, each resulting N th texel is assigned internal integer coordi-
nates (i, j, k), where

i = (N mod width)− wb

j = (
⌊

N

width

⌋
mod height)− hb

k = (
⌊

N

width× height

⌋
mod depth)− db

and wb, hb, and db are the specified border width, height, and depth. wb and hb are
the specified border value; db is the specified border value if target is TEXTURE_-
3D, or zero if target is TEXTURE_2D_ARRAY. Thus the last two-dimensional image
slice of the three-dimensional image is indexed with the highest value of k.

If the internal data type of the image array is signed or unsigned normalized
fixed-point, each color component is converted using equation 2.6 or 2.4, respec-
tively. If the internal type is floating-point or integer, components are clamped
to the representable range of the corresponding internal component, but are not
converted.

The level argument to TexImage3D is an integer level-of-detail number. Levels
of detail are discussed below, under Mipmapping. The main texture image has a
level of detail number of 0. If a level-of-detail less than zero is specified, the error
INVALID_VALUE is generated.

The border argument to TexImage3D is a border width. The significance of
borders is described below. The border width affects the dimensions of the texture
image: let

ws = wt + 2wb

hs = ht + 2hb

ds = dt + 2db

(3.17)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 234

where ws, hs, and ds are the specified image width, height, and depth, and wt,
ht, and dt are the dimensions of the texture image internal to the border. If wt, ht,
or dt are less than zero, then the error INVALID_VALUE is generated.

An image with zero width, height, or depth indicates the null texture. If
the null texture is specified for the level-of-detail specified by texture parameter
TEXTURE_BASE_LEVEL (see section 3.9.8), it is as if texturing were disabled.

The maximum border width bt is 1. If border is less than zero, or greater than
bt, then the error INVALID_VALUE is generated.

The maximum allowable width, height, or depth of a texel array for a three-
dimensional texture is an implementation-dependent function of the level-of-detail
and internal format of the resulting image array. It must be at least 2k−lod + 2bt
for image arrays of level-of-detail 0 through k, where k is the log base 2 of MAX_-
3D_TEXTURE_SIZE, lod is the level-of-detail of the image array, and bt is the
maximum border width. It may be zero for image arrays of any level-of-detail
greater than k. The error INVALID_VALUE is generated if the specified image is
too large to be stored under any conditions.

If a pixel unpack buffer object is bound and storing texture data would access
memory beyond the end of the pixel unpack buffer, an INVALID_OPERATION error
results.

In a similar fashion, the maximum allowable width of a texel array for a one- or
two-dimensional, one- or two-dimensional array, two-dimensional multisample, or
two-dimensional multisample array texture, and the maximum allowable height of
a two-dimensional, two-dimensional array, two-dimensional multisample, or two-
dimensional multisample array texture, must be at least 2k−lod + 2bt for image
arrays of level 0 through k, where k is the log base 2 of MAX_TEXTURE_SIZE. The
maximum allowable width and height of a cube map texture must be the same, and
must be at least 2k−lod + 2bt for image arrays level 0 through k, where k is the log
base 2 of MAX_CUBE_MAP_TEXTURE_SIZE. The maximum number of layers for
one- and two-dimensional array textures (height or depth, respectively) must be at
least MAX_ARRAY_TEXTURE_LAYERS for all levels.

The maximum allowable width and height of a rectangular texture image
must each be at least the value of the implementation-dependent constant MAX_-
RECTANGLE_TEXTURE_SIZE.

An implementation may allow an image array of level 0 to be created only if
that single image array can be supported. Additional constraints on the creation of
image arrays of level 1 or greater are described in more detail in section 3.9.14.

The command

void TexImage2D(enum target, int level, int internalformat,
sizei width, sizei height, int border, enum format,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 235

enum type, const void *data);

is used to specify a two-dimensional texture image. target must be one of
TEXTURE_2D for a two-dimensional texture, TEXTURE_1D_ARRAY for a one-
dimensional array texture, TEXTURE_RECTANGLE for a rectangle texture, or one
of TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_-

X, TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_MAP_NEGATIVE_Z for
a cube map texture. Additionally, target may be either PROXY_TEXTURE_2D

for a two-dimensional proxy texture, PROXY_TEXTURE_1D_ARRAY for a one-
dimensional proxy array texture, PROXY_TEXTURE_RECTANGLE for a rectangle
proxy texture, or PROXY_TEXTURE_CUBE_MAP for a cube map proxy texture
in the special case discussed in section 3.9.15. The other parameters match the
corresponding parameters of TexImage3D.

For the purposes of decoding the texture image, TexImage2D is equivalent to
calling TexImage3D with corresponding arguments and depth of 1, except that

• The border depth, db, is zero, and the depth of the image is always 1 regard-
less of the value of border.

• The border height, hb, is zero if target is TEXTURE_1D_ARRAY, and border
otherwise.

• Convolution will be performed on the image (possibly changing its width
and height) if SEPARABLE_2D or CONVOLUTION_2D is enabled.

• UNPACK_SKIP_IMAGES is ignored.

A two-dimensional or rectangle texture consists of a single two-dimensional
texture image. A cube map texture is a set of six two-dimensional texture images.
The six cube map texture targets form a single cube map texture though each tar-
get names a distinct face of the cube map. The TEXTURE_CUBE_MAP_* targets
listed above update their appropriate cube map face 2D texture image. Note that
the six cube map two-dimensional image tokens such as TEXTURE_CUBE_MAP_-
POSITIVE_X are used when specifying, updating, or querying one of a cube map’s
six two-dimensional images, but when enabling cube map texturing or binding to
a cube map texture object (that is when the cube map is accessed as a whole as
opposed to a particular two-dimensional image), the TEXTURE_CUBE_MAP target
is specified.

When the target parameter to TexImage2D is one of the six cube map two-
dimensional image targets, the error INVALID_VALUE is generated if the width
and height parameters are not equal.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 236

When target is TEXTURE_RECTANGLE, an INVALID_VALUE error is generated
if level is non-zero.

When target is TEXTURE_RECTANGLE, an INVALID_VALUE error is generated
if border is non-zero.

Finally, the command

void TexImage1D(enum target, int level,
int internalformat, sizei width, int border,
enum format, enum type, const void *data);

is used to specify a one-dimensional texture image. target must be either
TEXTURE_1D, or PROXY_TEXTURE_1D in the special case discussed in sec-
tion 3.9.15.

For the purposes of decoding the texture image, TexImage1D is equivalent to
calling TexImage2D with corresponding arguments and height of 1, except that

• The border height and depth (hb and db) are always zero, regardless of the
value of border.

• Convolution will be performed on the image (possibly changing its width)
only if CONVOLUTION_1D is enabled.

The image indicated to the GL by the image pointer is decoded and copied into
the GL’s internal memory. This copying effectively places the decoded image in-
side a border of the maximum allowable width bt whether or not a border has been
specified (see figure 3.10) 1. If no border or a border smaller than the maximum
allowable width has been specified, then the image is still stored as if it were sur-
rounded by a border of the maximum possible width. Any excess border (which
surrounds the specified image, including any border) is assigned unspecified val-
ues. A two-dimensional texture has a border only at its left, right, top, and bottom
ends, and a one-dimensional texture has a border only at its left and right ends.

We shall refer to the (possibly border augmented) decoded image as the texel
array. A three-dimensional texel array has width, height, and depth ws, hs, and
ds as defined in equation 3.17. A two-dimensional texel array has depth ds = 1,
with height hs and width ws as above. A rectangular texel array must have zero
border width, sows and hs equal the specified width and height, respectively, while
ds = 1. A one-dimensional texel array has depth ds = 1, height hs = 1, and width
ws as above.

An element (i, j, k) of the texel array is called a texel (for a two-dimensional
texture or one-dimensional array texture, k is irrelevant; for a one-dimensional

1 Figure 3.10 needs to show a three-dimensional texture image.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 237

i−1 0 1 2 3 4 5 6 7 8

u−1.0 9.0

0.0 1.0s

−1

0

2

1

3

4

j

−1.0

5.0

vt

0.0

1.0

α

β

Figure 3.10. A texture image and the coordinates used to access it. This is a two-
dimensional texture with n = 3 and m = 2. A one-dimensional texture would
consist of a single horizontal strip. α and β, values used in blending adjacent texels
to obtain a texture value, are also shown.

texture, j and k are both irrelevant). The texture value used in texturing a fragment
is determined by that fragment’s associated (s, t, r) coordinates in fixed-function
fragment shading, or by sampling the texture in a shader, but may not correspond
to any actual texel. See figure 3.10.

If the data argument of TexImage1D, TexImage2D, or TexImage3D is a null
pointer (a zero-valued pointer in the C implementation), and the pixel unpack
buffer object is zero, a one-, two-, or three-dimensional texel array is created with
the specified target, level, internalformat, border, width, height, and depth, but
with unspecified image contents. In this case no pixel values are accessed in client
memory, and no pixel processing is performed. Errors are generated, however, ex-
actly as though the data pointer were valid. Otherwise if the pixel unpack buffer
object is non-zero, the data argument is treatedly normally to refer to the beginning
of the pixel unpack buffer object’s data.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 238

3.9.4 Alternate Texture Image Specification Commands

Two-dimensional and one-dimensional texture images may also be specified us-
ing image data taken directly from the framebuffer, and rectangular subregions of
existing texture images may be respecified.

The command

void CopyTexImage2D(enum target, int level,
enum internalformat, int x, int y, sizei width,
sizei height, int border);

defines a two-dimensional texel array in exactly the manner of TexImage2D, ex-
cept that the image data are taken from the framebuffer rather than from client
memory. Currently, target must be one of TEXTURE_2D, TEXTURE_1D_ARRAY,
TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_-
MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_-

Y, TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, or
TEXTURE_CUBE_MAP_NEGATIVE_Z. x, y, width, and height correspond precisely
to the corresponding arguments to ReadPixels (refer to section 4.3.2); they specify
the image’s width and height, and the lower left (x, y) coordinates of the frame-
buffer region to be copied. The image is taken from the framebuffer exactly as
if these arguments were passed to ReadPixels with argument type set to COLOR,
DEPTH, or DEPTH_STENCIL, depending on internalformat, stopping after pixel
transfer processing is complete. RGBA data is taken from the current color buffer,
while depth component and stencil index data are taken from the depth and sten-
cil buffers, respectively. The error INVALID_OPERATION is generated if depth
component data is required and no depth buffer is present; if stencil index data is
required and no stencil buffer is present; if integer RGBA data is required and the
format of the current color buffer is not integer; or if floating- or fixed-point RGBA
data is required and the format of the current color buffer is integer.

Subsequent processing is identical to that described for TexImage2D, begin-
ning with clamping of the R, G, B, A, or depth values, and masking of the stencil
index values from the resulting pixel groups. Parameters level, internalformat, and
border are specified using the same values, with the same meanings, as the equiv-
alent arguments of TexImage2D, except that internalformat may not be specified
as 1, 2, 3, or 4. An invalid value specified for internalformat generates the error
INVALID_ENUM. The constraints on width, height, and border are exactly those for
the equivalent arguments of TexImage2D.

When the target parameter to CopyTexImage2D is one of the six cube map
two-dimensional image targets, the error INVALID_VALUE is generated if the width
and height parameters are not equal.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 239

The command

void CopyTexImage1D(enum target, int level,
enum internalformat, int x, int y, sizei width,
int border);

defines a one-dimensional texel array in exactly the manner of TexImage1D, ex-
cept that the image data are taken from the framebuffer, rather than from client
memory. Currently, target must be TEXTURE_1D. For the purposes of decoding
the texture image, CopyTexImage1D is equivalent to calling CopyTexImage2D
with corresponding arguments and height of 1, except that the height of the image
is always 1, regardless of the value of border. level, internalformat, and border
are specified using the same values, with the same meanings, as the equivalent ar-
guments of TexImage1D, except that internalformat may not be specified as 1, 2,
3, or 4. The constraints on width and border are exactly those of the equivalent
arguments of TexImage1D.

Six additional commands,

void TexSubImage3D(enum target, int level, int xoffset,
int yoffset, int zoffset, sizei width, sizei height,
sizei depth, enum format, enum type, const
void *data);

void TexSubImage2D(enum target, int level, int xoffset,
int yoffset, sizei width, sizei height, enum format,
enum type, const void *data);

void TexSubImage1D(enum target, int level, int xoffset,
sizei width, enum format, enum type, const
void *data);

void CopyTexSubImage3D(enum target, int level,
int xoffset, int yoffset, int zoffset, int x, int y,
sizei width, sizei height);

void CopyTexSubImage2D(enum target, int level,
int xoffset, int yoffset, int x, int y, sizei width,
sizei height);

void CopyTexSubImage1D(enum target, int level,
int xoffset, int x, int y, sizei width);

respecify only a rectangular subregion of an existing texel array. No change is
made to the internalformat, width, height, depth, or border parameters of the
specified texel array, nor is any change made to texel values outside the speci-
fied subregion. Currently the target arguments of TexSubImage1D and CopyTex-
SubImage1D must be TEXTURE_1D, the target arguments of TexSubImage2D

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 240

and CopyTexSubImage2D must be one of TEXTURE_2D, TEXTURE_1D_ARRAY,
TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_-
MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_-

MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_-

MAP_NEGATIVE_Z, and the target arguments of TexSubImage3D and CopyTex-
SubImage3D must be TEXTURE_3D or TEXTURE_2D_ARRAY. The level parameter
of each command specifies the level of the texel array that is modified. If level is
less than zero or greater than the base 2 logarithm of the maximum texture width,
height, or depth, the error INVALID_VALUE is generated. If target is TEXTURE_-
RECTANGLE and level is not zero, the error INVALID_VALUE is generated. Tex-
SubImage3D arguments width, height, depth, format, type, and data match the
corresponding arguments to TexImage3D, meaning that they are specified using
the same values, and have the same meanings. Likewise, TexSubImage2D argu-
ments width, height, format, type, and data match the corresponding arguments
to TexImage2D, and TexSubImage1D arguments width, format, type, and data
match the corresponding arguments to TexImage1D.

CopyTexSubImage3D and CopyTexSubImage2D arguments x, y, width,
and height match the corresponding arguments to CopyTexImage2D2. CopyTex-
SubImage1D arguments x, y, and width match the corresponding arguments to
CopyTexImage1D. Each of the TexSubImage commands interprets and processes
pixel groups in exactly the manner of its TexImage counterpart, except that the as-
signment of R, G, B, A, depth, and stencil index pixel group values to the texture
components is controlled by the internalformat of the texel array, not by an argu-
ment to the command. The same constraints and errors apply to the TexSubImage
commands’ argument format and the internalformat of the texel array being re-
specified as apply to the format and internalformat arguments of its TexImage
counterparts.

Arguments xoffset, yoffset, and zoffset of TexSubImage3D and CopyTex-
SubImage3D specify the lower left texel coordinates of a width-wide by height-
high by depth-deep rectangular subregion of the texel array. The depth argument
associated with CopyTexSubImage3D is always 1, because framebuffer memory
is two-dimensional - only a portion of a single s, t slice of a three-dimensional
texture is replaced by CopyTexSubImage3D.

Negative values of xoffset, yoffset, and zoffset correspond to the coordinates of
border texels, addressed as in figure 3.10. Taking ws, hs, ds, wb, hb, and db to
be the specified width, height, depth, and border width, border height, and border
depth of the texel array, and taking x, y, z, w, h, and d to be the xoffset, yoffset,

2 Because the framebuffer is inherently two-dimensional, there is no CopyTexImage3D com-
mand.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 241

zoffset, width, height, and depth argument values, any of the following relationships
generates the error INVALID_VALUE:

x < −wb

x+ w > ws − wb

y < −hb

y + h > hs − hb

z < −db

z + d > ds − db

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j, k], where

i = x+ (n mod w)

j = y + (b n
w
c mod h)

k = z + (b n

width ∗ height
c mod d

Arguments xoffset and yoffset of TexSubImage2D and CopyTexSubImage2D
specify the lower left texel coordinates of a width-wide by height-high rectangular
subregion of the texel array. Negative values of xoffset and yoffset correspond to
the coordinates of border texels, addressed as in figure 3.10. Taking ws, hs, and bs
to be the specified width, height, and border width of the texel array, and taking x,
y, w, and h to be the xoffset, yoffset, width, and height argument values, any of the
following relationships generates the error INVALID_VALUE:

x < −bs
x+ w > ws − bs

y < −bs
y + h > hs − bs

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j], where

i = x+ (n mod w)

j = y + (b n
w
c mod h)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 242

The xoffset argument of TexSubImage1D and CopyTexSubImage1D speci-
fies the left texel coordinate of a width-wide subregion of the texel array. Negative
values of xoffset correspond to the coordinates of border texels. Taking ws and bs
to be the specified width and border width of the texel array, and x and w to be the
xoffset and width argument values, either of the following relationships generates
the error INVALID_VALUE:

x < −bs
x+ w > ws − bs

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i], where

i = x+ (n mod w)

Texture images with compressed internal formats may be stored in such a way
that it is not possible to modify an image with subimage commands without having
to decompress and recompress the texture image. Even if the image were modi-
fied in this manner, it may not be possible to preserve the contents of some of
the texels outside the region being modified. To avoid these complications, the
GL does not support arbitrary modifications to texture images with compressed
internal formats. Calling TexSubImage3D, CopyTexSubImage3D, TexSubIm-
age2D, CopyTexSubImage2D, TexSubImage1D, or CopyTexSubImage1D will
result in an INVALID_OPERATION error if xoffset, yoffset, or zoffset is not equal to
−bs (border width). In addition, the contents of any texel outside the region mod-
ified by such a call are undefined. These restrictions may be relaxed for specific
compressed internal formats whose images are easily modified.

If the internal format of the texture image being modified is one of the spe-
cific RGTC formats described in table 3.20, the texture is stored using one of the
RGTC texture image encodings (see appendix C.1). Since RGTC images are easily
edited along 4× 4 texel boundaries, the limitations on subimage location and size
are relaxed for TexSubImage2D, TexSubImage3D, CopyTexSubImage2D, and
CopyTexSubImage3D. These commands will generate an INVALID_OPERATION
error if one of the following conditions occurs:

• width is not a multiple of four, width + xoffset is not equal to the value of
TEXTURE_WIDTH, and either xoffset or yoffset is non-zero.

• height is not a multiple of four, height + yoffset is not equal to the value of
TEXTURE_HEIGHT, and either xoffset or yoffset is non-zero.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 243

• xoffset or yoffset is not a multiple of four.

The contents of any 4 × 4 block of texels of an RGTC compressed texture
image that does not intersect the area being modified are preserved during valid
TexSubImage* and CopyTexSubImage* calls.

Calling CopyTexSubImage3D, CopyTexImage2D, CopyTexSubImage2D,
CopyTexImage1D, or CopyTexSubImage1D will result in an INVALID_-

FRAMEBUFFER_OPERATION error if the object bound to READ_FRAMEBUFFER_-

BINDING is not framebuffer complete (see section 4.4.4).

Texture Copying Feedback Loops

Calling CopyTexSubImage3D, CopyTexImage2D, CopyTexSubImage2D,
CopyTexImage1D, or CopyTexSubImage1D will result in undefined behavior if
the destination texture image level is also bound to to the selected read buffer (see
section 4.3.2) of the read framebuffer. This situation is discussed in more detail in
the description of feedback loops in section 4.4.3.

3.9.5 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format, such as the RGTC formats defined in ap-
pendix C, or additional formats defined by GL extensions.

The commands

void CompressedTexImage1D(enum target, int level,
enum internalformat, sizei width, int border,
sizei imageSize, const void *data);

void CompressedTexImage2D(enum target, int level,
enum internalformat, sizei width, sizei height,
int border, sizei imageSize, const void *data);

void CompressedTexImage3D(enum target, int level,
enum internalformat, sizei width, sizei height,
sizei depth, int border, sizei imageSize, const
void *data);

define one-, two-, and three-dimensional texture images, respectively, with incom-
ing data stored in a specific compressed image format. The target, level, inter-
nalformat, width, height, depth, and border parameters have the same meaning
as in TexImage1D, TexImage2D, and TexImage3D, except that compressed rect-
angular texture formats are not supported. data refers to compressed image data

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 244

stored in the specific compressed image format corresponding to internalformat.
If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_-
UNPACK_BUFFER_BINDING), data is an offset into the pixel unpack buffer and the
compressed data is read from the buffer relative to this offset; otherwise, data is
a pointer to client memory and the compressed data is read from client memory
relative to the pointer.

If the target parameter to any of the CompressedTexImagenD commands is
TEXTURE_RECTANGLE or PROXY_TEXTURE_RECTANGLE, the error INVALID_-
ENUM is generated.

internalformat must be a supported specific compressed internal format. An
INVALID_ENUM error will be generated if any other values, including any of the
generic compressed internal formats, is specified.

For all other compressed internal formats, the compressed image will be de-
coded according to the specification defining the internalformat token. Com-
pressed texture images are treated as an array of imageSize ubytes relative to
data. If a pixel unpack buffer object is bound and data + imageSize is greater
than the size of the pixel buffer, an INVALID_OPERATION error results. All pixel
storage and pixel transfer modes are ignored when decoding a compressed texture
image. If the imageSize parameter is not consistent with the format, dimensions,
and contents of the compressed image, an INVALID_VALUE error results. If the
compressed image is not encoded according to the defined image format, the re-
sults of the call are undefined.

Specific compressed internal formats may impose format-specific restrictions
on the use of the compressed image specification calls or parameters. For example,
the compressed image format might be supported only for 2D textures, or might
not allow non-zero border values. Any such restrictions will be documented in the
extension specification defining the compressed internal format; violating these
restrictions will result in an INVALID_OPERATION error.

Any restrictions imposed by specific compressed internal formats will be in-
variant, meaning that if the GL accepts and stores a texture image in compressed
form, providing the same image to CompressedTexImage1D, Compressed-
TexImage2D, or CompressedTexImage3D will not result in an INVALID_-

OPERATION error if the following restrictions are satisfied:

• data points to a compressed texture image returned by GetCompressedTex-
Image (section 6.1.4).

• target, level, and internalformat match the target, level and format parame-
ters provided to the GetCompressedTexImage call returning data.

• width, height, depth, border, internalformat, and imageSize match the values

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 245

of TEXTURE_WIDTH, TEXTURE_HEIGHT, TEXTURE_DEPTH, TEXTURE_-
BORDER, TEXTURE_INTERNAL_FORMAT, and TEXTURE_COMPRESSED_-

IMAGE_SIZE for image level level in effect at the time of the GetCom-
pressedTexImage call returning data.

This guarantee applies not just to images returned by GetCompressedTexImage,
but also to any other properly encoded compressed texture image of the same size
and format.

If internalformat is one of the specific RGTC formats described in table 3.20,
the compressed image data is stored using one of the RGTC compressed texture
image encodings (see appendix C.1) The RGTC texture compression algorithm
supports only two-dimensional images without borders. If internalformat is an
RGTC format, CompressedTexImage1D will generate an INVALID_ENUM error;
CompressedTexImage2D will generate an INVALID_OPERATION error if bor-
der is non-zero or target is TEXTURE_RECTANGLE; and CompressedTexImage3D
will generate an INVALID_OPERATION error if border is non-zero or target is not
TEXTURE_2D_ARRAY.

If the data argument of CompressedTexImage1D, CompressedTexImage2D,
or CompressedTexImage3D is a null pointer (a zero-valued pointer in the C imple-
mentation), and the pixel unpack buffer object is zero, a texel array with unspeci-
fied image contents is created, just as when a null pointer is passed to TexImage1D,
TexImage2D, or TexImage3D.

The commands

void CompressedTexSubImage1D(enum target, int level,
int xoffset, sizei width, enum format, sizei imageSize,
const void *data);

void CompressedTexSubImage2D(enum target, int level,
int xoffset, int yoffset, sizei width, sizei height,
enum format, sizei imageSize, const void *data);

void CompressedTexSubImage3D(enum target, int level,
int xoffset, int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format,
sizei imageSize, const void *data);

respecify only a rectangular region of an existing texel array, with incoming data
stored in a known compressed image format. The target, level, xoffset, yoffset, zoff-
set, width, height, and depth parameters have the same meaning as in TexSubIm-
age1D, TexSubImage2D, and TexSubImage3D. data points to compressed image
data stored in the compressed image format corresponding to format. Using any of

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 246

the generic compressed internal formats as format will result in an INVALID_ENUM
error.

If the target parameter to any of the CompressedTexSubImagenD com-
mands is TEXTURE_RECTANGLE or PROXY_TEXTURE_RECTANGLE, the error
INVALID_ENUM is generated.

The image pointed to by data and the imageSize parameter are interpreted
as though they were provided to CompressedTexImage1D, CompressedTexIm-
age2D, and CompressedTexImage3D. These commands do not provide for im-
age format conversion, so an INVALID_OPERATION error results if format does
not match the internal format of the texture image being modified. If the image-
Size parameter is not consistent with the format, dimensions, and contents of the
compressed image (too little or too much data), an INVALID_VALUE error results.

As with CompressedTexImage calls, compressed internal formats may have
additional restrictions on the use of the compressed image specification calls or
parameters. Any such restrictions will be documented in the specification defin-
ing the compressed internal format; violating these restrictions will result in an
INVALID_OPERATION error.

Any restrictions imposed by specific compressed internal formats will be in-
variant, meaning that if the GL accepts and stores a texture image in compressed
form, providing the same image to CompressedTexSubImage1D, Compressed-
TexSubImage2D, CompressedTexSubImage3D will not result in an INVALID_-
OPERATION error if the following restrictions are satisfied:

• data points to a compressed texture image returned by GetCompressedTex-
Image (section 6.1.4).

• target, level, and format match the target, level and format parameters pro-
vided to the GetCompressedTexImage call returning data.

• width, height, depth, format, and imageSize match the values of TEXTURE_-
WIDTH, TEXTURE_HEIGHT, TEXTURE_DEPTH, TEXTURE_INTERNAL_-

FORMAT, and TEXTURE_COMPRESSED_IMAGE_SIZE for image level level
in effect at the time of the GetCompressedTexImage call returning data.

• width, height, depth, and format match the values of TEXTURE_WIDTH,
TEXTURE_HEIGHT, TEXTURE_DEPTH, and TEXTURE_INTERNAL_FORMAT

currently in effect for image level level.

• xoffset, yoffset, and zoffset are all −b, where b is the value of TEXTURE_-
BORDER currently in effect for image level level.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 247

This guarantee applies not just to images returned by GetCompressedTexIm-
age, but also to any other properly encoded compressed texture image of the same
size.

Calling CompressedTexSubImage3D, CompressedTexSubImage2D, or
CompressedTexSubImage1D will result in an INVALID_OPERATION error if
xoffset, yoffset, or zoffset are not equal to −bs (border width), or if width, height,
and depth do not match the values of TEXTURE_WIDTH, TEXTURE_HEIGHT, or
TEXTURE_DEPTH, respectively. The contents of any texel outside the region mod-
ified by the call are undefined. These restrictions may be relaxed for specific com-
pressed internal formats whose images are easily modified.

If internalformat is one of the specific RGTC formats described in table 3.20,
the texture is stored using one of the RGTC compressed texture image encod-
ings (see appendix C.1). If internalformat is an RGTC format, CompressedTex-
SubImage1D will generate an INVALID_ENUM error; CompressedTexSubIm-
age2D will generate an INVALID_OPERATION error if border is non-zero; and
CompressedTexSubImage3D will generate an INVALID_OPERATION error if
border is non-zero or target is not TEXTURE_2D_ARRAY. Since RGTC images are
easily edited along 4×4 texel boundaries, the limitations on subimage location and
size are relaxed for CompressedTexSubImage2D and CompressedTexSubIm-
age3D. These commands will result in an INVALID_OPERATION error if one of
the following conditions occurs:

• width is not a multiple of four, and width + xoffset is not equal to the value
of TEXTURE_WIDTH.

• height is not a multiple of four, and height +yoffset is not equal to the value
of TEXTURE_HEIGHT.

• xoffset or yoffset is not a multiple of four.

The contents of any 4 × 4 block of texels of an RGTC compressed texture
image that does not intersect the area being modified are preserved during valid
TexSubImage* and CopyTexSubImage* calls.

3.9.6 Multisample Textures

In addition to the texture types described in previous sections, two additional types
of textures are supported. A multisample texture is similar to a two-dimensional
or two-dimensional array texture, except it contains multiple samples per texel.
Multisample textures do not have multiple image levels.

The commands

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 248

void TexImage2DMultisample(enum target, sizei samples,
int internalformat, sizei width, sizei height,
boolean fixedsamplelocations);

void TexImage3DMultisample(enum target, sizei samples,
int internalformat, sizei width, sizei height,
sizei depth, boolean fixedsamplelocations);

establish the data storage, format, dimensions, and number of samples of a
multisample texture’s image. For TexImage2DMultisample, target must be
TEXTURE_2D_MULTISAMPLE or PROXY_TEXTURE_2D_MULTISAMPLE and for
TexImage3DMultisample target must be TEXTURE_2D_MULTISAMPLE_ARRAY

or PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY. width and height are the dimen-
sions in texels of the texture.

internalformat must be color-renderable, depth-renderable, or stencil- render-
able (as defined in section 4.4.4). The error INVALID_OPERATION may be gener-
ated if any of the following are true:

• internalformat is a depth/stencil-renderable format and samples is greater
than the value of MAX_DEPTH_TEXTURE_SAMPLES

• internalformat is a color-renderable format and samples is greater than the
value of MAX_COLOR_TEXTURE_SAMPLES

• internalformat is a signed or unsigned integer format and samples is greater
than the value of MAX_INTEGER_SAMPLES.

If fixedsamplelocations is TRUE, the image will use identical sample locations
and the same number of samples for all texels in the image, and the sample loca-
tions will not depend on the internalformat or size of the image. If either width or
height is greater than MAX_TEXTURE_SIZE, or if samples is greater than MAX_-

SAMPLES, then the error INVALID_VALUE is generated. If the GL is unable to
create a texture level of the requested size, the error OUT_OF_MEMORY is gener-
ated.

When a multisample texture is accessed in a shader, the access takes one vector
of integers describing which texel to fetch and an integer corresponding to the
sample numbers described in section 3.3.1 describing which sample within the
texel to fetch. No standard sampling instructions are allowed on the multisample
texture targets.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 249

3.9.7 Buffer Textures

In addition to one-, two-, and three-dimensional, one- and two-dimensional array,
and cube map textures described in previous sections, one additional type of texture
is supported. A buffer texture is similar to a one-dimensional texture. However,
unlike other texture types, the texel array is not stored as part of the texture. Instead,
a buffer object is attached to a buffer texture and the texel array is taken from that
buffer object’s data store. When the contents of a buffer object’s data store are
modified, those changes are reflected in the contents of any buffer texture to which
the buffer object is attached. Buffer textures do not have multiple image levels;
only a single data store is available.

The command

void TexBuffer(enum target, enum internalformat, uint
buffer);

attaches the storage for the buffer object named buffer to the active buffer texture,
and specifies an internal format for the texel array found in the attached buffer
object. If buffer is zero, any buffer object attached to the buffer texture is detached,
and no new buffer object is attached. If buffer is non-zero, but is not the name
of an existing buffer object, the error INVALID_OPERATION is generated. target
must be TEXTURE_BUFFER. internalformat specifies the storage format, and must
be one of the sized internal formats found in table 3.21.

When a buffer object is attached to a buffer texture, the buffer object’s data store
is taken as the texture’s texel array. The number of texels in the buffer texture’s
texel array is given by⌊

buffer size

components× sizeof(base type)

⌋
.

where buffer size is the size of the buffer object, in basic machine units and
components and base type are the element count and base data type for elements,
as specified in table 3.21. The number of texels in the texel array is then clamped
to the implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE. When a
buffer texture is accessed in a shader, the results of a texel fetch are undefined
if the specified texel coordinate is negative, or greater than or equal to the clamped
number of texels in the texel array.

When a buffer texture is accessed in a shader, an integer is provided to indicate
the texel coordinate being accessed. If no buffer object is bound to the buffer tex-
ture, the results of the texel access are undefined. Otherwise, the attached buffer
object’s data store is interpreted as an array of elements of the GL data type cor-
responding to internalformat. Each texel consists of one to four elements that are

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 250

mapped to texture components (R, G, B, and A). Element m of the texel numbered
n is taken from element n× components+m of the attached buffer object’s data
store. Elements and texels are both numbered starting with zero. For texture for-
mats with signed or unsigned normalized fixed-point components, the extracted
values are converted to floating-point using equations 2.1 or 2.3, respectively. The
components of the texture are then converted to an (R,G,B,A) vector according to
table 3.21, and returned to the shader as a four-component result vector with com-
ponents of the appropriate data type for the texture’s internal format. The base data
type, component count, normalized component information, and mapping of data
store elements to texture components is specified in table 3.21.

Sized Internal Format Base Type Components Norm Component
0 1 2 3

R8 ubyte 1 Yes R 0 0 1
R16 ushort 1 Yes R 0 0 1
R16F half 1 No R 0 0 1
R32F float 1 No R 0 0 1
R8I byte 1 No R 0 0 1
R16I short 1 No R 0 0 1
R32I int 1 No R 0 0 1
R8UI ubyte 1 No R 0 0 1
R16UI ushort 1 No R 0 0 1
R32UI uint 1 No R 0 0 1
RG8 ubyte 2 Yes R G 0 1
RG16 ushort 2 Yes R G 0 1
RG16F half 2 No R G 0 1
RG32F float 2 No R G 0 1
RG8I byte 2 No R G 0 1
RG16I short 2 No R G 0 1
RG32I int 2 No R G 0 1
RG8UI ubyte 2 No R G 0 1
RG16UI ushort 2 No R G 0 1
RG32UI uint 2 No R G 0 1
RGBA8 ubyte 4 Yes R G B A
RGBA16 ushort 4 Yes R G B A
RGBA16F half 4 No R G B A
RGBA32F float 4 No R G B A

(Continued on next page)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 251

Internal formats for buffer textures (continued)
Sized Internal Format Base Type Components Norm Component

0 1 2 3
RGBA8I byte 4 No R G B A
RGBA16I short 4 No R G B A
RGBA32I int 4 No R G B A
RGBA8UI ubyte 4 No R G B A
RGBA16UI ushort 4 No R G B A
RGBA32UI uint 4 No R G B A

Table 3.21: Internal formats for buffer textures. For each format,
the data type of each element is indicated in the “Base Type” col-
umn and the element count is in the “Components” column. The
“Norm” column indicates whether components should be treated
as normalized floating-point values. The “Component 0, 1, 2, and
3” columns indicate the mapping of each element of a texel to tex-
ture components.

In addition to attaching buffer objects to textures, buffer objects can be bound
to the buffer object target named TEXTURE_BUFFER, in order to specify, modify, or
read the buffer object’s data store. The buffer object bound to TEXTURE_BUFFER

has no effect on rendering. A buffer object is bound to TEXTURE_BUFFER by call-
ing BindBuffer with target set to TEXTURE_BUFFER, as described in section 2.9.

3.9.8 Texture Parameters

Various parameters control how the texel array is treated when specified or
changed, and when applied to a fragment. Each parameter is set by calling

void TexParameter{if}(enum target, enum pname, T param);
void TexParameter{if}v(enum target, enum pname, const

T *params);
void TexParameterI{i ui}v(enum target, enum pname, const

T *params);

target is the target, either TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_-
1D_ARRAY, TEXTURE_2D_ARRAY. TEXTURE_RECTANGLE, or TEXTURE_CUBE_-
MAP. params is a symbolic constant indicating the parameter to be set; the possible

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 252

constants and corresponding parameters are summarized in table 3.22. In the first
form of the command, param is a value to which to set a single-valued parameter;
in the remaining forms, params is an array of parameters whose type depends on
the parameter being set.

If the value for TEXTURE_PRIORITY is specified with TexParameteri or Tex-
Parameteriv, it is converted to floating-point using equation 2.2, followed by
clamping the value to lie in [0, 1].

If the values for TEXTURE_BORDER_COLOR are specified with TexParame-
terIiv or TexParameterIuiv, the values are unmodified and stored with an inter-
nal data type of integer. If specified with TexParameteriv, they are converted to
floating-point using equation 2.2. Otherwise the values are unmodified and stored
as floating-point.

If pname is TEXTURE_SWIZZLE_RGBA, params is an array of four
enums which respectively set the TEXTURE_SWIZZLE_R, TEXTURE_SWIZZLE_G,
TEXTURE_SWIZZLE_B, and TEXTURE_SWIZZLE_A parameters simultaneously.

The error INVALID_ENUM is generated if the type of the parameter specified
by pname is enum, and the value(s) specified by param or params are not among
the legal values shown in table 3.22.

Name Type Legal Values
DEPTH_TEXTURE_MODE enum RED, LUMINANCE, INTENSITY,

ALPHA

GENERATE_MIPMAP boolean TRUE or FALSE
TEXTURE_BASE_LEVEL int any non-negative integer
TEXTURE_BORDER_COLOR 4 floats, any 4 values

ints, or uints
TEXTURE_COMPARE_MODE enum NONE, COMPARE_REF_TO_-

TEXTURE

TEXTURE_COMPARE_FUNC enum LEQUAL, GEQUAL, LESS,
GREATER, EQUAL, NOTEQUAL,
ALWAYS, NEVER

TEXTURE_LOD_BIAS float any value
TEXTURE_MAG_FILTER enum NEAREST, LINEAR
TEXTURE_MAX_LEVEL int any non-negative integer
TEXTURE_MAX_LOD float any value
TEXTURE_MIN_FILTER enum NEAREST, LINEAR,

NEAREST_MIPMAP_NEAREST,
Texture parameters continued on next page

Name Type Legal Values

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 253

Texture parameters continued from previous page
Name Type Legal Values

NEAREST_MIPMAP_LINEAR,
LINEAR_MIPMAP_NEAREST,
LINEAR_MIPMAP_LINEAR,

TEXTURE_MIN_LOD float any value
TEXTURE_PRIORITY float any value in [0, 1]
TEXTURE_SWIZZLE_R enum RED, GREEN, BLUE, ALPHA, ZERO,

ONE

TEXTURE_SWIZZLE_G enum RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_SWIZZLE_B enum RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_SWIZZLE_A enum RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_SWIZZLE_RGBA 4 enums RED, GREEN, BLUE, ALPHA, ZERO,
ONE

TEXTURE_WRAP_S enum CLAMP, CLAMP_TO_EDGE,
REPEAT,
CLAMP_TO_BORDER,
MIRRORED_REPEAT

TEXTURE_WRAP_T enum CLAMP, CLAMP_TO_EDGE,
REPEAT,
CLAMP_TO_BORDER,
MIRRORED_REPEAT

TEXTURE_WRAP_R enum CLAMP, CLAMP_TO_EDGE,
REPEAT,
CLAMP_TO_BORDER,
MIRRORED_REPEAT

Table 3.22: Texture parameters and their values.

In the remainder of section 3.9, denote by lodmin, lodmax, levelbase, and
levelmax the values of the texture parameters TEXTURE_MIN_LOD, TEXTURE_-
MAX_LOD, TEXTURE_BASE_LEVEL, and TEXTURE_MAX_LEVEL respectively.

Texture parameters for a cube map texture apply to the cube map as a whole;
the six distinct two-dimensional texture images use the texture parameters of the
cube map itself.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 254

If the value of texture parameter GENERATE_MIPMAP is TRUE, specifying or
changing texel arrays may have side effects, which are discussed in the Automatic
Mipmap Generation discussion of section 3.9.11.

When target is TEXTURE_RECTANGLE, certain texture parameter values may
not be specified. In this case, the error INVALID_ENUM is generated if the
TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_WRAP_R parameter is set
to REPEAT or MIRRORED_REPEAT. The error INVALID_ENUM is generated if
TEXTURE_MIN_FILTER is set to a value other than NEAREST or LINEAR (no
mipmap filtering is permitted). The error INVALID_VALUE is generated if
TEXTURE_BASE_LEVEL is set to any value other than zero.

3.9.9 Depth Component Textures

Depth textures and the depth components of depth/stencil textures can be treated
as RED , LUMINANCE, INTENSITY or ALPHA textures during texture filtering and
application (see section 3.9.17). The initial state for depth and depth/stencil tex-
tures treats them as LUMINANCE textures except in a forward-compatible context,
where the initial state instead treats them as RED textures.

3.9.10 Cube Map Texture Selection

When cube map texturing is enabled, the
(
s t r

)
texture coordinates are treated

as a direction vector
(
rx ry rz

)
emanating from the center of a cube (the q

coordinate can be ignored, since it merely scales the vector without affecting the
direction.) At texture application time, the interpolated per-fragment direction vec-
tor selects one of the cube map face’s two-dimensional images based on the largest
magnitude coordinate direction (the major axis direction). If two or more coor-
dinates have the identical magnitude, the implementation may define the rule to
disambiguate this situation. The rule must be deterministic and depend only on(
rx ry rz

)
. The target column in table 3.23 explains how the major axis direc-

tion maps to the two-dimensional image of a particular cube map target.
Using the sc, tc, and ma determined by the major axis direction as specified in

table 3.23, an updated
(
s t

)
is calculated as follows:

s =
1
2

(
sc

|ma|
+ 1
)

t =
1
2

(
tc
|ma|

+ 1
)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 255

Major Axis Direction Target sc tc ma

+rx TEXTURE_CUBE_MAP_POSITIVE_X −rz −ry rx
−rx TEXTURE_CUBE_MAP_NEGATIVE_X rz −ry rx
+ry TEXTURE_CUBE_MAP_POSITIVE_Y rx rz ry
−ry TEXTURE_CUBE_MAP_NEGATIVE_Y rx −rz ry
+rz TEXTURE_CUBE_MAP_POSITIVE_Z rx −ry rz
−rz TEXTURE_CUBE_MAP_NEGATIVE_Z −rx −ry rz

Table 3.23: Selection of cube map images based on major axis direction of texture
coordinates.

Seamless Cube Map Filtering

Seamless cube map filtering is enabled or disabled by calling Enable or Disable,
respectively, with the symbolic constant TEXTURE_CUBE_MAP_SEAMLESS.

When seamless cube map filtering is disabled, the new
(
s t

)
is used to find a

texture value in the determined face’s two-dimensional image using the rules given
in sections 3.9.11 through 3.9.12.

When seamless cube map filtering is enabled, the rules for texel selection in
sections 3.9.11 through 3.9.12 are modified so that texture wrap modes are ignored.
Instead,

• If NEAREST filtering is done within a miplevel, always apply wrap mode
CLAMP_TO_EDGE.

• If LINEAR filtering is done within a miplevel, always apply wrap mode
CLAMP_TO_BORDER. Then,

– If a texture sample location would lie in the texture border in either u
or v, instead select the corresponding texel from the appropriate neigh-
boring face.

– If a texture sample location would lie in the texture border in both u
and v (in one of the corners of the cube), there is no unique neighbor-
ing face from which to extract one texel. The recommended method to
generate this texel is to average the values of the three available sam-
ples. However, implementations are free to construct this fourth texel
in another way, so long as, when the three available samples have the
same value, this texel also has that value.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 256

The required state is one bit indicating whether seamless cube map filtering is
enabled or disabled. Initially, it is disabled.

3.9.11 Texture Minification

Applying a texture to a primitive implies a mapping from texture image space to
framebuffer image space. In general, this mapping involves a reconstruction of
the sampled texture image, followed by a homogeneous warping implied by the
mapping to framebuffer space, then a filtering, followed finally by a resampling
of the filtered, warped, reconstructed image before applying it to a fragment. In
the GL this mapping is approximated by one of two simple filtering schemes. One
of these schemes is selected based on whether the mapping from texture space to
framebuffer space is deemed to magnify or minify the texture image.

Scale Factor and Level of Detail

The choice is governed by a scale factor ρ(x, y) and the level-of-detail parameter
λ(x, y), defined as

λbase(x, y) = log2[ρ(x, y)] (3.18)

λ′(x, y) = λbase(x, y) + clamp(biastexobj + biastexunit + biasshader) (3.19)

λ =


lodmax, λ′ > lodmax

λ′, lodmin ≤ λ′ ≤ lodmax

lodmin, λ′ < lodmin

undefined, lodmin > lodmax

(3.20)

biastexobj is the value of TEXTURE_LOD_BIAS for the bound texture object (as
described in section 3.9.8). biastexunit is the value of TEXTURE_LOD_BIAS for
the current texture unit (as described in section 3.9.16). biasshader is the value of
the optional bias parameter in the texture lookup functions available to fragment
shaders. If the texture access is performed in a fragment shader without a provided
bias, or outside a fragment shader, then biasshader is zero. The sum of these values
is clamped to the range [−biasmax, biasmax] where biasmax is the value of the
implementation defined constant MAX_TEXTURE_LOD_BIAS.

If λ(x, y) is less than or equal to the constant c (see section 3.9.12) the texture
is said to be magnified; if it is greater, the texture is minified. Sampling of minified

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 257

textures is described in the remainder of this section, while sampling of magnified
textures is described in section 3.9.12.

The initial values of lodmin and lodmax are chosen so as to never clamp the
normal range of λ. They may be respecified for a specific texture by calling Tex-
Parameter[if] with pname set to TEXTURE_MIN_LOD or TEXTURE_MAX_LOD re-
spectively.

Let s(x, y) be the function that associates an s texture coordinate with each set
of window coordinates (x, y) that lie within a primitive; define t(x, y) and r(x, y)
analogously. Let

u(x, y) =

{
s(x, y) + δu, rectangular texture
wt × s(x, y) + δu, otherwise

v(x, y) =

{
t(x, y) + δv, rectangular texture
ht × t(x, y) + δv, otherwise

w(x, y) = dt × r(x, y) + δw

(3.21)

where wt, ht, and dt are as defined by equation 3.17 with ws, hs, and ds equal to
the width, height, and depth of the image array whose level is levelbase. For a one-
dimensional or one-dimensional array texture, define v(x, y) = 0 andw(x, y) = 0;
for a two-dimensional, two-dimensional array, rectangular, or cube map texture,
define w(x, y) = 0.

(δu, δv, δw) are the texel offsets specified in the OpenGL Shading Language
texture lookup functions that support offsets. If the texture function used does
not support offsets, or for fixed-function texture accesses, all three shader off-
sets are taken to be zero. If any of the offset values are outside the range of
the implementation-defined values MIN_PROGRAM_TEXEL_OFFSET and MAX_-

PROGRAM_TEXEL_OFFSET, results of the texture lookup are undefined.
For a polygon, or for a point sprite with texture coordinate replacement en-

abled, ρ is given at a fragment with window coordinates (x, y) by

ρ = max


√(

∂u

∂x

)2

+
(
∂v

∂x

)2

+
(
∂w

∂x

)2

,

√(
∂u

∂y

)2

+
(
∂v

∂y

)2

+
(
∂w

∂y

)2


(3.22)
where ∂u/∂x indicates the derivative of u with respect to window x, and similarly
for the other derivatives.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 258

For a line, the formula is

ρ =

√(
∂u

∂x
∆x+

∂u

∂y
∆y
)2

+
(
∂v

∂x
∆x+

∂v

∂y
∆y
)2

+
(
∂w

∂x
∆x+

∂w

∂y
∆y
)2/

l,

(3.23)
where ∆x = x2 − x1 and ∆y = y2 − y1 with (x1, y1) and (x2, y2) being the
segment’s window coordinate endpoints and l =

√
∆x2 + ∆y2.

For a point, point sprite without texture coordinate replacement enabled, pixel
rectangle, or bitmap, ρ = 1.

While it is generally agreed that equations 3.22 and 3.23 give the best results
when texturing, they are often impractical to implement. Therefore, an imple-
mentation may approximate the ideal ρ with a function f(x, y) subject to these
conditions:

1. f(x, y) is continuous and monotonically increasing in each of |∂u/∂x|,
|∂u/∂y|, |∂v/∂x|, |∂v/∂y|, |∂w/∂x|, and |∂w/∂y|

2. Let

mu = max
{∣∣∣∣∂u∂x

∣∣∣∣ , ∣∣∣∣∂u∂y
∣∣∣∣}

mv = max
{∣∣∣∣∂v∂x

∣∣∣∣ , ∣∣∣∣∂v∂y
∣∣∣∣}

mw = max
{∣∣∣∣∂w∂x

∣∣∣∣ , ∣∣∣∣∂w∂y
∣∣∣∣} .

Then max{mu,mv,mw} ≤ f(x, y) ≤ mu +mv +mw.

Coordinate Wrapping and Texel Selection

After generating u(x, y), v(x, y), and w(x, y), they may be clamped and wrapped
before sampling the texture, depending on the corresponding texture wrap modes.

Let

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 259

u′(x, y) =

{
clamp(u(x, y), 0, wt), TEXTURE_WRAP_S is CLAMP
u(x, y), otherwise

v′(x, y) =

{
clamp(v(x, y), 0, ht), TEXTURE_WRAP_T is CLAMP
v(x, y), otherwise

w′(x, y) =

{
clamp(w(x, y), 0, ht), TEXTURE_WRAP_R is CLAMP
w(x, y), otherwise

where clamp(a, b, c) returns b if a < b, c if a > c, and a otherwise.
The value assigned to TEXTURE_MIN_FILTER is used to determine how the

texture value for a fragment is selected.
When the value of TEXTURE_MIN_FILTER is NEAREST, the texel in the image

array of level levelbase that is nearest (in Manhattan distance) to (u′, v′, w′) is
obtained. Let (i, j, k) be integers such that

i = wrap(bu′(x, y)c)
j = wrap(bv′(x, y)c)
k = wrap(bw′(x, y)c)

and the value returned by wrap() is defined in table 3.24. For a three-dimensional
texture, the texel at location (i, j, k) becomes the texture value. For two-
dimensional, two-dimensional array, rectangular, or cube map textures, k is irrele-
vant, and the texel at location (i, j) becomes the texture value. For one-dimensional
texture or one-dimensional array textures, j and k are irrelevant, and the texel at
location i becomes the texture value.

For one- and two-dimensional array textures, the texel is obtained from image
layer l, where

l =

{
clamp(bt+ 0.5c, 0, ht − 1), for one-dimensional array textures
clamp(br + 0.5c, 0, dt − 1), for two-dimensional array textures

If the selected (i, j, k), (i, j), or i location refers to a border texel that satisfies
any of the conditions

i < −bs i ≥ wt + bs

j < −bs j ≥ ht + bs

k < −bs k ≥ dt + bs

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 260

Wrap mode Result of wrap(coord)

CLAMP

{
clamp(coord, 0, size− 1), for NEAREST filtering
clamp(coord,−1, size), for LINEAR filtering

CLAMP_TO_EDGE clamp(coord, 0, size− 1)
CLAMP_TO_BORDER clamp(coord,−1, size)
REPEAT fmod(coord, size)
MIRRORED_REPEAT (size− 1)−mirror(fmod(coord, 2× size)− size)

Table 3.24: Texel location wrap mode application. fmod(a, b) returns a−b×ba
b c.

mirror(a) returns a if a ≥ 0, and −(1 + a) otherwise. The values of mode and
size are TEXTURE_WRAP_S and wt, TEXTURE_WRAP_T and ht, and TEXTURE_-

WRAP_R and dt when wrapping i, j, or k coordinates, respectively.

then the border values defined by TEXTURE_BORDER_COLOR are used in place
of the non-existent texel. If the texture contains color components, the values of
TEXTURE_BORDER_COLOR are interpreted as an RGBA color to match the texture’s
internal format in a manner consistent with table 3.16. The internal data type of the
border values must be consistent with the type returned by the texture as described
in section 3.9, or the result is undefined. Border values are clamped before they are
used, according to the format in which texture components are stored. For signed
and unsigned normalized fixed-point formats, border values are clamped to [−1, 1]
and [0, 1], respectively. For floating-point and integer formats, border values are
clamped to the representable range of the format. If the texture contains depth
components, the first component of TEXTURE_BORDER_COLOR is interpreted as a
depth value.

When the value of TEXTURE_MIN_FILTER is LINEAR, a 2 × 2 × 2 cube of
texels in the image array of level levelbase is selected. Let

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 261

i0 = wrap(bu′ − 0.5c)
j0 = wrap(bv′ − 0.5c)
k0 = wrap(bw′ − 0.5c)
i1 = wrap(bu′ − 0.5c+ 1)
j1 = wrap(bv′ − 0.5c+ 1)
k1 = wrap(bw′ − 0.5c+ 1)
α = frac(u′ − 0.5)
β = frac(v′ − 0.5)
γ = frac(w′ − 0.5)

where frac(x) denotes the fractional part of x.
For a three-dimensional texture, the texture value τ is found as

τ = (1− α)(1− β)(1− γ)τi0j0k0 + α(1− β)(1− γ)τi1j0k0

+ (1− α)β(1− γ)τi0j1k0 + αβ(1− γ)τi1j1k0

+ (1− α)(1− β)γτi0j0k1 + α(1− β)γτi1j0k1

+ (1− α)βγτi0j1k1 + αβγτi1j1k1

(3.24)

where τijk is the texel at location (i, j, k) in the three-dimensional texture image.
For a two-dimensional, two-dimensional array, rectangular, or cube map tex-

ture,

τ =(1− α)(1− β)τi0j0 + α(1− β)τi1j0

+ (1− α)βτi0j1 + αβτi1j1

where τij is the texel at location (i, j) in the two-dimensional texture image. For
two-dimensional array textures, all texels are obtained from layer l, where

l = clamp(br + 0.5c, 0, dt − 1).

And for a one-dimensional or one-dimensional array texture,

τ = (1− α)τi0 + ατi1

where τi is the texel at location i in the one-dimensional texture. For one-
dimensional array textures, both texels are obtained from layer l, where

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 262

l = clamp(bt+ 0.5c, 0, ht − 1).

For any texel in the equation above that refers to a border texel outside the
defined range of the image, the texel value is taken from the texture border color as
with NEAREST filtering.

Rendering Feedback Loops

If all of the following conditions are satisfied, then the value of the selected τijk,
τij , or τi in the above equations is undefined instead of referring to the value of the
texel at location (i, j, k), (i, j), or (i) respectively. This situation is discussed in
more detail in the description of feedback loops in section 4.4.3.

• The current DRAW_FRAMEBUFFER_BINDING names a framebuffer object F.

• The texture is attached to one of the attachment points, A, of framebuffer
object F.

• The value of TEXTURE_MIN_FILTER is NEAREST or LINEAR, and the value
of FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL for attachment point A
is equal to the value of TEXTURE_BASE_LEVEL

-or-

The value of TEXTURE_MIN_FILTER is NEAREST_MIPMAP_NEAREST,
NEAREST_MIPMAP_LINEAR, LINEAR_MIPMAP_NEAREST, or LINEAR_-

MIPMAP_LINEAR, and the value of FRAMEBUFFER_ATTACHMENT_-

TEXTURE_LEVEL for attachment point A is within the the inclusive range
from TEXTURE_BASE_LEVEL to q.

Mipmapping

TEXTURE_MIN_FILTER values NEAREST_MIPMAP_NEAREST, NEAREST_-

MIPMAP_LINEAR, LINEAR_MIPMAP_NEAREST, and LINEAR_MIPMAP_LINEAR

each require the use of a mipmap. Rectangular textures do not support mipmapping
(it is an error to specify a minification filter that requires mipmapping). A mipmap
is an ordered set of arrays representing the same image; each array has a resolution
lower than the previous one. If the image array of level levelbase (excluding its
border) has dimensions wt × ht × dt, then there are blog2(maxsize)c + 1 levels
in the mipmap. where

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 263

maxsize =


wt, for 1D and 1D array textures
max(wt, ht), for 2D, 2D array, and cube map textures
max(wt, ht, dt), for 3D textures

Numbering the levels such that level levelbase is the 0th level, the ith array has
dimensions

max(1, bwt

wd
c)×max(1, bht

hd
c)×max(1, b dt

dd
c)

where

wd = 2i

hd =

{
1, for 1D and 1D array textures
2i, otherwise

dd =

{
2i, for 3D textures
1, otherwise

until the last array is reached with dimension 1× 1× 1.
Each array in a mipmap is defined using TexImage3D, TexImage2D, Copy-

TexImage2D, TexImage1D, or CopyTexImage1D; the array being set is indicated
with the level-of-detail argument level. Level-of-detail numbers proceed from
levelbase for the original texel array through p = blog2(maxsize)c + levelbase

with each unit increase indicating an array of half the dimensions of the previous
one (rounded down to the next integer if fractional) as already described. All ar-
rays from levelbase through q = min{p, levelmax} must be defined, as discussed
in section 3.9.14.

The values of levelbase and levelmax may be respecified for a specific tex-
ture by calling TexParameter[if] with pname set to TEXTURE_BASE_LEVEL or
TEXTURE_MAX_LEVEL respectively.

The error INVALID_VALUE is generated if either value is negative.
The mipmap is used in conjunction with the level of detail to approximate the

application of an appropriately filtered texture to a fragment. Let c be the value
of λ at which the transition from minification to magnification occurs (since this
discussion pertains to minification, we are concerned only with values of λ where
λ > c).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 264

For mipmap filters NEAREST_MIPMAP_NEAREST and LINEAR_MIPMAP_-

NEAREST, the dth mipmap array is selected, where

d =


levelbase, λ ≤ 1

2

dlevelbase + λ+ 1
2e − 1, λ > 1

2 , levelbase + λ ≤ q + 1
2

q, λ > 1
2 , levelbase + λ > q + 1

2

(3.25)

The rules for NEAREST or LINEAR filtering are then applied to the selected
array. Specifically, the coordinate (u, v, w) is computed as in equation 3.21, with
ws, hs, and ds equal to the width, height, and depth of the image array whose level
is d.

For mipmap filters NEAREST_MIPMAP_LINEAR and LINEAR_MIPMAP_-

LINEAR, the level d1 and d2 mipmap arrays are selected, where

d1 =

{
q, levelbase + λ ≥ q
blevelbase + λc, otherwise

(3.26)

d2 =

{
q, levelbase + λ ≥ q
d1 + 1, otherwise

(3.27)

The rules for NEAREST or LINEAR filtering are then applied to each of the
selected arrays, yielding two corresponding texture values τ1 and τ2. Specifically,
for level d1, the coordinate (u, v, w) is computed as in equation 3.21, with ws, hs,
and ds equal to the width, height, and depth of the image array whose level is d1.
For level d2 the coordinate (u′, v′, w′) is computed as in equation 3.21, with ws,
hs, and ds equal to the width, height, and depth of the image array whose level is
d2.

The final texture value is then found as

τ = [1− frac(λ)]τ1 + frac(λ)τ2.

Manual Mipmap Generation

Mipmaps can be generated manually with the command

void GenerateMipmap(enum target);

where target is one of TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_-
1D_ARRAY, TEXTURE_2D_ARRAY, or TEXTURE_CUBE_MAP. Mipmap generation

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 265

affects the texture image attached to target. For cube map textures, an INVALID_-
OPERATION error is generated if the texture bound to target is not cube complete,
as defined in section 3.9.14.

Mipmap generation replaces texel array levels levelbase + 1 through q with
arrays derived from the levelbase array, regardless of their previous contents. All
other mipmap arrays, including the levelbase array, are left unchanged by this com-
putation.

The internal formats and border widths of the derived mipmap arrays all match
those of the levelbase array, and the dimensions of the derived arrays follow the
requirements described in section 3.9.14.

The contents of the derived arrays are computed by repeated, filtered reduction
of the levelbase array. For one- and two-dimensional array textures, each layer is
filtered independently. No particular filter algorithm is required, though a box filter
is recommended as the default filter. In some implementations, filter quality may
be affected by hints (section 5.8).

Automatic Mipmap Generation

If the value of texture parameter GENERATE_MIPMAP is TRUE, and a change is
made to the interior or border texels of the levelbase array of a mipmap by one of the
texture image specification operations defined in sections 3.9.3 through 3.9.5, then
a 3 complete set of mipmap arrays (as defined in section 3.9.14) will be computed.
Array levels levelbase + 1 through p are replaced with arrays derived from the
modified levelbase array, as described above for Manual Mipmap Generation.
All other mipmap arrays, including the levelbase array, are left unchanged by this
computation. For arrays in the range levelbase + 1 through q, inclusive, automatic
and manual mipmap generation generate the same derived arrays, given identical
levelbase arrays.

Automatic mipmap generation is available only for non-proxy texture image
targets.

3.9.12 Texture Magnification

When λ indicates magnification, the value assigned to TEXTURE_MAG_FILTER

determines how the texture value is obtained. There are two possible values
for TEXTURE_MAG_FILTER: NEAREST and LINEAR. NEAREST behaves exactly as
NEAREST for TEXTURE_MIN_FILTER and LINEAR behaves exactly as LINEAR for

3Automatic mipmap generation is not performed for changes resulting from rendering operations
targeting a texel array bound as a color buffer of a framebuffer object.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 266

TEXTURE_MIN_FILTER as described in section 3.9.11, including the texture coor-
dinate wrap modes specified in table 3.24. The level-of-detail levelbase texel array
is always used for magnification.

Implementations may either unconditionally assume c = 0 for the minifica-
tion vs. magnification switch-over point, or may choose to make c depend on the
combination of minification and magnification modes as follows: if the magnifica-
tion filter is given by LINEAR and the minification filter is given by NEAREST_-

MIPMAP_NEAREST or NEAREST_MIPMAP_LINEAR, then c = 0.5. This is done to
ensure that a minified texture does not appear “sharper” than a magnified texture.
Otherwise c = 0.

3.9.13 Combined Depth/Stencil Textures

If the texture image has a base internal format of DEPTH_STENCIL, then the stencil
index texture component is ignored. The texture value τ does not include a stencil
index component, but includes only the depth component.

3.9.14 Texture Completeness

A texture is said to be complete if all the image arrays and texture parameters
required to utilize the texture for texture application are consistently defined. The
definition of completeness varies depending on texture dimensionality and type.

For one-, two-, and three-dimensional and one-and two-dimensional array tex-
tures, a texture is mipmap complete if all of the following conditions hold true:

• The set of mipmap arrays levelbase through q (where q is defined in the
Mipmapping discussion of section 3.9.11) were each specified with the
same internal format.

• The border widths of each array are the same.

• The dimensions of the arrays follow the sequence described in the Mipmap-
ping discussion of section 3.9.11.

• levelbase ≤ levelmax

Array levels k where k < levelbase or k > q are insignificant to the definition of
completeness.

A cube map texture is mipmap complete if each of the six texture images,
considered individually, is mipmap complete. Additionally, a cube map texture is
cube complete if the following conditions all hold true:

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 267

• The levelbase arrays of each of the six texture images making up the cube
map have identical, positive, and square dimensions.

• The levelbase arrays were each specified with the same internal format.

• The levelbase arrays each have the same border width.

Using the preceding definitions, a texture is complete unless any of the follow-
ing conditions hold true:

• Any dimension of the levelbase array is not positive. For a rectangular or
multisample texture, levelbase is always zero.

• The texture is a cube map texture, and is not cube complete.

• The minification filter requires a mipmap (is neither NEAREST nor LINEAR),
and the texture is not mipmap complete.

• The internal format of the texture arrays is integer (see tables 3.17- 3.18),
and either the magnification filter is not NEAREST, or the minification filter
is neither NEAREST nor NEAREST_MIPMAP_NEAREST.

Effects of Sampler Objects on Texture Completeness

If a sampler object and a texture object are simultaneously bound to the same tex-
ture unit, then the sampling state for that unit is taken from the sampler object (see
section 3.9.2). This can have an effect on the effective completeness of the texture.
In particular, if the texture is not mipmap complete and the sampler object speci-
fies a TEXTURE_MIN_FILTER requiring mipmaps, the texture will be considered
incomplete for the purposes of that texture unit. However, if the sampler object
does not require mipmaps, the texture object will be considered complete. This
means that a texture can be considered both complete and incomplete simultane-
ously if it is bound to two or more texture units along with sampler objects with
different states.

Effects of Completeness on Texture Application

Texture lookup and texture fetch operations performed in vertex, geometry, and
fragment shaders are affected by completeness of the texture being sampled as
described in sections 2.14.4 and 3.12.2.

For fixed-function texture access, if texturing is enabled for a texture unit at the
time a primitive is rasterized, and if the texture image bound to the enabled texture
target is not complete, then it is as if texture mapping were disabled for that texture
unit.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 268

Effects of Completeness on Texture Image Specification

An implementation may allow a texture image array of level 1 or greater to be
created only if a mipmap complete set of image arrays consistent with the requested
array can be supported with levelbase = 0 and levelmax = 1000.

3.9.15 Texture State and Proxy State

The state necessary for texture can be divided into two categories. First, there are
the multiple sets of texel arrays (a single array for the rectangular texture target; one
set of mipmap arrays each for the one-, two-, and three-dimensional and one- and
two-dimensional array texture targets; and six sets of mipmap arrays for the cube
map texture targets) and their number. Each array has associated with it a width,
height (two- and three-dimensional, rectangular, one-dimensional array, and cube
map only), and depth (three-dimensional and two-dimensional array only), a bor-
der width, an integer describing the internal format of the image, integer values
describing the resolutions of each of the red, green, blue, alpha, luminance, inten-
sity, depth, and stencil components of the image, integer values describing the type
(unsigned normalized, integer, floating-point, etc.) of each of the components, a
boolean describing whether the image is compressed or not, and an integer size of
a compressed image. Each initial texel array is null (zero width, height, and depth,
zero border width, internal format 1, component sizes set to zero and component
types set to NONE, the compressed flag set to FALSE, and a zero compressed size).
Multisample textures contain an integer identifying the number of samples in each
texel, and a boolean indicating whether identical sample locations and the same
number of samples will be used for all texels in the image. The buffer texture tar-
get has associated an integer containing the name of the buffer object that provided
the data store for the texture, initially zero, and an integer identifying the internal
format of the texture, initially LUMINANCE8.

Next, there are the four sets of texture properties, corresponding to the one-,
two-, three-dimensional, and cube map texture targets. Each set consists of the
selected minification and magnification filters, the wrap modes for s, t (two-
and three-dimensional and cube map only), and r (three-dimensional only), the
TEXTURE_BORDER_COLOR, two floating-point numbers describing the minimum
and maximum level of detail, two integers describing the base and maximum
mipmap array, a boolean flag indicating whether the texture is resident, a boolean
indicating whether automatic mipmap generation should be performed, the prior-
ity associated with each set of properties, and three integers describing the depth
texture mode, compare mode, and compare function. The value of the resident
flag is determined by the GL and may change as a result of other GL operations.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 269

The flag may only be queried, not set, by applications (see section 3.9.1). In the
initial state, the value assigned to TEXTURE_MIN_FILTER is NEAREST_MIPMAP_-
LINEAR (except for rectangular textures, where the initial value is LINEAR), and
the value for TEXTURE_MAG_FILTER is LINEAR. s, t, and r wrap modes are all set
to REPEAT (except for rectangular textures, where the initial value is CLAMP_TO_-
EDGE). The values of TEXTURE_MIN_LOD and TEXTURE_MAX_LOD are -1000 and
1000 respectively. The values of TEXTURE_BASE_LEVEL and TEXTURE_MAX_-

LEVEL are 0 and 1000 respectively. The value of TEXTURE_PRIORITY is 1.0. The
value of TEXTURE_BORDER_COLOR is (0,0,0,0). The value of GENERATE_MIPMAP
is false. The values of DEPTH_TEXTURE_MODE, TEXTURE_COMPARE_MODE, and
TEXTURE_COMPARE_FUNC are LUMINANCE, NONE, and LEQUAL respectively. The
initial value of TEXTURE_RESIDENT is determined by the GL.

In addition to image arrays for the non-proxy texture targets described above,
partially instantiated image arrays are maintained for one-, two-, and three-
dimensional, rectangular, and one- and two-dimensional array textures. Addition-
ally, a single proxy image array is maintained for the cube map texture. Each
proxy image array includes width, height, depth, border width, and internal format
state values, as well as state for the red, green, blue, alpha, luminance, intensity,
depth, and stencil component resolutions and types. Proxy arrays do not include
image data nor texture parameters. When TexImage3D is executed with target
specified as PROXY_TEXTURE_3D, the three-dimensional proxy state values of the
specified level-of-detail are recomputed and updated. If the image array would not
be supported by TexImage3D called with target set to TEXTURE_3D, no error is
generated, but the proxy width, height, depth, border width, and component reso-
lutions are set to zero, and the component types are set to NONE. If the image array
would be supported by such a call to TexImage3D, the proxy state values are set
exactly as though the actual image array were being specified. No pixel data are
transferred or processed in either case.

Proxy arrays for one- and two-dimensional textures and one- and two-
dimensional array textures are operated on in the same way when TexImage1D is
executed with target specified as PROXY_TEXTURE_1D, TexImage2D is executed
with target specified as PROXY_TEXTURE_2D, PROXY_TEXTURE_1D_ARRAY, or
PROXY_TEXTURE_RECTANGLE, or TexImage3D is executed with target specified
as PROXY_TEXTURE_2D_ARRAY.

Proxy arrays for two-dimensional multisample and two-dimensional multisam-
ple array textures are operated on in the same way when TexImage2DMultisample
is called with target specified as PROXY_TEXTURE_2D_MULTISAMPLE, or Tex-
Image3DMultisample is called with target specified as PROXY_TEXTURE_2D_-
MULTISAMPLE_ARRAY.

The cube map proxy arrays are operated on in the same manner when TexIm-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 270

age2D is executed with the target field specified as PROXY_TEXTURE_CUBE_MAP,
with the addition that determining that a given cube map texture is supported with
PROXY_TEXTURE_CUBE_MAP indicates that all six of the cube map 2D images
are supported. Likewise, if the specified PROXY_TEXTURE_CUBE_MAP is not sup-
ported, none of the six cube map 2D images are supported.

There is no image or non-level-related state associated with proxy textures.
Therefore they may not be used as textures, and calling BindTexture, GetTex-
Image, GetTexParameteriv, or GetTexParameterfv with a proxy texture target
generates an INVALID_ENUM error.

3.9.16 Texture Environments and Texture Functions

The command

void TexEnv{if}(enum target, enum pname, T param);
void TexEnv{if}v(enum target, enum pname, const

T params);

sets parameters of the texture environment that specifies how texture values are
interpreted when texturing a fragment, or sets per-texture-unit filtering parameters.

target must be one of TEXTURE_FILTER_CONTROL, POINT_SPRITE, or
TEXTURE_ENV. pname is a symbolic constant indicating the parameter to be set. In
the first form of the command, param is a value to which to set a single-valued pa-
rameter; in the second form, params is a pointer to an array of parameters: either
a single symbolic constant or a value or group of values to which the parameter
should be set.

When target is TEXTURE_FILTER_CONTROL, pname must be TEXTURE_-

LOD_BIAS. In this case the parameter is a single signed floating point value,
biastexunit, that biases the level of detail parameter λ as described in section 3.9.11.

When target is POINT_SPRITE, point sprite rasterization behavior is affected
as described in section 3.4.

When target is TEXTURE_ENV, the possible environment parameters are
TEXTURE_ENV_MODE, TEXTURE_ENV_COLOR, COMBINE_RGB, COMBINE_ALPHA,
RGB_SCALE, ALPHA_SCALE, SRCn_RGB, SRCn_ALPHA, OPERANDn_RGB, and
OPERANDn_ALPHA, where n = 0, 1, or 2. TEXTURE_ENV_MODE may be set to
one of REPLACE, MODULATE, DECAL, BLEND, ADD, or COMBINE. TEXTURE_ENV_-
COLOR is set to an RGBA color by providing four single-precision floating-point
values. If integers are provided for TEXTURE_ENV_COLOR, then they are converted
to floating-point as described in equation 2.2.

The value of TEXTURE_ENV_MODE specifies a texture function. The result of
this function depends on the fragment and the texel array value. The precise form

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 271

of the function depends on the base internal formats of the texel arrays that were
last specified.

Cf and Af
4 are the primary color components of the incoming fragment. Cc

and Ac are the components of the texture environment color. Cp and Ap are the
components resulting from the previous texture environment (for texture environ-
ment 0, Cp and Ap are identical to Cf and Af , respectively). Cv and Av are the
primary color components computed by the texture function. Finally, Cs and As

are the components of the texture source color. They are derived by computing the
base color Cb and Ab from the filtered texture values Rt, Gt, Bt, At, Lt, and It as
shown in table 3.25, followed by swizzling the components of Cb, controlled by the
values of the texture parameters TEXTURE_SWIZZLE_R, TEXTURE_SWIZZLE_G,
TEXTURE_SWIZZLE_B, and TEXTURE_SWIZZLE_A. If the value of TEXTURE_-
SWIZZLE_R is denoted by swizzler, swizzling computes the first component of
Cs according to

if (swizzler == RED)
Cs[0] = Cb[0];

else if (swizzler == GREEN)
Cs[0] = Cb[1];

else if (swizzler == BLUE)
Cs[0] = Cb[2];

else if (swizzler == ALPHA)
Cs[0] = Ab;

else if (swizzler == ZERO)
Cs[0] = 0;

else if (swizzler == ONE)
Cs[0] = 1; // float or int depending on texture component type

Swizzling of Cs[1], Cs[2], and As are similarly controlled by the values of
TEXTURE_SWIZZLE_G, TEXTURE_SWIZZLE_B, and TEXTURE_SWIZZLE_A, re-
spectively.

If fragment color clamping is enabled, all of these color values, including the
results, are clamped to the range [0, 1]. If fragment color clamping is disabled, the
values are not clamped. The texture functions are specified in tables 3.26, 3.27,
and 3.28.

If the value of TEXTURE_ENV_MODE is COMBINE, the form of the texture func-
tion depends on the values of COMBINE_RGB and COMBINE_ALPHA, according to

4In the remainder of section 3.9.16, the notation Cx is used to denote each of the three components
Rx, Gx, and Bx of a color specified by x. Operations on Cx are performed independently for each
color component. The A component of colors is usually operated on in a different fashion, and is
therefore denoted separately by Ax.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 272

Texture Base Texture base color
Internal Format Cb Ab

ALPHA (0, 0, 0) At

LUMINANCE (Lt, Lt, Lt) 1
LUMINANCE_ALPHA (Lt, Lt, Lt) At

INTENSITY (It, It, It) It
RED (Rt, 0, 0) 1
RG (Rt, Gt, 0) 1
RGB (Rt, Gt, Bt) 1
RGBA (Rt, Gt, Bt) At

Table 3.25: Correspondence of filtered texture components to texture base compo-
nents.

Texture Base REPLACE MODULATE DECAL

Internal Format Function Function Function
ALPHA Cv = Cp Cv = Cp undefined

Av = As Av = ApAs

LUMINANCE Cv = Cs Cv = CpCs undefined
(or 1) Av = Ap Av = Ap

LUMINANCE_ALPHA Cv = Cs Cv = CpCs undefined
(or 2) Av = As Av = ApAs

INTENSITY Cv = Cs Cv = CpCs undefined
Av = As Av = ApAs

RGB, RG, RED, Cv = Cs Cv = CpCs Cv = Cs

or 3 Av = Ap Av = Ap Av = Ap

RGBA Cv = Cs Cv = CpCs Cv = Cp(1−As) + CsAs

or 4 Av = As Av = ApAs Av = Ap

Table 3.26: Texture functions REPLACE, MODULATE, and DECAL.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 273

Texture Base BLEND ADD

Internal Format Function Function
ALPHA Cv = Cp Cv = Cp

Av = ApAs Av = ApAs

LUMINANCE Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

(or 1) Av = Ap Av = Ap

LUMINANCE_ALPHA Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

(or 2) Av = ApAs Av = ApAs

INTENSITY Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

Av = Ap(1−As) +AcAs Av = Ap +As

RGB, RG, RED, Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

or 3 Av = Ap Av = Ap

RGBA Cv = Cp(1− Cs) + CcCs Cv = Cp + Cs

or 4 Av = ApAs Av = ApAs

Table 3.27: Texture functions BLEND and ADD.

table 3.28. The RGB and ALPHA results of the texture function are then multiplied
by the values of RGB_SCALE and ALPHA_SCALE, respectively. If fragment color
clamping is enabled, the arguments and results used in table 3.28 are clamped to
[0, 1]. Otherwise, the results are unmodified.

The argumentsArg0,Arg1, andArg2 are determined by the values of SRCn_-
RGB, SRCn_ALPHA, OPERANDn_RGB and OPERANDn_ALPHA, where n = 0, 1, or 2,
as shown in tables 3.29 and 3.30. Cs

n andAs
n denote the texture source color and

alpha from the texture image bound to texture unit n
The state required for the current texture environment, for each texture unit,

consists of a six-valued integer indicating the texture function, an eight-valued in-
teger indicating the RGB combiner function and a six-valued integer indicating the
ALPHA combiner function, six four-valued integers indicating the combiner RGB
and ALPHA source arguments, three four-valued integers indicating the combiner
RGB operands, three two-valued integers indicating the combiner ALPHA operands,
and four floating-point environment color values. In the initial state, the texture
and combiner functions are each MODULATE, the combiner RGB and ALPHA sources
are each TEXTURE, PREVIOUS, and CONSTANT for sources 0, 1, and 2 respectively,
the combiner RGB operands for sources 0 and 1 are each SRC_COLOR, the combiner
RGB operand for source 2, as well as for the combiner ALPHA operands, are each
SRC_ALPHA, and the environment color is (0, 0, 0, 0).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 274

COMBINE_RGB Texture Function
REPLACE Arg0
MODULATE Arg0 ∗Arg1
ADD Arg0 +Arg1
ADD_SIGNED Arg0 +Arg1− 0.5
INTERPOLATE Arg0 ∗Arg2 +Arg1 ∗ (1−Arg2)
SUBTRACT Arg0−Arg1
DOT3_RGB 4× ((Arg0r − 0.5) ∗ (Arg1r − 0.5)+

(Arg0g − 0.5) ∗ (Arg1g − 0.5)+
(Arg0b − 0.5) ∗ (Arg1b − 0.5))

DOT3_RGBA 4× ((Arg0r − 0.5) ∗ (Arg1r − 0.5)+
(Arg0g − 0.5) ∗ (Arg1g − 0.5)+
(Arg0b − 0.5) ∗ (Arg1b − 0.5))

COMBINE_ALPHA Texture Function
REPLACE Arg0
MODULATE Arg0 ∗Arg1
ADD Arg0 +Arg1
ADD_SIGNED Arg0 +Arg1− 0.5
INTERPOLATE Arg0 ∗Arg2 +Arg1 ∗ (1−Arg2)
SUBTRACT Arg0−Arg1

Table 3.28: COMBINE texture functions. The scalar expression computed for the
DOT3_RGB and DOT3_RGBA functions is placed into each of the 3 (RGB) or 4 (RGBA)
components of the output. The result generated from COMBINE_ALPHA is ignored
for DOT3_RGBA.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 275

SRCn_RGB OPERANDn_RGB Argument
TEXTURE SRC_COLOR Cs

ONE_MINUS_SRC_COLOR 1− Cs

SRC_ALPHA As

ONE_MINUS_SRC_ALPHA 1−As

TEXTUREn SRC_COLOR Cs
n

ONE_MINUS_SRC_COLOR 1− Cs
n

SRC_ALPHA As
n

ONE_MINUS_SRC_ALPHA 1−As
n

CONSTANT SRC_COLOR Cc

ONE_MINUS_SRC_COLOR 1− Cc

SRC_ALPHA Ac
ONE_MINUS_SRC_ALPHA 1−Ac

PRIMARY_COLOR SRC_COLOR Cf

ONE_MINUS_SRC_COLOR 1− Cf

SRC_ALPHA Af

ONE_MINUS_SRC_ALPHA 1−Af

PREVIOUS SRC_COLOR Cp

ONE_MINUS_SRC_COLOR 1− Cp

SRC_ALPHA Ap

ONE_MINUS_SRC_ALPHA 1−Ap

Table 3.29: Arguments for COMBINE_RGB functions.

SRCn_ALPHA OPERANDn_ALPHA Argument
TEXTURE SRC_ALPHA As

ONE_MINUS_SRC_ALPHA 1−As

TEXTUREn SRC_ALPHA As
n

ONE_MINUS_SRC_ALPHA 1−As
n

CONSTANT SRC_ALPHA Ac

ONE_MINUS_SRC_ALPHA 1−Ac

PRIMARY_COLOR SRC_ALPHA Af

ONE_MINUS_SRC_ALPHA 1−Af

PREVIOUS SRC_ALPHA Ap

ONE_MINUS_SRC_ALPHA 1−Ap

Table 3.30: Arguments for COMBINE_ALPHA functions.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 276

The state required for the texture filtering parameters, for each texture unit,
consists of a single floating-point level of detail bias. The initial value of the bias
is 0.0.

3.9.17 Texture Comparison Modes

Texture values can also be computed according to a specified comparison function.
Texture parameter TEXTURE_COMPARE_MODE specifies the comparison operands,
and parameter TEXTURE_COMPARE_FUNC specifies the comparison function. The
format of the resulting texture sample is determined by the value of DEPTH_-
TEXTURE_MODE.

Depth Texture Comparison Mode

If the currently bound texture’s base internal format is DEPTH_COMPONENT or
DEPTH_STENCIL, then DEPTH_TEXTURE_MODE, TEXTURE_COMPARE_MODE and
TEXTURE_COMPARE_FUNC control the output of the texture unit as described be-
low. Otherwise, the texture unit operates in the normal manner and texture com-
parison is bypassed.

Let Dt be the depth texture value and Dref be the reference value, defined as
follows:

• For fixed-function, non-cubemap texture lookups, Dref is the interpolated r
texture coordinate.

• For fixed-function, cubemap texture lookups, Dref is the interpolated q tex-
ture coordinate.

• For texture lookups generated by an OpenGL Shading Language lookup
function, Dref is the reference value for depth comparisons provided by the
lookup function.

If the texture’s internal format indicates a fixed-point depth texture, then Dt

and Dref are clamped to the range [0, 1]; otherwise no clamping is performed.
Then the effective texture value is computed as follows:

If the value of TEXTURE_COMPARE_MODE is NONE, then

r = Dt

If the value of TEXTURE_COMPARE_MODE is COMPARE_REF_TO_TEXTURE,
then r depends on the texture comparison function as shown in table 3.31.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 277

Texture Comparison Function Computed result r

LEQUAL r =

{
1.0, Dref ≤ Dt

0.0, Dref > Dt

GEQUAL r =

{
1.0, Dref ≥ Dt

0.0, Dref < Dt

LESS r =

{
1.0, Dref < Dt

0.0, Dref ≥ Dt

GREATER r =

{
1.0, Dref > Dt

0.0, Dref ≤ Dt

EQUAL r =

{
1.0, Dref = Dt

0.0, Dref 6= Dt

NOTEQUAL r =

{
1.0, Dref 6= Dt

0.0, Dref = Dt

ALWAYS r = 1.0
NEVER r = 0.0

Table 3.31: Depth texture comparison functions.

The resulting r is assigned to Rt, Lt, It, or At if the value of DEPTH_-

TEXTURE_MODE is respectively RED, LUMINANCE, INTENSITY, or ALPHA.
If the value of TEXTURE_MAG_FILTER is not NEAREST, or the value of

TEXTURE_MIN_FILTER is not NEAREST or NEAREST_MIPMAP_NEAREST, then r
may be computed by comparing more than one depth texture value to the texture
reference value. The details of this are implementation-dependent, but r should
be a value in the range [0, 1] which is proportional to the number of comparison
passes or failures.

3.9.18 sRGB Texture Color Conversion

If the currently bound texture’s internal format is one of SRGB, SRGB8,
SRGB_ALPHA, SRGB8_ALPHA8, SLUMINANCE_ALPHA, SLUMINANCE8_ALPHA8,
SLUMINANCE, SLUMINANCE8, COMPRESSED_SLUMINANCE, COMPRESSED_-

SLUMINANCE_ALPHA, COMPRESSED_SRGB, or COMPRESSED_SRGB_ALPHA, the
red, green, and blue components are converted from an sRGB color space to a lin-
ear color space as part of filtering described in sections 3.9.11 and 3.9.12. Any
alpha component is left unchanged. Ideally, implementations should perform this

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 278

color conversion on each sample prior to filtering but implementations are allowed
to perform this conversion after filtering (though this post-filtering approach is in-
ferior to converting from sRGB prior to filtering).

The conversion from an sRGB encoded component, cs, to a linear component,
cl, is as follows.

cl =

{
cs

12.92 , cs ≤ 0.04045(
cs+0.055

1.055

)2.4
, cs > 0.04045

(3.28)

Assume cs is the sRGB component in the range [0, 1].

3.9.19 Shared Exponent Texture Color Conversion

If the currently bound texture’s internal format is RGB9_E5, the red, green, blue,
and shared bits are converted to color components (prior to filtering) using shared
exponent decoding. The component reds, greens, blues, and expshared values (see
section 3.9.3) are treated as unsigned integers and are converted to red, green, and
blue as follows:

red = reds2expshared−B

green = greens2expshared−B

blue = blues2expshared−B

3.9.20 Texture Application

Texturing is enabled or disabled using the generic Enable and Disable com-
mands, respectively, with the symbolic constants TEXTURE_1D, TEXTURE_-

2D, TEXTURE_3D, or TEXTURE_CUBE_MAP to enable the one-, two-, three-
dimensional, or cube map texture, respectively. If both two- and one-dimensional
textures are enabled, the two-dimensional texture is used. If the three-dimensional
and either of the two- or one-dimensional textures is enabled, the three-dimensional
texture is used. If the cube map texture and any of the three-, two-, or one-
dimensional textures is enabled, then cube map texturing is used.

If all texturing is disabled, a rasterized fragment is passed on unaltered to the
next stage of the GL (although its texture coordinates may be discarded). Other-
wise, a texture value is found according to the parameter values of the currently
bound texture image of the appropriate dimensionality using the rules given in sec-
tions 3.9.10 through 3.9.12. This texture value is used along with the incoming

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 279

fragment in computing the texture function indicated by the currently bound tex-
ture environment. The result of this function replaces the incoming fragment’s
primary R, G, B, and A values. These are the color values passed to subsequent
operations. Other data associated with the incoming fragment remain unchanged,
except that the texture coordinates may be discarded.

Note that the texture value may contain R, G, B, A, L, I , or D components,
but it does not contain an S component. If the texture’s base internal format is
DEPTH_STENCIL, for the purposes of texture application it is as if the base internal
format were DEPTH_COMPONENT.

Each texture unit is enabled and bound to texture objects independently from
the other texture units. Each texture unit follows the precedence rules for one-,
two-, three-dimensional, and cube map textures. Thus texture units can be per-
forming texture mapping of different dimensionalities simultaneously. Each unit
has its own enable and binding states.

Each texture unit is paired with an environment function, as shown in fig-
ure 3.11. The second texture function is computed using the texture value from
the second texture, the fragment resulting from the first texture function computa-
tion and the second texture unit’s environment function. If there is a third texture,
the fragment resulting from the second texture function is combined with the third
texture value using the third texture unit’s environment function and so on. The tex-
ture unit selected by ActiveTexture determines which texture unit’s environment
is modified by TexEnv calls.

If the value of TEXTURE_ENV_MODE is COMBINE, the texture function associ-
ated with a given texture unit is computed using the values specified by SRCn_RGB,
SRCn_ALPHA, OPERANDn_RGB and OPERANDn_ALPHA. If TEXTUREn is specified
as SRCn_RGB or SRCn_ALPHA, the texture value from texture unit n will be used
in computing the texture function for this texture unit.

Texturing is enabled and disabled individually for each texture unit. If texturing
is disabled for one of the units, then the fragment resulting from the previous unit
is passed unaltered to the following unit. Individual texture units beyond those
specified by MAX_TEXTURE_UNITS are always treated as disabled.

If a texture unit is disabled or has an invalid or incomplete texture (as defined
in section 3.9.14) bound to it, then blending is disabled for that texture unit. If the
texture environment for a given enabled texture unit references a disabled texture
unit, or an invalid or incomplete texture that is bound to another unit, then the
results of texture blending are undefined.

The required state, per texture unit, is four bits indicating whether each of one-,
two-, three-dimensional, or cube map texturing is enabled or disabled. In the intial
state, all texturing is disabled for all texture units.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 280

TE0

TE1

TE2

TE3

CT0

CT1

CT2

CT3

C’f

CTi = texture color from texture lookup i

Cf = fragment primary color input to texturing

C’f = fragment color output from texturing

TEi = texture environment i

Cf

Figure 3.11. Multitexture pipeline. Four texture units are shown; however, multi-
texturing may support a different number of units depending on the implementation.
The input fragment color is successively combined with each texture according to
the state of the corresponding texture environment, and the resulting fragment color
passed as input to the next texture unit in the pipeline.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.10. COLOR SUM 281

3.10 Color Sum

At the beginning of color sum, a fragment has two RGBA colors: a primary color
cpri (which texturing, if enabled, may have modified) and a secondary color csec.

If color sum is enabled, the R, G, and B components of these two colors are
summed to produce a single post-texturing RGBA color c. The A component of c
is taken from the A component of cpri; the A component of csec is unused. If color
sum is disabled, then cpri is assigned to c. If fragment color clamping is enabled,
the components of c are then clamped to the range [0, 1].

Color sum is enabled or disabled using the generic Enable and Disable com-
mands, respectively, with the symbolic constant COLOR_SUM. If lighting is enabled
and if a vertex shader is not active, the color sum stage is always applied, ignoring
the value of COLOR_SUM.

The state required is a single bit indicating whether color sum is enabled or
disabled. In the initial state, color sum is disabled.

Color sum has no effect in color index mode, or if a fragment shader is active.

3.11 Fog

If enabled, fog blends a fog color with a rasterized fragment’s post-texturing color
using a blending factor f . Fog is enabled and disabled with the Enable and Disable
commands using the symbolic constant FOG.

This factor f is computed according to one of three equations:

f = exp(−d · c), (3.29)

f = exp(−(d · c)2), or (3.30)

f =
e− c
e− s

(3.31)

If a vertex or geometry shader is active, or if the fog source, as defined below, is
FOG_COORD, then c is the interpolated value of the fog coordinate for this fragment.
Otherwise, if the fog source is FRAGMENT_DEPTH, then c is the eye-coordinate
distance from the eye, (0, 0, 0, 1) in eye coordinates, to the fragment center. The
equation and the fog source, along with either d or e and s, is specified with

void Fog{if}(enum pname, T param);
void Fog{if}v(enum pname, const T params);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.11. FOG 282

If pname is FOG_MODE, then param must be, or params must point to an inte-
ger that is one of the symbolic constants EXP, EXP2, or LINEAR, in which case
equation 3.29, 3.30, or 3.31, respectively, is selected for the fog calculation (if,
when 3.31 is selected, e = s, results are undefined). If pname is FOG_COORD_SRC,
then param must be, or params must point to an integer that is one of the symbolic
constants FRAGMENT_DEPTH or FOG_COORD. If pname is FOG_DENSITY, FOG_-
START, or FOG_END, then param is or params points to a value that is d, s, or e,
respectively. If d is specified less than zero, the error INVALID_VALUE results.

An implementation may choose to approximate the eye-coordinate distance
from the eye to each fragment center by |ze|. Further, f need not be computed at
each fragment, but may be computed at each vertex and interpolated as other data
are.

No matter which equation and approximation is used to compute f , the result
is clamped to [0, 1] to obtain the final f .

f is used differently depending on whether the GL is in RGBA or color index
mode. In RGBA mode, if Cr represents a rasterized fragment’s R, G, or B value,
then the corresponding value produced by fog is

C = fCr + (1− f)Cf .

(The rasterized fragment’s A value is not changed by fog blending.) The R, G, B,
and A values of Cf are specified by calling Fog with pname equal to FOG_COLOR;
in this case params points to four values comprising Cf . If these are not floating-
point values, then they are converted to floating-point as described in equation 2.2.
If fragment color clamping is enabled, the components of Cr and Cf and the result
C are clamped to the range [0, 1] before the fog blend is performed.

In color index mode, the formula for fog blending is

I = ir + (1− f)if

where ir is the rasterized fragment’s color index and if is a single-precision
floating-point value. (1 − f)if is rounded to the nearest fixed-point value with
the same number of bits to the right of the binary point as ir, and the integer por-
tion of I is masked (bitwise ANDed) with 2n− 1, where n is the number of bits in
a color in the color index buffer (buffers are discussed in chapter 4). The value of
if is set by calling Fog with pname set to FOG_INDEX and param being or params
pointing to a single value for the fog index. The integer part of if is masked with
2n − 1.

The state required for fog consists of a three valued integer to select the fog
equation, three floating-point values d, e, and s, an RGBA fog color and a fog
color index, a two-valued integer to select the fog coordinate source, and a single

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.12. FRAGMENT SHADERS 283

bit to indicate whether or not fog is enabled. In the initial state, fog is disabled,
FOG_COORD_SRC is FRAGMENT_DEPTH, FOG_MODE is EXP, d = 1.0, e = 1.0, and
s = 0.0; Cf = (0, 0, 0, 0) and if = 0.

Fog has no effect if a fragment shader is active.

3.12 Fragment Shaders

The sequence of operations that are applied to fragments that result from raster-
izing a point, line segment, polygon, pixel rectangle or bitmap as described in
sections 3.9 through 3.11 is a fixed-functionality method for processing such frag-
ments. Applications can more generally describe the operations that occur on such
fragments by using a fragment shader.

A fragment shader is an array of strings containing source code for the opera-
tions that are meant to occur on each fragment that results from rasterization. The
language used for fragment shaders is described in the OpenGL Shading Language
Specification.

A fragment shader only applies when the GL is in RGBA mode. Its operation
in color index mode is undefined.

Fragment shaders are created as described in section 2.14.1 using a type pa-
rameter of FRAGMENT_SHADER. They are attached to and used in program objects
as described in section 2.14.2.

When the program object currently in use includes a fragment shader, its frag-
ment shader is considered active, and is used to process fragments. If the program
object has no fragment shader, or no program object is currently in use, the fixed-
function fragment processing operations described in previous sections are used
instead.

Results of rasterization are undefined if any of the selected draw buffers of the
draw framebuffer have an integer format and no fragment shader is active.

3.12.1 Shader Variables

Fragment shaders can access uniforms belonging to the current shader object. The
amount of storage available for fragment shader uniform variables in the default
uniform block is specified by the value of the implementation-dependent constant
MAX_FRAGMENT_UNIFORM_COMPONENTS. The total amount of combined storage
available for fragment shader uniform variables in all uniform blocks (including the
default uniform block) is specified by the value of the implementation-dependent
constant MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS. These values rep-
resent the numbers of individual floating-point, integer, or boolean values that can

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.12. FRAGMENT SHADERS 284

be held in uniform variable storage for a fragment shader. A uniform matrix will
consume no more than 4×min(r, c) such values, where r and c are the number of
rows and columns in the matrix. A link error will be generated if an attempt is made
to utilize more than the space available for fragment shader uniform variables.

Fragment shaders can read varying variables that correspond to the attributes
of the fragments produced by rasterization. The OpenGL Shading Language Spec-
ification defines a set of built-in varying variables that can be be accessed by a frag-
ment shader. These built-in varying variables include data associated with a frag-
ment that are used for fixed-function fragment processing, such as the fragment’s
color, secondary color, texture coordinates, fog coordinate, eye z coordinate, and
position.

Additionally, when a vertex shader is active, it may define one or more varying
variables (see section 2.14.6 and the OpenGL Shading Language Specification).
These values are, if not flat shaded, interpolated across the primitive being ren-
dered. The results of these interpolations are available when varying variables of
the same name are defined in the fragment shader.

User-defined varying variables are not saved in the current raster position.
When processing fragments generated by the rasterization of a pixel rectangle or
bitmap, values of user-defined varying variables are undefined. Built-in varying
variables have well-defined values.

A fragment shader can also write to varying out variables. Values written
to these variables are used in the subsequent per-fragment operations. Varying
out variables can be used to write floating-point, integer or unsigned integer val-
ues destined for buffers attached to a framebuffer object, or destined for color
buffers attached to the default framebuffer. The Shader Outputs subsection of
section 3.12.2 describes how to direct these values to buffers.

3.12.2 Shader Execution

If a fragment shader is active, the executable version of the fragment shader is used
to process incoming fragment values that are the result of rasterization, rather than
the fixed-function fragment processing described in sections 3.9 through 3.11. In
particular,

• The texture environments and texture functions described in section 3.9.16
are not applied.

• Texture application as described in section 3.9.20 is not applied.

• Color sum as described in section 3.10 is not applied.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.12. FRAGMENT SHADERS 285

• Fog as described in section 3.11 is not applied.

Texture Access

The Shader Only Texturing subsection of section 2.14.7 describes texture lookup
functionality accessible to a vertex shader. The texel fetch and texture size query
functionality described there also applies to fragment shaders.

When a texture lookup is performed in a fragment shader, the GL computes
the filtered texture value τ in the manner described in sections 3.9.11 and 3.9.12,
and converts it to a texture base color Cb as shown in table 3.25 (section 3.9.16),
followed by application of the texture swizzle as described in section 3.9.16 to
compute the texture source color Cs and As.

The resulting four-component vector (Rs, Gs, Bs, As) is returned to the frag-
ment shader. For the purposes of level-of-detail calculations, the derivatives du

dx , du
dy ,

dv
dx , dv

dy , dw
dx and dw

dy may be approximated by a differencing algorithm as detailed in
section 8.8 of the OpenGL Shading Language Specification.

Texture lookups involving textures with depth component data can either return
the depth data directly or return the results of a comparison with theDref value (see
section 3.9.17) used to perform the lookup. The comparison operation is requested
in the shader by using any of the shadow sampler types (sampler1DShadow,
sampler2DShadow, or sampler2DRectShadow), and in the texture using the
TEXTURE_COMPARE_MODE parameter. These requests must be consistent; the re-
sults of a texture lookup are undefined if:

• The sampler used in a texture lookup function is not one of the shadow
sampler types, the texture object’s internal format is DEPTH_COMPONENT

or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE is not NONE.

• The sampler used in a texture lookup function is one of the shadow sam-
pler types, the texture object’s internal format is DEPTH_COMPONENT or
DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE is NONE.

• The sampler used in a texture lookup function is one of the shadow sampler
types, and the texture object’s internal format is not DEPTH_COMPONENT or
DEPTH_STENCIL.

The stencil index texture internal component is ignored if the base internal
format is DEPTH_STENCIL.

Using a sampler in a fragment shader will return (R,G,B,A) = (0, 0, 0, 1) if
the sampler’s associated texture is not complete, as defined in section 3.9.14.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.12. FRAGMENT SHADERS 286

The number of separate texture units that can be accessed from within a
fragment shader during the rendering of a single primitive is specified by the
implementation-dependent constant MAX_TEXTURE_IMAGE_UNITS.

Shader Inputs

The OpenGL Shading Language Specification describes the values that are avail-
able as inputs to the fragment shader.

The built-in variable gl_FragCoord holds the fragment coordinate(
xf yf zf wf

)
for the fragment. Computing the fragment coordinate depends

on the fragment processing pixel-center and origin conventions (discussed below)
as follows:

xf =

{
xw − 1

2 , pixel-center convention is integer
xw, otherwise

y′f =

{
H − yw, origin convention is upper-left
yw, otherwise

yf =

{
y′f −

1
2 , pixel-center convention is integer

y′f otherwise

zf = zw

wf =
1
wc

(3.32)

where
(
xw yw zw

)
is the fragment’s window-space position,wc is thew compo-

nent of the fragment’s clip-space position, and H is the window’s height in pixels.
Note that zw already has a polygon offset added in, if enabled (see section 3.6.5).
zf must be precisely 0 or 1 in the case where zw is either 0 or 1, respectively. The
1
w value is computed from the wc coordinate (see section 2.16), which is the result
of the product of the projection matrix and the vertex’s eye coordinates.

Unless otherwise specified by layout qualifiers in the fragment shader (see sec-
tion 4.3.8.1 of the OpenGL Shading Language Specification), the fragment pro-
cessing pixel-center convention is half-integer and the fragment processing origin
convention is lower-left.

The built-in variables gl_Color and gl_SecondaryColor hold the R, G,
B, and A components, respectively, of the fragment color and secondary color. If
the primary color or the secondary color components are represented by the GL as
fixed-point values, they undergo an implied conversion to floating-point. This con-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.12. FRAGMENT SHADERS 287

version must leave the values 0 and 1 invariant. Floating-point color components
(resulting from a disabled vertex color clamp) are unmodified.

The built-in variable gl_FrontFacing is set to TRUE if the fragment is gener-
ated from a front-facing primitive, and FALSE otherwise. For fragments generated
from quadrilateral, polygon, or triangle primitives (including ones resulting from
primitives rendered as points or lines), the determination is made by examining the
sign of the area computed by equation 3.8 of section 3.6.1 (including the possible
reversal of this sign controlled by FrontFace). If the sign is positive, fragments
generated by the primitive are front-facing; otherwise, they are back-facing. All
other fragments are considered front-facing.

If a geometry shader is active, the built-in variable gl_PrimitiveID con-
tains the ID value emitted by the geometry shader for the provoking vertex. If no
geometry shader is active, gl_PrimitiveID contains the number of primitives
processed by the rasterizer since the last time Begin was called (directly or indi-
rectly via vertex array functions). The first primitive generated after a Begin is
numbered zero, and the primitive ID counter is incremented after every individual
point, line, or polygon primitive is processed. For polygons drawn in point or line
mode, the primitive ID counter is incremented only once, even though multiple
points or lines may be drawn. For QUADS and QUAD_STRIP primitives that are de-
composed into triangles, the primitive ID is incremented after each complete quad
is processed.

Restarting a primitive using the primitive restart index (see section 2.8) has no
effect on the primitive ID counter.

The value of gl_PrimitiveID is undefined for fragments generated by
POLYGON primitives or from DrawPixels or Bitmap commands. Additionally,
gl_PrimitiveID is only defined under the same conditions that gl_VertexID
is defined, as described under “Shader Inputs” in section 2.14.4.

Similarly to the limit on geometry shader output components (see sec-
tion 2.15.4), there is a limit on the number of components of built-in and user-
defined input varying variables that can be read by the fragment shader, given
by the value of the implementation-dependent constant MAX_FRAGMENT_INPUT_-
COMPONENTS.

When a program is linked, all components of any varying and special variable
read by a fragment shader will count against this limit. A program whose fragment
shader exceeds this limit may fail to link, unless device-dependent optimizations
are able to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.14.6).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.12. FRAGMENT SHADERS 288

Shader Outputs

The OpenGL Shading Language Specification describes the values that may be
output by a fragment shader. These outputs are split into two categories, user-
defined varying out variables and the built-in variables gl_FragColor, gl_-
FragData[n], and gl_FragDepth. If fragment color clamping is enabled and
the color buffer has an unsigned normalized fixed-point, signed normalized fixed-
point, or floating-point format, the final fragment color, fragment data, or vary-
ing out variable values written by a fragment shader are clamped to the range
[0, 1]. Only user-defined varying out variables declared as a floating-point type
are clamped and may be converted. If fragment color clamping is disabled, or
the color buffer has an integer format, the final fragment color, fragment data, or
varying out variable values are not modified. For fixed-point depth buffers, the
final fragment depth written by a fragment shader is first clamped to [0, 1] and then
converted to fixed-point as if it were a window z value (see section 2.16.1). For
floating-point depth buffers, conversion is not performed but clamping is. Note that
the depth range computation is not applied here, only the conversion to fixed-point.

Color values written by a fragment shader may be floating-point, signed inte-
ger, or unsigned integer. If the color buffer has an signed or unsigned normalized
fixed-point format, color values are assumed to be floating-point and are converted
to fixed-point as described in equations 2.6 or 2.4, respectively; otherwise no type
conversion is applied. If the values written by the fragment shader do not match
the format(s) of the corresponding color buffer(s), the result is undefined.

Writing to gl_FragColor specifies the fragment color (color number zero)
that will be used by subsequent stages of the pipeline. Writing to gl_-

FragData[n] specifies the value of fragment color number n. Any colors, or
color components, associated with a fragment that are not written by the frag-
ment shader are undefined. A fragment shader may not statically assign values to
more than one of gl_FragColor, gl_FragData, and any user-defined varying
out variable. In this case, a compile or link error will result. A shader statically
assigns a value to a variable if, after pre-processing, it contains a statement that
would write to the variable, whether or not run-time flow of control will cause that
statement to be executed.

Writing to gl_FragDepth specifies the depth value for the fragment being
processed. If the active fragment shader does not statically assign a value to gl_-

FragDepth, then the depth value generated during rasterization is used by sub-
sequent stages of the pipeline. Otherwise, the value assigned to gl_FragDepth

is used, and is undefined for any fragments where statements assigning a value to
gl_FragDepth are not executed. Thus, if a shader statically assigns a value to
gl_FragDepth, then it is responsible for always writing it.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.12. FRAGMENT SHADERS 289

The binding of a user-defined varying out variable to a fragment color number
can be specified explicitly. The command

void BindFragDataLocationIndexed(uint program,
uint colorNumber, uint index, const char * name);

specifies that the varying out variable name in program should be bound to frag-
ment color colorNumber when the program is next linked. index may be zero or
one to specify that the color be used as either the first or second color input to the
blend equation, respectively, as described in section 4.1.8.

If name was bound previously, its assigned binding is replaced with color-
Number. name must be a null-terminated string. The error INVALID_VALUE is
generated if index is greater than one, if colorNumber is greater than or equal to
the value of MAX_DRAW_BUFFERS and index is zero, or if colorNumber is greater
than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and index is
greater than or equal to one. The command

void BindFragDataLocation(uint program,
uint colorNumber, const char * name);

is equivalent to calling

BindFragDataLocationIndexed(program, colorNumber, 0, name);

BindFragDataLocation has no effect until the program is linked. In particular,
it doesn’t modify the bindings of varying out variables in a program that has already
been linked. The error INVALID_OPERATION is generated if name starts with the
reserved gl_ prefix.

When a program is linked, any varying out variables without a binding speci-
fied either through BindFragDataLocationIndexed or BindFragDataLocation,
or explicitly set within the shader text will automatically be bound to fragment
colors and indices by the GL. All such assignments will use color indices of
zero. Such bindings can be queried using the commands GetFragDataLoca-
tion and GetFragDataIndex. If a varying out variable has a binding explicitly
set within the shader text and a different binding assigned by BindFragDataLoca-
tionIndexed or BindFragDataLocation, the assignment in the shader text is used.
Output binding assignments will cause LinkProgram to fail:

• if the number of active outputs is greater than the value of MAX_DRAW_-
BUFFERS;

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.13. ANTIALIASING APPLICATION 290

• if the program has an active output assigned to a location greater than or
equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has an active
output assigned an index greater than or equal to one;

• if more than one varying out variable is bound to the same number and index;
or

• if the explicit binding assigments do not leave enough space for the linker
to automatically assign a location for a varying out array, which requires
multiple contiguous locations.

BindFragDataLocationIndexed may be issued before any shader objects are
attached to a program object. Hence it is allowed to bind any name (except a name
starting with gl_) to a color number and index, including a name that is never used
as a varying out variable in any fragment shader object. Assigned bindings for
variables that do not exist are ignored.

After a program object has been linked successfully, the bindings of varying
out variable names to color numbers can be queried. The command

int GetFragDataLocation(uint program, const
char *name);

returns the number of the fragment color to which the varying out variable name
was bound when the program object program was last linked. name must be
a null-terminated string. If program has not been successfully linked, the error
INVALID_OPERATION is generated. If name is not a varying out variable, or if an
error occurs, -1 will be returned.

The command

int GetFragDataIndex(uint program, const char *
name);

returns the index of the fragment color to which the variable name was bound when
the program object program was last linked. If program has not been successfully
linked, the error INVALID_OPERATION is generated. If name is not a varying out
variable, or if an error occurs, -1 will be returned.

3.13 Antialiasing Application

If antialiasing is enabled for the primitive from which a rasterized fragment was
produced, then the computed coverage value is applied to the fragment. In RGBA

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.14. MULTISAMPLE POINT FADE 291

mode, the value is multiplied by the fragment’s alpha (A) value to yield a final alpha
value. In color index mode, the value is used to set the low order bits of the color
index value as described in section 3.3. The coverage value is applied separately
to each fragment color, and only applied if the corresponding color buffer in the
framebuffer has a fixed- or floating-point format.

3.14 Multisample Point Fade

Finally, if multisampling is enabled and the rasterized fragment results from a point
primitive, then the computed fade factor from equation 3.2 is applied to the frag-
ment. In RGBA mode, the fade factor is multiplied by the fragment’s alpha value
to yield a final alpha value. In color index mode, the fade factor has no effect.
The fade factor is applied separately to each fragment color, and only applied if the
corresponding color buffer in the framebuffer has a fixed- or floating-point format.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Chapter 4

Per-Fragment Operations and the
Framebuffer

The framebuffer, whether it is the default framebuffer or a framebuffer object (see
section 2.1), consists of a set of pixels arranged as a two-dimensional array. For
purposes of this discussion, each pixel in the framebuffer is simply a set of some
number of bits. The number of bits per pixel may vary depending on the GL im-
plementation, the type of framebuffer selected, and parameters specified when the
framebuffer was created. Creation and management of the default framebuffer is
outside the scope of this specification, while creation and management of frame-
buffer objects is described in detail in section 4.4.

Corresponding bits from each pixel in the framebuffer are grouped together into
a bitplane; each bitplane contains a single bit from each pixel. These bitplanes are
grouped into several logical buffers. These are the color, accumulation, depth, and
stencil buffers. The color buffer actually consists of a number of buffers, and these
color buffers serve related but slightly different purposes depending on whether the
GL is bound to the default framebuffer or a framebuffer object.

For the default framebuffer, the color buffers are the front left buffer, the front
right buffer, the back left buffer, the back right buffer, and some number of auxil-
iary buffers. Typically the contents of the front buffers are displayed on a color
monitor while the contents of the back buffers are invisible. (Monoscopic contexts
display only the front left buffer; stereoscopic contexts display both the front left
and the front right buffers.) The contents of the auxiliary buffers are never visible.
All color buffers must have the same number of bitplanes, although an implemen-
tation or context may choose not to provide right buffers, back buffers, or auxiliary
buffers at all. Further, an implementation or context may choose not to provide
accumulation, depth or stencil buffers. If no default framebuffer is associated with

292

293

the GL context, the framebuffer is incomplete except when a framebuffer object is
bound (see sections 4.4.1 and 4.4.4).

Framebuffer objects are not visible, and do not have any of the color buffers
present in the default framebuffer. Instead, the buffers of an framebuffer object
are specified by attaching individual textures or renderbuffers (see section 4.4) to
a set of attachment points. A framebuffer object has an array of color buffer at-
tachment points, numbered zero through n, a depth buffer attachment point, and
a stencil buffer attachment point. In order to be used for rendering, a framebuffer
object must be complete, as described in section 4.4.4. Not all attachments of a
framebuffer object need to be populated.

Each pixel in a color buffer consists of either a single unsigned integer color
index or up to four color components. The four color components are named R, G,
B, and A, in that order; color buffers are not required to have all four color com-
ponents. R, G, B, and A components may be represented as signed or unsigned
normalized fixed-point, floating-point, or signed or unsigned integer values; all
components must have the same representation. Each pixel in a depth buffer con-
sists of a single unsigned integer value in the format described in section 2.16.1 or
a floating-point value. Each pixel in a stencil buffer consists of a single unsigned
integer value. Each pixel in an accumulation buffer consists of up to four color
components. If an accumulation buffer is present, it must have at least as many
bitplanes per component as in the color buffers.

The number of bitplanes in the accumulation, color, depth, and stencil buffers
is dependent on the currently bound framebuffer. For the default framebuffer, the
number of bitplanes is fixed. For framebuffer objects, the number of bitplanes
in a given logical buffer may change if the image attached to the corresponding
attachment point changes.

The GL has two active framebuffers; the draw framebuffer is the destination
for rendering operations, and the read framebuffer is the source for readback op-
erations. The same framebuffer may be used for both drawing and reading. Sec-
tion 4.4.1 describes the mechanism for controlling framebuffer usage.

The default framebuffer is initially used as the draw and read framebuffer 1,
and the initial state of all provided bitplanes is undefined. The format and encod-
ing of buffers in the draw and read framebuffers can be queried as described in
section 6.1.3.

1The window system binding API may allow associating a GL context with two separate “default
framebuffers” provided by the window system as the draw and read framebuffers, but if so, both
default framebuffers are referred to by the name zero at their respective binding points.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.1. PER-FRAGMENT OPERATIONS 294

Depth Buffer
Test

To
Framebuffer

Pixel
Ownership

Test

Scissor
Test

Logicop

Fragment
(or sample)

+
Associated

Data

Stencil
Test

SRGB
Conversion

Dithering

Multisample
Fragment

Operations

Framebuffer Framebuffer

Alpha
Test

(RGBA only)

Occlusion
Query

Blending

Framebuffer

Framebuffer

Figure 4.1. Per-fragment operations.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordinates of (xw, yw) mod-
ifies the pixel in the framebuffer at that location based on a number of parame-
ters and conditions. We describe these modifications and tests, diagrammed in
figure 4.1, in the order in which they are performed. Figure 4.1 diagrams these
modifications and tests.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at location (xw, yw) in the framebuffer
is currently owned by the GL (more precisely, by this GL context). If it is not,
the window system decides the fate the incoming fragment. Possible results are
that the fragment is discarded or that some subset of the subsequent per-fragment
operations are applied to the fragment. This test allows the window system to
control the GL’s behavior, for instance, when a GL window is obscured.

If the draw framebuffer is a framebuffer object (see section 4.2.1), the pixel
ownership test always passes, since the pixels of framebuffer objects are owned by
the GL, not the window system. If the draw framebuffer is the default framebuffer,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.1. PER-FRAGMENT OPERATIONS 295

the window system controls pixel ownership.

4.1.2 Scissor Test

The scissor test determines if (xw, yw) lies within the scissor rectangle defined by
four values. These values are set with

void Scissor(int left, int bottom, sizei width,
sizei height);

If left ≤ xw < left + width and bottom ≤ yw < bottom + height , then the
scissor test passes. Otherwise, the test fails and the fragment is discarded. The
test is enabled or disabled using Enable or Disable using the constant SCISSOR_-
TEST. When disabled, it is as if the scissor test always passes. If either width or
height is less than zero, then the error INVALID_VALUE is generated. The state
required consists of four integer values and a bit indicating whether the test is
enabled or disabled. In the initial state, left = bottom = 0. width and height are
set to the width and height, respectively, of the window into which the GL is to
do its rendering. If the default framebuffer is bound but no default framebuffer is
associated with the GL context (see chapter 4), then width and height are initially
set to zero. Initially, the scissor test is disabled.

4.1.3 Multisample Fragment Operations

This step modifies fragment alpha and coverage values based on the values
of SAMPLE_ALPHA_TO_COVERAGE, SAMPLE_ALPHA_TO_ONE, SAMPLE_-

COVERAGE, SAMPLE_COVERAGE_VALUE, SAMPLE_COVERAGE_INVERT,
SAMPLE_MASK, and SAMPLE_MASK_VALUE. No changes to the fragment al-
pha or coverage values are made at this step if MULTISAMPLE is disabled, or if the
value of SAMPLE_BUFFERS is not one.

All alpha values in this section refer only to the alpha component of the frag-
ment shader output linked to color number zero, index zero (see section 3.12.2) if
a fragment shader is in use, or the alpha component of the result of fixed-function
fragment shading. If the fragment shader does not write to this output, the alpha
value is undefined.

SAMPLE_ALPHA_TO_COVERAGE, SAMPLE_ALPHA_TO_ONE, and SAMPLE_-

COVERAGE are enabled and disabled by calling Enable and Disable with cap
specified as one of the three the desired token value. All three values are queried
by calling IsEnabled with cap set to the desired token value. If drawbuffer zero is
not NONE and the buffer it references has an integer format, the SAMPLE_ALPHA_-
TO_COVERAGE and SAMPLE_ALPHA_TO_ONE operations are skipped.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.1. PER-FRAGMENT OPERATIONS 296

If SAMPLE_ALPHA_TO_COVERAGE is enabled, and the color buffer has a
fixed-point or floating-point format, a temporary coverage value is generated
where each bit is determined by the alpha value at the corresponding sample lo-
cation. The temporary coverage value is then ANDed with the fragment coverage
value to generate a new fragment coverage value. If the fragment shader outputs
an integer to color number zero, index zero when not rendering to an integer for-
mat, the coverage value is undefined. Otherwise the fragment coverage value is
unchanged at this point. If multiple colors are written by a fragment shader, the
alpha value of fragment color zero is used to determine the temporary coverage
value.

No specific algorithm is required for converting the sample alpha values to a
temporary coverage value. It is intended that the number of 1’s in the temporary
coverage be proportional to the set of alpha values for the fragment, with all 1’s
corresponding to the maximum of all alpha values, and all 0’s corresponding to
all alpha values being 0. The alpha values used to generate a coverage value are
clamped to the range [0, 1]. It is also intended that the algorithm be pseudo-random
in nature, to avoid image artifacts due to regular coverage sample locations. The
algorithm can and probably should be different at different pixel locations. If it
does differ, it should be defined relative to window, not screen, coordinates, so that
rendering results are invariant with respect to window position.

Next, if SAMPLE_ALPHA_TO_ONE is enabled, each alpha value is replaced by
the maximum representable alpha value for fixed-point color buffers, or by 1.0 for
floating-point buffers. Otherwise, the alpha values are not changed.

Next, if SAMPLE_COVERAGE is enabled, the fragment coverage is ANDed with
another temporary coverage. This temporary coverage is generated in the same
manner as the one described above, but as a function of the value of SAMPLE_-
COVERAGE_VALUE. The function need not be identical, but it must have the same
properties of proportionality and invariance. If SAMPLE_COVERAGE_INVERT is
TRUE, the temporary coverage is inverted (all bit values are inverted) before it is
ANDed with the fragment coverage.

The values of SAMPLE_COVERAGE_VALUE and SAMPLE_COVERAGE_INVERT

are specified by calling

void SampleCoverage(clampf value, boolean invert);

with value set to the desired coverage value, and invert set to TRUE or FALSE.
value is clamped to [0,1] before being stored as SAMPLE_COVERAGE_VALUE.
SAMPLE_COVERAGE_VALUE is queried by calling GetFloatv with pname set to
SAMPLE_COVERAGE_VALUE. SAMPLE_COVERAGE_INVERT is queried by calling
GetBooleanv with pname set to SAMPLE_COVERAGE_INVERT.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.1. PER-FRAGMENT OPERATIONS 297

Finally, if SAMPLE_MASK is enabled, the fragment coverage is ANDed with
the coverage value SAMPLE_MASK_VALUE. The value of SAMPLE_MASK_VALUE is
specified using

void SampleMaski(uint maskNumber, bitfield mask);

with mask set to the desired mask for mask word maskNumber. SAMPLE_MASK_-
VALUE is queried by calling GetIntegeri v with pname set to SAMPLE_MASK_-

VALUE and the index set to maskNumber. Bit B of mask word M corresponds to
sample 32 ×M + B as described in section 3.3.1. The error INVALID_VALUE is
generated if the mask word indexed is greater than or equal to the value of MAX_-
SAMPLE_MASK_WORDS.

4.1.4 Alpha Test

This step applies only in RGBA mode, and only if the color buffer has a fixed-point
or floating-point format. In color index mode, or if the color buffer has an integer
format, proceed to the next operation.

The alpha test discards a fragment conditional on the outcome of a compari-
son between the incoming fragment’s alpha value and a constant value. If multiple
colors are written by a fragment shader, the alpha value of fragment color zero is
used to determine the result of the alpha test. The comparison is enabled or dis-
abled with the generic Enable and Disable commands using the symbolic constant
ALPHA_TEST. When disabled, it is as if the comparison always passes. The test is
controlled with

void AlphaFunc(enum func, clampf ref);

func is a symbolic constant indicating the alpha test function; ref is a reference
value. When performing the alpha test, the GL will convert the reference value to
the same representation as the the fragment’s alpha value (floating-point or fixed-
point). For fixed-point, the reference value is converted according to equation 2.4
using the bit-width rule for an A component described in section 2.1.5, and the
fragment’s alpha value is rounded to the nearest integer.

The possible constants specifying the test function are NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL, meaning pass the fragment
never, always, if the fragment’s alpha value is less than, less than or equal to,
equal to, greater than or equal to, greater than, or not equal to the reference value,
respectively.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.1. PER-FRAGMENT OPERATIONS 298

The required state consists of the floating-point reference value, an eight-
valued integer indicating the comparison function, and a bit indicating if the com-
parison is enabled or disabled. The initial state is for the reference value to be 0
and the function to be ALWAYS. Initially, the alpha test is disabled.

4.1.5 Stencil Test

The stencil test conditionally discards a fragment based on the outcome of a com-
parison between the value in the stencil buffer at location (xw, yw) and a reference
value. The test is enabled or disabled with the Enable and Disable commands,
using the symbolic constant STENCIL_TEST. When disabled, the stencil test and
associated modifications are not made, and the fragment is always passed.

The stencil test is controlled with

void StencilFunc(enum func, int ref, uint mask);
void StencilFuncSeparate(enum face, enum func, int ref,

uint mask);
void StencilOp(enum sfail, enum dpfail, enum dppass);
void StencilOpSeparate(enum face, enum sfail, enum dpfail,

enum dppass);

There are two sets of stencil-related state, the front stencil state set and the back
stencil state set. Stencil tests and writes use the front set of stencil state when pro-
cessing fragments rasterized from non-polygon primitives (points, lines, bitmaps,
and image rectangles) and front-facing polygon primitives while the back set of
stencil state is used when processing fragments rasterized from back-facing poly-
gon primitives. For the purposes of stencil testing, a primitive is still considered
a polygon even if the polygon is to be rasterized as points or lines due to the cur-
rent polygon mode. Whether a polygon is front- or back-facing is determined in
the same manner used for two-sided lighting and face culling (see sections 2.13.1
and 3.6.1).

StencilFuncSeparate and StencilOpSeparate take a face argument which can
be FRONT, BACK, or FRONT_AND_BACK and indicates which set of state is affected.
StencilFunc and StencilOp set front and back stencil state to identical values.

StencilFunc and StencilFuncSeparate take three arguments that control
whether the stencil test passes or fails. ref is an integer reference value that is used
in the unsigned stencil comparison. Stencil comparison operations and queries of
ref clamp its value to the range [0, 2s − 1], where s is the number of bits in the
stencil buffer attached to the draw framebuffer. The s least significant bits of mask
are bitwise ANDed with both the reference and the stored stencil value, and the

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.1. PER-FRAGMENT OPERATIONS 299

resulting masked values are those that participate in the comparison controlled by
func. func is a symbolic constant that determines the stencil comparison function;
the eight symbolic constants are NEVER, ALWAYS, LESS, LEQUAL, EQUAL, GEQUAL,
GREATER, or NOTEQUAL. Accordingly, the stencil test passes never, always, and if
the masked reference value is less than, less than or equal to, equal to, greater than
or equal to, greater than, or not equal to the masked stored value in the stencil
buffer.

StencilOp and StencilOpSeparate take three arguments that indicate what
happens to the stored stencil value if this or certain subsequent tests fail or pass.
sfail indicates what action is taken if the stencil test fails. The symbolic constants
are KEEP, ZERO, REPLACE, INCR, DECR, INVERT, INCR_WRAP, and DECR_WRAP.
These correspond to keeping the current value, setting to zero, replacing with the
reference value, incrementing with saturation, decrementing with saturation, bit-
wise inverting it, incrementing without saturation, and decrementing without satu-
ration.

For purposes of increment and decrement, the stencil bits are considered as an
unsigned integer. Incrementing or decrementing with saturation clamps the stencil
value at 0 and the maximum representable value. Incrementing or decrementing
without saturation will wrap such that incrementing the maximum representable
value results in 0, and decrementing 0 results in the maximum representable value.

The same symbolic values are given to indicate the stencil action if the depth
buffer test (see section 4.1.6) fails (dpfail), or if it passes (dppass).

If the stencil test fails, the incoming fragment is discarded. The state required
consists of the most recent values passed to StencilFunc or StencilFuncSeparate
and to StencilOp or StencilOpSeparate, and a bit indicating whether stencil test-
ing is enabled or disabled. In the initial state, stenciling is disabled, the front and
back stencil reference value are both zero, the front and back stencil comparison
functions are both ALWAYS, and the front and back stencil mask are both set to the
value 2s − 1, where s is greater than or equal to the number of bits in the deepest
stencil buffer supported by the GL implementation. Initially, all three front and
back stencil operations are KEEP.

If there is no stencil buffer, no stencil modification can occur, and it is as if the
stencil tests always pass, regardless of any calls to StencilFunc.

4.1.6 Depth Buffer Test

The depth buffer test discards the incoming fragment if a depth comparison fails.
The comparison is enabled or disabled with the generic Enable and Disable com-
mands using the symbolic constant DEPTH_TEST. When disabled, the depth com-
parison and subsequent possible updates to the depth buffer value are bypassed and

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.1. PER-FRAGMENT OPERATIONS 300

the fragment is passed to the next operation. The stencil value, however, is modi-
fied as indicated below as if the depth buffer test passed. If enabled, the comparison
takes place and the depth buffer and stencil value may subsequently be modified.

The comparison is specified with

void DepthFunc(enum func);

This command takes a single symbolic constant: one of NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GREATER, GEQUAL, NOTEQUAL. Accordingly, the depth buffer
test passes never, always, if the incoming fragment’s zw value is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal to
the depth value stored at the location given by the incoming fragment’s (xw, yw)
coordinates.

If depth clamping (see section 2.22) is enabled, before the incoming fragment’s
zw is compared zw is clamped to the range [min(n, f),max(n, f)], where n and f
are the current near and far depth range values (see section 2.16.1)

If the depth buffer test fails, the incoming fragment is discarded. The stencil
value at the fragment’s (xw, yw) coordinates is updated according to the function
currently in effect for depth buffer test failure. Otherwise, the fragment continues
to the next operation and the value of the depth buffer at the fragment’s (xw, yw)
location is set to the fragment’s zw value. In this case the stencil value is updated
according to the function currently in effect for depth buffer test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth buffering is enabled or disabled. In the initial state the function
is LESS and the test is disabled.

If there is no depth buffer, it is as if the depth buffer test always passes.

4.1.7 Occlusion Queries

Occlusion queries use query objects to track the number of fragments or samples
that pass the depth test. An occlusion query can be started and finished by calling
BeginQuery and EndQuery, respectively, with a target of SAMPLES_PASSED or
ANY_SAMPLES_PASSED.

When an occlusion query is started with target SAMPLES_PASSED, the
samples-passed count maintained by the GL is set to zero. When an occlusion
query is active, the samples-passed count is incremented for each fragment that
passes the depth test. If the value of SAMPLE_BUFFERS is 0, then the samples-
passed count is incremented by 1 for each fragment. If the value of SAMPLE_-
BUFFERS is 1, then the samples-passed count is incremented by the number of
samples whose coverage bit is set. However, implementations, at their discretion,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.1. PER-FRAGMENT OPERATIONS 301

may instead increase the samples-passed count by the value of SAMPLES if any
sample in the fragment is covered.

When an occlusion query finishes and all fragments generated by commands
issued prior to EndQuery have been generated, the samples-passed count is written
to the corresponding query object as the query result value, and the query result for
that object is marked as available.

If the samples-passed count overflows (exceeds the value 2n − 1, where n is
the number of bits in the samples-passed count), its value becomes undefined. It is
recommended, but not required, that implementations handle this overflow case by
saturating at 2n − 1 and incrementing no further.

When an occlusion query is started with the target ANY_SAMPLES_PASSED, the
samples-boolean state maintained by the GL is set to FALSE. While that occlusion
query is active, the samples-boolean state is set to TRUE if any fragment or sample
passes the depth test. When the occlusion query finishes, the samples-boolean state
of FALSE or TRUE is written to the corresponding query object as the query result
value, and the query result for that object is marked as available.

4.1.8 Blending

Blending combines the incoming source fragment’s R, G, B, and A values with
the destination R, G, B, and A values stored in the framebuffer at the fragment’s
(xw, yw) location.

Source and destination values are combined according to the blend equation,
quadruplets of source and destination weighting factors determined by the blend
functions, and a constant blend color to obtain a new set of R, G, B, and A values,
as described below.

If the color buffer is fixed-point, the components of the source and destination
values and blend factors are clamped to [0, 1] prior to evaluating the blend equation.
If the color buffer is floating-point, no clamping occurs. The resulting four values
are sent to the next operation.

Blending applies only in RGBA mode; and only if the color buffer has a fixed-
point or floating-point format. In color index mode, or if the color buffer has an
integer format, proceed to the next operation.

Blending is enabled or disabled for an individual draw buffer with the com-
mands

void Enablei(enum target, uint index);
void Disablei(enum target, uint index);

target is the symbolic constant BLEND and index is an integer i specifying the draw
buffer associated with the symbolic constant DRAW_BUFFERi. If the color buffer

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.1. PER-FRAGMENT OPERATIONS 302

associated with DRAW_BUFFERi is one of FRONT, BACK, LEFT, RIGHT, or FRONT_-
AND_BACK (specifying multiple color buffers), then the state enabled or disabled is
applicable for all of the buffers. Blending can be enabled or disabled for all draw
buffers using Enable or Disable with the symbolic constant BLEND. If blending
is disabled for a particular draw buffer, or if logical operation on color values is
enabled (section 4.1.11), proceed to the next operation.

An INVALID_VALUE error is generated if index is greater than the value of
MAX_DRAW_BUFFERS minus one.

If multiple fragment colors are being written to multiple buffers (see sec-
tion 4.2.1), blending is computed and applied separately for each fragment color
and the corresponding buffer.

Blend Equation

Blending is controlled by the blend equations, defined by the commands

void BlendEquation(enum mode);
void BlendEquationSeparate(enum modeRGB,

enum modeAlpha);

BlendEquationSeparate argument modeRGB determines the RGB blend func-
tion while modeAlpha determines the alpha blend equation. BlendEquation ar-
gument mode determines both the RGB and alpha blend equations. modeRGB and
modeAlpha must each be one of FUNC_ADD, FUNC_SUBTRACT, FUNC_REVERSE_-
SUBTRACT, MIN, or MAX.

Signed or unsigned normalized fixed-point destination (framebuffer) com-
ponents are represented as described in section 2.1.5. Constant color compo-
nents, floating-point destination components, and source (fragment) components
are taken to be floating point values. If source components are represented in-
ternally by the GL as fixed-point values, they are also interpreted according to
section 2.1.5.

Prior to blending, signed and unsigned normalized fixed-point color compo-
nents undergo an implied conversion to floating-point using equations 2.1 and 2.3,
respectively. This conversion must leave the values 0 and 1 invariant. Blending
computations are treated as if carried out in floating-point.

If FRAMEBUFFER_SRGB is enabled and the value of FRAMEBUFFER_-

ATTACHMENT_COLOR_ENCODING for the framebuffer attachment corresponding
to the destination buffer is SRGB (see section 6.1.3), the R, G, and B destination
color values (after conversion from fixed-point to floating-point) are considered to
be encoded for the sRGB color space and hence must be linearized prior to their

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.1. PER-FRAGMENT OPERATIONS 303

use in blending. Each R, G, and B component is converted in the same fashion
described for sRGB texture components in section 3.9.18.

If FRAMEBUFFER_SRGB is disabled or the value of FRAMEBUFFER_-

ATTACHMENT_COLOR_ENCODING is not SRGB, no linearization is performed.
The resulting linearized R, G, and B and unmodified A values are recombined

as the destination color used in blending computations.
Table 4.1 provides the corresponding per-component blend equations for each

mode, whether acting on RGB components for modeRGB or the alpha component
for modeAlpha.

In the table, the s subscript on a color component abbreviation (R, G, B, or
A) refers to the source color component for an incoming fragment, the d subscript
on a color component abbreviation refers to the destination color component at
the corresponding framebuffer location, and the c subscript on a color component
abbreviation refers to the constant blend color component. A color component ab-
breviation without a subscript refers to the new color component resulting from
blending. Additionally, Sr, Sg, Sb, and Sa are the red, green, blue, and alpha com-
ponents of the source weighting factors determined by the source blend function,
and Dr, Dg, Db, and Da are the red, green, blue, and alpha components of the
destination weighting factors determined by the destination blend function. Blend
functions are described below.

Blend Functions

The weighting factors used by the blend equation are determined by the blend
functions. There are four possible sources for weighting factors. These are the
constant color (Rc, Gc, Bc, Ac) set with BlendColor (see below), the first source
color (Rs0, Gs0, Bs0, As0), the second source color (Rs1, Gs1, Bs1, As1), and the
destination color (the existing content of the draw buffer). Additionally the special
constants ZERO and ONE are available as weighting factors. Blend functions are
specified with the commands

void BlendFuncSeparate(enum srcRGB, enum dstRGB,
enum srcAlpha, enum dstAlpha);

void BlendFunc(enum src, enum dst);

BlendFuncSeparate arguments srcRGB and dstRGB determine the source and
destination RGB blend functions, respectively, while srcAlpha and dstAlpha deter-
mine the source and destination alpha blend functions. BlendFunc argument src
determines both RGB and alpha source functions, while dst determines both RGB
and alpha destination functions.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.1. PER-FRAGMENT OPERATIONS 304

Mode RGB Components Alpha Component
FUNC_ADD R = Rs ∗ Sr +Rd ∗Dr A = As ∗ Sa +Ad ∗Da

G = Gs ∗ Sg +Gd ∗Dg

B = Bs ∗ Sb +Bd ∗Db

FUNC_SUBTRACT R = Rs ∗ Sr −Rd ∗Dr A = As ∗ Sa −Ad ∗Da

G = Gs ∗ Sg −Gd ∗Dg

B = Bs ∗ Sb −Bd ∗Db

FUNC_REVERSE_SUBTRACT R = Rd ∗Dr −Rs ∗ Sr A = Ad ∗Da −As ∗ Sa

G = Gd ∗Dg −Gs ∗ Sg

B = Bd ∗Db −Bs ∗ Sb

MIN R = min(Rs, Rd) A = min(As, Ad)
G = min(Gs, Gd)
B = min(Bs, Bd)

MAX R = max(Rs, Rd) A = max(As, Ad)
G = max(Gs, Gd)
B = max(Bs, Bd)

Table 4.1: RGB and alpha blend equations.

The possible source and destination blend functions and their corresponding
computed blend factors are summarized in table 4.2.

Dual Source Blending and Multiple Draw Buffers

Blend functions that require the second color input, (Rs1, Gs1, Bs1, As1) (SRC1_-
COLOR, SRC1_ALPHA, ONE_MINUS_SRC1_COLOR, or ONE_MINUS_SRC1_ALPHA)
may consume hardware resources that could otherwise be used for rendering to
multiple draw buffers. Therefore, the number of draw buffers that can be attached
to a frame buffer may be lower when using dual source blending.

The maximum number of draw buffers that may be attached to a single frame
buffer when using dual-source blending functions is implementation dependent
and can be queried by calling GetIntegerv with the symbolic constant MAX_-
DUAL_SOURCE_DRAW_BUFFERS. When using dual source blending, MAX_DUAL_-
SOURCE_DRAW_BUFFERS should be used in place of MAX_DRAW_BUFFERS to de-
termine the maximum number of draw buffers that may be attached to a single
frame buffer. The value of MAX_DUAL_SOURCE_DRAW_BUFFERS must be at least
1. If the value of MAX_DUAL_SOURCE_DRAW_BUFFERS is 1, then dual-source
blending and multiple draw buffers cannot be used simultaneously.

If either blend function requires the second color input for any draw buffer,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.1. PER-FRAGMENT OPERATIONS 305

Function RGB Blend Factors Alpha Blend Factor
(Sr, Sg, Sb) or (Dr, Dg, Db) Sa or Da

ZERO (0, 0, 0) 0
ONE (1, 1, 1) 1
SRC_COLOR (Rs0, Gs0, Bs0) As0

ONE_MINUS_SRC_COLOR (1, 1, 1)− (Rs0, Gs0, Bs0) 1−As0

DST_COLOR (Rd, Gd, Bd) Ad

ONE_MINUS_DST_COLOR (1, 1, 1)− (Rd, Gd, Bd) 1−Ad

SRC_ALPHA (As0, As0, As0) As0

ONE_MINUS_SRC_ALPHA (1, 1, 1)− (As0, As0, As0) 1−As0

DST_ALPHA (Ad, Ad, Ad) Ad

ONE_MINUS_DST_ALPHA (1, 1, 1)− (Ad, Ad, Ad) 1−Ad

CONSTANT_COLOR (Rc, Gc, Bc) Ac

ONE_MINUS_CONSTANT_COLOR (1, 1, 1)− (Rc, Gc, Bc) 1−Ac

CONSTANT_ALPHA (Ac, Ac, Ac) Ac

ONE_MINUS_CONSTANT_ALPHA (1, 1, 1)− (Ac, Ac, Ac) 1−Ac

SRC_ALPHA_SATURATE (f, f, f)1 1
SRC1_COLOR (Rs1, Gs1, Bs1) As1

ONE_MINUS_SRC1_COLOR (1, 1, 1)− (Rs1, Gs1, Bs1) 1−As1

SRC1_ALPHA (As1, As1, As1) As1

ONE_MINUS_SRC1_ALPHA (1, 1, 1)− (As1, As1, As1) 1−As1

Table 4.2: RGB and ALPHA source and destination blending functions and the
corresponding blend factors. Addition and subtraction of triplets is performed
component-wise.
1 f = min(As0, 1−Ad).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.1. PER-FRAGMENT OPERATIONS 306

and any draw buffers greater than or equal to the value of MAX_DUAL_SOURCE_-
DRAW_BUFFERS have values other than NONE, the error INVALID_OPERATION is
generated by Begin or any operation that implicitly calls Begin (such as DrawEle-
ments).

Generation of Second Color Source for Blending

There is no way to generate the second source color using the fixed-function frag-
ment pipeline. Rendering using any of the blend functions that consume the second
input color (SRC1_COLOR, ONE_MINUS_SRC1_COLOR, SRC1_ALPHA or ONE_-
MINUS_SRC1_ALPHA) using fixed function will produce undefined results. To
produce input for the second source color, a shader must be used.

When using a GLSL fragment shader with dual source blending functions, the
color output varyings are bound to the first and second inputs of a draw buffer using
BindFragDataLocationIndexed as described in the Shader Outputs subsection
of section 3.12.2. Data written to the first of these outputs becomes the first source
color input to the blender (corresponding to SRC_COLOR and SRC_ALPHA). Data
written to the second of these outputs generates the second source color input to
the blender (corresponding to SRC1_COLOR and SRC1_ALPHA).

If the second color input to the blender is not written in the shader, or if no
output is bound to the second input of a blender, the result of the blending operation
is not defined.

Blend Color

The constant color Cc to be used in blending is specified with the command

void BlendColor(clampf red, clampf green, clampf blue,
clampf alpha);

The constant color can be used in both the source and destination blending
functions.

Blending State

The state required for blending is two integers for the RGB and alpha blend equa-
tions, four integers indicating the source and destination RGB and alpha blending
functions, four floating-point values to store the RGBA constant blend color, and a
bit indicating whether blending is enabled or disabled for each of the MAX_DRAW_-
BUFFERS draw buffers.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.1. PER-FRAGMENT OPERATIONS 307

The initial blend equations for RGB and alpha are both FUNC_ADD. The initial
blending functions are ONE for the source RGB and alpha functions and ZERO

for the destination RGB and alpha functions. The initial constant blend color is
(R,G,B,A) = (0, 0, 0, 0). Initially, blending is disabled for all draw buffers.

The value of the blend enable for draw buffer i can be queried by calling IsEn-
abledi with target BLEND and index i.

The value of the blend enable for draw buffer zero may also be queried by
calling IsEnabled with the same symbolic constant but no index parameter.

Blending occurs once for each color buffer currently enabled for blending and
for writing (section 4.2.1) using each buffer’s color for Cd. If a color buffer has no
A value, then Ad is taken to be 1.

4.1.9 sRGB Conversion

If FRAMEBUFFER_SRGB is enabled and the value of FRAMEBUFFER_-

ATTACHMENT_COLOR_ENCODING for the framebuffer attachment corresponding
to the destination buffer is SRGB (see section 6.1.3), the R, G, and B values after
blending are converted into the non-linear sRGB color space by computing

cs =


0.0, cl ≤ 0
12.92cl, 0 < cl < 0.0031308
1.055c0.41666

l − 0.055, 0.0031308 ≤ cl < 1
1.0, cl ≥ 1

(4.1)

where cl is the R, G, or B element and cs is the result (effectively converted into an
sRGB color space).

FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING is not SRGB, then

cs = cl.

The resulting cs values for R, G, and B, and the unmodified A form a new
RGBA color value. If the color buffer is fixed-point, each component is clamped
to the range [0, 1] and then converted to a fixed-point value using equation 2.4. The
resulting four values are sent to the subsequent dithering operation.

4.1.10 Dithering

Dithering selects between two representable color values or indices. A repre-
sentable value is a value that has an exact representation in the color buffer. In
RGBA mode dithering selects, for each color component, either the largest repre-
sentable color value (for that particular color component) that is less than or equal

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.1. PER-FRAGMENT OPERATIONS 308

to the incoming color component value, c, or the smallest representable color value
that is greater than or equal to c. The selection may depend on the xw and yw

coordinates of the pixel, as well as on the exact value of c. If one of the two values
does not exist, then the selection defaults to the other value.

In color index mode dithering selects either the largest representable index that
is less than or equal to the incoming color value, c, or the smallest representable
index that is greater than or equal to c. If one of the two indices does not exist, then
the selection defaults to the other value.

Many dithering selection algorithms are possible, but an individual selection
must depend only on the incoming color index or component value and the frag-
ment’s x and y window coordinates. If dithering is disabled, then each incoming
color component c is replaced with the largest positive representable color value
(for that particular component) that is less than or equal to c, or by the smallest
negative representable value, if no representable value is less than or equal to c. A
color index is rounded to the nearest representable index value.

Dithering is enabled with Enable and disabled with Disable using the symbolic
constant DITHER. The state required is thus a single bit. Initially, dithering is
enabled.

4.1.11 Logical Operation

Finally, a logical operation is applied between the incoming fragment’s color or
index values and the color or index values stored at the corresponding location in
the framebuffer. The result replaces the values in the framebuffer at the fragment’s
(xw, yw) coordinates. If the selected draw buffers refer to the same framebuffer-
attachable image more than once, then the values stored in that image are unde-
fined.

The logical operation on color indices is enabled or disabled with Enable or
Disable using the symbolic constant INDEX_LOGIC_OP. (For compatibility with
GL version 1.0, the symbolic constant LOGIC_OP may also be used.) The logical
operation on color values is enabled or disabled with Enable or Disable using
the symbolic constant COLOR_LOGIC_OP. If the logical operation is enabled for
color values, it is as if blending were disabled, regardless of the value of BLEND. If
multiple fragment colors are being written to multiple buffers (see section 4.2.1),
the logical operation is computed and applied separately for each fragment color
and the corresponding buffer.

Logical operation has no effect on a floating-point destination color buffer.
However, if logical operation is enabled, blending is still disabled.

The logical operation is selected by

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.1. PER-FRAGMENT OPERATIONS 309

Argument value Operation
CLEAR 0
AND s ∧ d
AND_REVERSE s ∧ ¬d
COPY s
AND_INVERTED ¬s ∧ d
NOOP d
XOR s xor d
OR s ∨ d
NOR ¬(s ∨ d)
EQUIV ¬(s xor d)
INVERT ¬d
OR_REVERSE s ∨ ¬d
COPY_INVERTED ¬s
OR_INVERTED ¬s ∨ d
NAND ¬(s ∧ d)
SET all 1’s

Table 4.3: Arguments to LogicOp and their corresponding operations.

void LogicOp(enum op);

op is a symbolic constant; the possible constants and corresponding operations are
enumerated in table 4.3. In this table, s is the value of the incoming fragment and d
is the value stored in the framebuffer. The numeric values assigned to the symbolic
constants are the same as those assigned to the corresponding symbolic values in
the X window system.

Logical operations are performed independently for each color index buffer
that is selected for writing, or for each red, green, blue, and alpha value of each
color buffer that is selected for writing. The required state is an integer indicating
the logical operation, and two bits indicating whether the logical operation is en-
abled or disabled. The initial state is for the logic operation to be given by COPY,
and to be disabled.

4.1.12 Additional Multisample Fragment Operations

If the DrawBuffer mode is NONE, no change is made to any multisample or color
buffer. Otherwise, fragment processing is as described below.

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, the

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.2. WHOLE FRAMEBUFFER OPERATIONS 310

alpha test, stencil test, depth test, blending, dithering, and logical operations are
performed for each pixel sample, rather than just once for each fragment. Failure
of the alpha, stencil, or depth test results in termination of the processing of that
sample, rather than discarding of the fragment. All operations are performed on the
color, depth, and stencil values stored in the multisample buffer (to be described
in a following section). The contents of the color buffers are not modified at this
point.

Stencil, depth, blending, dithering, and logical operations are performed for
a pixel sample only if that sample’s fragment coverage bit is a value of 1. If the
corresponding coverage bit is 0, no operations are performed for that sample.

If MULTISAMPLE is disabled, and the value of SAMPLE_BUFFERS is one, the
fragment may be treated exactly as described above, with optimization possible
because the fragment coverage must be set to full coverage. Further optimization is
allowed, however. An implementation may choose to identify a centermost sample,
and to perform alpha, stencil, and depth tests on only that sample. Regardless of
the outcome of the stencil test, all multisample buffer stencil sample values are set
to the appropriate new stencil value. If the depth test passes, all multisample buffer
depth sample values are set to the depth of the fragment’s centermost sample’s
depth value, and all multisample buffer color sample values are set to the color
value of the incoming fragment. Otherwise, no change is made to any multisample
buffer color or depth value.

After all operations have been completed on the multisample buffer, the sample
values for each color in the multisample buffer are combined to produce a single
color value, and that value is written into the corresponding color buffers selected
by DrawBuffer or DrawBuffers. An implementation may defer the writing of
the color buffers until a later time, but the state of the framebuffer must behave
as if the color buffers were updated as each fragment was processed. The method
of combination is not specified. If the framebuffer contains sRGB values, then it
is recommended that the an average of sample values is computed in a linearized
space, as for blending (see section 4.1.8). Otherwise, a simple average computed
independently for each color component is recommended.

4.2 Whole Framebuffer Operations

The preceding sections described the operations that occur as individual fragments
are sent to the framebuffer. This section describes operations that control or affect
the whole framebuffer.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.2. WHOLE FRAMEBUFFER OPERATIONS 311

4.2.1 Selecting a Buffer for Writing

The first such operation is controlling the color buffers into which each of the
fragment color values is written. This is accomplished with either DrawBuffer or
DrawBuffers.

The command

void DrawBuffer(enum buf);

defines the set of color buffers to which fragment color zero is written. buf
must be one of the values from tables 4.4 or 4.5. In addition, acceptable val-
ues for buf depend on whether the GL is using the default framebuffer (i.e.,
DRAW_FRAMEBUFFER_BINDING is zero), or a framebuffer object (i.e., DRAW_-
FRAMEBUFFER_BINDING is non-zero). In the initial state, the GL is bound to
the default framebuffer. For more information about framebuffer objects, see sec-
tion 4.4.

If the GL is bound to the default framebuffer, then buf must be one of the values
listed in table 4.4, which summarizes the constants and the buffers they indicate.
In this case, buf is a symbolic constant specifying zero, one, two, or four buffers
for writing. These constants refer to the four potentially visible buffers (front left,
front right, back left, and back right), and to the auxiliary buffers. Arguments
other than AUXi that omit reference to LEFT or RIGHT refer to both left and right
buffers. Arguments other than AUXi that omit reference to FRONT or BACK refer
to both front and back buffers. AUXi enables drawing only to auxiliary buffer i.
Each AUXi adheres to AUXi = AUX0 + i, and i must be in the range 0 to the value of
AUX_BUFFERS minus one.

If the GL is bound to a framebuffer object, buf must be one of the values listed
in table 4.5, which summarizes the constants and the buffers they indicate. In
this case, buf is a symbolic constant specifying a single color buffer for writing.
Specifying COLOR_ATTACHMENTi enables drawing only to the image attached to
the framebuffer at COLOR_ATTACHMENTi. Each COLOR_ATTACHMENTi adheres to
COLOR_ATTACHMENTi = COLOR_ATTACHMENT0 + i. The intial value of DRAW_-
BUFFER for framebuffer objects is COLOR_ATTACHMENT0.

If the GL is bound to the default framebuffer and DrawBuffer is supplied with
a constant (other than NONE) that does not indicate any of the color buffers allocated
to the GL context, the error INVALID_OPERATION results.

If the GL is bound to a framebuffer object and buf is one of the constants
from table 4.4, then the error INVALID_OPERATION results. If buf is COLOR_-
ATTACHMENTm and m is greater than or equal to the value of MAX_COLOR_-

ATTACHMENTS, then the error INVALID_VALUE results.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.2. WHOLE FRAMEBUFFER OPERATIONS 312

Symbolic Front Front Back Back Aux
Constant Left Right Left Right i

NONE

FRONT_LEFT •
FRONT_RIGHT •
BACK_LEFT •
BACK_RIGHT •
FRONT • •
BACK • •
LEFT • •
RIGHT • •
FRONT_AND_BACK • • • •
AUXi •

Table 4.4: Arguments to DrawBuffer(s) and ReadBuffer when the context is
bound to a default framebuffer, and the buffers they indicate.

If DrawBuffer is supplied with a constant that is legal for neither the default
framebuffer nor a framebuffer object, then the error INVALID_ENUM results.

DrawBuffer will set the draw buffer for fragment colors other than zero to
NONE.

The command

void DrawBuffers(sizei n, const enum *bufs);

defines the draw buffers to which all fragment colors are written. n specifies the
number of buffers in bufs. bufs is a pointer to an array of symbolic constants
specifying the buffer to which each fragment color is written.

Symbolic Constant Meaning
NONE No buffer
COLOR_ATTACHMENTi (see caption) Output fragment color to image attached

at color attachment point i

Table 4.5: Arguments to DrawBuffer(s) and ReadBuffer when the context is
bound to a framebuffer object, and the buffers they indicate. i in COLOR_-

ATTACHMENTi may range from zero to the value of MAX_COLOR_ATTACHMENTS
- 1.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.2. WHOLE FRAMEBUFFER OPERATIONS 313

Symbolic Front Front Back Back Aux
Constant Left Right Left Right i

NONE

FRONT_LEFT •
FRONT_RIGHT •
BACK_LEFT •
BACK_RIGHT •
AUXi •

Table 4.6: Arguments to DrawBuffers when the context is bound to the default
framebuffer, and the buffers they indicate.

Each buffer listed in bufs must be one of the values from tables 4.5 or 4.6. Oth-
erwise, an INVALID_ENUM error is generated. Further, acceptable values for the
constants in bufs depend on whether the GL is using the default framebuffer (i.e.,
DRAW_FRAMEBUFFER_BINDING is zero), or a framebuffer object (i.e., DRAW_-
FRAMEBUFFER_BINDING is non-zero). For more information about framebuffer
objects, see section 4.4.

If the GL is bound to the default framebuffer, then each of the constants must
be one of the values listed in table 4.6.

If the GL is bound to an framebuffer object, then each of the constants must be
one of the values listed in table 4.5.

In both cases, the draw buffers being defined correspond in order to the re-
spective fragment colors. The draw buffer for fragment colors beyond n is set to
NONE.

The maximum number of draw buffers is implementation-dependent. The
number of draw buffers supported can be queried by calling GetIntegerv with the
symbolic constant MAX_DRAW_BUFFERS. An INVALID_VALUE error is generated
if n is greater than MAX_DRAW_BUFFERS.

Except for NONE, a buffer may not appear more then once in the array pointed
to by bufs. Specifying a buffer more then once will result in the error INVALID_-
OPERATION.

If fixed-function fragment shading is being performed, DrawBuffers specifies
a set of draw buffers into which the fragment color is written.

If a fragment shader writes to gl_FragColor, DrawBuffers specifies a set
of draw buffers into which the single fragment color defined by gl_FragColor

is written. If a fragment shader writes to gl_FragData, or a user-defined vary-
ing out variable, DrawBuffers specifies a set of draw buffers into which each of

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.2. WHOLE FRAMEBUFFER OPERATIONS 314

the multiple output colors defined by these variables are separately written. If a
fragment shader writes to none of gl_FragColor, gl_FragData, nor any user-
defined varying out variables, the values of the fragment colors following shader
execution are undefined, and may differ for each fragment color.

For both the default framebuffer and framebuffer objects, the constants FRONT,
BACK, LEFT, RIGHT, and FRONT_AND_BACK are not valid in the bufs array passed
to DrawBuffers, and will result in the error INVALID_ENUM. This restriction is
because these constants may themselves refer to multiple buffers, as shown in ta-
ble 4.4.

If the GL is bound to the default framebuffer and DrawBuffers is supplied with
a constant (other than NONE) that does not indicate any of the color buffers allocated
to the GL context by the window system, the error INVALID_OPERATION will be
generated.

If the GL is bound to a framebuffer object and DrawBuffers is supplied with
a constant from table 4.6, or COLOR_ATTACHMENTm where m is greater than
or equal to the value of MAX_COLOR_ATTACHMENTS, then the error INVALID_-
OPERATION results.

Indicating a buffer or buffers using DrawBuffer or DrawBuffers causes sub-
sequent pixel color value writes to affect the indicated buffers.

Specifying NONE as the draw buffer for a fragment color will inhibit that frag-
ment color from being written to any buffer.

Monoscopic contexts include only left buffers, while stereoscopic contexts in-
clude both left and right buffers. Likewise, single buffered contexts include only
front buffers, while double buffered contexts include both front and back buffers.
The type of context is selected at GL initialization.

The state required to handle color buffer selection for each framebuffer is an
integer for each supported fragment color. For the default framebuffer, in the initial
state the draw buffer for fragment color zero is BACK if there is a back buffer;
FRONT if there is no back buffer; and NONE if no default framebuffer is associated
with the context. For framebuffer objects, in the initial state the draw buffer for
fragment color zero is COLOR_ATTACHMENT0. For both the default framebuffer
and framebuffer objects, the initial state of draw buffers for fragment colors other
then zero is NONE.

The value of the draw buffer selected for fragment color i can be queried by
calling GetIntegerv with the symbolic constant DRAW_BUFFERi. DRAW_BUFFER

is equivalent to DRAW_BUFFER0.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.2. WHOLE FRAMEBUFFER OPERATIONS 315

4.2.2 Fine Control of Buffer Updates

Writing of bits to each of the logical framebuffers after all per-fragment operations
have been performed may be masked. The commands

void IndexMask(uint mask);
void ColorMask(boolean r, boolean g, boolean b,

boolean a);
void ColorMaski(uint buf, boolean r, boolean g,

boolean b, boolean a);

control writes to the active draw buffers.
The least significant n bits of mask, where n is the number of bits in a color

index buffer, specify a mask. Where a 1 appears in this mask, the corresponding
bit in the color index buffer (or buffers) is written; where a 0 appears, the bit is not
written. This mask applies only in color index mode.

In RGBA mode, ColorMask and ColorMaski are used to mask the writing of
R, G, B and A values to the draw buffer or buffers. ColorMaski sets the mask
for a particular draw buffer. The mask for DRAW_BUFFERi is modified by passing
i as the parameter buf. r, g, b, and a indicate whether R, G, B, or A values, re-
spectively, are written or not (a value of TRUE means that the corresponding value
is written). The mask specified by r, g, b, and a is applied to the color buffer as-
sociated with DRAW_BUFFERi. If DRAW_BUFFERi is one of FRONT, BACK, LEFT,
RIGHT, or FRONT_AND_BACK (specifying multiple color buffers) then the mask is
applied to all of the buffers.

ColorMask sets the mask for all draw buffers to the same values as specified
by r, g, b, and a.

An INVALID_VALUE error is generated if index is greater than the value of
MAX_DRAW_BUFFERS minus one.

In the initial state, all bits (in color index mode) and all color values (in RGBA
mode) are enabled for writing for all draw buffers.

The value of the color writemask for draw buffer i can be queried by calling
GetBooleani v with target COLOR_WRITEMASK and index i. The value of the color
writemask for draw buffer zero may also be queried by calling GetBooleanv with
the symbolic constant COLOR_WRITEMASK.

The depth buffer can be enabled or disabled for writing zw values using

void DepthMask(boolean mask);

If mask is non-zero, the depth buffer is enabled for writing; otherwise, it is disabled.
In the initial state, the depth buffer is enabled for writing.

The commands

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.2. WHOLE FRAMEBUFFER OPERATIONS 316

void StencilMask(uint mask);
void StencilMaskSeparate(enum face, uint mask);

control the writing of particular bits into the stencil planes.
The least significant s bits of mask, where s is the number of bits in the stencil

buffer, specify an integer mask. Where a 1 appears in this mask, the corresponding
bit in the stencil buffer is written; where a 0 appears, the bit is not written. The face
parameter of StencilMaskSeparate can be FRONT, BACK, or FRONT_AND_BACK
and indicates whether the front or back stencil mask state is affected. StencilMask
sets both front and back stencil mask state to identical values.

Fragments generated by front-facing primitives use the front mask and frag-
ments generated by back-facing primitives use the back mask (see section 4.1.5).
The clear operation always uses the front stencil write mask when clearing the
stencil buffer.

The state required for the various masking operations is an integer for color
indices, two integers for the front and back stencil values, and a bit for depth values.
A set of four bits is also required indicating which color components of an RGBA
value should be written. In the initial state, the integer masks are all ones, as are
the bits controlling depth value and RGBA component writing.

Fine Control of Multisample Buffer Updates

When the value of SAMPLE_BUFFERS is one, ColorMask, DepthMask, and Sten-
cilMask or StencilMaskSeparate control the modification of values in the multi-
sample buffer. The color mask has no effect on modifications to the color buffers.
If the color mask is entirely disabled, the color sample values must still be com-
bined (as described above) and the result used to replace the color values of the
buffers enabled by DrawBuffer.

4.2.3 Clearing the Buffers

The GL provides a means for setting portions of every pixel in a particular buffer
to the same value. The argument to

void Clear(bitfield buf);

is zero or the bitwise OR of one or more values indicating which buffers are to
be cleared. The values are COLOR_BUFFER_BIT, ACCUM_BUFFER_BIT, DEPTH_-
BUFFER_BIT, and STENCIL_BUFFER_BIT, indicating the buffers currently en-
abled for color writing, the accumulation buffer, the depth buffer, and the stencil

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.2. WHOLE FRAMEBUFFER OPERATIONS 317

buffer (see below), respectively. The value to which each buffer is cleared de-
pends on the setting of the clear value for that buffer. If buf is zero, no buffers
are cleared. If buf contains any bits other than COLOR_BUFFER_BIT, ACCUM_-
BUFFER_BIT, DEPTH_BUFFER_BIT, or STENCIL_BUFFER_BIT, then the error
INVALID_VALUE is generated.

void ClearColor(clampf r, clampf g, clampf b,
clampf a);

sets the clear value for fixed- and floating-point color buffers in RGBA mode. The
specified components are stored as floating-point values.

The command

void ClearIndex(float index);

sets the clear color index. index is converted to a fixed-point value with unspecified
precision to the left of the binary point; the integer part of this value is then masked
with 2m − 1, where m is the number of bits in a color index value stored in the
framebuffer.

The command

void ClearDepth(clampd d);

sets the depth value used when clearing the depth buffer. d is clamped to the
range [0, 1]. When clearing a fixed-point depth buffer, d is converted to fixed-point
according to the rules for a window z value given in section 2.16.1. No conversion
is applied when clearing a floating-point depth buffer.

The command

void ClearStencil(int s);

takes a single integer argument that is the value to which to clear the stencil buffer.
s is masked to the number of bitplanes in the stencil buffer.

The command

void ClearAccum(float r, float g, float b, float a);

takes four floating-point arguments that are the values, in order, to which to set the
R, G, B, and A values of the accumulation buffer (see the next section). These
values are clamped to the range [−1, 1] when they are specified.

When Clear is called, the only per-fragment operations that are applied (if
enabled) are the pixel ownership test, the scissor test, and dithering. The masking

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.2. WHOLE FRAMEBUFFER OPERATIONS 318

operations described in section 4.2.2 are also applied. If a buffer is not present,
then a Clear directed at that buffer has no effect. Unsigned normalized fixed-point
and signed normalized fixed-point RGBA color buffers are cleared to color values
derived by clamping each component of the clear color to the range [0, 1] or [−1, 1]
respectively, then converting to fixed-point using equations 2.4 or 2.6, respectively.
The result of clearing integer color buffers is undefined.

The state required for clearing is a clear value for each of the color buffer, the
accumulation buffer, the depth buffer, and the stencil buffer. Initially, the RGBA
color clear value is (0, 0, 0, 0), the accumulation buffer clear value is (0, 0, 0, 0),
the clear color index is 0, the depth buffer clear value is 1.0, and the stencil buffer
clear index is 0.

Individual buffers of the currently bound draw framebuffer may be cleared with
the command

void ClearBuffer{if ui}v(enum buffer, int drawbuffer,
const T *value);

where buffer and drawbuffer identify a buffer to clear, and value specifies the value
or values to clear it to.

If buffer is COLOR, a particular draw buffer DRAW_BUFFERi is specified by
passing i as the parameter drawbuffer, and value points to a four-element vec-
tor specifying the R, G, B, and A color to clear that draw buffer to. If the draw
buffer is one of FRONT, BACK, LEFT, RIGHT, or FRONT_AND_BACK, identifying
multiple buffers, each selected buffer is cleared to the same value. The Clear-
Bufferfv, ClearBufferiv, and ClearBufferuiv commands should be used to clear
fixed- and floating-point, signed integer, and unsigned integer color buffers respec-
tively. Clamping and conversion for fixed-point color buffers are performed in the
same fashion as ClearColor.

If buffer is DEPTH, drawbuffer must be zero, and value points to the single
depth value to clear the depth buffer to. Clamping and type conversion for fixed-
point depth buffers are performed in the same fashion as ClearDepth. Only Clear-
Bufferfv should be used to clear depth buffers.

If buffer is STENCIL, drawbuffer must be zero, and value points to the single
stencil value to clear the stencil buffer to. Masking and type conversion are per-
formed in the same fashion as ClearStencil. Only ClearBufferiv should be used
to clear stencil buffers.

The command

void ClearBufferfi(enum buffer, int drawbuffer,
float depth, int stencil);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.2. WHOLE FRAMEBUFFER OPERATIONS 319

clears both depth and stencil buffers of the currently bound draw framebuffer.
buffer must be DEPTH_STENCIL and drawbuffer must be zero. depth and sten-
cil are the values to clear the depth and stencil buffers to, respectively. Clamping
and type conversion of depth for fixed-point depth buffers is performed in the same
fashion as ClearDepth. Masking of stencil for stencil buffers is performed in the
same fashion as ClearStencil. ClearBufferfi is equivalent to clearing the depth
and stencil buffers separately, but may be faster when a buffer of internal format
DEPTH_STENCIL is being cleared.

The result of ClearBuffer is undefined if no conversion between the type of
the specified value and the type of the buffer being cleared is defined (for example,
if ClearBufferiv is called for a fixed- or floating-point buffer, or if ClearBufferfv
is called for a signed or unsigned integer buffer). This is not an error.

When ClearBuffer is called, the same per-fragment and masking operations
defined for Clear are applied.
Errors

ClearBuffer{if ui}v generates an INVALID_ENUM error if buffer is not COLOR,
DEPTH, or STENCIL. ClearBufferfi generates an INVALID_ENUM error if buffer is
not DEPTH_STENCIL.

ClearBuffer generates an INVALID_VALUE error if buffer is COLOR and draw-
buffer is less than zero, or greater than the value of MAX_DRAW_BUFFERS minus
one; or if buffer is DEPTH, STENCIL, or DEPTH_STENCIL and drawbuffer is not
zero.

ClearBuffer generates an INVALID_OPERATION error if buffer is COLOR and
the GL is in color index mode.

Clearing the Multisample Buffer

The color samples of the multisample buffer are cleared when one or more color
buffers are cleared, as specified by the Clear mask bit COLOR_BUFFER_BIT and
the DrawBuffer mode. If the DrawBuffer mode is NONE, the color samples of the
multisample buffer cannot be cleared using Clear.

If the Clear mask bits DEPTH_BUFFER_BIT or STENCIL_BUFFER_BIT are
set, then the corresponding depth or stencil samples, respectively, are cleared.

The ClearBuffer commands also clear color, depth, or stencil samples of mul-
tisample buffers corresponding to the specified buffer.

4.2.4 The Accumulation Buffer

Each portion of a pixel in the accumulation buffer consists of four values: one for
each of R, G, B, and A. The accumulation buffer is controlled exclusively through

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.2. WHOLE FRAMEBUFFER OPERATIONS 320

the use of

void Accum(enum op, float value);

(except for clearing it). op is a symbolic constant indicating an accumulation buffer
operation, and value is a floating-point value to be used in that operation. The
possible operations are ACCUM, LOAD, RETURN, MULT, and ADD.

When the scissor test is enabled (section 4.1.2), then only those pixels within
the current scissor box are updated by any Accum operation; otherwise, all pixels
in the window are updated. The accumulation buffer operations apply identically
to every affected pixel, so we describe the effect of each operation on an individ-
ual pixel. Accumulation buffer values are taken to be signed values in the range
[−1, 1]. Using ACCUM obtains R, G, B, and A components from the buffer cur-
rently selected for reading (section 4.3.2). If the color buffer is fixed-point, each
component is considered as an unsigned normalized value in the range [0, 1] and is
converted to floating-point using equation 2.1. Each result is then multiplied by
value. The results of this multiplication are then added to the corresponding color
component currently in the accumulation buffer, and the resulting color value re-
places the current accumulation buffer color value.

The LOAD operation has the same effect as ACCUM, but the computed values
replace the corresponding accumulation buffer components rather than being added
to them.

The RETURN operation takes each color value from the accumulation buffer,
multiplies each of the R, G, B, and A components by value. If fragment color
clamping is enabled, the results are then clamped to the range [0, 1]. The result-
ing color value is placed in the buffers currently enabled for color writing as if
it were a fragment produced from rasterization, except that the only per-fragment
operations that are applied (if enabled) are the pixel ownership test, the scissor test
(section 4.1.2), and dithering (section 4.1.10). Color masking (section 4.2.2) is also
applied.

The MULT operation multiplies each R, G, B, and A in the accumulation buffer
by value and then returns the scaled color components to their corresponding ac-
cumulation buffer locations. ADD is the same as MULT except that value is added to
each of the color components.

The color components operated on by Accum must be clamped only if the
operation is RETURN. In this case, a value sent to the enabled color buffers is first
clamped to [0, 1]. Otherwise, results are undefined if the result of an operation on
a color component is out of the range [−1, 1].

If there is no accumulation buffer; if the DRAW_FRAMEBUFFER and READ_-

FRAMEBUFFER bindings (see section 4.4.4) do not refer to the same object; or if
the GL is in color index mode, Accum generates the error INVALID_OPERATION.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.3. DRAWING, READING, AND COPYING PIXELS 321

No state (beyond the accumulation buffer itself) is required for accumulation
buffering.

4.3 Drawing, Reading, and Copying Pixels

Pixels may be written to the framebuffer using DrawPixels. Pixels may be read
from the framebuffer using ReadPixels. CopyPixels and BlitFramebuffer can be
used to copy a block of pixels from one portion of the framebuffer to another.
4.3.1 Writing to the Stencil or Depth/Stencil Buffers

The operation of DrawPixels was described in section 3.7.5, except if the format
argument was STENCIL_INDEX or DEPTH_STENCIL. In this case, all operations
described for DrawPixels take place, but window (x, y) coordinates, each with
the corresponding stencil index, or depth value and stencil index, are produced in
lieu of fragments. Each coordinate-data pair is sent directly to the per-fragment
operations, bypassing the texture, fog, and antialiasing application stages of raster-
ization. Each pair is then treated as a fragment for purposes of the pixel ownership
and scissor tests; all other per-fragment operations are bypassed. Finally, each
stencil index is written to its indicated location in the framebuffer, subject to the
current front stencil mask (set with StencilMask or StencilMaskSeparate). If a
depth component is present, and the setting of DepthMask is not FALSE, it is also
written to the framebuffer; the setting of DepthFunc is ignored.

The error INVALID_OPERATION results if the format argument is STENCIL_-
INDEX and there is no stencil buffer, or if format is DEPTH_STENCIL and there is
not both a depth buffer and a stencil buffer.

4.3.2 Reading Pixels

The method for reading pixels from the framebuffer and placing them in pixel pack
buffer or client memory is diagrammed in figure 4.2. We describe the stages of the
pixel reading process in the order in which they occur.

Initially, zero is bound for the PIXEL_PACK_BUFFER, indicating that image
read and query commands such as ReadPixels return pixel results into client mem-
ory pointer parameters. However, if a non-zero buffer object is bound as the current
pixel pack buffer, then the pointer parameter is treated as an offset into the desig-
nated buffer object.

Pixels are read using

void ReadPixels(int x, int y, sizei width, sizei height,
enum format, enum type, void *data);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.3. DRAWING, READING, AND COPYING PIXELS 322

post
convolution

convert
to float

RGBA pixel
data in

color index pixel
data in

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

scale
and bias

Pixel Transfer
Operations

color table
lookup

convolution
scale a nd bias

histogram

minmax

color table
lookup

RGBA to RGBA
lookup

shift
and offset

index to index
look up

index to RGBA
looku p

color table
lookup

color matrix
scale and bias

post
color matrix

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

pack

convert
RGB to L

clamp
to [0,1]

mask to
(2n − 1)

byte, short, int, o r float pixel
data stream (index or component)

Pixel Storage
Operations

Figure 4.2. Operation of ReadPixels. Operations in dashed boxes may be enabled
or disabled, except in the case of ”convert RGB to L”, which is only applied when
reading color data in luminosity formats. RGBA and color index pixel paths are
shown; depth and stencil pixel paths are not shown.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.3. DRAWING, READING, AND COPYING PIXELS 323

Parameter Name Type Initial Value Valid Range
PACK_SWAP_BYTES boolean FALSE TRUE/FALSE
PACK_LSB_FIRST boolean FALSE TRUE/FALSE
PACK_ROW_LENGTH integer 0 [0,∞)
PACK_SKIP_ROWS integer 0 [0,∞)
PACK_SKIP_PIXELS integer 0 [0,∞)
PACK_ALIGNMENT integer 4 1,2,4,8
PACK_IMAGE_HEIGHT integer 0 [0,∞)
PACK_SKIP_IMAGES integer 0 [0,∞)

Table 4.7: PixelStore parameters pertaining to ReadPixels, GetColorTable, Get-
ConvolutionFilter, GetSeparableFilter, GetHistogram, GetMinmax, GetPoly-
gonStipple, and GetTexImage.

The arguments after x and y to ReadPixels are described in section 3.7.4. The pixel
storage modes that apply to ReadPixels and other commands that query images
(see section 6.1) are summarized in table 4.7.

ReadPixels generates an INVALID_OPERATION error
if READ_FRAMEBUFFER_BINDING (see section 4.4) is non-zero, the read frame-
buffer is framebuffer complete, and the value of SAMPLE_BUFFERS for the read
framebuffer is greater than zero.

Obtaining Pixels from the Framebuffer

If the format is DEPTH_COMPONENT, then values are obtained from the depth buffer.
If there is no depth buffer, the error INVALID_OPERATION occurs.

If there is a multisample buffer (the value of SAMPLE_BUFFERS is one), then
values are obtained from the depth samples in this buffer. It is recommended that
the depth value of the centermost sample be used, though implementations may
choose any function of the depth sample values at each pixel.

If the format is DEPTH_STENCIL, then values are taken from both the depth
buffer and the stencil buffer. If there is no depth buffer or if there is no stencil
buffer, then the error INVALID_OPERATION occurs. If the type parameter is not
UNSIGNED_INT_24_8 or FLOAT_32_UNSIGNED_INT_24_8_REV, then the error
INVALID_ENUM occurs.

If there is a multisample buffer, then values are obtained from the depth and
stencil samples in this buffer. It is recommended that the depth and stencil values of
the centermost sample be used, though implementations may choose any function
of the depth and stencil sample values at each pixel.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.3. DRAWING, READING, AND COPYING PIXELS 324

If the format is STENCIL_INDEX, then values are taken from the stencil buffer;
again, if there is no stencil buffer, the error INVALID_OPERATION occurs.

If there is a multisample buffer, then values are obtained from the stencil sam-
ples in this buffer. It is recommended that the stencil value of the centermost sam-
ple be used, though implementations may choose any function of the stencil sample
values at each pixel.

For all other formats, the read buffer from which values are obtained is one of
the color buffers; the selection of color buffer is controlled with ReadBuffer.

The command

void ReadBuffer(enum src);

takes a symbolic constant as argument. src must be one of the values from ta-
bles 4.4 or 4.5. Otherwise, an INVALID_ENUM error is generated. Further, the
acceptable values for src depend on whether the GL is using the default frame-
buffer (i.e., READ_FRAMEBUFFER_BINDING is zero), or a framebuffer object (i.e.,
READ_FRAMEBUFFER_BINDING is non-zero). For more information about frame-
buffer objects, see section 4.4.

If the object bound to READ_FRAMEBUFFER_BINDING is not framebuffer com-
plete (as defined in section 4.4.4), then ReadPixels generates the error INVALID_-
FRAMEBUFFER_OPERATION. If ReadBuffer is supplied with a constant that is nei-
ther legal for the default framebuffer, nor legal for a framebuffer object, then the
error INVALID_ENUM results.

When READ_FRAMEBUFFER_BINDING is zero, i.e. the default framebuffer, src
must be one of the values listed in table 4.4, including NONE. FRONT_AND_BACK,
FRONT, and LEFT refer to the front left buffer, BACK refers to the back left buffer,
and RIGHT refers to the front right buffer. The other constants correspond directly
to the buffers that they name. If the requested buffer is missing, then the error
INVALID_OPERATION is generated. For the default framebuffer, the initial setting
for ReadBuffer is FRONT if there is no back buffer and BACK otherwise.

When the GL is using a framebuffer object, src must be one of the values listed
in table 4.5, including NONE. In a manner analogous to how the DRAW_BUFFERs
state is handled, specifying COLOR_ATTACHMENTi enables reading from the image
attached to the framebuffer at COLOR_ATTACHMENTi. For framebuffer objects, the
initial setting for ReadBuffer is COLOR_ATTACHMENT0.

ReadPixels generates an INVALID_OPERATION error if it attempts to select a
color buffer while READ_BUFFER is NONE.

ReadPixels obtains values from the selected buffer from each pixel with lower
left hand corner at (x + i, y + j) for 0 ≤ i < width and 0 ≤ j < height;
this pixel is said to be the ith pixel in the jth row. If any of these pixels lies

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.3. DRAWING, READING, AND COPYING PIXELS 325

outside of the window allocated to the current GL context, or outside of the image
attached to the currently bound framebuffer object, then the values obtained for
those pixels are undefined. When READ_FRAMEBUFFER_BINDING is zero, values
are also undefined for individual pixels that are not owned by the current context.
Otherwise, ReadPixels obtains values from the selected buffer, regardless of how
those values were placed there.

If the GL is in RGBA mode, and format is one of LUMINANCE, LUMINANCE_-
ALPHA, RED, GREEN, BLUE, ALPHA, RG, RGB, RGBA, BGR, or BGRA, then red, green,
blue, and alpha values are obtained from the selected buffer at each pixel loca-
tion. If the framebuffer does not support alpha values then the A that is obtained
is 1.0. If format is COLOR_INDEX and the GL is in RGBA mode then the error
INVALID_OPERATION occurs. If the GL is in color index mode, and format is not
DEPTH_COMPONENT, DEPTH_STENCIL, or STENCIL_INDEX, then the color index
is obtained at each pixel location.

If format is an integer format and the color buffer is not an integer format; if the
color buffer is an integer format and format is not an integer format; or if format
is an integer format and type is FLOAT or HALF_FLOAT, the error INVALID_-
OPERATION occurs.

When READ_FRAMEBUFFER_BINDING is non-zero, the red, green, blue, and
alpha values are obtained by first reading the internal component values of the
corresponding value in the image attached to the selected logical buffer. Internal
components are converted to an RGBA color by taking each R, G, B, and A com-
ponent present according to the base internal format of the buffer (as shown in
table 3.16). If G, B, or A values are not present in the internal format, they are
taken to be zero, zero, and one respectively.

Conversion of RGBA values

This step applies only if the GL is in RGBA mode, and then only if format is not
STENCIL_INDEX, DEPTH_COMPONENT, or DEPTH_STENCIL. The R, G, B, and A
values form a group of elements.

For a signed or unsigned normalized fixed-point color buffer, each element is
converted to floating-point using equations 2.3 or 2.1, respectively. For an integer
or floating-point color buffer, the elements are unmodified.

Conversion of Depth values

This step applies only if format is DEPTH_COMPONENT or DEPTH_STENCIL and
the depth buffer uses a fixed-point representation. An element is taken to be a
fixed-point value in [0, 1] with m bits, where m is the number of bits in the depth

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.3. DRAWING, READING, AND COPYING PIXELS 326

buffer (see section 2.16.1). No conversion is necessary if the depth buffer uses a
floating-point representation.

Pixel Transfer Operations

This step is actually the sequence of steps that was described separately in sec-
tion 3.7.6. After the processing described in that section is completed, groups are
processed as described in the following sections.

Conversion to L

This step applies only to RGBA component groups. If the format is either
LUMINANCE or LUMINANCE_ALPHA, a value L is computed as

L = R+G+B

where R, G, and B are the values of the R, G, and B components. The single
computed L component replaces the R, G, and B components in the group.

Final Conversion

For an index, if the type is not FLOAT or HALF_FLOAT, final conversion consists
of masking the index with the value given in table 4.8; if the type is FLOAT or
HALF_FLOAT, then the integer index is converted to a GL float or half data
value.

Read color clamping is controlled by calling ClampColor (see section 3.7.5)
with target set to CLAMP_READ_COLOR. If clamp is TRUE, read color clamping is
enabled; if clamp is FALSE, read color clamping is disabled. If clamp is FIXED_-
ONLY, read color clamping is enabled if the selected read color buffer has fixed-
point components.

For a floating-point RGBA color, if type is not one of FLOAT, HALF_FLOAT,
UNSIGNED_INT_5_9_9_9_REV, or UNSIGNED_INT_10F_11F_11F_REV; or if
read color clamping is enabled, each component is first clamped to [0, 1]. Then the
appropriate conversion formula from table 4.9 is applied to the component.

In the special case of calling ReadPixels with type of UNSIGNED_INT_10F_-
11F_11F_REV and format of RGB, conversion is performed as follows: the returned
data are packed into a series of uint values. The red, green, and blue components
are converted to unsigned 11-bit floating-point, unsigned 11-bit floating-point, and
unsigned 10-bit floating point as described in sections 2.1.3 and 2.1.4. The result-
ing red 11 bits, green 11 bits, and blue 10 bits are then packed as the 1st, 2nd, and

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.3. DRAWING, READING, AND COPYING PIXELS 327

type Parameter Index Mask
UNSIGNED_BYTE 28 − 1
BITMAP 1
BYTE 27 − 1
UNSIGNED_SHORT 216 − 1
SHORT 215 − 1
UNSIGNED_INT 232 − 1
INT 231 − 1
UNSIGNED_INT_24_8 28 − 1
FLOAT_32_UNSIGNED_INT_24_8_REV 28 − 1

Table 4.8: Index masks used by ReadPixels. Floating point data are not masked.

3rd components of the UNSIGNED_INT_10F_11F_11F_REV format as shown in
table 3.11.

In the special case of calling ReadPixels with type of UNSIGNED_INT_5_-
9_9_9_REV and format RGB, the conversion is performed as follows: the returned
data are packed into a series of uint values. The red, green, and blue compo-
nents are converted to reds, greens, blues, and expshared integers as described
in section 3.9.3 when internalformat is RGB9_E5. The reds, greens, blues,
and expshared are then packed as the 1st, 2nd, 3rd, and 4th components of the
UNSIGNED_INT_5_9_9_9_REV format as shown in table 3.11.

For an integer RGBA color, each component is clamped to the representable
range of type.

Placement in Pixel Pack Buffer or Client Memory

If a pixel pack buffer is bound (as indicated by a non-zero value of PIXEL_PACK_-
BUFFER_BINDING), data is an offset into the pixel pack buffer and the pixels are
packed into the buffer relative to this offset; otherwise, data is a pointer to a block
client memory and the pixels are packed into the client memory relative to the
pointer. If a pixel pack buffer object is bound and packing the pixel data according
to the pixel pack storage state would access memory beyond the size of the pixel
pack buffer’s memory size, an INVALID_OPERATION error results. If a pixel pack
buffer object is bound and data is not evenly divisible by the number of basic
machine units needed to store in memory the corresponding GL data type from
table 3.5 for the type parameter, an INVALID_OPERATION error results.

Groups of elements are placed in memory just as they are taken from mem-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.3. DRAWING, READING, AND COPYING PIXELS 328

type Parameter GL Data Type Component
Conversion Formula

UNSIGNED_BYTE ubyte c = (28 − 1)f
BYTE byte c = (28−1)f−1

2

UNSIGNED_SHORT ushort c = (216 − 1)f
SHORT short c = (216−1)f−1

2

UNSIGNED_INT uint c = (232 − 1)f
INT int c = (232−1)f−1

2

HALF_FLOAT half c = f

FLOAT float c = f

UNSIGNED_BYTE_3_3_2 ubyte c = (2N − 1)f
UNSIGNED_BYTE_2_3_3_REV ubyte c = (2N − 1)f
UNSIGNED_SHORT_5_6_5 ushort c = (2N − 1)f
UNSIGNED_SHORT_5_6_5_REV ushort c = (2N − 1)f
UNSIGNED_SHORT_4_4_4_4 ushort c = (2N − 1)f
UNSIGNED_SHORT_4_4_4_4_REV ushort c = (2N − 1)f
UNSIGNED_SHORT_5_5_5_1 ushort c = (2N − 1)f
UNSIGNED_SHORT_1_5_5_5_REV ushort c = (2N − 1)f
UNSIGNED_INT_8_8_8_8 uint c = (2N − 1)f
UNSIGNED_INT_8_8_8_8_REV uint c = (2N − 1)f
UNSIGNED_INT_10_10_10_2 uint c = (2N − 1)f
UNSIGNED_INT_2_10_10_10_REV uint c = (2N − 1)f
UNSIGNED_INT_24_8 uint c = (2N − 1)f
UNSIGNED_INT_10F_11F_11F_REV uint Special
UNSIGNED_INT_5_9_9_9_REV uint Special
FLOAT_32_UNSIGNED_INT_24_8_REV float c = f (depth only)

Table 4.9: Reversed component conversions, used when component data are being
returned to client memory. Color, normal, and depth components are converted
from the internal floating-point representation (f) to a datum of the specified GL
data type (c) using the specified equation. All arithmetic is done in the internal
floating point format. These conversions apply to component data returned by GL
query commands and to components of pixel data returned to client memory. The
equations remain the same even if the implemented ranges of the GL data types are
greater than the minimum required ranges. (See table 2.2.) Equations with N as
the exponent are performed for each bitfield of the packed data type, with N set to
the number of bits in the bitfield.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.3. DRAWING, READING, AND COPYING PIXELS 329

ory when transferring pixel rectangles to the GL. That is, the ith group of the
jth row (corresponding to the ith pixel in the jth row) is placed in memory just
where the ith group of the jth row would be taken from when transferring pix-
els. See Unpacking under section 3.7.4. The only difference is that the storage
mode parameters whose names begin with PACK_ are used instead of those whose
names begin with UNPACK_. If the format is LUMINANCE, RED, GREEN, BLUE, or
ALPHA, only the corresponding single element is written. Likewise if the format
is LUMINANCE_ALPHA, RG, RGB, or BGR, only the corresponding two or three ele-
ments are written. Otherwise all the elements of each group are written.

4.3.3 Copying Pixels

The command

void CopyPixels(int x, int y, sizei width, sizei height,
enum type);

transfers a rectangle of pixel values from one region of the read framebuffer to
another in the draw framebuffer. Pixel copying is diagrammed in figure 4.3.
type is a symbolic constant that must be one of COLOR, STENCIL, DEPTH, or
DEPTH_STENCIL, indicating that the values to be transferred are colors, stencil
values, depth values, or depth/stencil values, respectively. The first four arguments
have the same interpretation as the corresponding arguments to ReadPixels.

Values are obtained from the framebuffer, converted (if appropriate), then sub-
jected to the pixel transfer operations described in section 3.7.6, just as if Read-
Pixels were called with the corresponding arguments.

If the type is STENCIL or DEPTH, then it is as if the format for ReadPixels were
STENCIL_INDEX or DEPTH_COMPONENT, respectively. If the type is DEPTH_-

STENCIL, then it is as if the format for ReadPixels were specified as described in
table 4.10. If the type is COLOR, then if the GL is in RGBA mode, it is as if the
format were RGBA, while if the GL is in color index mode, it is as if the format
were COLOR_INDEX .

The groups of elements so obtained are then written to the framebuffer just as
if DrawPixels had been given width and height, beginning with final conversion
of elements. The effective format is the same as that already described.

Finally, the behavior of several GL operations is specified as if the argu-
ments were passed to CopyPixels. These operations include CopyTexImage*,
CopyTexSubImage*, CopyColorTable, CopyColorSubTable, and CopyConvo-
lutionFilter*. An INVALID_FRAMEBUFFER_OPERATION error will be generated
if an attempt is made to execute one of these operations, or CopyPixels, while the

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.3. DRAWING, READING, AND COPYING PIXELS 330

post
convolution

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

scale
and bias

Pixel Transfer
Operations

color table
lookup

convolution
scale a nd bias

histogram

minmax

color table
lookup

RGBA to RGBA
lookup

shift
and offset

index to index
look up

index to RGBA
looku p

color table
lookup

color matrix
scale and bias

post
color matrix

convert
to float

RGBA pixel
data from framebuff er

color index pixel
data from framebuff er

color index pixel
data out

RGBA pixel
data out

clamp
to [0,1]

mask to
(2n − 1)

final
conversion

Figure 4.3. Operation of CopyPixels. Operations in dashed boxes may be enabled
or disabled. Index-to-RGBA lookup is currently never performed. RGBA and color
index pixel paths are shown; depth and stencil pixel paths are not shown.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.3. DRAWING, READING, AND COPYING PIXELS 331

DEPTH_BITS STENCIL_BITS format

zero zero DEPTH_STENCIL

zero non-zero DEPTH_COMPONENT

non-zero zero STENCIL_INDEX

non-zero non-zero DEPTH_STENCIL

Table 4.10: Effective ReadPixels format for DEPTH_STENCIL CopyPixels opera-
tion.

object bound to READ_FRAMEBUFFER_BINDING (see section 4.4) is not frame-
buffer complete (as defined in section 4.4.4). An INVALID_OPERATION error will
be generated if the object bound to READ_FRAMEBUFFER_BINDING is framebuffer
complete and the value of SAMPLE_BUFFERS is greater than zero.

CopyPixels will generate an INVALID_FRAMEBUFFER_OPERATION error if
the object bound to DRAW_FRAMEBUFFER_BINDING (see section 4.4) is not frame-
buffer complete.

If the read buffer contains integer or unsigned integer components, an
INVALID_OPERATION error is generated.

Blitting Pixel Rectangles

The command

void BlitFramebuffer(int srcX0, int srcY0, int srcX1,
int srcY1, int dstX0, int dstY0, int dstX1, int dstY1,
bitfield mask, enum filter);

transfers a rectangle of pixel values from one region of the read framebuffer to an-
other in the draw framebuffer. There are some important distinctions from Copy-
Pixels, as described below.

mask is the bitwise OR of a number of values indicating which buffers are
to be copied. The values are COLOR_BUFFER_BIT, DEPTH_BUFFER_BIT, and
STENCIL_BUFFER_BIT, which are described in section 4.2.3. The pixels corre-
sponding to these buffers are copied from the source rectangle bounded by the lo-
cations (srcX0, srcY 0) and (srcX1, srcY 1) to the destination rectangle bounded
by the locations (dstX0, dstY 0) and (dstX1, dstY 1). The lower bounds of the
rectangle are inclusive, while the upper bounds are exclusive.

When the color buffer is transferred, values are taken from the read buffer of the
read framebuffer and written to each of the draw buffers of the draw framebuffer,
just as with CopyPixels.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.3. DRAWING, READING, AND COPYING PIXELS 332

The actual region taken from the read framebuffer is limited to the intersection
of the source buffers being transferred, which may include the color buffer selected
by the read buffer, the depth buffer, and/or the stencil buffer depending on mask.
The actual region written to the draw framebuffer is limited to the intersection of
the destination buffers being written, which may include multiple draw buffers,
the depth buffer, and/or the stencil buffer depending on mask. Whether or not the
source or destination regions are altered due to these limits, the scaling and offset
applied to pixels being transferred is performed as though no such limits were
present.

If the source and destination rectangle dimensions do not match, the source im-
age is stretched to fit the destination rectangle. filter must be LINEAR or NEAREST,
and specifies the method of interpolation to be applied if the image is stretched.
LINEAR filtering is allowed only for the color buffer; if mask includes DEPTH_-
BUFFER_BIT or STENCIL_BUFFER_BIT, and filter is not NEAREST, no copy is
performed and an INVALID_OPERATION error is generated. If the source and
destination dimensions are identical, no filtering is applied. If either the source or
destination rectangle specifies a negative width or height (X1 < X0 or Y 1 < Y 0),
the image is reversed in the corresponding direction. If both the source and des-
tination rectangles specify a negative width or height for the same direction, no
reversal is performed. If a linear filter is selected and the rules of LINEAR sam-
pling would require sampling outside the bounds of a source buffer, it is as though
CLAMP_TO_EDGE texture sampling were being performed. If a linear filter is se-
lected and sampling would be required outside the bounds of the specified source
region, but within the bounds of a source buffer, the implementation may choose
to clamp while sampling or not.

If the source and destination buffers are identical, and the source and destina-
tion rectangles overlap, the result of the blit operation is undefined.

Blit operations bypass the fragment pipeline. The only fragment operations
which affect a blit are the pixel ownership test and the scissor test.

If the read framebuffer is layered (see section 4.4.7), pixel values are read from
layer zero. If the draw framebuffer is layered, pixel values are written to layer zero.
If both read and draw framebuffers are layered, the blit operation is still performed
only on layer zero.

If a buffer is specified in mask and does not exist in both the read and draw
framebuffers, the corresponding bit is silently ignored.

If the color formats of the read and draw buffers do not match, and mask in-
cludes COLOR_BUFFER_BIT, pixel groups are converted to match the destination
format as in CopyPixels. However, no pixel transfer operations are applied, and
colors are clamped only if all draw color buffers have fixed-point components,

as if CLAMP_FRAGMENT_COLOR were set to FIXED_ONLY. Format conversion is

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.3. DRAWING, READING, AND COPYING PIXELS 333

not supported for all data types, and an INVALID_OPERATION error is generated
under any of the following conditions:

• The read buffer contains fixed-point or floating-point values and any draw
buffer contains neither fixed-point nor floating-point values.

• The read buffer contains unsigned integer values and any draw buffer does
not contain unsigned integer values.

• The read buffer contains signed integer values and any draw buffer does not
contain signed integer values.

Calling BlitFramebuffer will result in an INVALID_FRAMEBUFFER_-

OPERATION error if the objects bound to DRAW_FRAMEBUFFER_BINDING and
READ_FRAMEBUFFER_BINDING are not framebuffer complete (section 4.4.4).

Calling BlitFramebuffer will result in an INVALID_OPERATION error if mask
includes DEPTH_BUFFER_BIT or STENCIL_BUFFER_BIT, and the source and
destination depth and stencil buffer formats do not match.

Calling BlitFramebuffer will result in an INVALID_OPERATION error if filter
is LINEAR and read buffer contains integer data.

If SAMPLE_BUFFERS for the read framebuffer is greater than zero and
SAMPLE_BUFFERS for the draw framebuffer is zero, the samples corresponding
to each pixel location in the source are converted to a single sample before being
written to the destination.

If SAMPLE_BUFFERS for the read framebuffer is zero and SAMPLE_BUFFERS

for the draw framebuffer is greater than zero, the value of the source sample is
replicated in each of the destination samples.

If SAMPLE_BUFFERS for either the read framebuffer or draw framebuffer is
greater than zero, no copy is performed and an INVALID_OPERATION error is
generated if the dimensions of the source and destination rectangles provided to
BlitFramebuffer are not identical, if the formats of the read and draw framebuffers
are not identical, or if the values of SAMPLES for the read and draw buffers are not
identical.

If SAMPLE_BUFFERS for both the read and draw framebuffers are greater than
zero, and the values of SAMPLES for the read and draw framebuffers are identical,
the samples are copied without modification from the read framebuffer to the draw
framebuffer. Otherwise, no copy is performed and an INVALID_OPERATION error
is generated. Note that the samples in the draw buffer are not guaranteed to be at
the same sample location as the read buffer, so rendering using this newly created
buffer can potentially have geometry cracks or incorrect antialiasing. This may
occur if the sizes of the framebuffers do not match, if the formats differ, or if

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 334

the source and destination rectangles are not defined with the same (X0, Y 0) and
(X1, Y 1) bounds.

4.3.4 Pixel Draw/Read State

The state required for pixel operations consists of the parameters that are set with
PixelStore, PixelTransfer, and PixelMap. This state has been summarized in
tables 3.1, 3.2, and 3.3. Additional state includes the current raster position (sec-
tion 2.24), an integer indicating the current setting of ReadBuffer, and a three-
valued integer controlling clamping during final conversion. For the default frame-
buffer, in the initial state the read buffer is BACK if there is a back buffer; FRONT if
there is no back buffer; and NONE if no default framebuffer is associated with the
context. The initial value of read color clamping is FIXED_ONLY. State set with
PixelStore is GL client state.

4.4 Framebuffer Objects

As described in chapter 1 and section 2.1, the GL renders into (and reads values
from) a framebuffer. GL defines two classes of framebuffers: window system-
provided and application-created.

Initially, the GL uses the default framebuffer. The storage, dimensions, allo-
cation, and format of the images attached to this framebuffer are managed entirely
by the window system. Consequently, the state of the default framebuffer, includ-
ing its images, can not be changed by the GL, nor can the default framebuffer be
deleted by the GL.

The routines described in the following sections, however, can be used to cre-
ate, destroy, and modify the state and attachments of framebuffer objects.

Framebuffer objects encapsulate the state of a framebuffer in a similar manner
to the way texture objects encapsulate the state of a texture. In particular, a frame-
buffer object encapsulates state necessary to describe a collection of color, depth,
and stencil logical buffers (other types of buffers are not allowed). For each logical
buffer, a framebuffer-attachable image can be attached to the framebuffer to store
the rendered output for that logical buffer. Examples of framebuffer-attachable im-
ages include texture images and renderbuffer images. Renderbuffers are described
further in section 4.4.2

By allowing the images of a renderbuffer to be attached to a framebuffer, the
GL provides a mechanism to support off-screen rendering. Further, by allowing the
images of a texture to be attached to a framebuffer, the GL provides a mechanism
to support render to texture.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 335

4.4.1 Binding and Managing Framebuffer Objects

The default framebuffer for rendering and readback operations is provided by the
window system. In addition, named framebuffer objects can be created and oper-
ated upon. The namespace for framebuffer objects is the unsigned integers, with
zero reserved by the GL for the default framebuffer.

A framebuffer object is created by binding a name returned by GenFrame-
buffers (see below) to DRAW_FRAMEBUFFER or READ_FRAMEBUFFER. The bind-
ing is effected by calling

void BindFramebuffer(enum target, uint framebuffer);

with target set to the desired framebuffer target and framebuffer set to the frame-
buffer object name. The resulting framebuffer object is a new state vector, com-
prising all the state values listed in table 6.33, as well as one set of the state values
listed in table 6.34 for each attachment point of the framebuffer, set to the same
initial values. There are MAX_COLOR_ATTACHMENTS color attachment points, plus
one each for the depth and stencil attachment points.

BindFramebuffer may also be used to bind an existing framebuffer object
to DRAW_FRAMEBUFFER and/or READ_FRAMEBUFFER. If the bind is successful no
change is made to the state of the bound framebuffer object, and any previous
binding to target is broken.

BindFramebuffer fails and an INVALID_OPERATION error is generated if
framebuffer is not zero or a name returned from a previous call to GenFrame-
buffers, or if such a name has since been deleted with DeleteFramebuffers.

If a framebuffer object is bound to DRAW_FRAMEBUFFER or READ_-

FRAMEBUFFER, it becomes the target for rendering or readback operations, respec-
tively, until it is deleted or another framebuffer is bound to the corresponding bind
point. Calling BindFramebuffer with target set to FRAMEBUFFER binds frame-
buffer to both the draw and read targets.

While a framebuffer object is bound, GL operations on the target to which it
is bound affect the images attached to the bound framebuffer object, and queries
of the target to which it is bound return state from the bound object. Queries of
the values specified in tables 6.64 and 6.36 are derived from the framebuffer object
bound to DRAW_FRAMEBUFFER.

The initial state of DRAW_FRAMEBUFFER and READ_FRAMEBUFFER refers to
the default framebuffer. In order that access to the default framebuffer is not lost,
it is treated as a framebuffer object with the name of zero. The default framebuffer
is therefore rendered to and read from while zero is bound to the corresponding
targets. On some implementations, the properties of the default framebuffer can

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 336

change over time (e.g., in response to window system events such as attaching the
context to a new window system drawable.)

Framebuffer objects (those with a non-zero name) differ from the default
framebuffer in a few important ways. First and foremost, unlike the default frame-
buffer, framebuffer objects have modifiable attachment points for each logical
buffer in the framebuffer. Framebuffer-attachable images can be attached to and
detached from these attachment points, which are described further in section 4.4.2.
Also, the size and format of the images attached to framebuffer objectss are con-
trolled entirely within the GL interface, and are not affected by window system
events, such as pixel format selection, window resizes, and display mode changes.

Additionally, when rendering to or reading from an application created-
framebuffer object,

• The pixel ownership test always succeeds. In other words, framebuffer ob-
jects own all of their pixels.

• There are no visible color buffer bitplanes. This means there is no color
buffer corresponding to the back, front, left, or right color bitplanes.

• The only color buffer bitplanes are the ones defined by the frame-
buffer attachment points named COLOR_ATTACHMENT0 through COLOR_-

ATTACHMENTn.

• The only depth buffer bitplanes are the ones defined by the framebuffer at-
tachment point DEPTH_ATTACHMENT.

• The only stencil buffer bitplanes are the ones defined by the framebuffer
attachment point STENCIL_ATTACHMENT.

• There are no accumulation buffer bitplanes, so the value of the
implementation-dependent state variables ACCUM_RED_BITS, ACCUM_-

GREEN_BITS, ACCUM_BLUE_BITS, and ACCUM_ALPHA_BITS are all zero.

• There are no AUX buffer bitplanes, so the value of the implementation-
dependent state variable AUX_BUFFERS is zero.

• If the attachment sizes are not all identical, rendering will be limited to the
largest area that can fit in all of the attachments (an intersection of rectangles
having a lower left of (0, 0) and an upper right of (width, height) for each
attachment).

• If the number of layers of each attachment are not all identical, rendering
will be limited to the smallest number of layers of any attachment.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 337

• If the attachment sizes are not all identical, the values of pixels outside the
common intersection area after rendering are undefined.

Framebuffer objects are deleted by calling

void DeleteFramebuffers(sizei n, const
uint *framebuffers);

framebuffers contains n names of framebuffer objects to be deleted. After a frame-
buffer object is deleted, it has no attachments, and its name is again unused.
If a framebuffer that is currently bound to one or more of the targets DRAW_-

FRAMEBUFFER or READ_FRAMEBUFFER is deleted, it is as though BindFrame-
buffer had been executed with the corresponding target and framebuffer zero. Un-
used names in framebuffers are silently ignored, as is the value zero.

The command

void GenFramebuffers(sizei n, uint *ids);

returns n previously unused framebuffer object names in ids. These names are
marked as used, for the purposes of GenFramebuffers only, but they acquire state
and type only when they are first bound.

The names bound to the draw and read framebuffer bindings can be queried by
calling GetIntegerv with the symbolic constants DRAW_FRAMEBUFFER_BINDING
and READ_FRAMEBUFFER_BINDING, respectively. FRAMEBUFFER_BINDING is
equivalent to DRAW_FRAMEBUFFER_BINDING.

4.4.2 Attaching Images to Framebuffer Objects

Framebuffer-attachable images may be attached to, and detached from, framebuffer
objects. In contrast, the image attachments of the default framebuffer may not be
changed by the GL.

A single framebuffer-attachable image may be attached to multiple framebuffer
objects, potentially avoiding some data copies, and possibly decreasing memory
consumption.

For each logical buffer, a framebuffer object stores a set of state which defines
the logical buffer’s attachment point. The attachment point state contains enough
information to identify the single image attached to the attachment point, or to
indicate that no image is attached. The per-logical buffer attachment point state is
listed in table 6.34

There are several types of framebuffer-attachable images:

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 338

• The image of a renderbuffer object, which is always two-dimensional.

• A single level of a one-dimensional texture, which is treated as a two-
dimensional image with a height of one.

• A single level of a two-dimensional or rectangle texture.

• A single face of a cube map texture level, which is treated as a two-
dimensional image.

• A single layer of a one-or two-dimensional array texture or three-
dimensional texture, which is treated as a two-dimensional image.

Additionally, an entire level of a three-dimensional texture, cube map texture,
or one-or two-dimensional array texture can be attached to an attachment point.
Such attachments are treated as an array of two-dimensional images, arranged in
layers, and the corresponding attachment point is considered to be layered (also
see section 4.4.7).

Renderbuffer Objects

A renderbuffer is a data storage object containing a single image of a renderable
internal format. GL provides the methods described below to allocate and delete a
renderbuffer’s image, and to attach a renderbuffer’s image to a framebuffer object.

The name space for renderbuffer objects is the unsigned integers, with zero
reserved for the GL. A renderbuffer object is created by binding a name returned
by GenRenderbuffers (see below) to RENDERBUFFER. The binding is effected by
calling

void BindRenderbuffer(enum target, uint renderbuffer);

with target set to RENDERBUFFER and renderbuffer set to the renderbuffer object
name. If renderbuffer is not zero, then the resulting renderbuffer object is a new
state vector, initialized with a zero-sized memory buffer, and comprising the state
values listed in table 6.36. Any previous binding to target is broken.

BindRenderbuffer may also be used to bind an existing renderbuffer object.
If the bind is successful, no change is made to the state of the newly bound render-
buffer object, and any previous binding to target is broken.

While a renderbuffer object is bound, GL operations on the target to which it
is bound affect the bound renderbuffer object, and queries of the target to which a
renderbuffer object is bound return state from the bound object.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 339

The name zero is reserved. A renderbuffer object cannot be created with the
name zero. If renderbuffer is zero, then any previous binding to target is broken
and the target binding is restored to the initial state.

In the initial state, the reserved name zero is bound to RENDERBUFFER. There is
no renderbuffer object corresponding to the name zero, so client attempts to modify
or query renderbuffer state for the target RENDERBUFFER while zero is bound will
generate GL errors, as described in section 6.1.3.

The current RENDERBUFFER binding can be determined by calling GetInte-
gerv with the symbolic constant RENDERBUFFER_BINDING.

BindRenderbuffer fails and an INVALID_OPERATION error is generated if
renderbuffer is not zero or a name returned from a previous call to GenRender-
buffers, or if such a name has since been deleted with DeleteRenderbuffers.

Renderbuffer objects are deleted by calling

void DeleteRenderbuffers(sizei n, const
uint *renderbuffers);

where renderbuffers contains n names of renderbuffer objects to be deleted. After
a renderbuffer object is deleted, it has no contents, and its name is again unused. If
a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though
BindRenderbuffer had been executed with the target RENDERBUFFER and name
of zero. Additionally, special care must be taken when deleting a renderbuffer if
the image of the renderbuffer is attached to a framebuffer object (see section 4.4.2).
Unused names in renderbuffers are silently ignored, as is the value zero.

The command

void GenRenderbuffers(sizei n, uint *renderbuffers);

returns n previously unused renderbuffer object names in renderbuffers. These
names are marked as used, for the purposes of GenRenderbuffers only, but they
acquire renderbuffer state only when they are first bound.

The command

void RenderbufferStorageMultisample(enum target,
sizei samples, enum internalformat, sizei width,
sizei height);

establishes the data storage, format, dimensions, and number of samples of a ren-
derbuffer object’s image. target must be RENDERBUFFER. internalformat must
be color-renderable, depth-renderable, or stencil-renderable (as defined in sec-
tion 4.4.4). width and height are the dimensions in pixels of the renderbuffer. If

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 340

Sized Base S
Internal Format Internal Format bits
STENCIL_INDEX1 STENCIL_INDEX 1
STENCIL_INDEX4 STENCIL_INDEX 4
STENCIL_INDEX8 STENCIL_INDEX 8
STENCIL_INDEX16 STENCIL_INDEX 16

Table 4.11: Correspondence of sized internal formats to base internal formats for
formats that can be used only with renderbuffers.

either width or height is greater than the value of MAX_RENDERBUFFER_SIZE, or
if samples is greater than the value of MAX_SAMPLES, then the error INVALID_-
VALUE is generated. If internalformat is a signed or unsigned integer format
and samples is greater than the value of MAX_INTEGER_SAMPLES, then the er-
ror INVALID_OPERATION is generated (see “Required Renderbuffer Formats” be-
low). If the GL is unable to create a data store of the requested size, the error
OUT_OF_MEMORY is generated.

Upon success, RenderbufferStorageMultisample deletes any existing data
store for the renderbuffer image and the contents of the data store after call-
ing RenderbufferStorageMultisample are undefined. RENDERBUFFER_WIDTH

is set to width, RENDERBUFFER_HEIGHT is set to height, and RENDERBUFFER_-

INTERNAL_FORMAT is set to internalformat.
If samples is zero, then RENDERBUFFER_SAMPLES is set to zero. Otherwise

samples represents a request for a desired minimum number of samples. Since
different implementations may support different sample counts for multisampled
rendering, the actual number of samples allocated for the renderbuffer image is
implementation-dependent. However, the resulting value for RENDERBUFFER_-
SAMPLES is guaranteed to be greater than or equal to samples and no more than the
next larger sample count supported by the implementation.

A GL implementation may vary its allocation of internal component resolution
based on any RenderbufferStorage parameter (except target), but the allocation
and chosen internal format must not be a function of any other state and cannot be
changed once they are established.

The command

void RenderbufferStorage(enum target, enum internalformat,
sizei width, sizei height);

is equivalent to calling RenderbufferStorageMultisample with samples equal to

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 341

zero.

Required Renderbuffer Formats

Implementations are required to support the same internal formats for renderbuffers
as the required formats for textures enumerated in section 3.9.3, with the excep-
tion of the color formats labelled “texture-only”. Requesting one of these internal
formats for a renderbuffer will allocate at least the internal component sizes and
exactly the component types shown for that format in tables 3.17- 3.19.

Implementations must support creation of renderbuffers in these required for-
mats with up to the value of MAX_SAMPLES multisamples, with the exception
that the signed and unsigned integer formats are required only to support creation
of renderbuffers with up to the value of MAX_INTEGER_SAMPLES multisamples,
which must be at least one.

Attaching Renderbuffer Images to a Framebuffer

A renderbuffer can be attached as one of the logical buffers of the currently bound
framebuffer object by calling

void FramebufferRenderbuffer(enum target,
enum attachment, enum renderbuffertarget,
uint renderbuffer);

target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.
FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. An INVALID_OPERATION

error is generated if the value of the corresponding binding is zero. attachment
should be set to one of the attachment points of the framebuffer listed in table 4.12.

renderbuffertarget must be RENDERBUFFER and renderbuffer should be set to
the name of the renderbuffer object to be attached to the framebuffer. render-
buffer must be either zero or the name of an existing renderbuffer object of type
renderbuffertarget, otherwise an INVALID_OPERATION error is generated. If ren-
derbuffer is zero, then the value of renderbuffertarget is ignored.

If renderbuffer is not zero and if FramebufferRenderbuffer is successful,
then the renderbuffer named renderbuffer will be used as the logical buffer iden-
tified by attachment of the framebuffer currently bound to target. The value of
FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for the specified attachment point is
set to RENDERBUFFER and the value of FRAMEBUFFER_ATTACHMENT_OBJECT_-
NAME is set to renderbuffer. All other state values of the attachment point specified
by attachment are set to their default values listed in table 6.34. No change is made

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 342

to the state of the renderbuffer object and any previous attachment to the attach-
ment logical buffer of the framebuffer object bound to framebuffer target is broken.
If the attachment is not successful, then no change is made to the state of either the
renderbuffer object or the framebuffer object.

Calling FramebufferRenderbuffer with the renderbuffer name zero will de-
tach the image, if any, identified by attachment, in the framebuffer currently bound
to target. All state values of the attachment point specified by attachment in the
object bound to target are set to their default values listed in table 6.34.

Setting attachment to the value DEPTH_STENCIL_ATTACHMENT is a special
case causing both the depth and stencil attachments of the framebuffer object to be
set to renderbuffer, which should have base internal format DEPTH_STENCIL.

If a renderbuffer object is deleted while its image is attached to one or more
attachment points in the currently bound framebuffer, then it is as if Framebuf-
ferRenderbuffer had been called, with a renderbuffer of 0, for each attachment
point to which this image was attached in the currently bound framebuffer. In
other words, this renderbuffer image is first detached from all attachment points in
the currently bound framebuffer. Note that the renderbuffer image is specifically
not detached from any non-bound framebuffers. Detaching the image from any
non-bound framebuffers is the responsibility of the application.

Name of attachment
COLOR_ATTACHMENTi (see caption)
DEPTH_ATTACHMENT

STENCIL_ATTACHMENT

DEPTH_STENCIL_ATTACHMENT

Table 4.12: Framebuffer attachment points. i in COLOR_ATTACHMENTi may range
from zero to the value of MAX_COLOR_ATTACHMENTS - 1.

Attaching Texture Images to a Framebuffer

GL supports copying the rendered contents of the framebuffer into the images of
a texture object through the use of the routines CopyTexImage* and CopyTex-
SubImage*. Additionally, GL supports rendering directly into the images of a
texture object.

To render directly into a texture image, a specified level of a texture object can
be attached as one of the logical buffers of the currently bound framebuffer object
by calling:

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 343

void FramebufferTexture(enum target, enum attachment,
uint texture, int level);

target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. An
INVALID_OPERATION error is generated if the value of the corresponding binding
is zero. attachment must be one of the attachment points of the framebuffer listed
in table 4.12.

If texture is non-zero, the specified mipmap level of the texture object named
texture is attached to the framebuffer attachment point named by attachment. An
INVALID_VALUE error is generated if texture is not the name of a texture object, or
if level is not a supported texture level number for textures of the type correspond-
ing to target. An INVALID_OPERATION error is generated if texture is the name
of a buffer texture.

If texture is the name of a three-dimensional texture, cube map texture, one-or
two-dimensional array texture, or two-dimensional multisample array texture, the
texture level attached to the framebuffer attachment point is an array of images,
and the framebuffer attachment is considered layered.

Additionally, a specified image from a texture object can be attached as one of
the logical buffers of the currently bound framebuffer object by calling one of the
following routines, depending on the type of the texture:

void FramebufferTexture1D(enum target, enum attachment,
enum textarget, uint texture, int level);

void FramebufferTexture2D(enum target, enum attachment,
enum textarget, uint texture, int level);

void FramebufferTexture3D(enum target, enum attachment,
enum textarget, uint texture, int level, int layer);

In all three routines, target must be DRAW_FRAMEBUFFER, READ_-

FRAMEBUFFER, or FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_-

FRAMEBUFFER. An INVALID_OPERATION error is generated if the value of the
corresponding binding is zero. attachment must be one of the attachment points of
the framebuffer listed in table 4.12.

If texture is not zero, then texture must either name an existing texture
object with an target of textarget, or texture must name an existing cube map
texture and textarget must be one of TEXTURE_CUBE_MAP_POSITIVE_X,
TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z,
TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_Y, or
TEXTURE_CUBE_MAP_NEGATIVE_Z. Otherwise, an INVALID_OPERATION error
is generated.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 344

level specifies the mipmap level of the texture image to be attached to the
framebuffer.

If textarget is TEXTURE_RECTANGLE, TEXTURE_2D_MULTISAMPLE, or
TEXTURE_2D_MULTISAMPLE_ARRAY, then level must be zero. If textarget
is TEXTURE_3D, then level must be greater than or equal to zero and less
than or equal to log2 of the value of MAX_3D_TEXTURE_SIZE. If textarget is
one of TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_MAP_POSITIVE_-
Y, TEXTURE_CUBE_MAP_POSITIVE_Z, TEXTURE_CUBE_MAP_NEGATIVE_-

X, TEXTURE_CUBE_MAP_NEGATIVE_Y, or TEXTURE_CUBE_MAP_NEGATIVE_Z,
then level must be greater than or equal to zero and less than or equal to log2 of
the value of MAX_CUBE_MAP_TEXTURE_SIZE. For all other values of textarget,
level must be greater than or equal to zero and no larger than log2 of the value of
MAX_TEXTURE_SIZE. Otherwise, an INVALID_VALUE error is generated.

layer specifies the layer of a 2-dimensional image within a 3-dimensional tex-
ture. An INVALID_VALUE error is generated if layer is larger than the value of
MAX_3D_TEXTURE_SIZE-1.

For FramebufferTexture1D, if texture is not zero, then textarget must be
TEXTURE_1D.

For FramebufferTexture2D, if texture is not zero, then textarget must be one
of TEXTURE_2D, TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP_POSITIVE_X,
TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z,
TEXTURE_CUBE_MAP_NEGATIVE_-

X, TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Z, or
TEXTURE_2D_MULTISAMPLE.

For FramebufferTexture3D, if texture is not zero, then textarget must be
TEXTURE_3D.

The command

void FramebufferTextureLayer(enum target,
enum attachment, uint texture, int level, int layer);

operates identically to FramebufferTexture3D, except that it attaches a sin-
gle layer of a three-dimensional, one-or two-dimensional array texture, or two-
dimensional multisample array texture. layer is an integer indicating the layer num-
ber, and is treated identically to the layer parameter in FramebufferTexture3D.
The error INVALID_VALUE is generated if texture is non-zero and layer is nega-
tive. The error INVALID_OPERATION is generated if texture is non-zero and is
not the name of a three dimensional, two-dimensional multisample array, or one-or
two-dimensional array texture. Unlike FramebufferTexture3D, no textarget pa-
rameter is accepted.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 345

If texture is non-zero and the command does not result in an error, the
framebuffer attachment state corresponding to attachment is updated as in the
other FramebufferTexture commands, except that the value of FRAMEBUFFER_-
ATTACHMENT_TEXTURE_LAYER is set to layer.

Effects of Attaching a Texture Image

The remaining comments in this section apply to all forms of Framebuffer-
Texture*.

If texture is zero, any image or array of images attached to the attachment point
named by attachment is detached. Any additional parameters (level, textarget,
and/or layer) are ignored when texture is zero. All state values of the attachment
point specified by attachment are set to their default values listed in table 6.34.

If texture is not zero, and if FramebufferTexture* is successful, then the spec-
ified texture image will be used as the logical buffer identified by attachment of the
framebuffer currently bound to target. State values of the specified attachment
point are set as follows:

• The value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is set to
TEXTURE.

• The value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is set to texture.

• The value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL is set to level.

• If FramebufferTexture2D is called and texture is a cube map texture, then
the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE is
set to textarget; otherwise it is set to TEXTURE_CUBE_MAP_POSITIVE_X.

• If FramebufferTextureLayer or FramebufferTexture3D is called, then
the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER is set to layer;
otherwise it is set to zero.

• If FramebufferTexture is called and texture is the name of a three-
dimensional, cube map, two-dimensional multisample array, or one-or two-
dimensional array texture, the value of FRAMEBUFFER_ATTACHMENT_-

LAYERED is set to TRUE; otherwise it is set to FALSE.

All other state values of the attachment point specified by attachment are set
to their default values listed in table 6.34. No change is made to the state of the
texture object, and any previous attachment to the attachment logical buffer of the
framebuffer object bound to framebuffer target is broken. If the attachment is not

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 346

successful, then no change is made to the state of either the texture object or the
framebuffer object.

Setting attachment to the value DEPTH_STENCIL_ATTACHMENT is a special
case causing both the depth and stencil attachments of the framebuffer object to
be set to texture. texture must have base internal format DEPTH_STENCIL, or the
depth and stencil framebuffer attachments will be incomplete (see section 4.4.4).

If a texture object is deleted while its image is attached to one or more attach-
ment points in the currently bound framebuffer, then it is as if FramebufferTex-
ture* had been called, with a texture of zero, for each attachment point to which
this image was attached in the currently bound framebuffer. In other words, this
texture image is first detached from all attachment points in the currently bound
framebuffer. Note that the texture image is specifically not detached from any
other framebuffer objects. Detaching the texture image from any other framebuffer
objects is the responsibility of the application.

4.4.3 Feedback Loops Between Textures and the Framebuffer

A feedback loop may exist when a texture object is used as both the source and
destination of a GL operation. When a feedback loop exists, undefined behavior
results. This section describes rendering feedback loops (see section 3.9.11) and
texture copying feedback loops (see section 3.9.4) in more detail.

Rendering Feedback Loops

The mechanisms for attaching textures to a framebuffer object do not prevent a
one-or two-dimensional texture level, a face of a cube map texture level, or a layer
of a two-dimensional array or three-dimensional texture from being attached to the
draw framebuffer while the same texture is bound to a texture unit. While this
conditions holds, texturing operations accessing that image will produce undefined
results, as described at the end of section 3.9.11. Conditions resulting in such
undefined behavior are defined in more detail below. Such undefined texturing op-
erations are likely to leave the final results of the shader or fixed-function fragment
processing operations undefined, and should be avoided.

Special precautions need to be taken to avoid attaching a texture image to the
currently bound framebuffer while the texture object is currently bound and en-
abled for texturing. Doing so could lead to the creation of a rendering feedback
loop between the writing of pixels by GL rendering operations and the simulta-
neous reading of those same pixels when used as texels in the currently bound
texture. In this scenario, the framebuffer will be considered framebuffer complete
(see section 4.4.4), but the values of fragments rendered while in this state will be

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 347

undefined. The values of texture samples may be undefined as well, as described
under “Rendering Feedback Loops” in section 3.9.11

Specifically, the values of rendered fragments are undefined if all of the fol-
lowing conditions are true:

• an image from texture object T is attached to the currently bound draw frame-
buffer at attachment point A

• the texture object T is currently bound to a texture unit U, and

• the current fixed-function texture state or programmable vertex and/or frag-
ment processing state makes it possible (see below) to sample from the tex-
ture object T bound to texture unit U

while either of the following conditions are true:

• the value of TEXTURE_MIN_FILTER for texture object T is NEAREST or
LINEAR, and the value of FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL
for attachment point A is equal to the value of TEXTURE_BASE_LEVEL for
the texture object T

• the value of TEXTURE_MIN_FILTER for texture object T is one
of NEAREST_MIPMAP_NEAREST, NEAREST_MIPMAP_LINEAR, LINEAR_-
MIPMAP_NEAREST, or LINEAR_MIPMAP_LINEAR, and the value of
FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL for attachment point A is
within the the range specified by the current values of TEXTURE_BASE_-
LEVEL to q, inclusive, for the texture object T. (q is defined in the Mipmap-
ping discussion of section 3.9.11).

For the purpose of this discussion, it is possible to sample from the texture
object T bound to texture unit U if any of the following are true:

• Programmable fragment processing is disabled and the target of texture ob-
ject T is enabled according to the texture target precedence rules of sec-
tion 3.9.20

• The active fragment or vertex shader contains any instructions that might
sample from the texture object T bound to U, even if those instructions might
only be executed conditionally.

Note that if TEXTURE_BASE_LEVEL and TEXTURE_MAX_LEVEL exclude any
levels containing image(s) attached to the currently bound framebuffer, then the
above conditions will not be met (i.e., the above rule will not cause the values of
rendered fragments to be undefined.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 348

Texture Copying Feedback Loops

Similarly to rendering feedback loops, it is possible for a texture image to be
attached to the read framebuffer while the same texture image is the destination
of a CopyTexImage* operation, as described under “Texture Copying Feedback
Loops” in section 3.9.4. While this condition holds, a texture copying feedback
loop between the writing of texels by the copying operation and the reading of
those same texels when used as pixels in the read framebuffer may exist. In this
scenario, the values of texels written by the copying operation will be undefined
(in the same fashion that overlapping copies via BlitFramebuffer are undefined).

Specifically, the values of copied texels are undefined if all of the following
conditions are true:

• an image from texture object T is attached to the currently bound read frame-
buffer at attachment point A

• the selected read buffer is attachment point A

• T is bound to the texture target of a CopyTexImage* operation

• the level argument of the copying operation selects the same image that is
attached to A

4.4.4 Framebuffer Completeness

A framebuffer must be framebuffer complete to effectively be used as the draw or
read framebuffer of the GL.

The default framebuffer is always complete if it exists; however, if no default
framebuffer exists (no window system-provided drawable is associated with the
GL context), it is deemed to be incomplete.

A framebuffer object is said to be framebuffer complete if all of its attached
images, and all framebuffer parameters required to utilize the framebuffer for ren-
dering and reading, are consistently defined and meet the requirements defined
below. The rules of framebuffer completeness are dependent on the properties of
the attached images, and on certain implementation-dependent restrictions.

The internal formats of the attached images can affect the completeness of
the framebuffer, so it is useful to first define the relationship between the internal
format of an image and the attachment points to which it can be attached.

• The following base internal formats from table 3.16 are color-renderable:
ALPHA, RED, RG, RGB, and RGBA. The sized internal formats from ta-
ble 3.17 that have a color-renderable base internal format are also color-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 349

renderable. No other formats, including compressed internal formats, are
color-renderable.

• An internal format is depth-renderable if it is DEPTH_COMPONENT or one
of the formats from table 3.19 whose base internal format is DEPTH_-

COMPONENT or DEPTH_STENCIL. No other formats are depth-renderable.

• An internal format is stencil-renderable if it is STENCIL_INDEX or
DEPTH_STENCIL, if it is one of the STENCIL_INDEX formats from ta-
ble 4.11, or if it is one of the formats from table 3.19 whose base internal
format is DEPTH_STENCIL. No other formats are stencil-renderable.

Framebuffer Attachment Completeness

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for the framebuffer
attachment point attachment is not NONE, then it is said that a framebuffer-
attachable image, named image, is attached to the framebuffer at the attachment
point. image is identified by the state in attachment as described in section 4.4.2.

The framebuffer attachment point attachment is said to be framebuffer attach-
ment complete if the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE for
attachment is NONE (i.e., no image is attached), or if all of the following conditions
are true:

• image is a component of an existing object with the name specified by
the value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, and of the type
specified by the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE.

• The width and height of image are non-zero.

• If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is TEXTURE

and the value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME names
a three-dimensional texture, then the value of FRAMEBUFFER_-

ATTACHMENT_TEXTURE_LAYER must be smaller than the depth of the
texture.

• If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is TEXTURE

and the value of FRAMEBUFFER_ATTACHMENT_OBJECT_NAME names a
one-or two-dimensional array texture, then the value of FRAMEBUFFER_-
ATTACHMENT_TEXTURE_LAYER must be smaller than the number of layers
in the texture.

• If attachment is COLOR_ATTACHMENTi, then image must have a color-
renderable internal format.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 350

• If attachment is DEPTH_ATTACHMENT, then image must have a depth-
renderable internal format.

• If attachment is STENCIL_ATTACHMENT, then image must have a stencil-
renderable internal format.

Whole Framebuffer Completeness

Each rule below is followed by an error token enclosed in { brackets }. The mean-
ing of these errors is explained below and under “Effects of Framebuffer Com-
pleteness on Framebuffer Operations” later in section 4.4.4.

The framebuffer object target is said to be framebuffer complete if all the fol-
lowing conditions are true:

• target is the default framebuffer, and the default framebuffer exists.

{ FRAMEBUFFER_UNDEFINED }

• All framebuffer attachment points are framebuffer attachment complete.

{ FRAMEBUFFER_INCOMPLETE_ATTACHMENT }

• There is at least one image attached to the framebuffer.

{ FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT }

• The value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE must not be
NONE for any color attachment point(s) named by DRAW_BUFFERi.

{ FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER }

• If READ_BUFFER is not NONE, then the value of FRAMEBUFFER_-

ATTACHMENT_OBJECT_TYPE must not be NONE for the color attachment
point named by READ_BUFFER.

{ FRAMEBUFFER_INCOMPLETE_READ_BUFFER }

• The combination of internal formats of the attached images does not violate
an implementation-dependent set of restrictions.

{ FRAMEBUFFER_UNSUPPORTED }

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 351

• The value of RENDERBUFFER_SAMPLES is the same for all attached render-
buffers; the value of TEXTURE_SAMPLES is the same for all attached tex-
tures; and, if the attached images are a mix of renderbuffers and textures,
the value of RENDERBUFFER_SAMPLES matches the value of TEXTURE_-
SAMPLES.

{ FRAMEBUFFER_INCOMPLETE_MULTISAMPLE }

• The value of TEXTURE_FIXED_SAMPLE_LOCATIONS is the same for all
attached textures; and, if the attached images are a mix of renderbuffers
and textures, the value of TEXTURE_FIXED_SAMPLE_LOCATIONS must be
TRUE for all attached textures.

{ FRAMEBUFFER_INCOMPLETE_MULTISAMPLE }

• If any framebuffer attachment is layered, all populated attachments must be
layered. Additionally, all populated color attachments must be from textures
of the same target.

{ FRAMEBUFFER_INCOMPLETE_LAYER_TARGETS }

The token in brackets after each clause of the framebuffer completeness rules
specifies the return value of CheckFramebufferStatus (see below) that is gen-
erated when that clause is violated. If more than one clause is violated, it is
implementation-dependent which value will be returned by CheckFramebuffer-
Status.

Performing any of the following actions may change whether the framebuffer
is considered complete or incomplete:

• Binding to a different framebuffer with BindFramebuffer.

• Attaching an image to the framebuffer with FramebufferTexture* or
FramebufferRenderbuffer.

• Detaching an image from the framebuffer with FramebufferTexture* or
FramebufferRenderbuffer.

• Changing the internal format of a texture image that is attached to the frame-
buffer by calling CopyTexImage* or CompressedTexImage*.

• Changing the internal format of a renderbuffer that is attached to the frame-
buffer by calling RenderbufferStorage.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 352

• Deleting, with DeleteTextures or DeleteRenderbuffers, an object contain-
ing an image that is attached to a framebuffer object that is bound to the
framebuffer.

• Changing the read buffer or one of the draw buffers.

• Associating a different window system-provided drawable, or no drawable,
with the default framebuffer using a window system binding API such as
those described in section 1.7.2.

Although the GL defines a wide variety of internal formats for framebuffer-
attachable images, such as texture images and renderbuffer images, some imple-
mentations may not support rendering to particular combinations of internal for-
mats. If the combination of formats of the images attached to a framebuffer object
are not supported by the implementation, then the framebuffer is not complete un-
der the clause labeled FRAMEBUFFER_UNSUPPORTED.

Implementations are required to support certain combinations of framebuffer
internal formats as described under “Required Framebuffer Formats” in sec-
tion 4.4.4.

Because of the implementation-dependent clause of the framebuffer complete-
ness test in particular, and because framebuffer completeness can change when the
set of attached images is modified, it is strongly advised, though not required, that
an application check to see if the framebuffer is complete prior to rendering. The
status of the framebuffer object currently bound to target can be queried by calling

enum CheckFramebufferStatus(enum target);

target must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or
FRAMEBUFFER. FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER. If
CheckFramebufferStatus is called within a Begin / End pair, an INVALID_-

OPERATION error is generated. If CheckFramebufferStatus generates an error,
zero is returned.

Otherwise, a value is returned that identifies whether or not the framebuffer
bound to target is complete, and if not complete the value identifies one of the
rules of framebuffer completeness that is violated. If the framebuffer is complete,
then FRAMEBUFFER_COMPLETE is returned.

The values of SAMPLE_BUFFERS and SAMPLES are derived from the at-
tachments of the currently bound framebuffer object. If the current DRAW_-

FRAMEBUFFER_BINDING is not framebuffer complete, then both SAMPLE_-

BUFFERS and SAMPLES are undefined. Otherwise, SAMPLES is equal to the value
of RENDERBUFFER_SAMPLES for the attached images (which all must have the

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 353

same value for RENDERBUFFER_SAMPLES). Further, SAMPLE_BUFFERS is one if
SAMPLES is non-zero. Otherwise, SAMPLE_BUFFERS is zero.

Required Framebuffer Formats

Implementations must support framebuffer objects with up to MAX_COLOR_-

ATTACHMENTS color attachments, a depth attachment, and a stencil attachment.
Each color attachment may be in any of the required color formats for textures
and renderbuffers described in sections 3.9.3 and 4.4.2. The depth attachment may
be in any of the required depth or combined depth+stencil formats described in
those sections, and the stencil attachment may be in any of the required combined
depth+stencil formats. However, when both depth and stencil attachments are
present, implementations are only required to support framebuffer objects where
both attachments refer to the same image.

There must be at least one default framebuffer format allowing creation of a
default framebuffer supporting front-buffered rendering.

Effects of Framebuffer Completeness on Framebuffer Operations

Attempting to render to or read from a framebuffer which is not framebuffer com-
plete will generate an INVALID_FRAMEBUFFER_OPERATION error. This means
that rendering commands such as Begin, RasterPos, any command that per-
forms an implicit Begin, as well as commands that read the framebuffer such
as ReadPixels, CopyTexImage, and CopyTexSubImage, will generate the er-
ror INVALID_FRAMEBUFFER_OPERATION if called while the framebuffer is not
framebuffer complete. This error is generated regardless of whether fragments are
actually read from or written to the framebuffer. For example, it will be generated
when a rendering command is called and the framebuffer is incomplete even if
RASTERIZER_DISCARD is enabled.

4.4.5 Effects of Framebuffer State on Framebuffer Dependent Values

The values of the state variables listed in table 6.64 may change when a change
is made to DRAW_FRAMEBUFFER_BINDING, to the state of the currently bound
framebuffer object, or to an image attached to the currently bound framebuffer
object.

When DRAW_FRAMEBUFFER_BINDING is zero, the values of the state variables
listed in table 6.64 are implementation defined.

When DRAW_FRAMEBUFFER_BINDING is non-zero, if the currently bound
framebuffer object is not framebuffer complete, then the values of the state vari-
ables listed in table 6.64 are undefined.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 354

When DRAW_FRAMEBUFFER_BINDING is non-zero and the currently bound
framebuffer object is framebuffer complete, then the values of the state variables
listed in table 6.64 are completely determined by DRAW_FRAMEBUFFER_BINDING,
the state of the currently bound framebuffer object, and the state of the images
attached to the currently bound framebuffer object. The values of RED_BITS,
GREEN_BITS, BLUE_BITS, and ALPHA_BITS are defined only if all color attach-
ments of the draw framebuffer have identical formats, in which case the color
component depths of color attachment zero are returned. The values returned for
DEPTH_BITS and STENCIL_BITS are the depth or stencil component depth of the
corresponding attachment of the draw framebuffer, respectively. The actual sizes
of the color, depth, or stencil bit planes can be obtained by querying an attachment
point using GetFramebufferAttachmentParameteriv, or querying the object at-
tached to that point. If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE
at a particular attachment point is RENDERBUFFER, the sizes may be determined by
calling GetRenderbufferParameteriv as described in section 6.1.3. If the value
of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE at a particular attachment point
is TEXTURE, the sizes may be determined by calling GetTexParameter, as de-
scribed in section 6.1.3.

4.4.6 Mapping between Pixel and Element in Attached Image

When DRAW_FRAMEBUFFER_BINDING is non-zero, an operation that writes to the
framebuffer modifies the image attached to the selected logical buffer, and an oper-
ation that reads from the framebuffer reads from the image attached to the selected
logical buffer.

If the attached image is a renderbuffer image, then the window coordinates
(xw, yw) corresponds to the value in the renderbuffer image at the same coordi-
nates.

If the attached image is a texture image, then the window coordinates (xw, yw)
correspond to the texel (i, j, k) from figure 3.10 as follows:

i = (xw − b)

j = (yw − b)

k = (layer − b)

where b is the texture image’s border width and layer is the value of
FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER for the selected logical buffer.
For a two-dimensional texture, k and layer are irrelevant; for a one-dimensional
texture, j, k, and layer are irrelevant.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 355

(xw, yw) corresponds to a border texel if xw, yw, or layer is less than the border
width, or if xw, yw, or layer is greater than or equal to the border width plus the
width, height, or depth, respectively, of the texture image.

Conversion to Framebuffer-Attachable Image Components

When an enabled color value is written to the framebuffer while the draw frame-
buffer binding is non-zero, for each draw buffer the R, G, B, and A values are
converted to internal components as described in table 3.16, according to the ta-
ble row corresponding to the internal format of the framebuffer-attachable image
attached to the selected logical buffer, and the resulting internal components are
written to the image attached to logical buffer. The masking operations described
in section 4.2.2 are also effective.

Conversion to RGBA Values

When a color value is read or is used as the source of a logical operation or blending
while the read framebuffer binding is non-zero, the components of the framebuffer-
attachable image that is attached to the logical buffer selected by READ_BUFFER

are first converted to R, G, B, and A values according to table 3.25 and the internal
format of the attached image.

4.4.7 Layered Framebuffers

A framebuffer is considered to be layered if it is complete and all of its populated
attachments are layered. When rendering to a layered framebuffer, each fragment
generated by the GL is assigned a layer number. The layer number for a fragment
is zero if

• the fragment is generated by DrawPixels, CopyPixels, or Bitmap,

• geometry shaders are disabled, or

• the current geometry shader does not statically assign a value to the built-in
output variable gl_Layer.

Otherwise, the layer for each point, line, or triangle emitted by the geometry
shader is taken from the gl_Layer output of one of the vertices of the primitive.
The vertex used is implementation-dependent. To get defined results, all vertices
of each primitive emitted should set the same value for gl_Layer. Since the
EndPrimitive built-in function starts a new output primitive, defined results can

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

4.4. FRAMEBUFFER OBJECTS 356

Layer Number Cube Map Face
0 TEXTURE_CUBE_MAP_POSITIVE_X

1 TEXTURE_CUBE_MAP_NEGATIVE_X

2 TEXTURE_CUBE_MAP_POSITIVE_Y

3 TEXTURE_CUBE_MAP_NEGATIVE_Y

4 TEXTURE_CUBE_MAP_POSITIVE_Z

5 TEXTURE_CUBE_MAP_NEGATIVE_Z

Table 4.13: Layer numbers for cube map texture faces. The layers are numbered
in the same sequence as the cube map face token values.

be achieved if EndPrimitive is called between two vertices emitted with differ-
ent layer numbers. A layer number written by a geometry shader has no effect if
the framebuffer is not layered.

When fragments are written to a layered framebuffer, the fragment’s layer num-
ber selects an image from the array of images at each attachment point to use for
the stencil test (see section 4.1.5), depth buffer test (see section 4.1.6), and for
blending and color buffer writes (see section 4.1.8). If the fragment’s layer number
is negative, or greater than the minimum number of layers of any attachment, the
effects of the fragment on the framebuffer contents are undefined.

When the Clear or ClearBuffer* commands are used to clear a layered frame-
buffer attachment, all layers of the attachment are cleared.

When commands such as ReadPixels or CopyPixels read from a layered
framebuffer, the image at layer zero of the selected attachment is always used to
obtain pixel values.

When cube map texture levels are attached to a layered framebuffer, there are
six layers, numbered zero through five. Each layer number corresponds to a cube
map face, as shown in table 4.13.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Chapter 5

Special Functions

This chapter describes additional GL functionality that does not fit easily into any
of the preceding chapters. This functionality consists of evaluators (used to model
curves and surfaces), selection (used to locate rendered primitives on the screen),
feedback (which returns GL results before rasterization), display lists (used to des-
ignate a group of GL commands for later execution by the GL), flushing and
finishing (used to synchronize the GL command stream), and hints.

5.1 Evaluators

Evaluators provide a means to use a polynomial or rational polynomial mapping
to produce vertex, normal, and texture coordinates, and colors. The values so pro-
duced are sent on to further stages of the GL as if they had been provided directly
by the client. Transformations, lighting, primitive assembly, rasterization, and per-
pixel operations are not affected by the use of evaluators.

Consider the Rk-valued polynomial p(u) defined by

p(u) =
n∑

i=0

Bn
i (u)Ri (5.1)

with Ri ∈ Rk and

Bn
i (u) =

(
n

i

)
ui(1− u)n−i,

the ith Bernstein polynomial of degree n (recall that 00 ≡ 1 and
(
n
0

)
≡ 1). Each

Ri is a control point. The relevant command is

void Map1{fd}(enum target, T u1, T u2, int stride,
int order, const T points);

357

5.1. EVALUATORS 358

target k Values
MAP1_VERTEX_3 3 x, y, z vertex coordinates
MAP1_VERTEX_4 4 x, y, z, w vertex coordinates
MAP1_INDEX 1 color index
MAP1_COLOR_4 4 R, G, B, A
MAP1_NORMAL 3 x, y, z normal coordinates
MAP1_TEXTURE_COORD_1 1 s texture coordinate
MAP1_TEXTURE_COORD_2 2 s, t texture coordinates
MAP1_TEXTURE_COORD_3 3 s, t, r texture coordinates
MAP1_TEXTURE_COORD_4 4 s, t, r, q texture coordinates

Table 5.1: Values specified by the target to Map1. Values are given in the order in
which they are taken.

target is a symbolic constant indicating the range of the defined polynomial. Its
possible values, along with the evaluations that each indicates, are given in ta-
ble 5.1. order is equal to n + 1; The error INVALID_VALUE is generated if order
is less than one or greater than MAX_EVAL_ORDER. points is a pointer to a set of
n + 1 blocks of storage. Each block begins with k single-precision floating-point
or double-precision floating-point values, respectively. The rest of the block may
be filled with arbitrary data. Table 5.1 indicates how k depends on target and what
the k values represent in each case.

stride is the number of single- or double-precision values (as appropriate) in
each block of storage. The error INVALID_VALUE results if stride is less than
k. The order of the polynomial, order, is also the number of blocks of storage
containing control points.

u1 and u2 give two floating-point values that define the endpoints of the pre-
image of the map. When a value u′ is presented for evaluation, the formula used
is

p′(u′) = p(
u′ − u1

u2 − u1
).

The error INVALID_VALUE results if u1 = u2.
Map2 is analogous to Map1, except that it describes bivariate polynomials of

the form

p(u, v) =
n∑

i=0

m∑
j=0

Bn
i (u)Bm

j (v)Rij .

The form of the Map2 command is

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.1. EVALUATORS 359

EvalMesh
EvalPoint

MapGrid Map
EvalCoord

k

l

[u1,u2]

[v1,v2]

[0,1]

[0,1]
ΣBiRiAx+b

Vertices

Normals

Texture Coordinates

Colors

Integers Reals

Figure 5.1. Map Evaluation.

void Map2{fd}(enum target, T u1, T u2, int ustride,
int uorder, T v1, T v2, int vstride, int vorder, const
T points);

target is a range type selected from the same group as is used for Map1, except that
the string MAP1 is replaced with MAP2. points is a pointer to (n+1)(m+1) blocks
of storage (uorder = n + 1 and vorder = m + 1; the error INVALID_VALUE is
generated if either uorder or vorder is less than one or greater than MAX_EVAL_-

ORDER). The values comprising Rij are located

ustride× i+ vstride× j

values (either single- or double-precision floating-point, as appropriate) past the
first value pointed to by points. u1, u2, v1, and v2 define the pre-image rectangle
of the map; a domain point (u′, v′) is evaluated as

p′(u′, v′) = p(
u′ − u1

u2 − u1
,
v′ − v1
v2 − v1

).

The evaluation of a defined map is enabled or disabled with Enable and Dis-
able using the constant corresponding to the map as described above. The evaluator
map generates only coordinates for texture unit TEXTURE0. The error INVALID_-
VALUE results if either ustride or vstride is less than k, or if u1 is equal to u2,
or if v1 is equal to v2. If the value of ACTIVE_TEXTURE is not TEXTURE0, calling
Map{12} generates the error INVALID_OPERATION.

Figure 5.1 describes map evaluation schematically; an evaluation of enabled
maps is effected in one of two ways. The first way is to use

void EvalCoord{12}{fd}(T arg);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.1. EVALUATORS 360

void EvalCoord{12}{fd}v(const T arg);

EvalCoord1 causes evaluation of the enabled one-dimensional maps. The argu-
ment is the value (or a pointer to the value) that is the domain coordinate, u′. Eval-
Coord2 causes evaluation of the enabled two-dimensional maps. The two values
specify the two domain coordinates, u′ and v′, in that order.

When one of the EvalCoord commands is issued, all currently enabled maps
of the indicated dimension are evaluated. Then, for each enabled map, it is as if a
corresponding GL command were issued with the resulting coordinates, with one
important difference. The difference is that when an evaluation is performed, the
GL uses evaluated values instead of current values for those evaluations that are
enabled (otherwise, the current values are used). The order of the effective com-
mands is immaterial, except that Vertex (for vertex coordinate evaluation) must be
issued last. Use of evaluators has no effect on the current color, normal, or texture
coordinates. If ColorMaterial is enabled, evaluated color values affect the result
of the lighting equation as if the current color was being modified, but no change
is made to the tracking lighting parameters or to the current color.

No command is effectively issued if the corresponding map (of the indicated
dimension) is not enabled. If more than one evaluation is enabled for a particular
dimension (e.g. MAP1_TEXTURE_COORD_1 and MAP1_TEXTURE_COORD_2), then
only the result of the evaluation of the map with the highest number of coordinates
is used.

Finally, if either MAP2_VERTEX_3 or MAP2_VERTEX_4 is enabled, then the
normal to the surface is computed. Analytic computation, which sometimes yields
normals of length zero, is one method which may be used. If automatic normal
generation is enabled, then this computed normal is used as the normal associated
with a generated vertex. Automatic normal generation is controlled with Enable
and Disable with the symbolic constant AUTO_NORMAL. If automatic normal gen-
eration is disabled, then a corresponding normal map, if enabled, is used to produce
a normal. If neither automatic normal generation nor a normal map are enabled,
then no normal is sent with a vertex resulting from an evaluation (the effect is that
the current normal is used).

For MAP2_VERTEX_3, let q = p. For MAP2_VERTEX_4, let q =
(x/w, y/w, z/w), where (x, y, z, w) = p. Then let

m =
∂q
∂u
× ∂q
∂v
.

Then the generated analytic normal, n, is given by n = m if a vertex shader is
active, or else by n = m

‖m‖ .

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.1. EVALUATORS 361

The second way to carry out evaluations is to use a set of commands that pro-
vide for efficient specification of a series of evenly spaced values to be mapped.
This method proceeds in two steps. The first step is to define a grid in the domain.
This is done using

void MapGrid1{fd}(int n, T u′1, T u′2);

for a one-dimensional map or

void MapGrid2{fd}(int nu, T u′1, T u
′
2, int nv, T v′1,

T v′2);

for a two-dimensional map. In the case of MapGrid1 u′1 and u′2 describe an
interval, while n describes the number of partitions of the interval. The error
INVALID_VALUE results if n ≤ 0. For MapGrid2, (u′1, v

′
1) specifies one two-

dimensional point and (u′2, v
′
2) specifies another. nu gives the number of partitions

between u′1 and u′2, and nv gives the number of partitions between v′1 and v′2. If
either nu ≤ 0 or nv ≤ 0, then the error INVALID_VALUE occurs.

Once a grid is defined, an evaluation on a rectangular subset of that grid may
be carried out by calling

void EvalMesh1(enum mode, int p1, int p2);

mode is either POINT or LINE. The effect is the same as performing the following
code fragment, with ∆u′ = (u′2 − u′1)/n:

Begin(type);
for i = p1 to p2 step 1.0

EvalCoord1(i * ∆u′ + u′1);
End();

where EvalCoord1f or EvalCoord1d is substituted for EvalCoord1 as appropri-
ate. If mode is POINT, then type is POINTS; if mode is LINE, then type is LINE_-
STRIP. The one requirement is that if either i = 0 or i = n, then the value com-
puted from i ∗∆u′ + u′1 is precisely u′1 or u′2, respectively.

The corresponding commands for two-dimensional maps are

void EvalMesh2(enum mode, int p1, int p2, int q1,
int q2);

mode must be FILL, LINE, or POINT. When mode is FILL, then these commands
are equivalent to the following, with ∆u′ = (u′2−u′1)/n and ∆v′ = (v′2− v′1)/m:

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.1. EVALUATORS 362

for i = q1 to q2 − 1 step 1.0
Begin(QUAD_STRIP);

for j = p1 to p2 step 1.0
EvalCoord2(j * ∆u′ + u′1 , i * ∆v′ + v′1);
EvalCoord2(j * ∆u′ + u′1 , (i+ 1) * ∆v′ + v′1);

End();

If mode is LINE, then a call to EvalMesh2 is equivalent to

for i = q1 to q2 step 1.0
Begin(LINE_STRIP);
for j = p1 to p2 step 1.0

EvalCoord2(j * ∆u′ + u′1 , i * ∆v′ + v′1);
End();;

for i = p1 to p2 step 1.0
Begin(LINE_STRIP);
for j = q1 to q2 step 1.0

EvalCoord2(i * ∆u′ + u′1 , j * ∆v′ + v′1);
End();

If mode is POINT, then a call to EvalMesh2 is equivalent to

Begin(POINTS);
for i = q1 to q2 step 1.0

for j = p1 to p2 step 1.0
EvalCoord2(j * ∆u′ + u′1 , i * ∆v′ + v′1);

End();

Again, in all three cases, there is the requirement that 0∗∆u′+u′1 = u′1, n∗∆u′+
u′1 = u′2, 0 ∗∆v′ + v′1 = v′1, and m ∗∆v′ + v′1 = v′2.

An evaluation of a single point on the grid may also be carried out:

void EvalPoint1(int p);

Calling it is equivalent to the command

EvalCoord1(p * ∆u′ + u′1);

with ∆u′ and u′1 defined as above.

void EvalPoint2(int p, int q);

is equivalent to the command

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.2. SELECTION 363

EvalCoord2(p * ∆u′ + u′1 , q * ∆v′ + v′1);

The state required for evaluators potentially consists of 9 one-dimensional map
specifications and 9 two-dimensional map specifications, as well as corresponding
flags for each specification indicating which are enabled. Each map specification
consists of one or two orders, an appropriately sized array of control points, and a
set of two values (for a one-dimensional map) or four values (for a two-dimensional
map) to describe the domain. The maximum possible order, for either u or v, is
implementation-dependent (one maximum applies to both u and v), but must be at
least 8. Each control point consists of between one and four floating-point values
(depending on the type of the map). Initially, all maps have order 1 (making them
constant maps). All vertex coordinate maps produce the coordinates (0, 0, 0, 1)
(or the appropriate subset); all normal coordinate maps produce (0, 0, 1); RGBA
maps produce (1, 1, 1, 1); color index maps produce 1.0; and texture coordinate
maps produce (0, 0, 0, 1). In the initial state, all maps are disabled. A flag indi-
cates whether or not automatic normal generation is enabled for two-dimensional
maps. In the initial state, automatic normal generation is disabled. Also required
are two floating-point values and an integer number of grid divisions for the one-
dimensional grid specification and four floating-point values and two integer grid
divisions for the two-dimensional grid specification. In the initial state, the bounds
of the domain interval for 1-D is 0 and 1.0, respectively; for 2-D, they are (0, 0)
and (1.0, 1.0), respectively. The number of grid divisions is 1 for 1-D and 1 in
both directions for 2-D. If any evaluation command is issued when no vertex map
is enabled for the map dimension being evaluated, nothing happens.

5.2 Selection

Selection is used to determine which primitives are drawn into some region of a
window. The region is defined by the current model-view and perspective matrices.

Selection works by returning an array of integer-valued names. This array
represents the current contents of the name stack. This stack is controlled with the
commands

void InitNames(void);
void PopName(void);
void PushName(uint name);
void LoadName(uint name);

InitNames empties (clears) the name stack. PopName pops one name off the top
of the name stack. PushName causes name to be pushed onto the name stack.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.2. SELECTION 364

LoadName replaces the value on the top of the stack with name. Loading a name
onto an empty stack generates the error INVALID_OPERATION. Popping a name
off of an empty stack generates STACK_UNDERFLOW; pushing a name onto a full
stack generates STACK_OVERFLOW. The maximum allowable depth of the name
stack is implementation-dependent but must be at least 64.

In selection mode, framebuffer updates as described in chapter 4 are not per-
formed. The GL is placed in selection mode with

int RenderMode(enum mode);

mode is a symbolic constant: one of RENDER, SELECT, or FEEDBACK. RENDER is
the default, corresponding to rendering as described until now. SELECT specifies
selection mode, and FEEDBACK specifies feedback mode (described below). Use
of any of the name stack manipulation commands while the GL is not in selection
mode has no effect.

Selection is controlled using

void SelectBuffer(sizei n, uint *buffer);

buffer is a pointer to an array of unsigned integers (called the selection array) to be
potentially filled with names, and n is an integer indicating the maximum number
of values that can be stored in that array. Placing the GL in selection mode before
SelectBuffer has been called results in an error of INVALID_OPERATION as does
calling SelectBuffer while in selection mode.

In selection mode, if a point, line, polygon, or the valid coordinates produced
by a RasterPos command intersects the clip volume (section 2.22) then this prim-
itive (or RasterPos command) causes a selection hit. WindowPos commands al-
ways generate a selection hit, since the resulting raster position is always valid.
In the case of polygons, no hit occurs if the polygon would have been culled, but
selection is based on the polygon itself, regardless of the setting of PolygonMode.
When in selection mode, whenever a name stack manipulation command is exe-
cuted or RenderMode is called and there has been a hit since the last time the stack
was manipulated or RenderMode was called, then a hit record is written into the
selection array.

A hit record consists of the following items in order: a non-negative integer
giving the number of elements on the name stack at the time of the hit, a minimum
depth value, a maximum depth value, and the name stack with the bottommost el-
ement first. The minimum and maximum depth values are the minimum and max-
imum taken over all the window coordinate z values of each (post-clipping) vertex
of each primitive that intersects the clipping volume since the last hit record was

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.3. FEEDBACK 365

written. The minimum and maximum (each of which lies in the range [0, 1]) are
each multiplied by 232−1 and rounded to the nearest unsigned integer to obtain the
values that are placed in the hit record. No depth offset arithmetic (section 3.6.5)
is performed on these values.

Hit records are placed in the selection array by maintaining a pointer into that
array. When selection mode is entered, the pointer is initialized to the beginning
of the array. Each time a hit record is copied, the pointer is updated to point at
the array element after the one into which the topmost element of the name stack
was stored. If copying the hit record into the selection array would cause the total
number of values to exceed n, then as much of the record as fits in the array is
written and an overflow flag is set.

Selection mode is exited by calling RenderMode with an argument value other
than SELECT. When called while in selection mode, RenderMode returns the
number of hit records copied into the selection array and resets the SelectBuffer
pointer to its last specified value. Values are not guaranteed to be written into the
selection array until RenderMode is called. If the selection array overflow flag
was set, then RenderMode returns −1 and clears the overflow flag. The name
stack is cleared and the stack pointer reset whenever RenderMode is called.

The state required for selection consists of the address of the selection array
and its maximum size, the name stack and its associated pointer, a minimum and
maximum depth value, and several flags. One flag indicates the current Render-
Mode value. In the initial state, the GL is in the RENDER mode. Another flag is
used to indicate whether or not a hit has occurred since the last name stack ma-
nipulation. This flag is reset upon entering selection mode and whenever a name
stack manipulation takes place. One final flag is required to indicate whether the
maximum number of copied names would have been exceeded. This flag is reset
upon entering selection mode. This flag, the address of the selection array, and its
maximum size are GL client state.

5.3 Feedback

The GL is placed in feedback mode by calling RenderMode with FEEDBACK.
When in feedback mode, framebuffer updates as described in chapter 4 are not
performed. Instead, information about primitives that would have otherwise been
rasterized is returned to the application via the feedback buffer.

Feedback is controlled using

void FeedbackBuffer(sizei n, enum type, float *buffer);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.3. FEEDBACK 366

buffer is a pointer to an array of floating-point values into which feedback infor-
mation will be placed, and n is a number indicating the maximum number of val-
ues that can be written to that array. type is a symbolic constant describing the
information to be fed back for each vertex (see figure 5.2). The error INVALID_-
OPERATION results if the GL is placed in feedback mode before a call to Feed-
backBuffer has been made, or if a call to FeedbackBuffer is made while in feed-
back mode.

While in feedback mode, each primitive that would be rasterized (or bitmap
or call to DrawPixels or CopyPixels, if the raster position is valid) generates a
block of values that get copied into the feedback array. If doing so would cause
the number of entries to exceed the maximum, the block is partially written so as
to fill the array (if there is any room left at all). The first block of values gener-
ated after the GL enters feedback mode is placed at the beginning of the feedback
array, with subsequent blocks following. Each block begins with a code indicat-
ing the primitive type, followed by values that describe the primitive’s vertices and
associated data. Entries are also written for bitmaps and pixel rectangles. Feed-
back occurs after polygon culling (section 3.6.1) and PolygonMode interpretation
of polygons (section 3.6.4) has taken place. It may also occur after polygons with
more than three edges are broken up into triangles (if the GL implementation ren-
ders polygons by performing this decomposition). x, y, and z coordinates returned
by feedback are window coordinates; if w is returned, it is in clip coordinates. No
depth offset arithmetic (section 3.6.5) is performed on the z values. In the case
of bitmaps and pixel rectangles, the coordinates returned are those of the current
raster position.

The texture coordinates and colors returned are those resulting from the clip-
ping operations described in section 2.22.1. Only coordinates for texture unit
TEXTURE0 are returned even for implementations which support multiple texture
units. The colors returned are the primary colors.

The ordering rules for GL command interpretation also apply in feedback
mode. Each command must be fully interpreted and its effects on both GL state
and the values to be written to the feedback buffer completed before a subsequent
command may be executed.

Feedback mode is exited by calling RenderMode with an argument value other
than FEEDBACK. When called while in feedback mode, RenderMode returns the
number of values placed in the feedback array and resets the feedback array pointer
to be buffer. The return value never exceeds the maximum number of values passed
to FeedbackBuffer.

If writing a value to the feedback buffer would cause more values to be written
than the specified maximum number of values, then the value is not written and an
overflow flag is set. In this case, RenderMode returns −1 when it is called, after

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.4. TIMER QUERIES 367

Type coordinates color texture total values
2D x, y – – 2
3D x, y, z – – 3

3D_COLOR x, y, z k – 3 + k

3D_COLOR_TEXTURE x, y, z k 4 7 + k

4D_COLOR_TEXTURE x, y, z, w k 4 8 + k

Table 5.2: Correspondence of feedback type to number of values per vertex. k is 1
in color index mode and 4 in RGBA mode.

which the overflow flag is reset. While in feedback mode, values are not guaranteed
to be written into the feedback buffer before RenderMode is called.

Figure 5.2 gives a grammar for the array produced by feedback. Each primitive
is indicated with a unique identifying value followed by some number of vertices.
A vertex is fed back as some number of floating-point values determined by the
feedback type. Table 5.2 gives the correspondence between type and the number of
values returned for each vertex.

The command

void PassThrough(float token);

may be used as a marker in feedback mode. token is returned as if it were a prim-
itive; it is indicated with its own unique identifying value. The ordering of any
PassThrough commands with respect to primitive specification is maintained by
feedback. PassThrough may not occur between Begin and End. It has no effect
when the GL is not in feedback mode.

The state required for feedback is the pointer to the feedback array, the maxi-
mum number of values that may be placed there, and the feedback type. An over-
flow flag is required to indicate whether the maximum allowable number of feed-
back values has been written; initially this flag is cleared. These state variables are
GL client state. Feedback also relies on the same mode flag as selection to indicate
whether the GL is in feedback, selection, or normal rendering mode.

5.4 Timer Queries

Timer queries use query objects to track the amount of time needed to fully com-
plete a set of GL commands, or to determine the current time of the GL.

When BeginQuery and EndQuery are called with a target of TIME_ELAPSED,
the GL prepares to start and stop the timer used for timer queries. The timer is

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.4. TIMER QUERIES 368

feedback-list:
feedback-item feedback-list
feedback-item

feedback-item:
point
line-segment
polygon
bitmap
pixel-rectangle
passthrough

point:
POINT_TOKEN vertex

line-segment:
LINE_TOKEN vertex vertex
LINE_RESET_TOKEN vertex vertex

polygon:
POLYGON_TOKEN n polygon-spec

polygon-spec:
polygon-spec vertex
vertex vertex vertex

bitmap:
BITMAP_TOKEN vertex

pixel-rectangle:
DRAW_PIXEL_TOKEN vertex
COPY_PIXEL_TOKEN vertex

passthrough:
PASS_THROUGH_TOKEN f

vertex:
2D:

f f
3D:

f f f
3D_COLOR:

f f f color
3D_COLOR_TEXTURE:

f f f color tex
4D_COLOR_TEXTURE:

f f f f color tex

color:
f f f f
f

tex:
f f f f

Figure 5.2: Feedback syntax. f is a floating-point number. n is a floating-point
integer giving the number of vertices in a polygon. The symbols ending with
_TOKEN are symbolic floating-point constants. The labels under the “vertex”
rule show the different data returned for vertices depending on the feedback type.
LINE_TOKEN and LINE_RESET_TOKEN are identical except that the latter is re-
turned only when the line stipple is reset for that line segment.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.5. DISPLAY LISTS 369

started or stopped when the effects from all previous commands on the GL client
and server state and the framebuffer have been fully realized. The BeginQuery and
EndQuery commands may return before the timer is actually started or stopped.
When the timer query timer is finally stopped, the elapsed time (in nanoseconds) is
written to the corresponding query object as the query result value, and the query
result for that object is marked as available.

If the elapsed time overflows the number of bits, n, available to hold elapsed
time, its value becomes undefined. It is recommended, but not required, that im-
plementations handle this overflow case by saturating at 2n − 1.

When the command

void QueryCounter(uint id, enum target);

is called with target TIMESTAMP, the GL records the current time into the corre-
sponding query object. The time is recorded after all previous commands on the GL
client and server state and the framebuffer have been fully realized. When the time
is recorded, the query result for that object is marked available. QueryCounter
timer queries can be used within a BeginQuery / EndQuery block where the tar-
get is TIME_ELAPSED and it does not affect the result of that query object. The
error INVALID_OPERATION is generated if id is already in use within a Begin-
Query / EndQuery block.

The current time of the GL may be queried by calling GetIntegerv or Get-
Integer64v with the symbolic constant TIMESTAMP. This will return the GL time
after all previous commands have reached the GL server but have not yet neces-
sarily executed. By using a combination of this synchronous get command and the
asynchronous timestamp query object target, applications can measure the latency
between when commands reach the GL server and when they are realized in the
framebuffer.

5.5 Display Lists

A display list is simply a group of GL commands and arguments that has been
stored for subsequent execution. The GL may be instructed to process a particular
display list (possibly repeatedly) by providing a number that uniquely specifies it.
Doing so causes the commands within the list to be executed just as if they were
given normally. The only exception pertains to commands that rely upon client
state. When such a command is accumulated into the display list (that is, when
issued, not when executed), the client state in effect at that time applies to the com-
mand. Only server state is affected when the command is executed. As always,
pointers which are passed as arguments to commands are dereferenced when the

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.5. DISPLAY LISTS 370

command is issued. (Vertex array pointers are dereferenced when the commands
ArrayElement, DrawArrays, DrawElements, or DrawRangeElements are ac-
cumulated into a display list.)

A display list is begun by calling

void NewList(uint n, enum mode);

n is a positive integer to which the display list that follows is assigned, and mode is a
symbolic constant that controls the behavior of the GL during display list creation.
If mode is COMPILE, then commands are not executed as they are placed in the
display list. If mode is COMPILE_AND_EXECUTE then commands are executed as
they are encountered, then placed in the display list. If n = 0, then the error
INVALID_VALUE is generated.

After calling NewList all subsequent GL commands are placed in the display
list (in the order the commands are issued) until a call to

void EndList(void);

occurs, after which the GL returns to its normal command execution state. It is
only when EndList occurs that the specified display list is actually associated with
the index indicated with NewList. The error INVALID_OPERATION is generated
if EndList is called without a previous matching NewList, or if NewList is called
a second time before calling EndList. The error OUT_OF_MEMORY is generated if
EndList is called and the specified display list cannot be stored because insufficient
memory is available. In this case GL implementations of revision 1.1 or greater
insure that no change is made to the previous contents of the display list, if any,
and that no other change is made to the GL state, except for the state changed
by execution of GL commands when the display list mode is COMPILE_AND_-

EXECUTE.
Once defined, a display list is executed by calling

void CallList(uint n);

n gives the index of the display list to be called. This causes the commands saved
in the display list to be executed, in order, just as if they were issued without using
a display list. If n = 0, then the error INVALID_VALUE is generated.

The command

void CallLists(sizei n, enum type, const void *lists);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.5. DISPLAY LISTS 371

provides an efficient means for executing a number of display lists. n is an in-
teger indicating the number of display lists to be called, and lists is a pointer
that points to an array of offsets. Each offset is constructed as determined by
lists as follows. First, type may be one of the constants BYTE, UNSIGNED_BYTE,
SHORT, UNSIGNED_SHORT, INT, UNSIGNED_INT, or FLOAT indicating that the ar-
ray pointed to by lists is an array of bytes, unsigned bytes, shorts, unsigned shorts,
integers, unsigned integers, or floats, respectively. In this case each offset is found
by simply converting each array element to an integer (floating point values are
truncated to negative infinity). Further, type may be one of 2_BYTES, 3_BYTES,
or 4_BYTES, indicating that the array contains sequences of 2, 3, or 4 unsigned
bytes, in which case each integer offset is constructed according to the following
algorithm:

offset← 0
for i = 1 to b

offset← offset shifted left 8 bits
offset← offset+ byte
advance to next byte in the array

b is 2, 3, or 4, as indicated by type. If n = 0, CallLists does nothing.
Each of the n constructed offsets is taken in order and added to a display list

base to obtain a display list number. For each number, the indicated display list is
executed. The base is set by calling

void ListBase(uint base);

to specify the offset.
Indicating a display list index that does not correspond to any display list has no

effect. CallList or CallLists may appear inside a display list. (If the mode supplied
to NewList is COMPILE_AND_EXECUTE, then the appropriate lists are executed,
but the CallList or CallLists, rather than those lists’ constituent commands, is
placed in the list under construction.) To avoid the possibility of infinite recursion
resulting from display lists calling one another, an implementation-dependent limit
is placed on the nesting level of display lists during display list execution. This
limit must be at least 64.

Two commands are provided to manage display list indices.

uint GenLists(sizei s);

returns an integer n such that the indices n, . . . , n+s−1 are previously unused (i.e.
there are s previously unused display list indices starting at n). GenLists also has

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.5. DISPLAY LISTS 372

the effect of creating an empty display list for each of the indices n, . . . , n+ s− 1,
so that these indices all become used. GenLists returns 0 if there is no group of s
contiguous previously unused display list indices, or if s = 0.

boolean IsList(uint list);

returns TRUE if list is the index of some display list.
A contiguous group of display lists may be deleted by calling

void DeleteLists(uint list, sizei range);

where list is the index of the first display list to be deleted and range is the number
of display lists to be deleted. All information about the display lists is lost, and the
indices become unused. Indices to which no display list corresponds are ignored.
If range = 0, nothing happens.

5.5.1 Commands Not Usable In Display Lists

Certain commands, when called while compiling a display list, are not compiled
into the display list but are executed immediately. These commands fall in several
categories including

Display lists: GenLists and DeleteLists.
Render modes: FeedbackBuffer, SelectBuffer, and RenderMode.
Vertex arrays: ClientActiveTexture, ColorPointer, EdgeFlagPointer, Fog-

CoordPointer, IndexPointer, InterleavedArrays, NormalPointer, Secondary-
ColorPointer, TexCoordPointer, VertexAttribPointer, VertexAttribIPointer,
VertexPointer, PrimitiveRestartIndex, GenVertexArrays, DeleteVertexAr-
rays, and BindVertexArray.

Client state: EnableClientState, DisableClientState, EnableVertexAttrib-
Array, DisableVertexAttribArray, PushClientAttrib, and PopClientAttrib.

Pixels and textures: PixelStore, ReadPixels, GenTextures, DeleteTextures,
AreTexturesResident, TexBuffer, and GenerateMipmap.

Occlusion queries: GenQueries and DeleteQueries.
Buffer objects: GenBuffers, DeleteBuffers, BindBuffer, BindBuffer-

Range, BindBufferBase, TransformFeedbackVaryings, BufferData, Buffer-
SubData, MapBuffer, MapBufferRange, FlushMappedBufferRange, and Un-
mapBuffer.

Framebuffer and renderbuffer objects: GenFramebuffers, BindFrame-
buffer, DeleteFramebuffers, CheckFramebufferStatus, GenRenderbuffers,
BindRenderbuffer, DeleteRenderbuffers, RenderbufferStorage, Render-
bufferStorageMultisample, FramebufferTexture, FramebufferTexture1D,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.5. DISPLAY LISTS 373

FramebufferTexture2D, FramebufferTexture3D, FramebufferTextureLayer,
FramebufferRenderbuffer, and BlitFramebuffer.

Program and shader objects: CreateProgram, CreateShader, DeletePro-
gram, DeleteShader, AttachShader, DetachShader, BindAttribLocation,
BindFragDataLocation, CompileShader, ShaderSource, LinkProgram, and
ValidateProgram.

GL command stream management: ClientWaitSync, FenceSync, Finish, and
Flush.

Other queries: All query commands whose names begin with Get and Is (see
chapter 6).

An INVALID_OPERATION error is generated if the commands DrawAr-
raysInstanced or DrawElementsInstanced (see section 2.8.2) are called during
display list compilation.

GL commands that source data from buffer objects dereference the buffer
object data in question at display list compile time, rather than encoding the

buffer ID and buffer offset into the display list. Only GL commands that are exe-
cuted immediately, rather than being compiled into a display list, are permitted to
use a buffer object as a data sink.

TexImage3D, TexImage2D, TexImage1D, Histogram, and ColorTable
are executed immediately when called with the corresponding proxy arguments
PROXY_TEXTURE_3D or PROXY_TEXTURE_2D_ARRAY; PROXY_TEXTURE_2D

PROXY_TEXTURE_1D_ARRAY, or PROXY_TEXTURE_CUBE_MAP; PROXY_-

TEXTURE_1D; PROXY_HISTOGRAM; and PROXY_COLOR_TABLE, PROXY_POST_-
CONVOLUTION_COLOR_TABLE, or PROXY_POST_COLOR_MATRIX_COLOR_-

TABLE.
When a program object is in use, a display list may be executed whose vertex

attribute calls do not match up exactly with what is expected by the vertex shader
contained in that program object. Handling of this mismatch is described in sec-
tion 2.14.3.

Display lists require one bit of state to indicate whether a GL command should
be executed immediately or placed in a display list. In the initial state, commands
are executed immediately. If the bit indicates display list creation, an index is
required to indicate the current display list being defined. Another bit indicates,
during display list creation, whether or not commands should be executed as they
are compiled into the display list. One integer is required for the current ListBase
setting; its initial value is zero. Finally, state must be maintained to indicate which
integers are currently in use as display list indices. In the initial state, no indices
are in use.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.6. FLUSH AND FINISH 374

5.6 Flush and Finish

The command

void Flush(void);

indicates that all commands that have previously been sent to the GL must complete
in finite time.

The command

void Finish(void);

forces all previous GL commands to complete. Finish does not return until all
effects from previously issued commands on GL client and server state and the
framebuffer are fully realized.

5.7 Sync Objects and Fences

Sync objects act as a synchronization primitive - a representation of events whose
completion status can be tested or waited upon. Sync objects may be used for syn-
chronization with operations occuring in the GL state machine or in the graphics
pipeline, and for synchronizing between multiple graphics contexts, among other
purposes.

Sync objects have a status value with two possible states: signaled and
unsignaled. Events are associated with a sync object. When a sync object is cre-
ated, its status is set to unsignaled. When the associated event occurs, the sync
object is signaled (its status is set to signaled). The GL may be asked to wait for a
sync object to become signaled.

Initially, only one specific type of sync object is defined: the fence sync object,
whose associated event is triggered by a fence command placed in the GL com-
mand stream. Fence sync objects are used to wait for partial completion of the GL
command stream, as a more flexible form of Finish.

The command

sync FenceSync(enum condition, bitfield flags);

creates a new fence sync object, inserts a fence command in the GL command
stream and associates it with that sync object, and returns a non-zero name corre-
sponding to the sync object.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.7. SYNC OBJECTS AND FENCES 375

Property Name Property Value
OBJECT_TYPE SYNC_FENCE

SYNC_CONDITION condition
SYNC_STATUS UNSIGNALED

SYNC_FLAGS flags

Table 5.3: Initial properties of a sync object created with FenceSync.

When the specified condition of the sync object is satisfied by the fence com-
mand, the sync object is signaled by the GL, causing any ClientWaitSync or Wait-
Sync commands (see below) blocking on sync to unblock. No other state is affected
by FenceSync or by execution of the associated fence command.

condition must be SYNC_GPU_COMMANDS_COMPLETE. This condition is satis-
fied by completion of the fence command corresponding to the sync object and all
preceding commands in the same command stream. The sync object will not be
signaled until all effects from these commands on GL client and server state and the
framebuffer are fully realized. Note that completion of the fence command occurs
once the state of the corresponding sync object has been changed, but commands
waiting on that sync object may not be unblocked until after the fence command
completes.

flags must be 01.
Each sync object contains a number of properties which determine the state of

the object and the behavior of any commands associated with it. Each property has
a property name and property value. The initial property values for a sync object
created by FenceSync are shown in table 5.3.

Properties of a sync object may be queried with GetSynciv (see section 6.1.14).
The SYNC_STATUS property will be changed to SIGNALED when condition is sat-
isfied.

If FenceSync fails to create a sync object, zero will be returned and a GL error
will be generated as described. An INVALID_ENUM error is generated if condition
is not SYNC_GPU_COMMANDS_COMPLETE. If flags is not zero, an INVALID_VALUE
error is generated

A sync object can be deleted by passing its name to the command

void DeleteSync(sync sync);

If the fence command corresponding to the specified sync object has com-
pleted, or if no ClientWaitSync or WaitSync commands are blocking on sync, the

1 flags is a placeholder for anticipated future extensions of fence sync object capabilities.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.7. SYNC OBJECTS AND FENCES 376

object is deleted immediately. Otherwise, sync is flagged for deletion and will be
deleted when it is no longer associated with any fence command and is no longer
blocking any ClientWaitSync or WaitSync command. In either case, after return-
ing from DeleteSync the sync name is invalid and can no longer be used to refer to
the sync object.

DeleteSync will silently ignore a sync value of zero. An INVALID_VALUE

error is generated if sync is neither zero nor the name of a sync object.

5.7.1 Waiting for Sync Objects

The command

enum ClientWaitSync(sync sync, bitfield flags,
uint64 timeout);

causes the GL to block, and will not return until the sync object sync is signaled,
or until the specified timeout period expires. timeout is in units of nanoseconds.
timeout is adjusted to the closest value allowed by the implementation-dependent
timeout accuracy, which may be substantially longer than one nanosecond, and
may be longer than the requested period.

If sync is signaled at the time ClientWaitSync is called, then ClientWait-
Sync returns immediately. If sync is unsignaled at the time ClientWaitSync is
called, then ClientWaitSync will block and will wait up to timeout nanoseconds
for sync to become signaled. flags controls command flushing behavior, and may
be SYNC_FLUSH_COMMANDS_BIT, as discussed in section 5.7.2.

ClientWaitSync returns one of four status values. A return value of
ALREADY_SIGNALED indicates that sync was signaled at the time ClientWait-
Sync was called. ALREADY_SIGNALED will always be returned if sync was sig-
naled, even if the value of timeout is zero. A return value of TIMEOUT_EXPIRED
indicates that the specified timeout period expired before sync was signaled. A re-
turn value of CONDITION_SATISFIED indicates that sync was signaled before the
timeout expired. Finally, if an error occurs, in addition to generating a GL error
as specified below, ClientWaitSync immediately returns WAIT_FAILED without
blocking.

If the value of timeout is zero, then ClientWaitSync does not block, but simply
tests the current state of sync. TIMEOUT_EXPIRED will be returned in this case if
sync is not signaled, even though no actual wait was performed.

If sync is not the name of a sync object, an INVALID_VALUE error is gen-
erated. If flags contains any bits other than SYNC_FLUSH_COMMANDS_BIT, an
INVALID_VALUE error is generated.

The command

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.7. SYNC OBJECTS AND FENCES 377

void WaitSync(sync sync, bitfield flags,
uint64 timeout);

is similar to ClientWaitSync, but instead of blocking and not returning to the ap-
plication until sync is signaled, WaitSync returns immediately, instead causing the
GL server to block 2 until sync is signaled 3.

sync has the same meaning as for ClientWaitSync.
timeout must currently be the special value TIMEOUT_IGNORED, and is not

used. Instead, WaitSync will always wait no longer than an implementation-
dependent timeout. The duration of this timeout in nanoseconds may be queried
by calling GetInteger64v with the symbolic constant MAX_SERVER_WAIT_-
TIMEOUT. There is currently no way to determine whether WaitSync unblocked
because the timeout expired or because the sync object being waited on was sig-
naled.

flags must be 0.
If an error occurs, WaitSync generates a GL error as specified below, and does

not cause the GL server to block.
If sync is not the name of a sync object, an INVALID_VALUE error is generated.

If timeout is not TIMEOUT_IGNORED or flags is not zero, an INVALID_VALUE error
is generated4.

Multiple Waiters

It is possible for both the GL client to be blocked on a sync object in a ClientWait-
Sync command, the GL server to be blocked as the result of a previous WaitSync
command, and for additional WaitSync commands to be queued in the GL server,
all for a single sync object. When such a sync object is signaled in this situation,
the client will be unblocked, the server will be unblocked, and all such queued
WaitSync commands will continue immediately when they are reached.

See appendix D.2 for more information about blocking on a sync object in
multiple GL contexts.

2The GL server may choose to wait either in the CPU executing server-side code, or in the GPU
hardware if it supports this operation.

3WaitSync allows applications to continue to queue commands from the client in anticipation of
the sync being signalled, increasing client-server parallelism.

4 flags and timeout are placeholders for anticipated future extensions of sync object capabilities.
They must have these reserved values in order that existing code calling WaitSync operate properly
in the presence of such extensions.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.8. HINTS 378

5.7.2 Signalling

A fence sync object enters the signaled state only once the corresponding fence
command has completed and signaled the sync object.

If the sync object being blocked upon will not be signaled in finite time (for
example, by an associated fence command issued previously, but not yet flushed
to the graphics pipeline), then ClientWaitSync may hang forever. To help prevent
this behavior 5, if the SYNC_FLUSH_COMMANDS_BIT bit is set in flags, and sync
is unsignaled when ClientWaitSync is called, then the equivalent of Flush will be
performed before blocking on sync.

If a sync object is marked for deletion while a client is blocking on that object
in a ClientWaitSync command, or a GL server is blocking on that object as a result
of a prior WaitSync command, deletion is deferred until the sync object is signaled
and all blocked GL clients and servers are unblocked.

Additional constraints on the use of sync objects are discussed in appendix D.
State must be maintained to indicate which sync object names are currently in

use. The state require for each sync object in use is an integer for the specific type,
an integer for the condition, and a bit indicating whether the object is signaled
or unsignaled. The initial values of sync object state are defined as specified by
FenceSync.

5.8 Hints

Certain aspects of GL behavior, when there is room for variation, may be controlled
with hints. A hint is specified using

void Hint(enum target, enum hint);

target is a symbolic constant indicating the behavior to be controlled, and hint is a
symbolic constant indicating what type of behavior is desired. The possible targets
are described in table 5.4; for each target, hint must be one of FASTEST, indicating
that the most efficient option should be chosen; NICEST, indicating that the highest
quality option should be chosen; and DONT_CARE, indicating no preference in the
matter.

For the texture compression hint, a hint of FASTEST indicates that texture im-
ages should be compressed as quickly as possible, while NICEST indicates that

5The simple flushing behavior defined by SYNC_FLUSH_COMMANDS_BIT will not help
when waiting for a fence command issued in another context’s command stream to complete. Ap-
plications which block on a fence sync object must take additional steps to assure that the context
from which the corresponding fence command was issued has flushed that command to the graphics
pipeline.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

5.8. HINTS 379

Target Hint description
PERSPECTIVE_CORRECTION_HINT Quality of parameter interpolation
POINT_SMOOTH_HINT Point sampling quality
LINE_SMOOTH_HINT Line sampling quality
POLYGON_SMOOTH_HINT Polygon sampling quality
FOG_HINT Fog quality

(calculated per-pixel or per-vertex)
GENERATE_MIPMAP_HINT Quality and performance of

automatic mipmap level generation
TEXTURE_COMPRESSION_HINT Quality and performance of

texture image compression
FRAGMENT_SHADER_DERIVATIVE_HINT Derivative accuracy for fragment

processing built-in functions
dFdx, dFdy and fwidth

Table 5.4: Hint targets and descriptions.

the texture images be compressed with as little image degradation as possible.
FASTEST should be used for one-time texture compression, and NICEST should
be used if the compression results are to be retrieved by GetCompressedTexIm-
age (section 6.1.4) for reuse.

The interpretation of hints is implementation-dependent. An implementation
may ignore them entirely.

The initial value of all hints is DONT_CARE.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Chapter 6

State and State Requests

The state required to describe the GL machine is enumerated in section 6.2. Most
state is set through the calls described in previous chapters, and can be queried
using the calls described in section 6.1.

6.1 Querying GL State

6.1.1 Simple Queries

Much of the GL state is completely identified by symbolic constants. The values
of these state variables can be obtained using a set of Get commands. There are
four commands for obtaining simple state variables:

void GetBooleanv(enum pname, boolean *data);
void GetIntegerv(enum pname, int *data);
void GetInteger64v(enum pname, int64 *data);
void GetFloatv(enum pname, float *data);
void GetDoublev(enum pname, double *data);

The commands obtain boolean, integer, 64-bit integer, floating-point, or double-
precision state variables. pname is a symbolic constant indicating the state variable
to return. data is a pointer to a scalar or array of the indicated type in which to place
the returned data.

Indexed simple state variables are queried with the commands

void GetBooleani v(enum target, uint index,
boolean *data);

void GetIntegeri v(enum target, uint index, int *data);

380

6.1. QUERYING GL STATE 381

void GetInteger64i v(enum target, uint index,
int64 *data);

target is the name of the indexed state and index is the index of the particular
element being queried. data is a pointer to a scalar or array of the indicated type in
which to place the returned data. An INVALID_VALUE error is generated if index
is outside the valid range for the indexed state target.

Finally,

boolean IsEnabled(enum cap);

can be used to determine if cap is currently enabled (as with Enable) or disabled,
and

boolean IsEnabledi(enum target, uint index);

can be used to determine if the indexed state corresponding to target and index is
enabled or disabled. An INVALID_VALUE error is generated if index is outside the
valid range for the indexed state target.

6.1.2 Data Conversions

If a Get command is issued that returns value types different from the type of the
value being obtained, a type conversion is performed. If GetBooleanv is called, a
floating-point or integer value converts to FALSE if and only if it is zero (otherwise
it converts to TRUE). If any of the other simple queries are called, a boolean value
of TRUE or FALSE is interpreted as 1 or 0, respectively. If GetIntegerv or GetInte-
ger64v are called, a floating-point value is rounded to the nearest integer, unless the
value is an RGBA color component, a normal coordinate, a DepthRange value, or
a depth buffer clear value. In these cases, the Get command converts the floating-
point value to an integer according to the INT entry of table 4.9; a value not in
[−1, 1] converts to an undefined value. If GetFloatv is called, a boolean value of
TRUE or FALSE is interpreted as 1.0 or 0.0, respectively, an integer is coerced to
floating-point, and a double-precision floating-point value is converted to single-
precision. Analogous conversions are carried out in the case of GetDoublev. If a
value is so large in magnitude that it cannot be represented with the requested type,
then the nearest value representable using the requested type is returned.

Unless otherwise indicated, multi-valued state variables return their multiple
values in the same order as they are given as arguments to the commands that set
them. For instance, the two DepthRange parameters are returned in the order n
followed by f. Similarly, points for evaluator maps are returned in the order that

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 382

they appeared when passed to Map1. Map2 returns Rij in the [(uorder)i + j]th
block of values (see page 358 for i, j, uorder, and Rij).

Matrices may be queried and returned in transposed form by calling Get-
Booleanv, GetIntegerv, GetFloatv, and GetDoublev with pname set to
one of TRANSPOSE_MODELVIEW_MATRIX, TRANSPOSE_PROJECTION_MATRIX,
TRANSPOSE_TEXTURE_MATRIX, or TRANSPOSE_COLOR_MATRIX. The effect of

GetFloatv(TRANSPOSE_MODELVIEW_MATRIX,m);

is the same as the effect of the command sequence

GetFloatv(MODELVIEW_MATRIX,m);
m = mT;

Similar conversions occur when querying TRANSPOSE_PROJECTION_-

MATRIX, TRANSPOSE_TEXTURE_MATRIX, and TRANSPOSE_COLOR_MATRIX.
If fragment color clamping is enabled, querying of the texture border color,

texture environment color, fog color, alpha test reference value, blend color, and
RGBA clear color will clamp the corresponding state values to [0, 1] before return-
ing them. This behavior provides compatibility with previous versions of the GL
that clamped these values when specified.

Most texture state variables are qualified by the value of ACTIVE_TEXTURE
to determine which server texture state vector is queried. Client texture state
variables such as texture coordinate array pointers are qualified by the value of
CLIENT_ACTIVE_TEXTURE. Tables 6.8, 6.9, 6.15, 6.22, 6.27, and 6.55 indicate
Table 6.22 indicates those state variables which are qualified by ACTIVE_-

TEXTURE or CLIENT_ACTIVE_TEXTURE during state queries. Queries of texture
state variables corresponding to texture coordinate processing units (namely, Tex-
Gen state and enables, and matrices) will generate an INVALID_OPERATION error
if the value of ACTIVE_TEXTURE is greater than or equal to MAX_TEXTURE_-

COORDS. All other texture state queries will result in an INVALID_OPERATION er-
ror if the value of ACTIVE_TEXTURE is greater than or equal to MAX_COMBINED_-
TEXTURE_IMAGE_UNITS.

Vertex array state variables are qualified by the value of VERTEX_ARRAY_-
BINDING to determine which vertex array object is queried. Tables 6.9- 6.12
define the set of state stored in a vertex array object.

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that are identified by a category as
well as a symbolic constant.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 383

void GetClipPlane(enum plane, double eqn[4]);

returns four double-precision values in eqn; these are the coefficients of the plane
equation of plane in eye coordinates (these coordinates are those that were com-
puted when the plane was specified).

void GetLight{if}v(enum light, enum value, T data);

places information about light parameter value for light in data. POSITION and
SPOT_DIRECTION return values in eye coordinates. Again, these are the coordi-
nates that were computed when the position or direction was specified.

void GetMaterial{if}v(enum face, enum value, T data);

places information about material property value for face in data. face must be
either FRONT or BACK, indicating the front or back material, respectively.

void GetTexEnv{if}v(enum env, enum value, T data);

places information about value for env in data. env must be either POINT_SPRITE,
TEXTURE_ENV, or TEXTURE_FILTER_CONTROL.

void GetTexGen{ifd}v(enum coord, enum value, T data);

places information about value for coord in data. coord must be one of S, T, R, or Q.
EYE_LINEAR coefficients are returned in the eye coordinates that were computed
when the plane was specified; OBJECT_LINEAR coefficients are returned in object
coordinates.

void GetPixelMap{ui us f}v(enum map, T data);

returns all values in the pixel map map in data. map must be a map name from
table 3.3. GetPixelMapuiv and GetPixelMapusv convert floating point pixel map
values to integers according to the UNSIGNED_INT and UNSIGNED_SHORT entries,
respectively, of table 4.9.

If a pixel pack buffer is bound (as indicated by a non-zero value of PIXEL_-
PACK_BUFFER_BINDING), data is an offset into the pixel pack buffer; otherwise,
data is a pointer to client memory. All pixel storage and pixel transfer modes are
ignored when returning a pixel map. nmachine units are written where n is the size
of the pixel map times the size of FLOAT, UNSIGNED_INT, or UNSIGNED_SHORT
respectively in basic machine units. If a pixel pack buffer object is bound and
data+n is greater than the size of the pixel buffer, an INVALID_OPERATION error
results. If a pixel pack buffer object is bound and data is not evenly divisible by the
number of basic machine units needed to store in memory a FLOAT, UNSIGNED_-
INT, or UNSIGNED_SHORT respectively, an INVALID_OPERATION error results.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 384

void GetMap{ifd}v(enum map, enum value, T data);

places information about value for map in data. map must be one of the map types
described in section 5.1, and value must be one of ORDER, COEFF, or DOMAIN.

The commands

void GetTexParameter{if}v(enum target, enum value,
T data);

void GetTexParameterI{i ui}v(enum target, enum value,
T data);

place information about texture parameter value for the specified target into data.
value must be TEXTURE_RESIDENT or one of the symbolic values in table 3.22.

target may be one of TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_-
1D_ARRAY, TEXTURE_2D_ARRAY, TEXTURE_RECTANGLE, or TEXTURE_CUBE_-
MAP, indicating the currently bound one-, two-, three-dimensional, one- or two-
dimensional array, rectangular, or cube map texture object.

Querying value TEXTURE_BORDER_COLORwith GetTexParameterIiv or Get-
TexParameterIuiv returns the border color values as signed integers or unsigned
integers, respectively; otherwise the values are returned as described in sec-
tion 6.1.2. If the border color is queried with a type that does not match the original
type with which it was specified, the result is undefined.

void GetTexLevelParameter{if}v(enum target, int lod,
enum value, T data);

places information about texture image parameter value for level-of-detail lod of
the specified target into data. value must be one of the symbolic values in ta-
ble 6.25.

target may be one of TEXTURE_1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_-
1D_ARRAY, TEXTURE_2D_ARRAY, TEXTURE_RECTANGLE, TEXTURE_CUBE_-

MAP_POSITIVE_X, TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_-

MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_-

MAP_POSITIVE_Z, TEXTURE_CUBE_MAP_NEGATIVE_Z, TEXTURE_2D_-

MULTISAMPLE, TEXTURE_2D_MULTISAMPLE_ARRAY, PROXY_TEXTURE_1D,
PROXY_TEXTURE_2D, PROXY_TEXTURE_3D, PROXY_TEXTURE_1D_ARRAY,
PROXY_TEXTURE_2D_ARRAY, PROXY_TEXTURE_RECTANGLE, PROXY_-

TEXTURE_CUBE_MAP, PROXY_TEXTURE_2D_MULTISAMPLE, or PROXY_-

TEXTURE_2D_MULTISAMPLE_ARRAY, indicating the one-, two-, or three-
dimensional texture, one-or two-dimensional array texture, rectangular texture,
one of the six distinct 2D images making up the cube map texture object,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 385

two-dimensional multisample texture, two-dimensional multisample array texture;
or the one-, two-, three-dimensional, one-or two-dimensional array, rectangular,
cube map, two-dimensional multisample, or two-dimensional multisample array
proxy state vector.

target may also be TEXTURE_BUFFER, indicating the texture buffer. In the case
lod must be zero or an INVALID_VALUE error is generated.

Note that TEXTURE_CUBE_MAP is not a valid target parameter for Get-
TexLevelParameter, because it does not specify a particular cube map face.

lod determines which level-of-detail’s state is returned. If lod is less than zero
or larger than the maximum allowable level-of-detail, then an INVALID_VALUE

error is generated.
For texture images with uncompressed internal formats, queries of

value TEXTURE_RED_TYPE, TEXTURE_GREEN_TYPE, TEXTURE_BLUE_-

TYPE, TEXTURE_ALPHA_TYPE, TEXTURE_LUMINANCE_TYPE, TEXTURE_-

INTENSITY_TYPE, and TEXTURE_DEPTH_TYPE return the data type used
to store the component. Types NONE, SIGNED_NORMALIZED, UNSIGNED_-

NORMALIZED, FLOAT, INT, and UNSIGNED_INT respectively indicate missing,
signed normalized fixed-point, unsigned normalized fixed-point, floating-point,
signed unnormalized integer, and unsigned unnormalized integer compo-
nents. Queries of value TEXTURE_RED_SIZE, TEXTURE_GREEN_SIZE,
TEXTURE_BLUE_SIZE, TEXTURE_ALPHA_SIZE, TEXTURE_LUMINANCE_SIZE,
TEXTURE_INTENSITY_SIZE, TEXTURE_DEPTH_SIZE, TEXTURE_STENCIL_-
SIZE, and TEXTURE_SHARED_SIZE return the actual resolutions of the stored
image array components, not the resolutions specified when the image array was
defined.

For texture images with compressed internal formats, the types returned spec-
ify how components are interpreted after decompression, while the resolutions re-
turned specify the component resolution of an uncompressed internal format that
produces an image of roughly the same quality as the compressed image in ques-
tion. Since the quality of the implementation’s compression algorithm is likely
data-dependent, the returned component sizes should be treated only as rough ap-
proximations.

Querying value TEXTURE_COMPRESSED_IMAGE_SIZE returns the size (in
ubytes) of the compressed texture image that would be returned by GetCom-
pressedTexImage (section 6.1.4). Querying TEXTURE_COMPRESSED_IMAGE_-

SIZE is not allowed on texture images with an uncompressed internal format or on
proxy targets and will result in an INVALID_OPERATION error if attempted.

Queries of value TEXTURE_BORDER, TEXTURE_WIDTH, TEXTURE_HEIGHT,
and TEXTURE_DEPTH return the border width, width, height, and depth as specified
when the image array was created. The internal format of the image array is queried

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 386

as TEXTURE_INTERNAL_FORMAT, or as TEXTURE_COMPONENTS for compatibility
with GL version 1.0.

6.1.4 Texture Queries

The command

void GetTexImage(enum tex, int lod, enum format,
enum type, void *img);

is used to obtain texture images. It is somewhat different from the other Get* com-
mands; tex is a symbolic value indicating which texture (or texture face in the case
of a cube map texture target name) is to be obtained. TEXTURE_1D, TEXTURE_-
2D, TEXTURE_3D, TEXTURE_1D_ARRAY, TEXTURE_2D_ARRAY, and TEXTURE_-

RECTANGLE indicate a one-, two-, or three-dimensional, one- or two-dimensional
array, or rectangular texture respectively. TEXTURE_CUBE_MAP_POSITIVE_X,
TEXTURE_CUBE_MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y,
TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, and
TEXTURE_CUBE_MAP_NEGATIVE_Z indicate the respective face of a cube map
texture. lod is a level-of-detail number, format is a pixel format from table 3.6,
type is a pixel type from table 3.5.

Any of the following mismatches between format and the internal format of
the texture image will generate an INVALID_OPERATION error:

• format is a color format (one of the formats in table 3.6 whose target is the
color buffer) and the base internal format of the texture image is not a color
format.

• format is DEPTH_COMPONENT and the base internal format is not DEPTH_-
COMPONENT or DEPTH_STENCIL.

• format is DEPTH_STENCIL and the base internal format is not DEPTH_-
STENCIL.

• format is one of the integer formats in table 3.6 and the internal format of
the texture image is not integer, or format is not one of the integer formats in
table 3.6 and the internal format is integer.

GetTexImage obtains component groups from a texture image with the indi-
cated level-of-detail. If format is a color format then the components are assigned
among R, G, B, and A according to table 6.1, starting with the first group in the

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 387

first row, and continuing by obtaining groups in order from each row and proceed-
ing from the first row to the last, and from the first image to the last for three-
dimensional textures. One- and two-dimensional array textures are treated as two-
and three-dimensional images, respectively, where the layers are treated as rows or
images. If format is DEPTH_COMPONENT, then each depth component is assigned
with the same ordering of rows and images. If format is DEPTH_STENCIL, then
each depth component and each stencil index is assigned with the same ordering
of rows and images.

These groups are then packed and placed in client or pixel buffer object mem-
ory. If a pixel pack buffer is bound (as indicated by a non-zero value of PIXEL_-
PACK_BUFFER_BINDING), img is an offset into the pixel pack buffer; otherwise,
img is a pointer to client memory. No pixel transfer operations are performed on
this image, but pixel storage modes that are applicable to ReadPixels are applied.

For three-dimensional and two-dimensional array textures, pixel storage op-
erations are applied as if the image were two-dimensional, except that the addi-
tional pixel storage state values PACK_IMAGE_HEIGHT and PACK_SKIP_IMAGES

are applied. The correspondence of texels to memory locations is as defined for
TexImage3D in section 3.9.3.

The row length, number of rows, image depth, and number of images are de-
termined by the size of the texture image (including any borders). Calling GetTex-
Image with lod less than zero or larger than the maximum allowable causes the
error INVALID_VALUE. Calling GetTexImage with a format of COLOR_INDEX or
STENCIL_INDEX causes the error INVALID_ENUM. Calling GetTexImage with
a non-zero lod when tex is TEXTURE_RECTANGLE causes the error INVALID_-
VALUE. If a pixel pack buffer object is bound and packing the texture image into
the buffer’s memory would exceed the size of the buffer, an INVALID_OPERATION
error results. If a pixel pack buffer object is bound and img is not evenly divisible
by the number of basic machine units needed to store in memory the GL data type
corresponding to type (see table 3.5), an INVALID_OPERATION error results.

The command

void GetCompressedTexImage(enum target, int lod,
void *img);

is used to obtain texture images stored in compressed form. The parameters tar-
get, lod, and img are interpreted in the same manner as in GetTexImage. When
called, GetCompressedTexImage writes n ubytes of compressed image data to
the pixel pack buffer or client memory pointed to by img, where n is the value
of TEXTURE_COMPRESSED_IMAGE_SIZE for the texture. The compressed image
data is formatted according to the definition of the texture’s internal format. All

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 388

Base Internal Format R G B A
ALPHA 0 0 0 Ai

LUMINANCE (or 1) Li 0 0 1
LUMINANCE_ALPHA (or 2) Li 0 0 Ai

INTENSITY Ii 0 0 1
RED Ri 0 0 1
RG Ri Gi 0 1

RGB (or 3) Ri Gi Bi 1
RGBA (or 4) Ri Gi Bi Ai

Table 6.1: Texture, table, and filter return values. Ri, Gi, Bi, Ai, Li, and Ii are
components of the internal format that are assigned to pixel values R, G, B, and A.
If a requested pixel value is not present in the internal format, the specified constant
value is used.

pixel storage and pixel transfer modes are ignored when returning a compressed
texture image.

Calling GetCompressedTexImage with an lod value less than zero or greater
than the maximum allowable causes an INVALID_VALUE error. Calling GetCom-
pressedTexImage with a texture image stored with an uncompressed internal for-
mat causes an INVALID_OPERATION error. If a pixel pack buffer object is bound
and img + n is greater than the size of the buffer, an INVALID_OPERATION error
results.

The command

boolean IsTexture(uint texture);

returns TRUE if texture is the name of a texture object. If texture is zero, or is a non-
zero value that is not the name of a texture object, or if an error condition occurs,
IsTexture returns FALSE. A name returned by GenTextures, but not yet bound, is
not the name of a texture object.

6.1.5 Sampler Queries

The command

boolean IsSampler(uint sampler);

may be called to determine whether sampler is the name of a sampler object. Is-
Sampler will return TRUE if sampler is the name of a sampler object previously

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 389

returned from a call to GenSamplers and FALSE otherwise. Zero is not the name
of a sampler object.

The current values of the parameters of a sampler object may be queried by
calling

void GetSamplerParameter{if}v(uint sampler,
enum pname, T *params);

void GetSamplerParameterI{i ui}v(uint sampler,
enum pname, T *params);

sampler is the name of the sampler object from which to retrieve parameters.
pname is the name of the parameter to be queried. params is the address of an
array into which the current value of the parameter will be placed. GetSampler-
Parameter* accepts the same values for pname as SamplerParameter* (see sec-
tion 3.9.2). An INVALID_VALUE error is generated if sampler is not the name of a
sampler object previously returned from a call to GenSamplers. An INVALID_-

ENUM error is generated if pname is not the name of a parameter accepted by Get-
SamplerParameter*.

Querying TEXTURE_BORDER_COLOR with GetSamplerParameterIiv or Get-
SamplerParameterIuiv returns the border color values as signed integers or un-
signed integers, respectively; otherwise the values are returned as described in sec-
tion 6.1.2. If the border color is queried with a type that does not match the original
type with which it was specified, the result is undefined.

6.1.6 Stipple Query

The command

void GetPolygonStipple(void *pattern);

obtains the polygon stipple. The pattern is packed into pixel pack buffer or client
memory according to the procedure given in section 4.3.2 for ReadPixels; it is as
if the height and width passed to that command were both equal to 32, the type
were BITMAP, and the format were COLOR_INDEX.

6.1.7 Color Matrix Query

The scale and bias variables are queried using GetFloatv with pname set to the
appropriate variable name. The top matrix on the color matrix stack is returned
by GetFloatv called with pname set to COLOR_MATRIX or TRANSPOSE_COLOR_-
MATRIX. The depth of the color matrix stack, and the maximum depth of the color

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 390

format Name
RED

GREEN

BLUE

ALPHA

RGB

RGBA

BGR

BGRA

LUMINANCE

LUMINANCE_ALPHA

Table 6.2: Pixel data format parameter values accepted for the color table, convolu-
tion filter, histogram table, and minmax table query commands. These commands
accept only a subset of the formats accepted by GetTexImage, but the specifica-
tion and interpretation of pixels in those formats is identical to that described for
the same formats in table 3.6.

matrix stack, are queried with GetIntegerv, setting pname to COLOR_MATRIX_-

STACK_DEPTH and MAX_COLOR_MATRIX_STACK_DEPTH respectively.

6.1.8 Color Table Query

The current contents of a color table are queried using

void GetColorTable(enum target, enum format, enum type,
void *table);

target must be one of the regular color table names listed in table 3.4. format must
be a pixel format from table 6.2 and type must be a data type from table 6.3. The
one-dimensional color table image is returned to pixel pack buffer or client memory
starting at table. No pixel transfer operations are performed on this image, but pixel
storage modes that are applicable to ReadPixels are performed. Color components
that are requested in the specified format, but which are not included in the internal
format of the color lookup table, are returned as zero. The assignments of internal
color components to the components requested by format are described in table 6.1.

The functions

void GetColorTableParameter{if}v(enum target,
enum pname, T params);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 391

type Name
UNSIGNED_BYTE

BYTE

UNSIGNED_SHORT

SHORT

UNSIGNED_INT

INT

UNSIGNED_BYTE_3_3_2

UNSIGNED_BYTE_2_3_3_REV

UNSIGNED_SHORT_5_6_5

UNSIGNED_SHORT_5_6_5_REV

UNSIGNED_SHORT_4_4_4_4

UNSIGNED_SHORT_4_4_4_4_REV

UNSIGNED_SHORT_5_5_5_1

UNSIGNED_SHORT_1_5_5_5_REV

UNSIGNED_INT_8_8_8_8

UNSIGNED_INT_8_8_8_8_REV

UNSIGNED_INT_10_10_10_2

UNSIGNED_INT_2_10_10_10_REV

Table 6.3: Pixel data type parameter values accepted for the color table, convolu-
tion filter, histogram table, and minmax table query commands. These commands
accept only a subset of the types accepted by GetTexImage, but the specification
and interpretation of pixels in those types is identical to that described for the same
types in table 3.5.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 392

are used for integer and floating point query.
target must be one of the regular or proxy color table names listed in ta-

ble 3.4. pname is one of COLOR_TABLE_SCALE, COLOR_TABLE_BIAS, COLOR_-
TABLE_FORMAT, COLOR_TABLE_WIDTH, COLOR_TABLE_RED_SIZE, COLOR_-
TABLE_GREEN_SIZE, COLOR_TABLE_BLUE_SIZE, COLOR_TABLE_ALPHA_-

SIZE, COLOR_TABLE_LUMINANCE_SIZE, or COLOR_TABLE_INTENSITY_SIZE.
The value of the specified parameter is returned in params.

6.1.9 Convolution Query

The current contents of a convolution filter image are queried with the command

void GetConvolutionFilter(enum target, enum format,
enum type, void *image);

target must be CONVOLUTION_1D or CONVOLUTION_2D. format must be a pixel
format from table 6.2 and type must be a data type from table 6.3. The one-
dimensional or two-dimensional images is returned to pixel pack buffer or client
memory starting at image. Pixel processing and component mapping are identical
to those of GetTexImage.

The current contents of a separable filter image are queried using

void GetSeparableFilter(enum target, enum format,
enum type, void *row, void *column, void *span);

target must be SEPARABLE_2D. format must be a pixel format from table 6.2 and
type must be a data type from table 6.3. The row and column images are returned
to pixel pack buffer or client memory starting at row and column respectively. span
is currently unused. Pixel processing and component mapping are identical to those
of GetTexImage.

The functions

void GetConvolutionParameter{if}v(enum target,
enum pname, T params);

are used for integer and floating point query. target must be CONVOLUTION_1D,
CONVOLUTION_2D, or SEPARABLE_2D. pname is one of CONVOLUTION_-

BORDER_COLOR, CONVOLUTION_BORDER_MODE, CONVOLUTION_-

FILTER_SCALE, CONVOLUTION_FILTER_BIAS, CONVOLUTION_FORMAT,
CONVOLUTION_WIDTH, CONVOLUTION_HEIGHT, MAX_CONVOLUTION_WIDTH,
or MAX_CONVOLUTION_HEIGHT. The value of the specified parameter is returned
in params.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 393

6.1.10 Histogram Query

The current contents of the histogram table are queried using

void GetHistogram(enum target, boolean reset,
enum format, enum type, void* values);

target must be HISTOGRAM. format must be a pixel format from table 6.2 and type
must be a data type from table 6.3. The one-dimensional histogram table image is
returned to pixel pack buffer or client memory starting at values. Pixel processing
and component mapping are identical to those of GetTexImage, except that instead
of applying the Final Conversion pixel storage mode, component values are simply
clamped to the range of the target data type.

If reset is TRUE, then all counters of all elements of the histogram are reset to
zero. Counters are reset whether returned or not.

No counters are modified if reset is FALSE.
Calling

void ResetHistogram(enum target);

resets all counters of all elements of the histogram table to zero. target must be
HISTOGRAM.

It is not an error to reset or query the contents of a histogram table with zero
entries.

The functions

void GetHistogramParameter{if}v(enum target,
enum pname, T params);

are used for integer and floating point query. target must be HISTOGRAM or
PROXY_HISTOGRAM. pname is one of HISTOGRAM_FORMAT, HISTOGRAM_WIDTH,
HISTOGRAM_RED_SIZE, HISTOGRAM_GREEN_SIZE, HISTOGRAM_BLUE_SIZE,
HISTOGRAM_ALPHA_SIZE, or HISTOGRAM_LUMINANCE_SIZE. pname may be
HISTOGRAM_SINK only for target HISTOGRAM. The value of the specified param-
eter is returned in params.

6.1.11 Minmax Query

The current contents of the minmax table are queried using

void GetMinmax(enum target, boolean reset, enum format,
enum type, void* values);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 394

target must be MINMAX. format must be a pixel format from table 6.2 and type
must be a data type from table 6.3. A one-dimensional image of width 2 is
returned to pixel pack buffer or client memory starting at values. Pixel processing
and component mapping are identical to those of GetTexImage.

If reset is TRUE, then each minimum value is reset to the maximum repre-
sentable value, and each maximum value is reset to the minimum representable
value. All values are reset, whether returned or not.

No values are modified if reset is FALSE.
Calling

void ResetMinmax(enum target);

resets all minimum and maximum values of target to to their maximum and mini-
mum representable values, respectively, target must be MINMAX.

The functions

void GetMinmaxParameter{if}v(enum target, enum pname,
T params);

are used for integer and floating point query. target must be MINMAX. pname is
MINMAX_FORMAT or MINMAX_SINK. The value of the specified parameter is re-
turned in params.

6.1.12 Pointer and String Queries

The command

void GetPointerv(enum pname, void **params);

obtains the pointer or pointers named pname in the array params. The
possible values for pname are SELECTION_BUFFER_POINTER and FEEDBACK_-

BUFFER_POINTER, which respectively return the pointers set with SelectBuffer
and FeedbackBuffer; and VERTEX_ARRAY_POINTER, NORMAL_ARRAY_-

POINTER, COLOR_ARRAY_POINTER, SECONDARY_COLOR_ARRAY_POINTER,
INDEX_ARRAY_POINTER, TEXTURE_COORD_ARRAY_POINTER, FOG_COORD_-

ARRAY_POINTER, and EDGE_FLAG_ARRAY_POINTER, which respectively return
the corresponding value stored in the currently bound vertex array object. Each
pname returns a single pointer value.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 395

String queries return pointers to UTF-8 encoded, NULL-terminated static
strings describing properties of the current GL context 1. The command

ubyte *GetString(enum name);

accepts name values of RENDERER, VENDOR, EXTENSIONS, VERSION, and
SHADING_LANGUAGE_VERSION. The format of the RENDERER and VENDOR

strings is implementation-dependent. The EXTENSIONS string contains a space
separated list of extension names (the extension names themselves do not contain
any spaces). The VERSION and SHADING_LANGUAGE_VERSION strings are laid
out as follows:

<version number><space><vendor-specific information>

The version number is either of the form major number.minor number or major -
number.minor number.release number, where the numbers all have one or more
digits. The minor number for SHADING_LANGUAGE_VERSION is always two dig-
its, matching the OpenGL Shading Language Specification release number. For
example, this query might return the string "3.30" while the corresponding
VERSION query returns "3.3". The release number and vendor specific in-
formation are optional. However, if present, then they pertain to the server and
their format and contents are implementation-dependent.

GetString returns the version number (in the VERSION string) and the exten-
sion names (in the EXTENSIONS string) that can be supported by the current GL
context. Thus, if the client and server support different versions and/or extensions,
a compatible version and list of extensions is returned.

The version, profile, and additional properties of the context may also be
queried by calling GetIntegerv with values MAJOR_VERSION and MINOR_-

VERSION, which respectively return the same values as major number and mi-
nor number in the VERSION string; with value CONTEXT_PROFILE_MASK, which
returns a mask containing one of the bits in table 6.4, corresponding to the API
profile implemented by the context (see appendix E.1); or with value CONTEXT_-
FLAGS, which returns a set of flags defining additional properties of a context.
If CONTEXT_FLAG_FORWARD_COMPATIBLE_BIT is set in CONTEXT_FLAGS, then
the context is a forward-compatible context as defined in appendix E, and the dep-
recated features described in that appendix are not supported; otherwise the context
is a full context, and all features described in the specification are supported.

Indexed strings are queried with the command
1Applications making copies of these static strings should never use a fixed-length buffer, because

the strings may grow unpredictably between releases, resulting in buffer overflow when copying.
This is particularly true of the EXTENSIONS string, which has become extremely long in some
GL implementations.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 396

Value OpenGL Profile
CONTEXT_CORE_PROFILE_BIT Core

CONTEXT_COMPATIBILITY_PROFILE_BIT Compatibility

Table 6.4: Context profile bits returned by the CONTEXT_PROFILE_MASK query.

ubyte *GetStringi(enum name, uint index);

name is the name of the indexed state and index is the index of the particular ele-
ment being queried. name may only be EXTENSIONS, indicating that the extension
name corresponding to the indexth supported extension should be returned. index
may range from zero to the value of NUM_EXTENSIONS minus one. All extension
names, and only the extension names returned in GetString(EXTENSIONS) will
be returned as individual names, but there is no defined relationship between the
order in which names appear in the non-indexed string and the order in which the
appear in the indexed query. There is no defined relationship between any partic-
ular extension name and the index values; an extension name may correspond to a
different index in different GL contexts and/or implementations.

An INVALID_VALUE error is generated if index is outside the valid range for
the indexed state name.

6.1.13 Asynchronous Queries

The command

boolean IsQuery(uint id);

returns TRUE if id is the name of a query object. If id is zero, or if id is a non-zero
value that is not the name of a query object, IsQuery returns FALSE.

Information about a query target can be queried with the command

void GetQueryiv(enum target, enum pname, int *params);

target identifies the query target, and must be one of SAMPLES_PASSED

or ANY_SAMPLES_PASSED for occlusion queries, PRIMITIVES_GENERATED

or TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN for primitive queries, or
TIME_ELAPSED or TIMESTAMP for timer queries.

If pname is CURRENT_QUERY, the name of the currently active query for target,
or zero if no query is active, will be placed in params.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 397

If pname is QUERY_COUNTER_BITS, the implementation-dependent number of
bits used to hold the query result for target will be placed in params. The number
of query counter bits may be zero, in which case the counter contains no useful
information.

For primitive queries (PRIMITIVES_GENERATED and TRANSFORM_-

FEEDBACK_PRIMITIVES_WRITTEN) if the number of bits is non-zero, the
minimum number of bits allowed is 32.

For occlusion queries with target ANY_SAMPLES_PASSED, if the number of
bits is non-zero, the minimum number of bits is 1. For occlusion queries with tar-
get SAMPLES_PASSED, if the number of bits is non-zero, the minimum number
of bits allowed is a function of the implementation’s maximum viewport dimen-
sions (MAX_VIEWPORT_DIMS). The counter must be able to represent at least two
overdraws for every pixel in the viewport. The formula to compute the allowable
minimum value (where n is the minimum number of bits) is

n = min{32, dlog2(maxV iewportWidth×maxV iewportHeight× 2)e}.

For timer queries (target TIME_ELAPSED and TIMESTAMP), if the number of
bits is non-zero, the minimum number of bits allowed is 30. This will allow at least
1 second of timing.

The state of a query object can be queried with the commands

void GetQueryObjectiv(uint id, enum pname,
int *params);

void GetQueryObjectuiv(uint id, enum pname,
uint *params);

void GetQueryObjecti64v(uint id, enum pname,
int64 *params);

void GetQueryObjectui64v(uint id, enum pname,
uint64 *params);

If id is not the name of a query object, or if the query object named by id is currently
active, then an INVALID_OPERATION error is generated. pname must be QUERY_-
RESULT or QUERY_RESULT_AVAILABLE.

If pname is QUERY_RESULT, then the query object’s result value is returned as
a single integer in params. If the value is so large in magnitude that it cannot be
represented with the requested type, then the nearest value representable using the
requested type is returned. If the number of query counter bits for target is zero,
then the result is returned as a single integer with the value zero.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 398

There may be an indeterminate delay before the above query returns. If pname
is QUERY_RESULT_AVAILABLE, FALSE is returned if such a delay would be re-
quired; otherwise TRUE is returned. It must always be true that if any query object
returns a result available of TRUE, all queries of the same type issued prior to that
query must also return TRUE.

Querying the state for any given query object forces that occlusion query to
complete within a finite amount of time.

If multiple queries are issued using the same object name prior to calling Get-
QueryObject*, the result and availability information returned will always be from
the last query issued. The results from any queries before the last one will be lost
if they are not retrieved before starting a new query on the same target and id.

6.1.14 Sync Object Queries

Properties of sync objects may be queried using the command

void GetSynciv(sync sync, enum pname, sizei bufSize,
sizei *length, int *values);

The value or values being queried are returned in the parameters length and
values.

On success, GetSynciv replaces up to bufSize integers in values with the cor-
responding property values of the object being queried. The actual number of
integers replaced is returned in *length. If length is NULL, no length is returned.

If pname is OBJECT_TYPE, a single value representing the specific type of the
sync object is placed in values. The only type supported is SYNC_FENCE.

If pname is SYNC_STATUS, a single value representing the status of the sync
object (SIGNALED or UNSIGNALED) is placed in values.

If pname is SYNC_CONDITION, a single value representing the condition of
the sync object is placed in values. The only condition supported is SYNC_GPU_-
COMMANDS_COMPLETE.

If pname is SYNC_FLAGS, a single value representing the flags with which the
sync object was created is placed in values. No flags are currently supported.

If sync is not the name of a sync object, an INVALID_VALUE error is generated.
If pname is not one of the values described above, an INVALID_ENUM error is
generated. If an error occurs, nothing will be written to values or length.

The command

boolean IsSync(sync sync);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 399

returns TRUE if sync is the name of a sync object. If sync is not the name of a sync
object, or if an error condition occurs, IsSync returns FALSE (note that zero is not
the name of a sync object).

Sync object names immediately become invalid after calling DeleteSync, as
discussed in sections 5.7 and D.2, but the underlying sync object will not be deleted
until it is no longer associated with any fence command and no longer blocking any
*WaitSync command.

6.1.15 Buffer Object Queries

The command

boolean IsBuffer(uint buffer);

returns TRUE if buffer is the name of an buffer object. If buffer is zero, or if buffer is
a non-zero value that is not the name of an buffer object, IsBuffer returns FALSE.

The commands

void GetBufferParameteriv(enum target, enum pname,
int *data);

void GetBufferParameteri64v(enum target, enum pname,
int64 *data);

return information about a bound buffer object. target must be one of the targets
listed in table 2.9, and pname must be one of the buffer object parameters in ta-
ble 2.10, other than BUFFER_MAP_POINTER. The value of the specified parameter
of the buffer object bound to target is returned in data.

The command

void GetBufferSubData(enum target, intptr offset,
sizeiptr size, void *data);

queries the data contents of a buffer object. target must be one of the targets listed
in table 2.9. offset and size indicate the range of data in the buffer object that is
to be queried, in terms of basic machine units. data specifies a region of client
memory, size basic machine units in length, into which the data is to be retrieved.

An error is generated if GetBufferSubData is executed for a buffer object that
is currently mapped.

While the data store of a buffer object is mapped, the pointer to the data store
can be queried by calling

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 400

void GetBufferPointerv(enum target, enum pname,
void **params);

with target set to one of the targets listed in table 2.9 and pname set to BUFFER_-

MAP_POINTER. The single buffer map pointer is returned in params. GetBuffer-
Pointerv returns the NULL pointer value if the buffer’s data store is not currently
mapped, or if the requesting client did not map the buffer object’s data store, and
the implementation is unable to support mappings on multiple clients.

To query which buffer objects are bound to the array of uniform buffer binding
points and will be used as the storage for active uniform blocks, call GetIntegeri v
with param set to UNIFORM_BUFFER_BINDING. index must be in the range zero
to the value of MAX_UNIFORM_BUFFER_BINDINGS - 1. The name of the buffer
object bound to index is returned in values. If no buffer object is bound for index,
zero is returned in values.

To query the starting offset or size of the range of each buffer object bind-
ing used for uniform buffers, call GetInteger64i v with param set to UNIFORM_-

BUFFER_START or UNIFORM_BUFFER_SIZE respectively. index must be in the
range zero to the value of MAX_UNIFORM_BUFFER_BINDINGS - 1. If the param-
eter (starting offset or size) was not specified when the buffer object was bound,
zero is returned. If no buffer object is bound to index, -1 is returned.

To query which buffer objects are bound to the array of transform feedback
binding points and will be used when transform feedback is active, call GetInte-
geri v with param set to TRANSFORM_FEEDBACK_BUFFER_BINDING. index must
be in the range zero to the value of MAX_TRANSFORM_FEEDBACK_SEPARATE_-
ATTRIBS - 1. The name of the buffer object bound to index is returned in values.
If no buffer object is bound for index, zero is returned in values.

To query the starting offset or size of the range of each buffer ob-
ject binding used for transform feedback, call GetInteger64i v with param
set to TRANSFORM_FEEDBACK_BUFFER_START or TRANSFORM_FEEDBACK_-

BUFFER_SIZE respectively. index must be in the range 0 to the value of MAX_-
TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS - 1. If the parameter (starting off-
set or size) was not specified when the buffer object was bound, zero is returned.
If no buffer object is bound to index, -1 is returned.

6.1.16 Vertex Array Object Queries

The command

boolean IsVertexArray(uint array);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 401

returns TRUE if array is the name of a vertex array object. If array is zero, or a
non-zero value that is not the name of a vertex array object, IsVertexArray returns
FALSE. No error is generated if array is not a valid vertex array object name.

6.1.17 Shader and Program Queries

State stored in shader or program objects can be queried by commands that ac-
cept shader or program object names. These commands will generate the error
INVALID_VALUE if the provided name is not the name of either a shader or pro-
gram object, and INVALID_OPERATION if the provided name identifies an object
of the other type. If an error is generated, variables used to hold return values are
not modified.

The command

boolean IsShader(uint shader);

returns TRUE if shader is the name of a shader object. If shader is zero, or a non-
zero value that is not the name of a shader object, IsShader returns FALSE. No
error is generated if shader is not a valid shader object name.

The command

void GetShaderiv(uint shader, enum pname, int *params);

returns properties of the shader object named shader in params. The parameter
value to return is specified by pname.

If pname is SHADER_TYPE, VERTEX_SHADER, GEOMETRY_SHADER, or
FRAGMENT_SHADER is returned if shader is a vertex, geometry, or fragment shader
object respectively. If pname is DELETE_STATUS, TRUE is returned if the shader
has been flagged for deletion and FALSE is returned otherwise. If pname is
COMPILE_STATUS, TRUE is returned if the shader was last compiled successfully,
and FALSE is returned otherwise. If pname is INFO_LOG_LENGTH, the length of
the info log, including a null terminator, is returned. If there is no info log, zero is
returned. If pname is SHADER_SOURCE_LENGTH, the length of the concatenation
of the source strings making up the shader source, including a null terminator, is
returned. If no source has been defined, zero is returned.

The command

boolean IsProgram(uint program);

returns TRUE if program is the name of a program object. If program is zero, or a
non-zero value that is not the name of a program object, IsProgram returns FALSE.
No error is generated if program is not a valid program object name.

The command

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 402

void GetProgramiv(uint program, enum pname,
int *params);

returns properties of the program object named program in params. The parameter
value to return is specified by pname.

If pname is DELETE_STATUS, TRUE is returned if the program has been flagged
for deletion, and FALSE is returned otherwise. If pname is LINK_STATUS, TRUE
is returned if the program was last compiled successfully, and FALSE is returned
otherwise. If pname is VALIDATE_STATUS, TRUE is returned if the last call to Val-
idateProgram with program was successful, and FALSE is returned otherwise. If
pname is INFO_LOG_LENGTH, the length of the info log, including a null termina-
tor, is returned. If there is no info log, zero is returned. If pname is ATTACHED_-
SHADERS, the number of objects attached is returned. If pname is ACTIVE_-

ATTRIBUTES, the number of active attributes in program is returned. If no ac-
tive attributes exist, zero is returned. If pname is ACTIVE_ATTRIBUTE_MAX_-

LENGTH, the length of the longest active attribute name, including a null terminator,
is returned. If no active attributes exist, zero is returned. If pname is ACTIVE_-
UNIFORMS, the number of active uniforms is returned. If no active uniforms ex-
ist, zero is returned. If pname is ACTIVE_UNIFORM_MAX_LENGTH, the length of
the longest active uniform name, including a null terminator, is returned. If no
active uniforms exist, zero is returned. If pname is TRANSFORM_FEEDBACK_-

BUFFER_MODE, the buffer mode used when transform feedback is active is re-
turned. It can be one of SEPARATE_ATTRIBS or INTERLEAVED_ATTRIBS. If
pname is TRANSFORM_FEEDBACK_VARYINGS, the number of varying variables
to capture in transform feedback mode for the program is returned. If pname is
TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH, the length of the longest vary-
ing name specified to be used for transform feedback, including a null termina-
tor, is returned. If no varyings are used for transform feedback, zero is returned.
If pname is ACTIVE_UNIFORM_BLOCKS, the number of uniform blocks for pro-
gram containing active uniforms is returned. If pname is ACTIVE_UNIFORM_-

BLOCK_MAX_NAME_LENGTH, the length of the longest active uniform block name,
including the null terminator, is returned. If pname is GEOMETRY_VERTICES_OUT,
the maximum number of vertices the geometry shader will output is returned. If
pname is GEOMETRY_INPUT_TYPE, the geometry shader input type, which must
be one of POINTS, LINES, LINES_ADJACENCY, TRIANGLES or TRIANGLES_-
ADJACENCY, is returned. If pname is GEOMETRY_OUTPUT_TYPE, the geometry
shader output type, which must be one of POINTS, LINE_STRIP or TRIANGLE_-
STRIP, is returned. If GEOMETRY_VERTICES_OUT, GEOMETRY_INPUT_TYPE, or
GEOMETRY_OUTPUT_TYPE are queried for a program which has not been linked
successfully, or which does not contain objects to form a geometry shader, then an

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 403

INVALID_OPERATION error is generated.
The command

void GetAttachedShaders(uint program, sizei maxCount,
sizei *count, uint *shaders);

returns the names of shader objects attached to program in shaders. The actual
number of shader names written into shaders is returned in count. If no shaders are
attached, count is set to zero. If count is NULL then it is ignored. The maximum
number of shader names that may be written into shaders is specified by maxCount.
The number of objects attached to program is given by can be queried by calling
GetProgramiv with ATTACHED_SHADERS.

A string that contains information about the last compilation attempt on a
shader object or last link or validation attempt on a program object, called the
info log, can be obtained with the commands

void GetShaderInfoLog(uint shader, sizei bufSize,
sizei *length, char *infoLog);

void GetProgramInfoLog(uint program, sizei bufSize,
sizei *length, char *infoLog);

These commands return the info log string in infoLog. This string will be null-
terminated. The actual number of characters written into infoLog, excluding the
null terminator, is returned in length. If length is NULL, then no length is returned.
The maximum number of characters that may be written into infoLog, including
the null terminator, is specified by bufSize. The number of characters in the info
log can be queried with GetShaderiv or GetProgramiv with INFO_LOG_LENGTH.
If shader is a shader object, the returned info log will either be an empty string or
it will contain information about the last compilation attempt for that object. If
program is a program object, the returned info log will either be an empty string or
it will contain information about the last link attempt or last validation attempt for
that object.

The info log is typically only useful during application development and an
application should not expect different GL implementations to produce identical
info logs.

The command

void GetShaderSource(uint shader, sizei bufSize,
sizei *length, char *source);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 404

returns in source the string making up the source code for the shader object shader.
The string source will be null-terminated. The actual number of characters written
into source, excluding the null terminator, is returned in length. If length is NULL,
no length is returned. The maximum number of characters that may be written into
source, including the null terminator, is specified by bufSize. The string source is
a concatenation of the strings passed to the GL using ShaderSource. The length
of this concatenation is given by SHADER_SOURCE_LENGTH, which can be queried
with GetShaderiv.

The commands

void GetVertexAttribdv(uint index, enum pname,
double *params);

void GetVertexAttribfv(uint index, enum pname,
float *params);

void GetVertexAttribiv(uint index, enum pname,
int *params);

void GetVertexAttribIiv(uint index, enum pname,
int *params);

void GetVertexAttribIuiv(uint index, enum pname,
uint *params);

obtain the vertex attribute state named by pname for the generic vertex attribute
numbered index and places the information in the array params. pname must
be one of VERTEX_ATTRIB_ARRAY_BUFFER_BINDING, VERTEX_ATTRIB_-

ARRAY_ENABLED, VERTEX_ATTRIB_ARRAY_SIZE, VERTEX_-

ATTRIB_ARRAY_STRIDE, VERTEX_ATTRIB_ARRAY_TYPE, VERTEX_ATTRIB_-
ARRAY_NORMALIZED, VERTEX_ATTRIB_ARRAY_INTEGER, VERTEX_ATTRIB_-
ARRAY_DIVISOR, or CURRENT_VERTEX_ATTRIB. Note that all the queries except
CURRENT_VERTEX_ATTRIB return values stored in the currently bound vertex ar-
ray object (the value of VERTEX_ARRAY_BINDING). If the zero object is bound,
these values are client state. The error INVALID_VALUE is generated if index is
greater than or equal to MAX_VERTEX_ATTRIBS.

All but CURRENT_VERTEX_ATTRIB return information about generic vertex
attribute arrays. The enable state of a generic vertex attribute array is set by the
command EnableVertexAttribArray and cleared by DisableVertexAttribArray.
The size, stride, type, normalized flag, and unconverted integer flag are set by the
commands VertexAttribPointer and VertexAttribIPointer. The normalized flag
is always set to FALSE by VertexAttribIPointer. The unconverted integer flag is
always set to FALSE by VertexAttribPointer and TRUE by VertexAttribIPointer.

The query CURRENT_VERTEX_ATTRIB returns the current value for the

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 405

generic attribute index. GetVertexAttribdv and GetVertexAttribfv read and re-
turn the current attribute values as floating-point values; GetVertexAttribiv reads
them as floating-point values and converts them to integer values; GetVertexAt-
tribIiv reads and returns them as integers; GetVertexAttribIuiv reads and returns
them as unsigned integers. The results of the query are undefined if the current
attribute values are read using one data type but were specified using a different
one.

The command

void GetVertexAttribPointerv(uint index, enum pname,
void **pointer);

obtains the pointer named pname for the vertex attribute numbered index and places
the information in the array pointer. pname must be VERTEX_ATTRIB_ARRAY_-
POINTER. The value returned is queried from the currently bound vertex array
object. If the zero object is bound, the value is queried from client state. An
INVALID_VALUE error is generated if index is greater than or equal to the value of
MAX_VERTEX_ATTRIBS.

The commands

void GetUniformfv(uint program, int location,
float *params);

void GetUniformiv(uint program, int location,
int *params);

void GetUniformuiv(uint program, int location,
uint *params);

return the value or values of the uniform at location location of the default uni-
form block for program object program in the array params. The type of the uni-
form at location determines the number of values returned. The error INVALID_-
OPERATION is generated if program has not been linked successfully, or if location
is not a valid location for program. In order to query the values of an array of uni-
forms, a GetUniform* command needs to be issued for each array element. If the
uniform queried is a matrix, the values of the matrix are returned in column major
order. If an error occurred, params will not be modified.

6.1.18 Framebuffer Object Queries

The command

boolean IsFramebuffer(uint framebuffer);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 406

returns TRUE if framebuffer is the name of an framebuffer object. If framebuffer is
zero, or if framebuffer is a non-zero value that is not the name of an framebuffer
object, IsFramebuffer return FALSE.

The command

void GetFramebufferAttachmentParameteriv(enum target,
enum attachment, enum pname, int *params);

returns information about attachments of a bound framebuffer object. tar-
get must be DRAW_FRAMEBUFFER, READ_FRAMEBUFFER, or FRAMEBUFFER.
FRAMEBUFFER is equivalent to DRAW_FRAMEBUFFER.

If the default framebuffer is bound to target, then attachment must be one of
FRONT_LEFT, FRONT_RIGHT, BACK_LEFT, BACK_RIGHT, or AUXi, identifying a
color buffer; DEPTH, identifying the depth buffer; or STENCIL, identifying the
stencil buffer.

If a framebuffer object is bound to target, then attachment must be one of the
attachment points of the framebuffer listed in table 4.12.

If attachment is DEPTH_STENCIL_ATTACHMENT, and different objects are
bound to the depth and stencil attachment points of target, the query will fail and
generate an INVALID_OPERATION error. If the same object is bound to both at-
tachment points, information about that object will be returned.

Upon successful return from GetFramebufferAttachmentParameteriv, if
pname is FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE, then param will contain
one of NONE, FRAMEBUFFER_DEFAULT, TEXTURE, or RENDERBUFFER, identify-
ing the type of object which contains the attached image. Other values accepted
for pname depend on the type of object, as described below.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is NONE, no
framebuffer is bound to target. In this case querying pname FRAMEBUFFER_-

ATTACHMENT_OBJECT_NAME will return zero, and all other queries will generate
an INVALID_OPERATION error.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is not NONE,
these queries apply to all other framebuffer types:

• If pname is FRAMEBUFFER_ATTACHMENT_RED_SIZE, FRAMEBUFFER_-

ATTACHMENT_GREEN_SIZE, FRAMEBUFFER_ATTACHMENT_BLUE_-

SIZE, FRAMEBUFFER_ATTACHMENT_ALPHA_SIZE, FRAMEBUFFER_-

ATTACHMENT_DEPTH_SIZE, or FRAMEBUFFER_ATTACHMENT_-

STENCIL_SIZE, then param will contain the number of bits in the
corresponding red, green, blue, alpha, depth, or stencil component of the
specified attachment. Zero is returned if the requested component is not
present in attachment.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 407

• If pname is FRAMEBUFFER_ATTACHMENT_COMPONENT_TYPE, param will
contain the format of components of the specified attachment, one of FLOAT,
INDEX, INT, UNSIGNED_INT, SIGNED_NORMALIZED, or UNSIGNED_-

NORMALIZED for floating-point, index, signed integer, unsigned integer,
signed normalized fixed-point, or unsigned normalized fixed-point compo-
nents respectively. Only color buffers may have index or integer compo-
nents.

• If pname is FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING, param will
contain the encoding of components of the specified attachment, one of
LINEAR or SRGB for linear or sRGB-encoded components, respectively.
Only color buffer components may be sRGB-encoded; such components
are treated as described in sections 4.1.8 and 4.1.9. For the default frame-
buffer, color encoding is determined by the implementation. For framebuffer
objects, components are sRGB-encoded if the internal format of a color
attachment is one of the color-renderable SRGB formats described in sec-
tion 3.9.18.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is
RENDERBUFFER, then

• If pname is FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, params will con-
tain the name of the renderbuffer object which contains the attached image.

If the value of FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE is TEXTURE, then

• If pname is FRAMEBUFFER_ATTACHMENT_OBJECT_NAME, then params will
contain the name of the texture object which contains the attached image.

• If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL, then params
will contain the mipmap level of the texture object which contains the at-
tached image.

• If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE and
the texture object named FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is a
cube map texture, then params will contain the cube map face of the cube-
map texture object which contains the attached image. Otherwise params
will contain the value zero.

• If pname is FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER and the texture
object named FRAMEBUFFER_ATTACHMENT_OBJECT_NAME is a layer of a
three-dimensional texture or a one-or two-dimensional array texture, then

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 408

params will contain the number of the texture layer which contains the at-
tached image. Otherwise params will contain the value zero.

• If pname is FRAMEBUFFER_ATTACHMENT_LAYERED, then params will con-
tain TRUE if an entire level of a three-dimesional texture, cube map texture,
or one-or two-dimensional array texture is attached. Otherwise, params will
contain FALSE.

Any combinations of framebuffer type and pname not described above will
generate an INVALID_ENUM error.

6.1.19 Renderbuffer Object Queries

The command

boolean IsRenderbuffer(uint renderbuffer);

returns TRUE if renderbuffer is the name of a renderbuffer object. If renderbuffer
is zero, or if renderbuffer is a non-zero value that is not the name of a renderbuffer
object, IsRenderbuffer return FALSE.

The command

void GetRenderbufferParameteriv(enum target, enum pname,
int* params);

returns information about a bound renderbuffer object. target must be
RENDERBUFFER and pname must be one of the symbolic values in table 6.36. If
the renderbuffer currently bound to target is zero, then an INVALID_OPERATION

error is generated.
Upon successful return from GetRenderbufferParameteriv, if pname

is RENDERBUFFER_WIDTH, RENDERBUFFER_HEIGHT, RENDERBUFFER_-

INTERNAL_FORMAT, or RENDERBUFFER_SAMPLES, then params will contain
the width in pixels, height in pixels, internal format, or number of samples,
respectively, of the image of the renderbuffer currently bound to target.

If pname is RENDERBUFFER_RED_SIZE, RENDERBUFFER_GREEN_-

SIZE, RENDERBUFFER_BLUE_SIZE, RENDERBUFFER_ALPHA_SIZE,
RENDERBUFFER_DEPTH_SIZE, or RENDERBUFFER_STENCIL_SIZE, then
params will contain the actual resolutions (not the resolutions specified when
the image array was defined) for the red, green, blue, alpha depth, or stencil
components, respectively, of the image of the renderbuffer currently bound to
target.

Otherwise, an INVALID_ENUM error is generated.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 409

6.1.20 Saving and Restoring State

Besides providing a means to obtain the values of state variables, the GL also
provides a means to save and restore groups of state variables. The PushAttrib,
PushClientAttrib, PopAttrib and PopClientAttrib commands are used for this
purpose. The commands

void PushAttrib(bitfield mask);
void PushClientAttrib(bitfield mask);

take a bitwise OR of symbolic constants indicating which groups of state vari-
ables to push onto an attribute stack. PushAttrib uses a server attribute stack
while PushClientAttrib uses a client attribute stack. Each constant refers to a
group of state variables. The classification of each variable into a group is indi-
cated in the following tables of state variables. The error STACK_OVERFLOW is
generated if PushAttrib or PushClientAttrib is executed while the corresponding
stack depth is MAX_ATTRIB_STACK_DEPTH or MAX_CLIENT_ATTRIB_STACK_-
DEPTH respectively. Bits set in mask that do not correspond to an attribute group
are ignored. The special mask values ALL_ATTRIB_BITS and CLIENT_ALL_-

ATTRIB_BITS may be used to push all stackable server and client state, respec-
tively.

The commands

void PopAttrib(void);
void PopClientAttrib(void);

reset the values of those state variables that were saved with the last corresponding
PushAttrib or PopClientAttrib. Those not saved remain unchanged. The er-
ror STACK_UNDERFLOW is generated if PopAttrib or PopClientAttrib is executed
while the respective stack is empty.

Table 6.5 shows the attribute groups with their corresponding symbolic con-
stant names and stacks.

When PushAttrib is called with TEXTURE_BIT set, the priorities, border col-
ors, filter modes, wrap modes, and other state of the currently bound texture objects
(see table 6.24), as well as the current texture bindings and enables, are pushed onto
the attribute stack. (Unbound texture objects are not pushed or restored.) When an
attribute set that includes texture information is popped, the bindings and enables
are first restored to their pushed values, then the bound texture object’s parameters
are restored to their pushed values.

Operations on attribute groups push or pop texture state within that group for
all texture units. When state for a group is pushed, all state corresponding to

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.1. QUERYING GL STATE 410

Stack Attribute Constant
server accum-buffer ACCUM_BUFFER_BIT

server color-buffer COLOR_BUFFER_BIT

server current CURRENT_BIT

server depth-buffer DEPTH_BUFFER_BIT

server enable ENABLE_BIT

server eval EVAL_BIT

server fog FOG_BIT

server hint HINT_BIT

server lighting LIGHTING_BIT

server line LINE_BIT

server list LIST_BIT

server multisample MULTISAMPLE_BIT

server pixel PIXEL_MODE_BIT

server point POINT_BIT

server polygon POLYGON_BIT

server polygon-stipple POLYGON_STIPPLE_BIT

server scissor SCISSOR_BIT

server stencil-buffer STENCIL_BUFFER_BIT

server texture TEXTURE_BIT

server transform TRANSFORM_BIT

server viewport VIEWPORT_BIT

server ALL_ATTRIB_BITS

client vertex-array CLIENT_VERTEX_ARRAY_BIT

client pixel-store CLIENT_PIXEL_STORE_BIT

client select can’t be pushed or popped
client feedback can’t be pushed or popped
client CLIENT_ALL_ATTRIB_BITS

Table 6.5: Attribute groups

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 411

TEXTURE0 is pushed first, followed by state corresponding to TEXTURE1, and so
on up to and including the state corresponding to TEXTUREk where k + 1 is the
value of MAX_TEXTURE_UNITS. When state for a group is popped, texture state is
restored in the opposite order that it was pushed, starting with state corresponding
to TEXTUREk and ending with TEXTURE0. Identical rules are observed for client
texture state push and pop operations. Matrix stacks are never pushed or popped
with PushAttrib, PushClientAttrib, PopAttrib, or PopClientAttrib.

The depth of each attribute stack is implementation-dependent but must be at
least 16. The state required for each attribute stack is potentially 16 copies of each
state variable, 16 masks indicating which groups of variables are stored in each
stack entry, and an attribute stack pointer. In the initial state, both attribute stacks
are empty.

In the tables that follow, a type is indicated for each variable. Table 6.6 explains
these types. The type actually identifies all state associated with the indicated
description; in certain cases only a portion of this state is returned. This is the case
with all matrices, where only the top entry on the stack is returned; with clip planes,
where only the selected clip plane is returned; with parameters describing lights,
where only the value pertaining to the selected light is returned; with evaluator
maps, where only the selected map is returned; and with textures, where only
the selected texture or texture parameter is returned. Finally, a “–” in the attribute
column indicates that the indicated value is not included in any attribute group (and
thus can not be pushed or popped with PushAttrib, PushClientAttrib, PopAttrib,
or PopClientAttrib).

The M and m entries for initial minmax table values represent the maximum
and minimum possible representable values, respectively.

6.2 State Tables

The tables on the following pages indicate which state variables are obtained with
what commands. State variables that can be obtained using any of GetBooleanv,
GetIntegerv, GetFloatv, or GetDoublev are listed with just one of these com-
mands – the one that is most appropriate given the type of the data to be returned.
These state variables cannot be obtained using IsEnabled. However, state vari-
ables for which IsEnabled is listed as the query command can also be obtained
using GetBooleanv, GetIntegerv, GetFloatv, and GetDoublev. State variables
for which any other command is listed as the query command can be obtained by
using that command or any of its typed variants, although information may be lost
when not using the listed command. Unless otherwise specified, when floating-
point state is returned as integer values or integer state is returned as floating-point

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 412

Type code Explanation
B Boolean

BMU Basic machine units
C Color (floating-point R, G, B, and A values)
CI Color index (floating-point index value)
T Texture coordinates (floating-point (s, t, r, q) val-

ues)
N Normal coordinates (floating-point (x, y, z) val-

ues)
V Vertex, including associated data
Z Integer
Z+ Non-negative integer or enumerated token value

Zk, Zk∗ k-valued integer (k∗ indicates k is minimum)
R Floating-point number
R+ Non-negative floating-point number
R[a,b] Floating-point number in the range [a, b]
Rk k-tuple of floating-point numbers
P Position ((x, y, z, w) floating-point coordinates)
D Direction ((x, y, z) floating-point coordinates)
M4 4× 4 floating-point matrix
S NULL-terminated string
I Image
A Attribute stack entry, including mask
Y Pointer (data type unspecified)

n× type n copies of type type (n∗ indicates n is minimum)

Table 6.6: State Variable Types

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 413

values it is converted in the fashion described in section 6.1.2.
State table entries which are required only by the imaging subset (see sec-

tion 3.7.2) are typeset against a gray background .

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 414

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

–
Z

1
5

–
0

W
he

n
6=

0,
in

di
ca

te
s

be
gi

n/
en

d
ob

-
je

ct
2.

6.
1

–

–
V

–
–

Pr
ev

io
us

ve
rt

ex
in

B
eg

in
/E

nd
lin

e
2.

6.
1

–
–

B
–

–
In

di
ca

te
s

if
lin

e-
ve

rt
ex

is
th

e
fir

st
2.

6.
1

–

–
V

–
–

Fi
rs

t
ve

rt
ex

of
a

B
eg

in
/E

nd
lin

e
lo

op
2.

6.
1

–

–
Z

+
–

–
L

in
e

st
ip

pl
e

co
un

te
r

3.
5

–

–
n
×
V

–
–

V
er

tic
es

in
si

de
of

B
eg

in
/E

nd
po

ly
-

go
n

2.
6.

1
–

–
Z

+
–

–
N

um
be

ro
fp

ol
yg

on
-v

er
tic

es
2.

6.
1

–

–
2
×
V

–
–

Pr
ev

io
us

tw
o

ve
rt

ic
es

in
a

B
e-

gi
n/

E
nd

tr
ia

ng
le

st
ri

p
2.

6.
1

–

–
Z

3
–

–
N

um
be

ro
fv

er
tic

es
so

fa
ri

n
tr

ia
ng

le
st

ri
p:

0,
1,

or
m

or
e

2.
6.

1
–

–
Z

2
–

–
Tr

ia
ng

le
st

ri
p

A
/B

ve
rt

ex
po

in
te

r
2.

6.
1

–

–
3
×
V

–
–

V
er

tic
es

of
th

e
qu

ad
un

de
rc

on
st

ru
c-

tio
n

2.
6.

1
–

–
Z

4
–

–
N

um
be

r
of

ve
rt

ic
es

so
fa

r
in

qu
ad

st
ri

p:
0,

1,
2,

or
m

or
e

2.
6.

1
–

Table 6.7. GL Internal begin-end state variables (inaccessible)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 415

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
C

U
R

R
E

N
T

C
O

L
O

R
C

G
et

Fl
oa

tv
1,

1,
1,

1
C

ur
re

nt
co

lo
r

2.
7

cu
rr

en
t

C
U

R
R

E
N

T
SE

C
O

N
D

A
RY

C
O

L
O

R
C

G
et

Fl
oa

tv
0,

0,
0,

1
C

ur
re

nt
se

co
nd

ar
y

co
lo

r
2.

7
cu

rr
en

t
C

U
R

R
E

N
T

IN
D

E
X

C
I

G
et

In
te

ge
rv

1
C

ur
re

nt
co

lo
ri

nd
ex

2.
7

cu
rr

en
t

C
U

R
R

E
N

T
T

E
X

T
U

R
E

C
O

O
R

D
S

8
∗
×
T

G
et

Fl
oa

tv
0,

0,
0,

1
C

ur
re

nt
te

xt
ur

e
co

or
di

na
te

s
2.

7
cu

rr
en

t
C

U
R

R
E

N
T

N
O

R
M

A
L

N
G

et
Fl

oa
tv

0,
0,

1
C

ur
re

nt
no

rm
al

2.
7

cu
rr

en
t

C
U

R
R

E
N

T
FO

G
C

O
O

R
D

R
G

et
Fl

oa
tv

0
C

ur
re

nt
fo

g
co

or
di

na
te

2.
7

cu
rr

en
t

–
C

–
-

C
ol

or
as

so
ci

at
ed

w
ith

la
st

ve
rt

ex
2.

5
–

–
C
I

–
-

C
ol

or
in

de
x

as
so

ci
at

ed
w

ith
la

st
ve

r-
te

x
2.

5
–

–
T

–
-

Te
xt

ur
e

co
or

di
na

te
s

as
so

ci
at

ed
w

ith
la

st
ve

rt
ex

2.
5

–

C
U

R
R

E
N

T
R

A
ST

E
R

PO
SI

T
IO

N
R

4
G

et
Fl

oa
tv

0,
0,

0,
1

C
ur

re
nt

ra
st

er
po

si
tio

n
2.

24
cu

rr
en

t
C

U
R

R
E

N
T

R
A

ST
E

R
D

IS
TA

N
C

E
R

+
G

et
Fl

oa
tv

0
C

ur
re

nt
ra

st
er

di
st

an
ce

2.
24

cu
rr

en
t

C
U

R
R

E
N

T
R

A
ST

E
R

C
O

L
O

R
C

G
et

Fl
oa

tv
1,

1,
1,

1
C

ol
or

as
so

ci
at

ed
w

ith
ra

st
er

po
si

tio
n

2.
24

cu
rr

en
t

C
U

R
R

E
N

T
R

A
ST

E
R

SE
C

O
N

D
A

RY
C

O
L

O
R

C
G

et
Fl

oa
tv

0,
0,

0,
1

Se
co

nd
ar

y
co

lo
r

as
so

ci
at

ed
w

ith
ra

st
er

po
si

tio
n

2.
24

cu
rr

en
t

C
U

R
R

E
N

T
R

A
ST

E
R

IN
D

E
X

C
I

G
et

In
te

ge
rv

1
C

ol
or

in
de

x
as

so
ci

at
ed

w
ith

ra
st

er
po

si
tio

n
2.

24
cu

rr
en

t

C
U

R
R

E
N

T
R

A
ST

E
R

T
E

X
T

U
R

E
C

O
O

R
D

S
8
∗
×
T

G
et

Fl
oa

tv
0,

0,
0,

1
Te

xt
ur

e
co

or
di

na
te

s
as

so
ci

at
ed

w
ith

ra
st

er
po

si
tio

n
2.

24
cu

rr
en

t

C
U

R
R

E
N

T
R

A
ST

E
R

PO
SI

T
IO

N
VA

L
ID

B
G

et
B

oo
le

an
v

T
R
U
E

R
as

te
rp

os
iti

on
va

lid
bi

t
2.

24
cu

rr
en

t
E

D
G

E
FL

A
G

B
G

et
B

oo
le

an
v

T
R
U
E

E
dg

e
fla

g
2.

6.
2

cu
rr

en
t

Table 6.8. Current Values and Associated Data

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 416

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
V

E
R

T
E

X
A

R
R

A
Y

B
Is

E
na

bl
ed

F
A
L
S
E

V
er

te
x

ar
ra

y
en

ab
le

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

A
R

R
A

Y
SI

Z
E

Z
+

G
et

In
te

ge
rv

4
C

oo
rd

in
at

es
pe

rv
er

te
x

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

A
R

R
A

Y
T

Y
PE

Z
4

G
et

In
te

ge
rv

F
L
O
A
T

Ty
pe

of
ve

rt
ex

co
or

di
na

te
s

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

A
R

R
A

Y
ST

R
ID

E
Z

+
G

et
In

te
ge

rv
0

St
ri

de
be

tw
ee

n
ve

rt
ic

es
2.

8
ve

rt
ex

-a
rr

ay
V

E
R

T
E

X
A

R
R

A
Y

PO
IN

T
E

R
Y

G
et

Po
in

te
rv

0
Po

in
te

rt
o

th
e

ve
rt

ex
ar

ra
y

2.
8

ve
rt

ex
-a

rr
ay

N
O

R
M

A
L

A
R

R
A

Y
B

Is
E

na
bl

ed
F
A
L
S
E

N
or

m
al

ar
ra

y
en

ab
le

2.
8

ve
rt

ex
-a

rr
ay

N
O

R
M

A
L

A
R

R
A

Y
T

Y
PE

Z
5

G
et

In
te

ge
rv

F
L
O
A
T

Ty
pe

of
no

rm
al

co
or

di
na

te
s

2.
8

ve
rt

ex
-a

rr
ay

N
O

R
M

A
L

A
R

R
A

Y
ST

R
ID

E
Z

+
G

et
In

te
ge

rv
0

St
ri

de
be

tw
ee

n
no

rm
al

s
2.

8
ve

rt
ex

-a
rr

ay
N

O
R

M
A

L
A

R
R

A
Y

PO
IN

T
E

R
Y

G
et

Po
in

te
rv

0
Po

in
te

rt
o

th
e

no
rm

al
ar

ra
y

2.
8

ve
rt

ex
-a

rr
ay

FO
G

C
O

O
R

D
A

R
R

A
Y

B
Is

E
na

bl
ed

F
A
L
S
E

Fo
g

co
or

d
ar

ra
y

en
ab

le
2.

8
ve

rt
ex

-a
rr

ay
FO

G
C

O
O

R
D

A
R

R
A

Y
T

Y
PE

Z
2

G
et

In
te

ge
rv

F
L
O
A
T

Ty
pe

of
fo

g
co

or
d

co
m

po
ne

nt
s

2.
8

ve
rt

ex
-a

rr
ay

FO
G

C
O

O
R

D
A

R
R

A
Y

ST
R

ID
E

Z
+

G
et

In
te

ge
rv

0
St

ri
de

be
tw

ee
n

fo
g

co
or

ds
2.

8
ve

rt
ex

-a
rr

ay
FO

G
C

O
O

R
D

A
R

R
A

Y
PO

IN
T

E
R

Y
G

et
Po

in
te

rv
0

Po
in

te
rt

o
th

e
fo

g
co

or
d

ar
ra

y
2.

8
ve

rt
ex

-a
rr

ay
C

O
L

O
R

A
R

R
A

Y
B

Is
E

na
bl

ed
F
A
L
S
E

C
ol

or
ar

ra
y

en
ab

le
2.

8
ve

rt
ex

-a
rr

ay
C

O
L

O
R

A
R

R
A

Y
SI

Z
E

Z
3

G
et

In
te

ge
rv

4
C

ol
or

co
m

po
ne

nt
s

pe
rv

er
te

x
2.

8
ve

rt
ex

-a
rr

ay
C

O
L

O
R

A
R

R
A

Y
T

Y
PE

Z
8

G
et

In
te

ge
rv

F
L
O
A
T

Ty
pe

of
co

lo
rc

om
po

ne
nt

s
2.

8
ve

rt
ex

-a
rr

ay
C

O
L

O
R

A
R

R
A

Y
ST

R
ID

E
Z

+
G

et
In

te
ge

rv
0

St
ri

de
be

tw
ee

n
co

lo
rs

2.
8

ve
rt

ex
-a

rr
ay

C
O

L
O

R
A

R
R

A
Y

PO
IN

T
E

R
Y

G
et

Po
in

te
rv

0
Po

in
te

rt
o

th
e

co
lo

ra
rr

ay
2.

8
ve

rt
ex

-a
rr

ay

Table 6.9. Vertex Array Object State

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 417

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

SE
C

O
N

D
A

RY
C

O
L

O
R

A
R

R
A

Y
B

Is
E

na
bl

ed
F
A
L
S
E

Se
co

nd
ar

y
co

lo
r

ar
ra

y
en

ab
le

2.
8

ve
rt

ex
-a

rr
ay

SE
C

O
N

D
A

RY
C

O
L

O
R

A
R

R
A

Y
SI

Z
E

Z
2

G
et

In
te

ge
rv

3
Se

co
nd

ar
y

co
lo

r
co

m
po

-
ne

nt
s

pe
rv

er
te

x
2.

8
ve

rt
ex

-a
rr

ay

SE
C

O
N

D
A

RY
C

O
L

O
R

A
R

R
A

Y
T

Y
PE

Z
8

G
et

In
te

ge
rv

F
L
O
A
T

Ty
pe

of
se

co
nd

ar
y

co
lo

r
co

m
po

ne
nt

s
2.

8
ve

rt
ex

-a
rr

ay

SE
C

O
N

D
A

RY
C

O
L

O
R

A
R

R
A

Y
ST

R
ID

E
Z

+
G

et
In

te
ge

rv
0

St
ri

de
be

tw
ee

n
se

c-
on

da
ry

co
lo

rs
2.

8
ve

rt
ex

-a
rr

ay

SE
C

O
N

D
A

RY
C

O
L

O
R

A
R

R
A

Y
PO

IN
T

E
R

Y
G

et
Po

in
te

rv
0

Po
in

te
r

to
th

e
se

co
nd

ar
y

co
lo

ra
rr

ay
2.

8
ve

rt
ex

-a
rr

ay

IN
D

E
X

A
R

R
A

Y
B

Is
E

na
bl

ed
F
A
L
S
E

In
de

x
ar

ra
y

en
ab

le
2.

8
ve

rt
ex

-a
rr

ay
IN

D
E

X
A

R
R

A
Y

T
Y

PE
Z

4
G

et
In

te
ge

rv
F
L
O
A
T

Ty
pe

of
in

di
ce

s
2.

8
ve

rt
ex

-a
rr

ay
IN

D
E

X
A

R
R

A
Y

ST
R

ID
E

Z
+

G
et

In
te

ge
rv

0
St

ri
de

be
tw

ee
n

in
di

ce
s

2.
8

ve
rt

ex
-a

rr
ay

IN
D

E
X

A
R

R
A

Y
PO

IN
T

E
R

Y
G

et
Po

in
te

rv
0

Po
in

te
rt

o
th

e
in

de
x

ar
ra

y
2.

8
ve

rt
ex

-a
rr

ay

T
E

X
T

U
R

E
C

O
O

R
D

A
R

R
A

Y
8
∗
×
B

Is
E

na
bl

ed
F
A
L
S
E

Te
xt

ur
e

co
or

di
na

te
ar

ra
y

en
ab

le
2.

8
ve

rt
ex

-a
rr

ay

T
E

X
T

U
R

E
C

O
O

R
D

A
R

R
A

Y
SI

Z
E

8
∗
×
Z

+
G

et
In

te
ge

rv
4

C
oo

rd
in

at
es

pe
re

le
m

en
t

2.
8

ve
rt

ex
-a

rr
ay

T
E

X
T

U
R

E
C

O
O

R
D

A
R

R
A

Y
T

Y
PE

8
∗
×
Z

4
G

et
In

te
ge

rv
F
L
O
A
T

Ty
pe

of
te

xt
ur

e
co

or
di

-
na

te
s

2.
8

ve
rt

ex
-a

rr
ay

T
E

X
T

U
R

E
C

O
O

R
D

A
R

R
A

Y
ST

R
ID

E
8
∗
×
Z

+
G

et
In

te
ge

rv
0

St
ri

de
be

tw
ee

n
te

xt
ur

e
co

or
di

na
te

s
2.

8
ve

rt
ex

-a
rr

ay

T
E

X
T

U
R

E
C

O
O

R
D

A
R

R
A

Y
PO

IN
T

E
R

8
∗
×
Y

G
et

Po
in

te
rv

0
Po

in
te

r
to

th
e

te
xt

ur
e

co
-

or
di

na
te

ar
ra

y
2.

8
ve

rt
ex

-a
rr

ay

Table 6.10. Vertex Array Object State (cont.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 418

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

V
E

R
T

E
X

A
T

T
R

IB
A

R
R

A
Y

E
N

A
B

L
E

D
16
∗
×
B

G
et

Ve
rt

ex
A

tt
ri

bi
v

F
A
L
S
E

V
er

te
x

at
tr

ib
ar

ra
y

en
ab

le
2.

8
ve

rt
ex

-a
rr

ay

V
E

R
T

E
X

A
T

T
R

IB
A

R
R

A
Y

SI
Z

E
16
∗
×
Z

5
G

et
Ve

rt
ex

A
tt

ri
bi

v
4

V
er

te
x

at
tr

ib
ar

ra
y

si
ze

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

A
T

T
R

IB
A

R
R

A
Y

ST
R

ID
E

16
∗
×
Z

+
G

et
Ve

rt
ex

A
tt

ri
bi

v
0

V
er

te
x

at
tr

ib
ar

ra
y

st
ri

de
2.

8
ve

rt
ex

-a
rr

ay

V
E

R
T

E
X

A
T

T
R

IB
A

R
R

A
Y

T
Y

PE
16
∗
×
Z

9
G

et
Ve

rt
ex

A
tt

ri
bi

v
F
L
O
A
T

V
er

te
x

at
tr

ib
ar

ra
y

ty
pe

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

A
T

T
R

IB
A

R
R

A
Y

N
O

R
M

A
L

IZ
E

D
16
∗
×
B

G
et

Ve
rt

ex
A

tt
ri

bi
v

F
A
L
S
E

V
er

te
x

at
tr

ib
ar

ra
y

no
r-

m
al

iz
ed

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

A
T

T
R

IB
A

R
R

A
Y

IN
T

E
G

E
R

16
∗
×
B

G
et

Ve
rt

ex
A

tt
ri

bi
v

F
A
L
S
E

V
er

te
x

at
tr

ib
ar

ra
y

ha
s

un
co

nv
er

te
d

in
te

ge
rs

2.
8

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

A
T

T
R

IB
A

R
R

A
Y

D
IV

IS
O

R
16
∗
×
Z

+
G

et
Ve

rt
ex

A
tt

ri
bi

v
0

V
er

te
x

at
tr

ib
ar

ra
y

in
-

st
an

ce
di

vi
so

r
2.

8.
2

ve
rt

ex
-a

rr
ay

V
E

R
T

E
X

A
T

T
R

IB
A

R
R

A
Y

PO
IN

T
E

R
16
∗
×
Y

G
et

Ve
rt

ex
-

A
tt

ri
bP

oi
nt

er
v

N
U
L
L

V
er

te
x

at
tr

ib
ar

ra
y

po
in

te
r

2.
8

ve
rt

ex
-a

rr
ay

E
D

G
E

FL
A

G
A

R
R

A
Y

B
Is

E
na

bl
ed

F
A
L
S
E

E
dg

e
fla

g
ar

ra
y

en
ab

le
2.

8
ve

rt
ex

-a
rr

ay
E

D
G

E
FL

A
G

A
R

R
A

Y
ST

R
ID

E
Z

+
G

et
In

te
ge

rv
0

St
ri

de
be

tw
ee

n
ed

ge
fla

gs
2.

8
ve

rt
ex

-a
rr

ay

E
D

G
E

FL
A

G
A

R
R

A
Y

PO
IN

T
E

R
Y

G
et

Po
in

te
rv

0
Po

in
te

r
to

th
e

ed
ge

fla
g

ar
ra

y
2.

8
ve

rt
ex

-a
rr

ay

Table 6.11. Vertex Array Object State (cont.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 419

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

V
E

R
T

E
X

A
R

R
A

Y
B

U
FF

E
R

B
IN

D
IN

G
Z

+
G

et
In

te
ge

rv
0

V
er

te
x

ar
ra

y
bu

ff
er

bi
nd

-
in

g
2.

9
ve

rt
ex

-a
rr

ay

N
O

R
M

A
L

A
R

R
A

Y
B

U
FF

E
R

B
IN

D
IN

G
Z

+
G

et
In

te
ge

rv
0

N
or

m
al

ar
ra

y
bu

ff
er

bi
nd

in
g

2.
9

ve
rt

ex
-a

rr
ay

C
O

L
O

R
A

R
R

A
Y

B
U

FF
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
C

ol
or

ar
ra

y
bu

ff
er

bi
nd

-
in

g
2.

9
ve

rt
ex

-a
rr

ay

IN
D

E
X

A
R

R
A

Y
B

U
FF

E
R

B
IN

D
IN

G
Z

+
G

et
In

te
ge

rv
0

In
de

x
ar

ra
y

bu
ff

er
bi

nd
-

in
g

2.
9

ve
rt

ex
-a

rr
ay

T
E

X
T

U
R

E
C

O
O

R
D

A
R

R
A

Y
B

U
FF

E
R

B
IN

D
IN

G
8
∗
×
Z

+
G

et
In

te
ge

rv
0

Te
xc

oo
rd

ar
ra

y
bu

ff
er

bi
nd

in
g

2.
9

ve
rt

ex
-a

rr
ay

E
D

G
E

FL
A

G
A

R
R

A
Y

B
U

FF
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
E

dg
e

fla
g

ar
ra

y
bu

ff
er

bi
nd

in
g

2.
9

ve
rt

ex
-a

rr
ay

SE
C

O
N

D
A

RY
C

O
L

O
R

A
R

R
A

Y
B

U
FF

E
R

B
IN

D
IN

G
Z

+
G

et
In

te
ge

rv
0

Se
co

nd
ar

y
co

lo
r

ar
ra

y
bu

ff
er

bi
nd

in
g

2.
9

ve
rt

ex
-a

rr
ay

FO
G

C
O

O
R

D
A

R
R

A
Y

B
U

FF
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
Fo

g
co

or
di

na
te

ar
ra

y
bu

ff
er

bi
nd

in
g

2.
9

ve
rt

ex
-a

rr
ay

E
L

E
M

E
N

T
A

R
R

A
Y

B
U

FF
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
E

le
m

en
t

ar
ra

y
bu

ff
er

bi
nd

in
g

2.
9.

7
ve

rt
ex

-a
rr

ay

V
E

R
T

E
X

A
T

T
R

IB
A

R
R

A
Y

B
U

FF
E

R
B

IN
D

IN
G

16
∗
×
Z

+
G

et
Ve

rt
ex

A
tt

ri
bi

v
0

A
ttr

ib
ut

e
ar

ra
y

bu
ff

er
bi

nd
in

g
2.

9
ve

rt
ex

-a
rr

ay

Table 6.12. Vertex Array Object State (cont.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 420

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

C
L

IE
N

T
A

C
T

IV
E

T
E

X
T

U
R

E
Z

8
∗

G
et

In
te

ge
rv

T
E
X
T
U
R
E
0

C
lie

nt
ac

tiv
e

te
xt

ur
e

un
it

se
le

ct
or

2.
7

ve
rt

ex
-a

rr
ay

A
R

R
A

Y
B

U
FF

E
R

B
IN

D
IN

G
Z

+
G

et
In

te
ge

rv
0

C
ur

re
nt

bu
ff

er
bi

nd
in

g
2.

9
ve

rt
ex

-a
rr

ay

V
E

R
T

E
X

A
R

R
A

Y
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
C

ur
re

nt
ve

rt
ex

ar
ra

y
ob

-
je

ct
bi

nd
in

g
2.

10
ve

rt
ex

-a
rr

ay

PR
IM

IT
IV

E
R

E
ST

A
R

T
B

Is
E

na
bl

ed
F
A
L
S
E

Pr
im

iti
ve

re
st

ar
te

na
bl

e
2.

8
ve

rt
ex

-a
rr

ay
PR

IM
IT

IV
E

R
E

ST
A

R
T

IN
D

E
X

Z
+

G
et

In
te

ge
rv

0
Pr

im
iti

ve
re

st
ar

ti
nd

ex
2.

8
ve

rt
ex

-a
rr

ay

Table 6.13. Vertex Array Data (not in Vertex Array objects)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 421

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
–

n
×
B
M
U

G
et

B
uf

fe
rS

ub
D

at
a

-
B

uf
fe

rd
at

a
2.

9
-

B
U

FF
E

R
SI

Z
E

n
×
Z

+
G

et
B

uf
fe

rP
ar

am
et

er
i6

4v
0

B
uf

fe
rd

at
a

si
ze

2.
9

-
B

U
FF

E
R

U
SA

G
E

n
×
Z

9
G

et
B

uf
fe

rP
ar

am
et

er
iv

S
T
A
T
I
C
_
D
R
A
W

B
uf

fe
ru

sa
ge

pa
tte

rn
2.

9
-

B
U

FF
E

R
A

C
C

E
SS

n
×
Z

3
G

et
B

uf
fe

rP
ar

am
et

er
iv

R
E
A
D
_
W
R
I
T
E

B
uf

fe
ra

cc
es

s
fla

g
2.

9
-

B
U

FF
E

R
A

C
C

E
SS

FL
A

G
S

n
×
Z

+
G

et
B

uf
fe

rP
ar

am
et

er
iv

0
E

xt
en

de
d

bu
ff

er
ac

ce
ss

fla
g

2.
9

-
B

U
FF

E
R

M
A

PP
E

D
n
×
B

G
et

B
uf

fe
rP

ar
am

et
er

iv
F
A
L
S
E

B
uf

fe
rm

ap
fla

g
2.

9
-

B
U

FF
E

R
M

A
P

PO
IN

T
E

R
n
×
Y

G
et

B
uf

fe
rP

oi
nt

er
v

N
U
L
L

M
ap

pe
d

bu
ff

er
po

in
te

r
2.

9
-

B
U

FF
E

R
M

A
P

O
FF

SE
T

n
×
Z

+
G

et
B

uf
fe

rP
ar

am
et

er
i6

4v
0

St
ar

to
fm

ap
pe

d
bu

ff
er

ra
ng

e
2.

9
-

B
U

FF
E

R
M

A
P

L
E

N
G

T
H

n
×
Z

+
G

et
B

uf
fe

rP
ar

am
et

er
i6

4v
0

Si
ze

of
m

ap
pe

d
bu

ff
er

ra
ng

e
2.

9
-

Table 6.14. Buffer Object State
OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 422

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
C

O
L

O
R

M
A

T
R

IX

(T
R

A
N

SP
O

SE
C

O
L

O
R

M
A

T
R

IX
)

2
∗
×
M

4
G

et
Fl

oa
tv

Id
en

tit
y

C
ol

or
m

at
ri

x
st

ac
k

3.
7.

3
–

M
O

D
E

LV
IE

W
M

A
T

R
IX

(T
R

A
N

SP
O

SE
M

O
D

E
LV

IE
W

M
A

T
R

IX
)

32
∗
×
M

4
G

et
Fl

oa
tv

Id
en

tit
y

M
od

el
-v

ie
w

m
at

ri
x

st
ac

k
2.

12
.1

–

PR
O

JE
C

T
IO

N
M

A
T

R
IX

(T
R

A
N

SP
O

SE
PR

O
JE

C
T

IO
N

M
A

T
R

IX
)

2
∗
×
M

4
G

et
Fl

oa
tv

Id
en

tit
y

Pr
oj

ec
tio

n
m

at
ri

x
st

ac
k

2.
12

.1
–

T
E

X
T

U
R

E
M

A
T

R
IX

(T
R

A
N

SP
O

SE
T

E
X

T
U

R
E

M
A

T
R

IX
)

8
∗
×

2
∗
×
M

4
G

et
Fl

oa
tv

Id
en

tit
y

Te
xt

ur
e

m
at

ri
x

st
ac

k
2.

12
.1

–

V
IE

W
PO

R
T

4
×
Z

G
et

In
te

ge
rv

se
e

2.
16

.1
V

ie
w

po
rt

or
ig

in
&

ex
te

nt
2.

16
.1

vi
ew

po
rt

D
E

PT
H

R
A

N
G

E
2
×
R

+
G

et
Fl

oa
tv

0,
1

D
ep

th
ra

ng
e

ne
ar

&
fa

r
2.

16
.1

vi
ew

po
rt

C
O

L
O

R
M

A
T

R
IX

ST
A

C
K

D
E

PT
H

Z
+

G
et

In
te

ge
rv

1
C

ol
or

m
at

ri
x

st
ac

k
po

in
te

r
3.

7.
3

–

M
O

D
E

LV
IE

W
ST

A
C

K
D

E
PT

H
Z

+
G

et
In

te
ge

rv
1

M
od

el
-v

ie
w

m
at

ri
x

st
ac

k
po

in
te

r
2.

12
.1

–

PR
O

JE
C

T
IO

N
ST

A
C

K
D

E
PT

H
Z

+
G

et
In

te
ge

rv
1

Pr
oj

ec
tio

n
m

at
ri

x
st

ac
k

po
in

te
r

2.
12

.1
–

T
E

X
T

U
R

E
ST

A
C

K
D

E
PT

H
8
∗
×
Z

+
G

et
In

te
ge

rv
1

Te
xt

ur
e

m
at

ri
x

st
ac

k
po

in
te

r
2.

12
.1

–

M
A

T
R

IX
M

O
D

E
Z

4
G

et
In

te
ge

rv
M
O
D
E
L
V
I
E
W

C
ur

re
nt

m
at

ri
x

m
od

e
2.

12
.1

tr
an

sf
or

m

N
O

R
M

A
L

IZ
E

B
Is

E
na

bl
ed

F
A
L
S
E

C
ur

re
nt

no
rm

al
no

rm
al

-
iz

at
io

n
on

/o
ff

2.
12

.2
tr

an
sf

or
m

/e
na

bl
e

R
E

SC
A

L
E

N
O

R
M

A
L

B
Is

E
na

bl
ed

F
A
L
S
E

C
ur

re
nt

no
rm

al
re

sc
al

in
g

on
/o

ff
2.

12
.2

tr
an

sf
or

m
/e

na
bl

e

C
L

IP
PL

A
N

E
i

6
∗
×
R

4
G

et
C

lip
Pl

an
e

0,
0,

0,
0

U
se

rc
lip

pi
ng

pl
an

e
co

ef
-

fic
ie

nt
s

2.
22

tr
an

sf
or

m

C
L

IP
D

IS
TA

N
C

E
i

6
∗
×
B

Is
E

na
bl

ed
F
A
L
S
E

it
h

us
er

cl
ip

pi
ng

pl
an

e
en

ab
le

d
2.

22
tr

an
sf

or
m

/e
na

bl
e

D
E

PT
H

C
L

A
M

P
B

Is
E

na
bl

ed
F
A
L
S
E

D
ep

th
cl

am
pi

ng
en

ab
le

d
2.

22
tr

an
sf

or
m

/e
na

bl
e

Table 6.15. Transformation stateOpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 423

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
FO

G
C

O
L

O
R

C
G

et
Fl

oa
tv

0,
0,

0,
0

Fo
g

co
lo

r
3.

11
fo

g
FO

G
IN

D
E

X
C
I

G
et

Fl
oa

tv
0

Fo
g

in
de

x
3.

11
fo

g
FO

G
D

E
N

SI
T

Y
R

G
et

Fl
oa

tv
1.

0
E

xp
on

en
tia

lf
og

de
ns

ity
3.

11
fo

g
FO

G
ST

A
R

T
R

G
et

Fl
oa

tv
0.

0
L

in
ea

rf
og

st
ar

t
3.

11
fo

g
FO

G
E

N
D

R
G

et
Fl

oa
tv

1.
0

L
in

ea
rf

og
en

d
3.

11
fo

g
FO

G
M

O
D

E
Z

3
G

et
In

te
ge

rv
E
X
P

Fo
g

m
od

e
3.

11
fo

g
FO

G
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
fo

g
en

ab
le

d
3.

11
fo

g/
en

ab
le

FO
G

C
O

O
R

D
SR

C
Z

2
G

et
In

te
ge

rv
F
R
A
G
M
E
N
T
_
-

D
E
P
T
H

So
ur

ce
of

co
or

di
na

te
fo

r
fo

g
ca

lc
ul

at
io

n
3.

11
fo

g

C
O

L
O

R
SU

M
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
co

lo
rs

um
en

ab
le

d
3.

10
fo

g/
en

ab
le

SH
A

D
E

M
O

D
E

L
Z

+
G

et
In

te
ge

rv
S
M
O
O
T
H

Sh
ad

eM
od

el
se

tti
ng

2.
21

lig
ht

in
g

C
L

A
M

P
V

E
R

T
E

X
C

O
L

O
R

Z
3

G
et

In
te

ge
rv

T
R
U
E

V
er

te
x

co
lo

rc
la

m
pi

ng
2.

13
.6

lig
ht

in
g/

en
ab

le

C
L

A
M

P
FR

A
G

M
E

N
T

C
O

L
O

R
Z

3
G

et
In

te
ge

rv
F
I
X
E
D
_
-

O
N
L
Y

Fr
ag

m
en

tc
ol

or
cl

am
pi

ng
3.

7.
5

co
lo

r-
bu

ff
er

/e
na

bl
e

C
L

A
M

P
R

E
A

D
C

O
L

O
R

Z
3

G
et

In
te

ge
rv

F
I
X
E
D
_
-

O
N
L
Y

R
ea

d
co

lo
rc

la
m

pi
ng

4.
3.

2
co

lo
r-

bu
ff

er
/e

na
bl

e

PR
O

V
O

K
IN

G
V

E
R

T
E

X
Z

2
G

et
In

te
ge

rv
L
A
S
T
_
-

V
E
R
T
E
X
_
-

C
O
N
V
E
N
T
I
O
NPr

ov
ok

in
g

ve
rt

ex
co

n-
ve

nt
io

n
2.

21
lig

ht
in

g

Table 6.16. Coloring

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 424

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

L
IG

H
T

IN
G

B
Is

E
na

bl
ed

F
A
L
S
E

Tr
ue

if
lig

ht
in

g
is

en
ab

le
d

2.
13

.1
lig

ht
in

g/
en

ab
le

C
O

L
O

R
M

A
T

E
R

IA
L

B
Is

E
na

bl
ed

F
A
L
S
E

Tr
ue

if
co

lo
r

tr
ac

ki
ng

is
en

-
ab

le
d

2.
13

.3
lig

ht
in

g/
en

ab
le

C
O

L
O

R
M

A
T

E
R

IA
L

PA
R

A
M

E
T

E
R

Z
5

G
et

In
te

ge
rv

A
M
B
I
E
N
T
_
A
N
D
_
D
I
F
F
U
S
E

M
at

er
ia

l
pr

op
-

er
tie

s
tr

ac
ki

ng
cu

rr
en

tc
ol

or
2.

13
.3

lig
ht

in
g

C
O

L
O

R
M

A
T

E
R

IA
L

FA
C

E
Z

3
G

et
In

te
ge

rv
F
R
O
N
T
_
A
N
D
_
B
A
C
K

Fa
ce

(s
)

af
fe

ct
ed

by
co

lo
rt

ra
ck

in
g

2.
13

.3
lig

ht
in

g

A
M

B
IE

N
T

2
×
C

G
et

M
at

er
ia

lfv
(0

.2
,0

.2
,0

.2
,1

.0
)

A
m

bi
en

t
m

at
er

ia
l

co
lo

r
2.

13
.1

lig
ht

in
g

D
IF

FU
SE

2
×
C

G
et

M
at

er
ia

lfv
(0

.8
,0

.8
,0

.8
,1

.0
)

D
iff

us
e

m
at

er
ia

l
co

lo
r

2.
13

.1
lig

ht
in

g

SP
E

C
U

L
A

R
2
×
C

G
et

M
at

er
ia

lfv
(0

.0
,0

.0
,0

.0
,1

.0
)

Sp
ec

ul
ar

m
at

er
ia

l
co

lo
r

2.
13

.1
lig

ht
in

g

E
M

IS
SI

O
N

2
×
C

G
et

M
at

er
ia

lfv
(0

.0
,0

.0
,0

.0
,1

.0
)

E
m

is
si

ve
m

at
.

co
lo

r
2.

13
.1

lig
ht

in
g

SH
IN

IN
E

SS
2
×
R

G
et

M
at

er
ia

lfv
0.

0
Sp

ec
ul

ar
ex

po
-

ne
nt

of
m

at
er

ia
l

2.
13

.1
lig

ht
in

g

L
IG

H
T

M
O

D
E

L
A

M
B

IE
N

T
C

G
et

Fl
oa

tv
(0

.2
,0

.2
,0

.2
,1

.0
)

A
m

bi
en

t
sc

en
e

co
lo

r
2.

13
.1

lig
ht

in
g

L
IG

H
T

M
O

D
E

L
L

O
C

A
L

V
IE

W
E

R
B

G
et

B
oo

le
an

v
F
A
L
S
E

V
ie

w
er

is
lo

ca
l

2.
13

.1
lig

ht
in

g

L
IG

H
T

M
O

D
E

L
T

W
O

SI
D

E
B

G
et

B
oo

le
an

v
F
A
L
S
E

U
se

tw
o-

si
de

d
lig

ht
in

g
2.

13
.1

lig
ht

in
g

L
IG

H
T

M
O

D
E

L
C

O
L

O
R

C
O

N
T

R
O

L
Z

2
G

et
In

te
ge

rv
S
I
N
G
L
E
_
C
O
L
O
R

C
ol

or
co

nt
ro

l
2.

13
.1

lig
ht

in
g

Table 6.17. Lighting (see also table 2.13 for defaults)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 425

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
A

M
B

IE
N

T
8
∗
×
C

G
et

L
ig

ht
fv

(0
.0

,0
.0

,0
.0

,1
.0

)
A

m
bi

en
ti

nt
en

si
ty

of
lig

ht
i

2.
13

.1
lig

ht
in

g
D

IF
FU

SE
8
∗
×
C

G
et

L
ig

ht
fv

se
e

ta
bl

e
2.

13
D

iff
us

e
in

te
ns

ity
of

lig
ht
i

2.
13

.1
lig

ht
in

g
SP

E
C

U
L

A
R

8
∗
×
C

G
et

L
ig

ht
fv

se
e

ta
bl

e
2.

13
Sp

ec
ul

ar
in

te
ns

ity
of

lig
ht
i

2.
13

.1
lig

ht
in

g
PO

SI
T

IO
N

8
∗
×
P

G
et

L
ig

ht
fv

(0
.0

,0
.0

,1
.0

,0
.0

)
Po

si
tio

n
of

lig
ht
i

2.
13

.1
lig

ht
in

g
C

O
N

ST
A

N
T

A
T

T
E

N
U

A
T

IO
N

8
∗
×
R

+
G

et
L

ig
ht

fv
1.

0
C

on
st

an
ta

tte
n.

fa
ct

or
2.

13
.1

lig
ht

in
g

L
IN

E
A

R
A

T
T

E
N

U
A

T
IO

N
8
∗
×
R

+
G

et
L

ig
ht

fv
0.

0
L

in
ea

ra
tte

n.
fa

ct
or

2.
13

.1
lig

ht
in

g
Q

U
A

D
R

A
T

IC
A

T
T

E
N

U
A

T
IO

N
8
∗
×
R

+
G

et
L

ig
ht

fv
0.

0
Q

ua
dr

at
ic

at
te

n.
fa

ct
or

2.
13

.1
lig

ht
in

g
SP

O
T

D
IR

E
C

T
IO

N
8
∗
×
D

G
et

L
ig

ht
fv

(0
.0

,0
.0

,-1
.0

)
Sp

ot
lig

ht
di

re
ct

io
n

of
lig

ht
i

2.
13

.1
lig

ht
in

g
SP

O
T

E
X

PO
N

E
N

T
8
∗
×
R

+
G

et
L

ig
ht

fv
0.

0
Sp

ot
lig

ht
ex

po
ne

nt
of

lig
ht
i

2.
13

.1
lig

ht
in

g
SP

O
T

C
U

TO
FF

8
∗
×
R

+
G

et
L

ig
ht

fv
18

0.
0

Sp
ot

.a
ng

le
of

lig
ht
i

2.
13

.1
lig

ht
in

g
L

IG
H

T
i

8
∗
×
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
lig

ht
i

en
ab

le
d

2.
13

.1
lig

ht
in

g/
en

ab
le

C
O

L
O

R
IN

D
E

X
E

S
2
×

3
×
R

G
et

M
at

er
ia

lfv
0,

1,
1

a
m

,
d

m
,

an
d
s m

fo
r

co
lo

r
in

de
x

lig
ht

in
g

2.
13

.1
lig

ht
in

g

Table 6.18. Lighting (cont.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 426

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
PO

IN
T

SI
Z

E
R

+
G

et
Fl

oa
tv

1.
0

Po
in

ts
iz

e
3.

4
po

in
t

PO
IN

T
SM

O
O

T
H

B
Is

E
na

bl
ed

F
A
L
S
E

Po
in

ta
nt

ia
lia

si
ng

on
3.

4
po

in
t/e

na
bl

e
PO

IN
T

SP
R

IT
E

B
Is

E
na

bl
ed

F
A
L
S
E

Po
in

ts
pr

ite
en

ab
le

3.
4

po
in

t/e
na

bl
e

PO
IN

T
SI

Z
E

M
IN

R
+

G
et

Fl
oa

tv
0.

0
A

tte
nu

at
ed

m
in

im
um

po
in

ts
iz

e
3.

4
po

in
t

PO
IN

T
SI

Z
E

M
A

X
R

+
G

et
Fl

oa
tv

1
A

tte
nu

at
ed

m
ax

im
um

po
in

t
si

ze
.

1

M
ax

.
of

th
e

im
pl

.
de

pe
nd

en
t

m
ax

.
al

ia
se

d
an

d
sm

oo
th

po
in

ts
iz

es
.

3.
4

po
in

t

PO
IN

T
FA

D
E

T
H

R
E

SH
O

L
D

SI
Z

E
R

+
G

et
Fl

oa
tv

1.
0

T
hr

es
ho

ld
fo

ra
lp

ha
at

te
nu

at
io

n
3.

4
po

in
t

PO
IN

T
D

IS
TA

N
C

E
A

T
T

E
N

U
A

T
IO

N
3
×
R

+
G

et
Fl

oa
tv

1,
0,

0
A

tte
nu

at
io

n
co

ef
fic

ie
nt

s
3.

4
po

in
t

PO
IN

T
SP

R
IT

E
C

O
O

R
D

O
R

IG
IN

Z
2

G
et

In
te

ge
rv

U
P
P
E
R
_
L
E
F
T

O
ri

gi
n

or
ie

nt
at

io
n

fo
rp

oi
nt

sp
ri

te
s

3.
4

po
in

t
L

IN
E

W
ID

T
H

R
+

G
et

Fl
oa

tv
1.

0
L

in
e

w
id

th
3.

5
lin

e
L

IN
E

SM
O

O
T

H
B

Is
E

na
bl

ed
F
A
L
S
E

L
in

e
an

tia
lia

si
ng

on
3.

5
lin

e/
en

ab
le

L
IN

E
ST

IP
PL

E
PA

T
T

E
R

N
Z

+
G

et
In

te
ge

rv
1’

s
L

in
e

st
ip

pl
e

3.
5.

2
lin

e
L

IN
E

ST
IP

PL
E

R
E

PE
A

T
Z

+
G

et
In

te
ge

rv
1

L
in

e
st

ip
pl

e
re

pe
at

3.
5.

2
lin

e
L

IN
E

ST
IP

PL
E

B
Is

E
na

bl
ed

F
A
L
S
E

L
in

e
st

ip
pl

e
en

ab
le

3.
5.

2
lin

e/
en

ab
le

Table 6.19. Rasterization

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 427

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
C

U
L

L
FA

C
E

B
Is

E
na

bl
ed

F
A
L
S
E

Po
ly

go
n

cu
lli

ng
en

ab
le

d
3.

6.
1

po
ly

go
n/

en
ab

le
C

U
L

L
FA

C
E

M
O

D
E

Z
3

G
et

In
te

ge
rv

B
A
C
K

C
ul

lf
ro

nt
-/

ba
ck

-f
ac

in
g

po
ly

go
ns

3.
6.

1
po

ly
go

n

FR
O

N
T

FA
C

E
Z

2
G

et
In

te
ge

rv
C
C
W

Po
ly

go
n

fr
on

tfa
ce

C
W

/C
C

W
in

di
ca

-
to

r
3.

6.
1

po
ly

go
n

PO
LY

G
O

N
SM

O
O

T
H

B
Is

E
na

bl
ed

F
A
L
S
E

Po
ly

go
n

an
tia

lia
si

ng
on

3.
6

po
ly

go
n/

en
ab

le

PO
LY

G
O

N
M

O
D

E
2
×
Z

3
G

et
In

te
ge

rv
F
I
L
L

Po
ly

go
n

ra
st

er
iz

at
io

n
m

od
e

(f
ro

nt
&

ba
ck

)
3.

6.
4

po
ly

go
n

PO
LY

G
O

N
O

FF
SE

T
FA

C
TO

R
R

G
et

Fl
oa

tv
0

Po
ly

go
n

of
fs

et
fa

ct
or

3.
6.

5
po

ly
go

n
PO

LY
G

O
N

O
FF

SE
T

U
N

IT
S

R
G

et
Fl

oa
tv

0
Po

ly
go

n
of

fs
et

un
its

3.
6.

5
po

ly
go

n

PO
LY

G
O

N
O

FF
SE

T
PO

IN
T

B
Is

E
na

bl
ed

F
A
L
S
E

Po
ly

go
n

of
fs

et
en

ab
le

fo
r
P
O
I
N
T

m
od

e
ra

st
er

iz
at

io
n

3.
6.

5
po

ly
go

n/
en

ab
le

PO
LY

G
O

N
O

FF
SE

T
L

IN
E

B
Is

E
na

bl
ed

F
A
L
S
E

Po
ly

go
n

of
fs

et
en

ab
le

fo
r
L
I
N
E

m
od

e
ra

st
er

iz
at

io
n

3.
6.

5
po

ly
go

n/
en

ab
le

PO
LY

G
O

N
O

FF
SE

T
FI

L
L

B
Is

E
na

bl
ed

F
A
L
S
E

Po
ly

go
n

of
fs

et
en

ab
le

fo
r
F
I
L
L

m
od

e
ra

st
er

iz
at

io
n

3.
6.

5
po

ly
go

n/
en

ab
le

–
I

G
et

Po
ly

go
nS

tip
pl

e
1’

s
Po

ly
go

n
st

ip
pl

e
3.

6
po

ly
go

n-
st

ip
pl

e
PO

LY
G

O
N

ST
IP

PL
E

B
Is

E
na

bl
ed

F
A
L
S
E

Po
ly

go
n

st
ip

pl
e

en
ab

le
3.

6.
2

po
ly

go
n/

en
ab

le

Table 6.20. Rasterization (cont.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 428

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
M

U
LT

IS
A

M
PL

E
B

Is
E

na
bl

ed
T
R
U
E

M
ul

tis
am

pl
e

ra
st

er
iz

at
io

n
3.

3.
1

m
ul

tis
am

pl
e/

en
ab

le
SA

M
PL

E
A

L
PH

A
TO

C
O

V
E

R
A

G
E

B
Is

E
na

bl
ed

F
A
L
S
E

M
od

if
y

co
ve

ra
ge

fr
om

al
ph

a
4.

1.
3

m
ul

tis
am

pl
e/

en
ab

le
SA

M
PL

E
A

L
PH

A
TO

O
N

E
B

Is
E

na
bl

ed
F
A
L
S
E

Se
ta

lp
ha

to
m

ax
im

um
4.

1.
3

m
ul

tis
am

pl
e/

en
ab

le
SA

M
PL

E
C

O
V

E
R

A
G

E
B

Is
E

na
bl

ed
F
A
L
S
E

M
as

k
to

m
od

if
y

co
ve

ra
ge

4.
1.

3
m

ul
tis

am
pl

e/
en

ab
le

SA
M

PL
E

C
O

V
E

R
A

G
E

VA
L

U
E

R
+

G
et

Fl
oa

tv
1

C
ov

er
ag

e
m

as
k

va
lu

e
4.

1.
3

m
ul

tis
am

pl
e

SA
M

PL
E

C
O

V
E

R
A

G
E

IN
V

E
R

T
B

G
et

B
oo

le
an

v
F
A
L
S
E

In
ve

rt
co

ve
ra

ge
m

as
k

va
lu

e
4.

1.
3

m
ul

tis
am

pl
e

SA
M

PL
E

M
A

SK
B

Is
E

na
bl

ed
F
A
L
S
E

Sa
m

pl
e

m
as

k
en

ab
le

4.
1.

3
–

SA
M

PL
E

M
A

SK
VA

L
U

E
n
×
Z

+
G

et
In

te
ge

ri
v

n
×

1’
s

Sa
m

pl
e

m
as

k
w

or
ds

4.
1.

3
–

Table 6.21. Multisampling

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 429

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

T
E

X
T

U
R

E
x

D
8
∗
×

3
×
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
x

D
te

xt
ur

in
g

is
en

ab
le

d;
x

is
1

,2
,o

r3
3.

9.
20

te
xt

ur
e/

en
ab

le

T
E

X
T

U
R

E
C

U
B

E
M

A
P

8
∗
×
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
cu

be
m

ap
te

xt
ur

-
in

g
is

en
ab

le
d

3.
9.

16
te

xt
ur

e/
en

ab
le

T
E

X
T

U
R

E
B

IN
D

IN
G

x
D

48
∗
×

3
×
Z

+
G

et
In

te
ge

rv
0

Te
xt

ur
e

ob
je

ct
bo

un
d

to
T
E
X
T
U
R
E
_
x
D

3.
9.

1
te

xt
ur

e

T
E

X
T

U
R

E
B

IN
D

IN
G

1D
A

R
R

A
Y

48
∗
×
Z

+
G

et
In

te
ge

rv
0

Te
xt

ur
e

ob
je

ct
bo

un
d

to
T
E
X
T
U
R
E
_
1
D
_
A
R
R
A
Y

3.
9.

1
te

xt
ur

e

T
E

X
T

U
R

E
B

IN
D

IN
G

2D
A

R
R

A
Y

48
∗
×
Z

+
G

et
In

te
ge

rv
0

Te
xt

ur
e

ob
je

ct
bo

un
d

to
T
E
X
T
U
R
E
_
2
D
_
A
R
R
A
Y

3.
9.

1
te

xt
ur

e

T
E

X
T

U
R

E
B

IN
D

IN
G

R
E

C
TA

N
G

L
E

48
∗
×
Z

+
G

et
In

te
ge

rv
0

Te
xt

ur
e

ob
je

ct
bo

un
d

to
T
E
X
T
U
R
E
_
-

R
E
C
T
A
N
G
L
E

3.
9.

1
te

xt
ur

e

T
E

X
T

U
R

E
B

IN
D

IN
G

B
U

FF
E

R
48
∗
×
Z

+
G

et
In

te
ge

rv
0

Te
xt

ur
e

ob
je

ct
bo

un
d

to
T
E
X
T
U
R
E
_
B
U
F
F
E
R

3.
9.

1
te

xt
ur

e

T
E

X
T

U
R

E
B

IN
D

IN
G

C
U

B
E

M
A

P
48
∗
×
Z

+
G

et
In

te
ge

rv
0

Te
xt

ur
e

ob
je

ct
bo

un
d

to
T
E
X
T
U
R
E
_
C
U
B
E
_
M
A
P

3.
9.

1
te

xt
ur

e

T
E

X
T

U
R

E
B

IN
D

IN
G

2D
M

U
LT

IS
A

M
PL

E
48
∗
×
Z

+
G

et
In

te
ge

rv
0

Te
xt

ur
e

ob
je

ct
bo

un
d

to
T
E
X
T
U
R
E
_
2
D
_
-

M
U
L
T
I
S
A
M
P
L
E

3.
9.

15
–

T
E

X
T

U
R

E
B

IN
D

IN
G

2D
M

U
LT

IS
A

M
PL

E
-

A
R

R
A

Y
48
∗
×
Z

+
G

et
In

te
ge

rv
0

Te
xt

ur
e

ob
je

ct
bo

un
d

to
T
E
X
T
U
R
E
_
2
D
_
-

M
U
L
T
I
S
A
M
P
L
E
_
-

A
R
R
A
Y

3.
9.

15
–

Table 6.22. Textures (state per texture unit and binding point)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 430

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

SA
M

PL
E

R
B

IN
D

IN
G

48
∗
×
Z

+
G

et
In

te
ge

rv
0

Sa
m

pl
er

ob
je

ct
bo

un
d

to
ac

tiv
e

te
xt

ur
e

un
it

3.
9.

2
–

T
E

X
T

U
R

E
x

D
n
×
I

G
et

Te
xI

m
ag

e
se

e
3.

9
x

D
te

xt
ur

e
im

ag
e

at
l.o

.d
.

i
3.

9
–

T
E

X
T

U
R

E
1D

A
R

R
A

Y
n
×
I

G
et

Te
xI

m
ag

e
se

e
3.

9
1D

te
xt

ur
e

ar
ra

y
im

ag
e

at
ro

w
i

3.
9

–

T
E

X
T

U
R

E
2D

A
R

R
A

Y
n
×
I

G
et

Te
xI

m
ag

e
se

e
3.

9
2D

te
xt

ur
e

ar
ra

y
im

ag
e

at
sl

ic
e
i

3.
9

–

T
E

X
T

U
R

E
R

E
C

TA
N

G
L

E
n
×
I

G
et

Te
xI

m
ag

e
se

e
3.

9
R

ec
ta

ng
ul

ar
te

xt
ur

e
im

-
ag

e
at

l.o
.d

.z
er

o
3.

9
–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

PO
SI

T
IV

E
X

n
×
I

G
et

Te
xI

m
ag

e
se

e
3.

9.
3

+
x

fa
ce

cu
be

m
ap

te
x-

tu
re

im
ag

e
at

l.o
.d

.i
3.

9.
3

–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

N
E

G
A

T
IV

E
X

n
×
I

G
et

Te
xI

m
ag

e
se

e
3.

9.
3
−
x

fa
ce

cu
be

m
ap

te
x-

tu
re

im
ag

e
at

l.o
.d

.i
3.

9.
3

–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

PO
SI

T
IV

E
Y

n
×
I

G
et

Te
xI

m
ag

e
se

e
3.

9.
3

+
y

fa
ce

cu
be

m
ap

te
xt

ur
e

im
ag

e
at

l.o
.d

.i
3.

9.
3

–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

N
E

G
A

T
IV

E
Y

n
×
I

G
et

Te
xI

m
ag

e
se

e
3.

9.
3
−
y

fa
ce

cu
be

m
ap

te
xt

ur
e

im
ag

e
at

l.o
.d

.i
3.

9.
3

–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

PO
SI

T
IV

E
Z

n
×
I

G
et

Te
xI

m
ag

e
se

e
3.

9.
3

+
z

fa
ce

cu
be

m
ap

te
xt

ur
e

im
ag

e
at

l.o
.d

.i
3.

9.
3

–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

N
E

G
A

T
IV

E
Z

n
×
I

G
et

Te
xI

m
ag

e
se

e
3.

9.
3
−
z

fa
ce

cu
be

m
ap

te
xt

ur
e

im
ag

e
at

l.o
.d

.i
3.

9.
3

–

Table 6.23. Textures (state per texture unit and binding point)(cont.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 431

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
T

E
X

T
U

R
E

SW
IZ

Z
L

E
R

Z
6

G
et

Te
xP

ar
am

et
er

R
E
D

R
ed

co
m

po
ne

nt
sw

iz
zl

e
3.

9.
8

te
xt

ur
e

T
E

X
T

U
R

E
SW

IZ
Z

L
E

G
Z

6
G

et
Te

xP
ar

am
et

er
G
R
E
E
N

G
re

en
co

m
po

ne
nt

sw
iz

-
zl

e
3.

9.
8

te
xt

ur
e

T
E

X
T

U
R

E
SW

IZ
Z

L
E

B
Z

6
G

et
Te

xP
ar

am
et

er
B
L
U
E

B
lu

e
co

m
po

ne
nt

sw
iz

zl
e

3.
9.

8
te

xt
ur

e

T
E

X
T

U
R

E
SW

IZ
Z

L
E

A
Z

6
G

et
Te

xP
ar

am
et

er
A
L
P
H
A

A
lp

ha
co

m
po

ne
nt

sw
iz

-
zl

e
3.

9.
8

te
xt

ur
e

T
E

X
T

U
R

E
B

O
R

D
E

R
C

O
L

O
R

n
×
C

G
et

Te
xP

ar
am

et
er

0,
0,

0,
0

B
or

de
rc

ol
or

3.
9

te
xt

ur
e

T
E

X
T

U
R

E
M

IN
FI

LT
E

R
n
×
Z

6
G

et
Te

xP
ar

am
et

er
se

e
se

c.
3.

9.
15

M
in

ifi
ca

tio
n

fu
nc

tio
n

3.
9.

11
te

xt
ur

e
T

E
X

T
U

R
E

M
A

G
FI

LT
E

R
n
×
Z

2
G

et
Te

xP
ar

am
et

er
L
I
N
E
A
R

M
ag

ni
fic

at
io

n
fu

nc
tio

n
3.

9.
12

te
xt

ur
e

T
E

X
T

U
R

E
W

R
A

P
S

n
×
Z

5
G

et
Te

xP
ar

am
et

er
se

e
se

c.
3.

9.
15

Te
xc

oo
rd
s

w
ra

p
m

od
e

3.
9.

11
te

xt
ur

e

T
E

X
T

U
R

E
W

R
A

P
T

n
×
Z

5
G

et
Te

xP
ar

am
et

er
se

e
se

c.
3.

9.
15

Te
xc

oo
rd

t
w

ra
p

m
od

e
(2

D
,

3D
,

cu
be

m
ap

te
x-

tu
re

s
on

ly
)

3.
9.

11
te

xt
ur

e

T
E

X
T

U
R

E
W

R
A

P
R

n
×
Z

5
G

et
Te

xP
ar

am
et

er
se

e
se

c.
3.

9.
15

Te
xc

oo
rd

r
w

ra
p

m
od

e
(3

D
te

xt
ur

es
on

ly
)

3.
9.

11
te

xt
ur

e

T
E

X
T

U
R

E
PR

IO
R

IT
Y

n
×
R

[0
,1

]
G

et
Te

xP
ar

am
et

er
fv

1
Te

xt
ur

e
ob

je
ct

pr
io

ri
ty

3.
9.

1
te

xt
ur

e
T

E
X

T
U

R
E

R
E

SI
D

E
N

T
n
×
B

G
et

Te
xP

ar
am

et
er

iv
se

e
3.

9.
1

Te
xt

ur
e

re
si

de
nc

y
3.

9.
1

te
xt

ur
e

T
E

X
T

U
R

E
M

IN
L

O
D

n
×
R

G
et

Te
xP

ar
am

et
er

fv
-1

00
0

M
in

im
um

le
ve

lo
fd

et
ai

l
3.

9
te

xt
ur

e
T

E
X

T
U

R
E

M
A

X
L

O
D

n
×
R

G
et

Te
xP

ar
am

et
er

fv
10

00
M

ax
im

um
le

ve
lo

fd
et

ai
l

3.
9

te
xt

ur
e

T
E

X
T

U
R

E
B

A
SE

L
E

V
E

L
n
×
Z

+
G

et
Te

xP
ar

am
et

er
fv

0
B

as
e

te
xt

ur
e

ar
ra

y
3.

9
te

xt
ur

e
T

E
X

T
U

R
E

M
A

X
L

E
V

E
L

n
×
Z

+
G

et
Te

xP
ar

am
et

er
fv

10
00

M
ax

.t
ex

tu
re

ar
ra

y
le

ve
l

3.
9

te
xt

ur
e

T
E

X
T

U
R

E
L

O
D

B
IA

S
n
×
R

G
et

Te
xP

ar
am

et
er

fv
0.

0
Te

xt
ur

e
le

ve
l

of
de

ta
il

bi
as

(b
ia
s t

e
x
o
b
j
)

3.
9.

11
te

xt
ur

e

D
E

PT
H

T
E

X
T

U
R

E
M

O
D

E
n
×
Z

3
G

et
Te

xP
ar

am
et

er
iv

L
U
M
I
N
A
N
C
E

D
ep

th
te

xt
ur

e
m

od
e

3.
9.

9
te

xt
ur

e
T

E
X

T
U

R
E

C
O

M
PA

R
E

M
O

D
E

n
×
Z

2
G

et
Te

xP
ar

am
et

er
iv

N
O
N
E

C
om

pa
ri

so
n

m
od

e
3.

9.
17

te
xt

ur
e

T
E

X
T

U
R

E
C

O
M

PA
R

E
FU

N
C

n
×
Z

8
G

et
Te

xP
ar

am
et

er
iv

L
E
Q
U
A
L

C
om

pa
ri

so
n

fu
nc

tio
n

3.
9.

17
te

xt
ur

e

G
E

N
E

R
A

T
E

M
IP

M
A

P
n
×
B

G
et

Te
xP

ar
am

et
er

F
A
L
S
E

A
ut

om
at

ic
m

ip
m

ap
ge

n-
er

at
io

n
en

ab
le

d
3.

9.
11

te
xt

ur
e

Table 6.24. Textures (state per texture object)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 432

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
T

E
X

T
U

R
E

W
ID

T
H

n
×
Z

+
G

et
Te

xL
ev

el
Pa

ra
m

et
er

0
Sp

ec
ifi

ed
w

id
th

3.
9

–
T

E
X

T
U

R
E

H
E

IG
H

T
n
×
Z

+
G

et
Te

xL
ev

el
Pa

ra
m

et
er

0
Sp

ec
ifi

ed
he

ig
ht

(2
D

/3
D

)
3.

9
–

T
E

X
T

U
R

E
D

E
PT

H
n
×
Z

+
G

et
Te

xL
ev

el
Pa

ra
m

et
er

0
Sp

ec
ifi

ed
de

pt
h

(3
D

)
3.

9
–

T
E

X
T

U
R

E
B

O
R

D
E

R
n
×
Z

+
G

et
Te

xL
ev

el
Pa

ra
m

et
er

0
Sp

ec
ifi

ed
bo

rd
er

w
id

th
3.

9
–

T
E

X
T

U
R

E
SA

M
PL

E
S

Z
+

G
et

Te
xL

ev
el

Pa
ra

m
et

er
0

N
um

be
r

of
sa

m
pl

es
pe

r
te

xe
l

3.
9.

6
–

T
E

X
T

U
R

E
FI

X
E

D
SA

M
PL

E
L

O
C

A
T

IO
N

S
B

G
et

Te
xL

ev
el

Pa
ra

m
et

er
T
R
U
E

W
he

th
er

th
e

im
ag

e
us

es
a

fix
ed

sa
m

pl
e

pa
tte

rn
3.

9.
6

–

T
E

X
T

U
R

E
IN

T
E

R
N

A
L

FO
R

M
A

T

(T
E

X
T

U
R

E
C

O
M

PO
N

E
N

T
S)

n
×
Z

6
8
∗

G
et

Te
xL

ev
el

Pa
ra

m
et

er
1

or
R
8

In
te

rn
al

fo
rm

at
(s

ee
se

c-
tio

n
3.

9.
15

3.
9

–

T
E

X
T

U
R

E
x

SI
Z

E
n
×

8
×
Z

+
G

et
Te

xL
ev

el
Pa

ra
m

et
er

0

C
om

po
ne

nt
re

so
lu

tio
n

(x
is
R
E
D

,
G
R
E
E
N

,
B
L
U
E

,
A
L
P
H
A

,
L
U
M
I
N
A
N
C
E

,
I
N
T
E
N
S
I
T
Y

,
D
E
P
T
H

,
or
S
T
E
N
C
I
L

)

3.
9

–

T
E

X
T

U
R

E
SH

A
R

E
D

SI
Z

E
n
×
Z

+
G

et
Te

xL
ev

el
Pa

ra
m

et
er

0
Sh

ar
ed

ex
po

ne
nt

fie
ld

re
so

lu
tio

n
3.

9
–

T
E

X
T

U
R

E
x

T
Y

PE
n
×
Z

5
G

et
Te

xL
ev

el
Pa

ra
m

et
er

N
O
N
E

C
om

po
ne

nt
ty

pe
(x

is
R
E
D

,
G
R
E
E
N

,
B
L
U
E

,
A
L
P
H
A

,
L
U
M
I
N
A
N
C
E

,
I
N
T
E
N
S
I
T
Y

,
or

D
E
P
T
H

)

6.
1.

3
–

T
E

X
T

U
R

E
C

O
M

PR
E

SS
E

D
n
×
B

G
et

Te
xL

ev
el

Pa
ra

m
et

er
F
A
L
S
E

Tr
ue

if
im

ag
e

ha
s

a
co

m
-

pr
es

se
d

in
te

rn
al

fo
rm

at
3.

9.
5

-

T
E

X
T

U
R

E
C

O
M

PR
E

SS
E

D
IM

A
G

E
SI

Z
E

n
×
Z

+
G

et
Te

xL
ev

el
Pa

ra
m

et
er

0
Si

ze
(i

n
u
b
y
t
e

s)
of

co
m

pr
es

se
d

im
ag

e
3.

9.
5

-

T
E

X
T

U
R

E
B

U
FF

E
R

D
A

TA
ST

O
R

E
B

IN
D

-

IN
G

n
×
Z

+
G

et
Te

xL
ev

el
Pa

ra
m

et
er

0

B
uf

fe
r

ob
je

ct
bo

un
d

as
th

e
da

ta
st

or
e

fo
r

th
e

ac
-

tiv
e

im
ag

e
un

it’
s

bu
ff

er
te

xt
ur

e

3.
9.

1
te

xt
ur

e

Table 6.25. Textures (state per texture image)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 433

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
T

E
X

T
U

R
E

B
O

R
D

E
R

C
O

L
O

R
n
×
C

G
et

Sa
m

pl
er

Pa
ra

m
et

er
0,

0,
0,

0
B

or
de

rc
ol

or
3.

9
te

xt
ur

e
T

E
X

T
U

R
E

M
IN

FI
LT

E
R

n
×
Z

6
G

et
Sa

m
pl

er
Pa

ra
m

et
er

se
e

se
c.

3.
9.

15
M

in
ifi

ca
tio

n
fu

nc
tio

n
3.

9.
11

te
xt

ur
e

T
E

X
T

U
R

E
M

A
G

FI
LT

E
R

n
×
Z

2
G

et
Sa

m
pl

er
Pa

ra
m

et
er

L
I
N
E
A
R

M
ag

ni
fic

at
io

n
fu

nc
tio

n
3.

9.
12

te
xt

ur
e

T
E

X
T

U
R

E
W

R
A

P
S

n
×
Z

5
G

et
Sa

m
pl

er
Pa

ra
m

et
er

se
e

se
c.

3.
9.

15
Te

xc
oo

rd
s

w
ra

p
m

od
e

3.
9.

11
te

xt
ur

e

T
E

X
T

U
R

E
W

R
A

P
T

n
×
Z

5
G

et
Sa

m
pl

er
Pa

ra
m

et
er

se
e

se
c.

3.
9.

15
Te

xc
oo

rd
t

w
ra

p
m

od
e

(2
D

,
3D

,
cu

be
m

ap
te

x-
tu

re
s

on
ly

)
3.

9.
11

te
xt

ur
e

T
E

X
T

U
R

E
W

R
A

P
R

n
×
Z

5
G

et
Sa

m
pl

er
Pa

ra
m

et
er

se
e

se
c.

3.
9.

15
Te

xc
oo

rd
r

w
ra

p
m

od
e

(3
D

te
xt

ur
es

on
ly

)
3.

9.
11

te
xt

ur
e

T
E

X
T

U
R

E
M

IN
L

O
D

n
×
R

G
et

Sa
m

pl
er

Pa
ra

m
et

er
fv

-1
00

0
M

in
im

um
le

ve
lo

fd
et

ai
l

3.
9

te
xt

ur
e

T
E

X
T

U
R

E
M

A
X

L
O

D
n
×
R

G
et

Sa
m

pl
er

Pa
ra

m
et

er
fv

10
00

M
ax

im
um

le
ve

lo
fd

et
ai

l
3.

9
te

xt
ur

e

T
E

X
T

U
R

E
L

O
D

B
IA

S
n
×
R

G
et

Sa
m

pl
er

Pa
ra

m
et

er
fv

0.
0

Te
xt

ur
e

le
ve

l
of

de
ta

il
bi

as
(b
ia
s t

e
x
o
b
j
)

3.
9.

11
te

xt
ur

e

T
E

X
T

U
R

E
C

O
M

PA
R

E
M

O
D

E
n
×
Z

2
G

et
Sa

m
pl

er
Pa

ra
m

et
er

iv
N
O
N
E

C
om

pa
ri

so
n

m
od

e
3.

9.
17

te
xt

ur
e

T
E

X
T

U
R

E
C

O
M

PA
R

E
FU

N
C

n
×
Z

8
G

et
Sa

m
pl

er
Pa

ra
m

et
er

iv
L
E
Q
U
A
L

C
om

pa
ri

so
n

fu
nc

tio
n

3.
9.

17
te

xt
ur

e

Table 6.26. Textures (state per sampler object)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 434

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
A

C
T

IV
E

T
E

X
T

U
R

E
Z

4
8
∗

G
et

In
te

ge
rv

T
E
X
T
U
R
E
0

A
ct

iv
e

te
xt

ur
e

un
it

se
le

ct
or

2.
7

te
xt

ur
e

C
O

O
R

D
R

E
PL

A
C

E
2
∗
×
B

G
et

Te
xE

nv
iv

F
A
L
S
E

C
oo

rd
in

at
e

re
pl

ac
em

en
te

na
bl

e
3.

4
po

in
t

T
E

X
T

U
R

E
E

N
V

M
O

D
E

2
∗
×
Z

6
G

et
Te

xE
nv

iv
M
O
D
U
L
A
T
E

Te
xt

ur
e

ap
pl

ic
at

io
n

fu
nc

tio
n

3.
9.

16
te

xt
ur

e
T

E
X

T
U

R
E

E
N

V
C

O
L

O
R

2
∗
×
C

G
et

Te
xE

nv
fv

0,
0,

0,
0

Te
xt

ur
e

en
vi

ro
nm

en
tc

ol
or

3.
9.

16
te

xt
ur

e

T
E

X
T

U
R

E
L

O
D

B
IA

S
2
∗
×
R

G
et

Te
xE

nv
fv

0.
0

Te
xt

ur
e

le
ve

l
of

de
ta

il
bi

as
bi
a
s t

e
x
u

n
it

3.
9.

11
te

xt
ur

e

T
E

X
T

U
R

E
G

E
N

x
2
∗
×

4
×
B

Is
E

na
bl

ed
F
A
L
S
E

Te
xg

en
en

ab
le

d
(x

is
S,

T,
R

,o
rQ

)
2.

12
.3

te
xt

ur
e/

en
ab

le

E
Y

E
PL

A
N

E
2
∗
×

4
×
R

4
G

et
Te

xG
en

fv
se

e
2.

12
.3

Te
xg

en
pl

an
e

eq
ua

tio
n

co
ef

fic
ie

nt
s

(f
or

S,
T,

R
,a

nd
Q

)
2.

12
.3

te
xt

ur
e

O
B

JE
C

T
PL

A
N

E
2
∗
×

4
×
R

4
G

et
Te

xG
en

fv
se

e
2.

12
.3

Te
xg

en
ob

je
ct

lin
ea

r
co

ef
fic

ie
nt

s
(f

or
S,

T,
R

,a
nd

Q
)

2.
12

.3
te

xt
ur

e

T
E

X
T

U
R

E
G

E
N

M
O

D
E

2
∗
×

4
×
Z

5
G

et
Te

xG
en

iv
E
Y
E
_
L
I
N
E
A
R

Fu
nc

tio
n

us
ed

fo
r

te
xg

en
(f

or
S,

T,
R

,a
nd

Q
2.

12
.3

te
xt

ur
e

C
O

M
B

IN
E

R
G

B
2
∗
×
Z

8
G

et
Te

xE
nv

iv
M
O
D
U
L
A
T
E

R
G

B
co

m
bi

ne
rf

un
ct

io
n

3.
9.

16
te

xt
ur

e
C

O
M

B
IN

E
A

L
PH

A
2
∗
×
Z

6
G

et
Te

xE
nv

iv
M
O
D
U
L
A
T
E

A
lp

ha
co

m
bi

ne
rf

un
ct

io
n

3.
9.

16
te

xt
ur

e

Table 6.27. Texture Environment and Generation

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 435

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
SR

C
0

R
G

B
2
∗
×
Z

3
G

et
Te

xE
nv

iv
T
E
X
T
U
R
E

R
G

B
so

ur
ce

0
3.

9.
16

te
xt

ur
e

SR
C

1
R

G
B

2
∗
×
Z

3
G

et
Te

xE
nv

iv
P
R
E
V
I
O
U
S

R
G

B
so

ur
ce

1
3.

9.
16

te
xt

ur
e

SR
C

2
R

G
B

2
∗
×
Z

3
G

et
Te

xE
nv

iv
C
O
N
S
T
A
N
T

R
G

B
so

ur
ce

2
3.

9.
16

te
xt

ur
e

SR
C

0
A

L
PH

A
2
∗
×
Z

3
G

et
Te

xE
nv

iv
T
E
X
T
U
R
E

A
lp

ha
so

ur
ce

0
3.

9.
16

te
xt

ur
e

SR
C

1
A

L
PH

A
2
∗
×
Z

3
G

et
Te

xE
nv

iv
P
R
E
V
I
O
U
S

A
lp

ha
so

ur
ce

1
3.

9.
16

te
xt

ur
e

SR
C

2
A

L
PH

A
2
∗
×
Z

3
G

et
Te

xE
nv

iv
C
O
N
S
T
A
N
T

A
lp

ha
so

ur
ce

2
3.

9.
16

te
xt

ur
e

O
PE

R
A

N
D

0
R

G
B

2
∗
×
Z

4
G

et
Te

xE
nv

iv
S
R
C
_
C
O
L
O
R

R
G

B
op

er
an

d
0

3.
9.

16
te

xt
ur

e
O

PE
R

A
N

D
1

R
G

B
2
∗
×
Z

4
G

et
Te

xE
nv

iv
S
R
C
_
C
O
L
O
R

R
G

B
op

er
an

d
1

3.
9.

16
te

xt
ur

e
O

PE
R

A
N

D
2

R
G

B
2
∗
×
Z

4
G

et
Te

xE
nv

iv
S
R
C
_
A
L
P
H
A

R
G

B
op

er
an

d
2

3.
9.

16
te

xt
ur

e
O

PE
R

A
N

D
0

A
L

PH
A

2
∗
×
Z

2
G

et
Te

xE
nv

iv
S
R
C
_
A
L
P
H
A

A
lp

ha
op

er
an

d
0

3.
9.

16
te

xt
ur

e
O

PE
R

A
N

D
1

A
L

PH
A

2
∗
×
Z

2
G

et
Te

xE
nv

iv
S
R
C
_
A
L
P
H
A

A
lp

ha
op

er
an

d
1

3.
9.

16
te

xt
ur

e
O

PE
R

A
N

D
2

A
L

PH
A

2
∗
×
Z

2
G

et
Te

xE
nv

iv
S
R
C
_
A
L
P
H
A

A
lp

ha
op

er
an

d
2

3.
9.

16
te

xt
ur

e
R

G
B

SC
A

L
E

2
∗
×
R

3
G

et
Te

xE
nv

fv
1.

0
R

G
B

po
st

-c
om

bi
ne

rs
ca

lin
g

3.
9.

16
te

xt
ur

e
A

L
PH

A
SC

A
L

E
2
∗
×
R

3
G

et
Te

xE
nv

fv
1.

0
A

lp
ha

po
st

-c
om

bi
ne

rs
ca

lin
g

3.
9.

16
te

xt
ur

e

Table 6.28. Texture Environment and Generation (cont.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 436

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
SC

IS
SO

R
T

E
ST

B
Is

E
na

bl
ed

F
A
L
S
E

Sc
is

so
ri

ng
en

ab
le

d
4.

1.
2

sc
is

so
r/

en
ab

le
SC

IS
SO

R
B

O
X

4
×
Z

G
et

In
te

ge
rv

se
e

4.
1.

2
Sc

is
so

rb
ox

4.
1.

2
sc

is
so

r
A

L
PH

A
T

E
ST

B
Is

E
na

bl
ed

F
A
L
S
E

A
lp

ha
te

st
en

ab
le

d
4.

1.
4

co
lo

r-
bu

ff
er

/e
na

bl
e

A
L

PH
A

T
E

ST
FU

N
C

Z
8

G
et

In
te

ge
rv

A
L
W
A
Y
S

A
lp

ha
te

st
fu

nc
tio

n
4.

1.
4

co
lo

r-
bu

ff
er

A
L

PH
A

T
E

ST
R

E
F

R
+

G
et

In
te

ge
rv

0
A

lp
ha

te
st

re
fe

re
nc

e
va

lu
e

4.
1.

4
co

lo
r-

bu
ff

er
ST

E
N

C
IL

T
E

ST
B

Is
E

na
bl

ed
F
A
L
S
E

St
en

ci
lin

g
en

ab
le

d
4.

1.
5

st
en

ci
l-

bu
ff

er
/e

na
bl

e
ST

E
N

C
IL

FU
N

C
Z

8
G

et
In

te
ge

rv
A
L
W
A
Y
S

Fr
on

ts
te

nc
il

fu
nc

tio
n

4.
1.

5
st

en
ci

l-
bu

ff
er

ST
E

N
C

IL
VA

L
U

E
M

A
SK

Z
+

G
et

In
te

ge
rv

se
e

4.
1.

5
Fr

on
ts

te
nc

il
m

as
k

4.
1.

5
st

en
ci

l-
bu

ff
er

ST
E

N
C

IL
R

E
F

Z
+

G
et

In
te

ge
rv

0
Fr

on
ts

te
nc

il
re

fe
re

nc
e

va
lu

e
4.

1.
5

st
en

ci
l-

bu
ff

er
ST

E
N

C
IL

FA
IL

Z
8

G
et

In
te

ge
rv

K
E
E
P

Fr
on

ts
te

nc
il

fa
il

ac
tio

n
4.

1.
5

st
en

ci
l-

bu
ff

er

ST
E

N
C

IL
PA

SS
D

E
PT

H
FA

IL
Z

8
G

et
In

te
ge

rv
K
E
E
P

Fr
on

ts
te

nc
il

de
pt

h
bu

ff
er

fa
il

ac
tio

n
4.

1.
5

st
en

ci
l-

bu
ff

er

ST
E

N
C

IL
PA

SS
D

E
PT

H
PA

SS
Z

8
G

et
In

te
ge

rv
K
E
E
P

Fr
on

t
st

en
ci

l
de

pt
h

bu
ff

er
pa

ss
ac

-
tio

n
4.

1.
5

st
en

ci
l-

bu
ff

er

ST
E

N
C

IL
B

A
C

K
FU

N
C

Z
8

G
et

In
te

ge
rv

A
L
W
A
Y
S

B
ac

k
st

en
ci

lf
un

ct
io

n
4.

1.
5

st
en

ci
l-

bu
ff

er
ST

E
N

C
IL

B
A

C
K

VA
L

U
E

M
A

SK
Z

+
G

et
In

te
ge

rv
se

e
4.

1.
5

B
ac

k
st

en
ci

lm
as

k
4.

1.
5

st
en

ci
l-

bu
ff

er
ST

E
N

C
IL

B
A

C
K

R
E

F
Z

+
G

et
In

te
ge

rv
0

B
ac

k
st

en
ci

lr
ef

er
en

ce
va

lu
e

4.
1.

5
st

en
ci

l-
bu

ff
er

ST
E

N
C

IL
B

A
C

K
FA

IL
Z

8
G

et
In

te
ge

rv
K
E
E
P

B
ac

k
st

en
ci

lf
ai

la
ct

io
n

4.
1.

5
st

en
ci

l-
bu

ff
er

ST
E

N
C

IL
B

A
C

K
PA

SS
D

E
PT

H
FA

IL
Z

8
G

et
In

te
ge

rv
K
E
E
P

B
ac

k
st

en
ci

ld
ep

th
bu

ff
er

fa
il

ac
tio

n
4.

1.
5

st
en

ci
l-

bu
ff

er

ST
E

N
C

IL
B

A
C

K
PA

SS
D

E
PT

H
PA

SS
Z

8
G

et
In

te
ge

rv
K
E
E
P

B
ac

k
st

en
ci

ld
ep

th
bu

ff
er

pa
ss

ac
tio

n
4.

1.
5

st
en

ci
l-

bu
ff

er

D
E

PT
H

T
E

ST
B

Is
E

na
bl

ed
F
A
L
S
E

D
ep

th
bu

ff
er

en
ab

le
d

4.
1.

6
de

pt
h-

bu
ff

er
/e

na
bl

e
D

E
PT

H
FU

N
C

Z
8

G
et

In
te

ge
rv

L
E
S
S

D
ep

th
bu

ff
er

te
st

fu
nc

tio
n

4.
1.

6
de

pt
h-

bu
ff

er

Table 6.29. Pixel Operations

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 437

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

B
L

E
N

D
8∗
×
B

Is
E

na
bl

ed
i

F
A
L
S
E

B
le

nd
in

g
en

ab
le

d
fo

r
dr

aw
bu

ff
er
i

4.
1.

8
co

lo
r-

bu
ff

er
/e

na
bl

e

B
L

E
N

D
SR

C
R

G
B

Z
1
9

G
et

In
te

ge
rv

O
N
E

B
le

nd
in

g
so

ur
ce

R
G

B
fu

nc
tio

n
4.

1.
8

co
lo

r-
bu

ff
er

B
L

E
N

D
SR

C
A

L
PH

A
Z

1
9

G
et

In
te

ge
rv

O
N
E

B
le

nd
in

g
so

ur
ce

A
fu

nc
-

tio
n

4.
1.

8
co

lo
r-

bu
ff

er

B
L

E
N

D
D

ST
R

G
B

Z
1
9

G
et

In
te

ge
rv

Z
E
R
O

B
le

nd
in

g
de

st
.

R
G

B
fu

nc
tio

n
4.

1.
8

co
lo

r-
bu

ff
er

B
L

E
N

D
D

ST
A

L
PH

A
Z

1
9

G
et

In
te

ge
rv

Z
E
R
O

B
le

nd
in

g
de

st
.

A
fu

nc
-

tio
n

4.
1.

8
co

lo
r-

bu
ff

er

B
L

E
N

D
E

Q
U

A
T

IO
N

R
G

B
Z

5
G

et
In

te
ge

rv
F
U
N
C
_
A
D
D

R
G

B
bl

en
di

ng
eq

ua
tio

n
4.

1.
8

co
lo

r-
bu

ff
er

B
L

E
N

D
E

Q
U

A
T

IO
N

A
L

PH
A

Z
5

G
et

In
te

ge
rv

F
U
N
C
_
A
D
D

A
lp

ha
bl

en
di

ng
eq

ua
tio

n
4.

1.
8

co
lo

r-
bu

ff
er

B
L

E
N

D
C

O
L

O
R

C
G

et
Fl

oa
tv

0,
0,

0,
0

C
on

st
an

tb
le

nd
co

lo
r

4.
1.

8
co

lo
r-

bu
ff

er

FR
A

M
E

B
U

FF
E

R
SR

G
B

B
Is

E
na

bl
ed

F
A
L
S
E

sR
G

B
up

da
te

an
d

bl
en

d-
in

g
en

ab
le

4.
1.

8
co

lo
r-

bu
ff

er
/e

na
bl

e

D
IT

H
E

R
B

Is
E

na
bl

ed
T
R
U
E

D
ith

er
in

g
en

ab
le

d
4.

1.
10

co
lo

r-
bu

ff
er

/e
na

bl
e

IN
D

E
X

L
O

G
IC

O
P

B
Is

E
na

bl
ed

F
A
L
S
E

In
de

x
lo

gi
c

op
en

ab
le

d
4.

1.
11

co
lo

r-
bu

ff
er

/e
na

bl
e

C
O

L
O

R
L

O
G

IC
O

P
B

Is
E

na
bl

ed
F
A
L
S
E

C
ol

or
lo

gi
c

op
en

ab
le

d
4.

1.
11

co
lo

r-
bu

ff
er

/e
na

bl
e

L
O

G
IC

O
P

M
O

D
E

Z
1
6

G
et

In
te

ge
rv

C
O
P
Y

L
og

ic
op

fu
nc

tio
n

4.
1.

11
co

lo
r-

bu
ff

er

Table 6.30. Pixel Operations (cont.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 438

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

IN
D

E
X

W
R

IT
E

M
A

SK
Z

+
G

et
In

te
ge

rv
1’

s
C

ol
or

in
de

x
w

ri
te

m
as

k
4.

2.
2

co
lo

r-
bu

ff
er

C
O

L
O

R
W

R
IT

E
M

A
SK

8∗
×

4
×
B

G
et

B
oo

le
an

iv
(T
R
U
E

,T
R
U
E

,T
R
U
E

,T
R
U
E

)
C

ol
or

w
ri

te
en

-
ab

le
s

(R
,G

,B
,A

)
fo

rd
ra

w
bu

ff
er
i

4.
2.

2
co

lo
r-

bu
ff

er

D
E

PT
H

W
R

IT
E

M
A

SK
B

G
et

B
oo

le
an

v
T
R
U
E

D
ep

th
bu

ff
er

en
-

ab
le

d
fo

rw
ri

tin
g

4.
2.

2
de

pt
h-

bu
ff

er

ST
E

N
C

IL
W

R
IT

E
M

A
SK

Z
+

G
et

In
te

ge
rv

1’
s

Fr
on

t
st

en
ci

l
bu

ff
er

w
ri

te
m

as
k

4.
2.

2
st

en
ci

l-
bu

ff
er

ST
E

N
C

IL
B

A
C

K
W

R
IT

E
M

A
SK

Z
+

G
et

In
te

ge
rv

1’
s

B
ac

k
st

en
ci

l
bu

ff
er

w
ri

te
m

as
k

4.
2.

2
st

en
ci

l-
bu

ff
er

C
O

L
O

R
C

L
E

A
R

VA
L

U
E

C
G

et
Fl

oa
tv

0,
0,

0,
0

C
ol

or
bu

ff
er

cl
ea

r
va

lu
e

(R
G

B
A

m
od

e)
4.

2.
3

co
lo

r-
bu

ff
er

IN
D

E
X

C
L

E
A

R
VA

L
U

E
C
I

G
et

Fl
oa

tv
0

C
ol

or
bu

ff
er

cl
ea

r
va

lu
e

(c
ol

or
in

de
x

m
od

e)
4.

2.
3

co
lo

r-
bu

ff
er

D
E

PT
H

C
L

E
A

R
VA

L
U

E
R

+
G

et
In

te
ge

rv
1

D
ep

th
bu

ff
er

cl
ea

r
va

lu
e

4.
2.

3
de

pt
h-

bu
ff

er

ST
E

N
C

IL
C

L
E

A
R

VA
L

U
E

Z
+

G
et

In
te

ge
rv

0
St

en
ci

l
cl

ea
r

va
lu

e
4.

2.
3

st
en

ci
l-

bu
ff

er

A
C

C
U

M
C

L
E

A
R

VA
L

U
E

4
×
R

+
G

et
Fl

oa
tv

0
A

cc
um

ul
at

io
n

bu
ff

er
cl

ea
rv

al
ue

4.
2.

3
ac

cu
m

-b
uf

fe
r

Table 6.31. Framebuffer Control

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 439

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

D
R

A
W

FR
A

M
E

B
U

FF
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
Fr

am
eb

uf
fe

r
ob

je
ct

bo
un

d
to

D
R
A
W
_
F
R
A
M
E
B
U
F
F
E
R

4.
4.

1
–

R
E

A
D

FR
A

M
E

B
U

FF
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
Fr

am
eb

uf
fe

r
ob

je
ct

bo
un

d
to

R
E
A
D
_
F
R
A
M
E
B
U
F
F
E
R

4.
4.

1
–

Table 6.32. Framebuffer (state per target binding point)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 440

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

D
R

A
W

B
U

FF
E

R
i

1
∗
×
Z

1
1
∗

G
et

In
te

ge
rv

se
e

4.
2.

1
D

ra
w

bu
ff

er
se

le
ct

ed
fo

r
co

lo
r

ou
t-

pu
ti

4.
2.

1
co

lo
r-

bu
ff

er

R
E

A
D

B
U

FF
E

R
Z

1
1
∗

G
et

In
te

ge
rv

se
e

4.
3.

2
R

ea
d

so
ur

ce
bu

ff
er

4.
3.

2
pi

xe
l

Table 6.33. Framebuffer (state per framebuffer object)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 441

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

FR
A

M
E

B
U

FF
E

R
A

T
TA

C
H

M
E

N
T

O
B

JE
C

T
T

Y
PE

Z
G

et
Fr

am
eb

uf
fe

r-
A

tt
ac

hm
en

t-
Pa

ra
m

et
er

iv
N
O
N
E

Ty
pe

of
im

ag
e

at
ta

ch
ed

to
fr

am
eb

uf
fe

r
at

ta
ch

-
m

en
tp

oi
nt

4.
4.

2
–

FR
A

M
E

B
U

FF
E

R
A

T
TA

C
H

M
E

N
T

O
B

JE
C

T
N

A
M

E
Z

G
et

Fr
am

eb
uf

fe
r-

A
tt

ac
hm

en
t-

Pa
ra

m
et

er
iv

0
N

am
e

of
ob

je
ct

at
-

ta
ch

ed
to

fr
am

eb
uf

fe
r

at
ta

ch
m

en
tp

oi
nt

4.
4.

2
–

FR
A

M
E

B
U

FF
E

R
A

T
TA

C
H

M
E

N
T

T
E

X
T

U
R

E
L

E
V

E
L

Z
G

et
Fr

am
eb

uf
fe

r-
A

tt
ac

hm
en

t-
Pa

ra
m

et
er

iv
0

M
ip

m
ap

le
ve

l
of

te
xt

ur
e

im
ag

e
at

ta
ch

ed
,

if
ob

je
ct

at
ta

ch
ed

is
te

xt
ur

e
4.

4.
2

–

FR
A

M
E

B
U

FF
E

R
A

T
TA

C
H

M
E

N
T

T
E

X
T

U
R

E
C

U
B

E
M

A
P

FA
C

E
Z

+
G

et
Fr

am
eb

uf
fe

r-
A

tt
ac

hm
en

t-
Pa

ra
m

et
er

iv
N
O
N
E

C
ub

em
ap

fa
ce

of
te

xt
ur

e
im

ag
e

at
ta

ch
ed

,
if

ob
je

ct
at

ta
ch

ed
is

cu
be

m
ap

te
x-

tu
re

4.
4.

2
–

FR
A

M
E

B
U

FF
E

R
A

T
TA

C
H

M
E

N
T

T
E

X
T

U
R

E
L

A
Y

E
R

Z
G

et
Fr

am
eb

uf
fe

r-
A

tt
ac

hm
en

t-
Pa

ra
m

et
er

iv
0

L
ay

er
of

te
xt

ur
e

im
ag

e
at

ta
ch

ed
,

if
ob

je
ct

at
-

ta
ch

ed
is

3D
te

xt
ur

e
4.

4.
2

–

FR
A

M
E

B
U

FF
E

R
A

T
TA

C
H

M
E

N
T

L
A

Y
E

R
E

D
n
×
B

G
et

Fr
am

eb
uf

fe
r-

A
tt

ac
hm

en
t-

Pa
ra

m
et

er
iv

F
A
L
S
E

Fr
am

eb
uf

fe
r

at
ta

ch
m

en
t

is
la

ye
re

d
4.

4.
7

–

FR
A

M
E

B
U

FF
E

R
A

T
TA

C
H

M
E

N
T

C
O

L
O

R
E

N
C

O
D

IN
G

Z
2

G
et

Fr
am

eb
uf

fe
r-

A
tt

ac
hm

en
t-

Pa
ra

m
et

er
iv

-
E

nc
od

in
g

of
co

m
po

ne
nt

s
in

th
e

at
ta

ch
ed

im
ag

e
6.

1.
18

–

FR
A

M
E

B
U

FF
E

R
A

T
TA

C
H

M
E

N
T

C
O

M
PO

N
E

N
T

T
Y

PE
Z

4

G
et

Fr
am

eb
uf

fe
r-

A
tt

ac
hm

en
t-

Pa
ra

m
et

er
iv

-
D

at
a

ty
pe

of
co

m
po

ne
nt

s
in

th
e

at
ta

ch
ed

im
ag

e
6.

1.
18

–

FR
A

M
E

B
U

FF
E

R
A

T
TA

C
H

M
E

N
T

x
SI

Z
E

Z
+

G
et

Fr
am

eb
uf

fe
r-

A
tt

ac
hm

en
t-

Pa
ra

m
et

er
iv

-

Si
ze

in
bi

ts
of

at
ta

ch
ed

im
ag

e’
s
x

co
m

po
ne

nt
;
x

is
R
E
D

,
G
R
E
E
N

,
B
L
U
E

,
A
L
P
H
A

,
D
E
P
T
H

,
or

S
T
E
N
C
I
L

6.
1.

18
–

Table 6.34. Framebuffer (state per attachment point)
OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 442

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

R
E

N
D

E
R

B
U

FF
E

R
B

IN
D

IN
G

Z
G

et
In

te
ge

rv
0

R
en

de
rb

uf
fe

r
ob

je
ct

bo
un

d
to

R
E
N
D
E
R
B
U
F
F
E
R

4.
4.

2
–

Table 6.35. Renderbuffer (state per target and binding point)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 443

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
R

E
N

D
E

R
B

U
FF

E
R

W
ID

T
H

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
W

id
th

of
re

nd
er

bu
ff

er
4.

4.
2

–
R

E
N

D
E

R
B

U
FF

E
R

H
E

IG
H

T
Z

+
G

et
R

en
de

rb
uf

fe
rP

ar
am

et
er

iv
0

H
ei

gh
to

fr
en

de
rb

uf
fe

r
4.

4.
2

–
R

E
N

D
E

R
B

U
FF

E
R

IN
T

E
R

N
A

L
FO

R
M

A
T

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

R
G
B
A

In
te

rn
al

fo
rm

at
of

re
nd

er
bu

ff
er

4.
4.

2
–

R
E

N
D

E
R

B
U

FF
E

R
R

E
D

SI
Z

E
Z

+
G

et
R

en
de

rb
uf

fe
rP

ar
am

et
er

iv
0

Si
ze

in
bi

ts
of

re
nd

er
bu

ff
er

im
ag

e’
s

re
d

co
m

po
ne

nt
4.

4.
2

–

R
E

N
D

E
R

B
U

FF
E

R
G

R
E

E
N

SI
Z

E
Z

+
G

et
R

en
de

rb
uf

fe
rP

ar
am

et
er

iv
0

Si
ze

in
bi

ts
of

re
nd

er
bu

ff
er

im
ag

e’
s

gr
ee

n
co

m
po

ne
nt

4.
4.

2
–

R
E

N
D

E
R

B
U

FF
E

R
B

L
U

E
SI

Z
E

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
Si

ze
in

bi
ts

of
re

nd
er

bu
ff

er
im

ag
e’

s
bl

ue
co

m
po

ne
nt

4.
4.

2
–

R
E

N
D

E
R

B
U

FF
E

R
A

L
PH

A
SI

Z
E

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
Si

ze
in

bi
ts

of
re

nd
er

bu
ff

er
im

ag
e’

s
al

ph
a

co
m

po
ne

nt
4.

4.
2

–

R
E

N
D

E
R

B
U

FF
E

R
D

E
PT

H
SI

Z
E

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
Si

ze
in

bi
ts

of
re

nd
er

bu
ff

er
im

ag
e’

s
de

pt
h

co
m

po
ne

nt
4.

4.
2

–

R
E

N
D

E
R

B
U

FF
E

R
ST

E
N

C
IL

SI
Z

E
Z

+
G

et
R

en
de

rb
uf

fe
rP

ar
am

et
er

iv
0

Si
ze

in
bi

ts
of

re
nd

er
bu

ff
er

im
ag

e’
s

st
en

ci
lc

om
po

ne
nt

4.
4.

2
–

R
E

N
D

E
R

B
U

FF
E

R
SA

M
PL

E
S

Z
+

G
et

R
en

de
rb

uf
fe

rP
ar

am
et

er
iv

0
N

um
be

ro
fs

am
pl

es
4.

4.
2

–

Table 6.36. Renderbuffer (state per renderbuffer object)
OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 444

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
U

N
PA

C
K

SW
A

P
B

Y
T

E
S

B
G

et
B

oo
le

an
v

F
A
L
S
E

V
al

ue
of
U
N
P
A
C
K
_
S
W
A
P
_
B
Y
T
E
S

3.
7.

1
pi

xe
l-

st
or

e
U

N
PA

C
K

L
SB

FI
R

ST
B

G
et

B
oo

le
an

v
F
A
L
S
E

V
al

ue
of
U
N
P
A
C
K
_
L
S
B
_
F
I
R
S
T

3.
7.

1
pi

xe
l-

st
or

e

U
N

PA
C

K
IM

A
G

E
H

E
IG

H
T

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
U
N
P
A
C
K
_
I
M
A
G
E
_
-

H
E
I
G
H
T

3.
7.

1
pi

xe
l-

st
or

e

U
N

PA
C

K
SK

IP
IM

A
G

E
S

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
U
N
P
A
C
K
_
S
K
I
P
_
I
M
A
G
E
S

3.
7.

1
pi

xe
l-

st
or

e
U

N
PA

C
K

R
O

W
L

E
N

G
T

H
Z

+
G

et
In

te
ge

rv
0

V
al

ue
of
U
N
P
A
C
K
_
R
O
W
_
L
E
N
G
T
H

3.
7.

1
pi

xe
l-

st
or

e
U

N
PA

C
K

SK
IP

R
O

W
S

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
U
N
P
A
C
K
_
S
K
I
P
_
R
O
W
S

3.
7.

1
pi

xe
l-

st
or

e
U

N
PA

C
K

SK
IP

PI
X

E
L

S
Z

+
G

et
In

te
ge

rv
0

V
al

ue
of
U
N
P
A
C
K
_
S
K
I
P
_
P
I
X
E
L
S

3.
7.

1
pi

xe
l-

st
or

e
U

N
PA

C
K

A
L

IG
N

M
E

N
T

Z
+

G
et

In
te

ge
rv

4
V

al
ue

of
U
N
P
A
C
K
_
A
L
I
G
N
M
E
N
T

3.
7.

1
pi

xe
l-

st
or

e
PA

C
K

SW
A

P
B

Y
T

E
S

B
G

et
B

oo
le

an
v

F
A
L
S
E

V
al

ue
of
P
A
C
K
_
S
W
A
P
_
B
Y
T
E
S

4.
3.

2
pi

xe
l-

st
or

e
PA

C
K

L
SB

FI
R

ST
B

G
et

B
oo

le
an

v
F
A
L
S
E

V
al

ue
of
P
A
C
K
_
L
S
B
_
F
I
R
S
T

4.
3.

2
pi

xe
l-

st
or

e
PA

C
K

IM
A

G
E

H
E

IG
H

T
Z

+
G

et
In

te
ge

rv
0

V
al

ue
of
P
A
C
K
_
I
M
A
G
E
_
H
E
I
G
H
T

4.
3.

2
pi

xe
l-

st
or

e
PA

C
K

SK
IP

IM
A

G
E

S
Z

+
G

et
In

te
ge

rv
0

V
al

ue
of
P
A
C
K
_
S
K
I
P
_
I
M
A
G
E
S

4.
3.

2
pi

xe
l-

st
or

e
PA

C
K

R
O

W
L

E
N

G
T

H
Z

+
G

et
In

te
ge

rv
0

V
al

ue
of
P
A
C
K
_
R
O
W
_
L
E
N
G
T
H

4.
3.

2
pi

xe
l-

st
or

e
PA

C
K

SK
IP

R
O

W
S

Z
+

G
et

In
te

ge
rv

0
V

al
ue

of
P
A
C
K
_
S
K
I
P
_
R
O
W
S

4.
3.

2
pi

xe
l-

st
or

e
PA

C
K

SK
IP

PI
X

E
L

S
Z

+
G

et
In

te
ge

rv
0

V
al

ue
of
P
A
C
K
_
S
K
I
P
_
P
I
X
E
L
S

4.
3.

2
pi

xe
l-

st
or

e
PA

C
K

A
L

IG
N

M
E

N
T

Z
+

G
et

In
te

ge
rv

4
V

al
ue

of
P
A
C
K
_
A
L
I
G
N
M
E
N
T

4.
3.

2
pi

xe
l-

st
or

e
PI

X
E

L
PA

C
K

B
U

FF
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0
Pi

xe
lp

ac
k

bu
ff

er
bi

nd
in

g
4.

3.
2

pi
xe

l-
st

or
e

PI
X

E
L

U
N

PA
C

K
B

U
FF

E
R

B
IN

D
IN

G
Z

+
G

et
In

te
ge

rv
0

Pi
xe

lu
np

ac
k

bu
ff

er
bi

nd
in

g
6.

1.
15

pi
xe

l-
st

or
e

Table 6.37. Pixels

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 445

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
M

A
P

C
O

L
O

R
B

G
et

B
oo

le
an

v
F
A
L
S
E

Tr
ue

if
co

lo
rs

ar
e

m
ap

pe
d

3.
7.

3
pi

xe
l

M
A

P
ST

E
N

C
IL

B
G

et
B

oo
le

an
v

F
A
L
S
E

Tr
ue

if
st

en
ci

lv
al

ue
s

ar
e

m
ap

pe
d

3.
7.

3
pi

xe
l

IN
D

E
X

SH
IF

T
Z

G
et

In
te

ge
rv

0
V

al
ue

of
I
N
D
E
X
_
S
H
I
F
T

3.
7.

3
pi

xe
l

IN
D

E
X

O
FF

SE
T

Z
G

et
In

te
ge

rv
0

V
al

ue
of
I
N
D
E
X
_
O
F
F
S
E
T

3.
7.

3
pi

xe
l

x
SC

A
L

E
R

G
et

Fl
oa

tv
1

V
al

ue
of

x
_
S
C
A
L
E

;
x

is
R
E
D

,
G
R
E
E
N

,B
L
U
E

,A
L
P
H
A

,o
rD
E
P
T
H

3.
7.

3
pi

xe
l

x
B

IA
S

R
G

et
Fl

oa
tv

0
V

al
ue

of
x
_
B
I
A
S

3.
7.

3
pi

xe
l

Table 6.38. Pixels (cont.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 446

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

C
O

L
O

R
TA

B
L

E
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
co

lo
rt

ab
le

lo
ok

up
is

do
ne

3.
7.

3
pi

xe
l/e

na
bl

e

PO
ST

C
O

N
V

O
L

U
T

IO
N

C
O

L
O

R
TA

B
L

E
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
po

st
co

nv
ol

u-
tio

n
co

lo
r

ta
bl

e
lo

ok
up

is
do

ne
3.

7.
3

pi
xe

l/e
na

bl
e

PO
ST

C
O

L
O

R
M

A
T

R
IX

C
O

L
O

R
TA

B
L

E
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
po

st
co

lo
r

m
a-

tr
ix

co
lo

r
ta

bl
e

lo
ok

up
is

do
ne

3.
7.

3
pi

xe
l/e

na
bl

e

C
O

L
O

R
TA

B
L

E
I

G
et

C
ol

or
Ta

bl
e

em
pt

y
C

ol
or

ta
bl

e
3.

7.
3

–

PO
ST

C
O

N
V

O
L

U
T

IO
N

C
O

L
O

R
TA

B
L

E
I

G
et

C
ol

or
Ta

bl
e

em
pt

y
Po

st
co

nv
ol

ut
io

n
co

lo
r

ta
bl

e
3.

7.
3

–

PO
ST

C
O

L
O

R
M

A
T

R
IX

C
O

L
O

R
TA

B
L

E
I

G
et

C
ol

or
Ta

bl
e

em
pt

y
Po

st
co

lo
r

m
at

ri
x

co
lo

r
ta

bl
e

3.
7.

3
–

C
O

L
O

R
TA

B
L

E
FO

R
M

A
T

2
×

3
×
Z

4
2

G
et

C
ol

or
Ta

bl
e-

Pa
ra

m
et

er
iv

R
G
B
A

C
ol

or
ta

bl
es

’i
nt

er
na

li
m

-
ag

e
fo

rm
at

3.
7.

3
–

C
O

L
O

R
TA

B
L

E
W

ID
T

H
2
×

3
×
Z

+
G

et
C

ol
or

Ta
bl

e-
Pa

ra
m

et
er

iv
0

C
ol

or
ta

bl
es

’
sp

ec
ifi

ed
w

id
th

3.
7.

3
–

C
O

L
O

R
TA

B
L

E
x

SI
Z

E
6
×

2
×

3
×
Z

+
G

et
C

ol
or

Ta
bl

e-
Pa

ra
m

et
er

iv
0

C
ol

or
ta

bl
e

co
m

po
-

ne
nt

re
so

lu
tio

n;
x

is
R
E
D

,
G
R
E
E
N

,
B
L
U
E

,
A
L
P
H
A

,
L
U
M
I
N
A
N
C
E

,
or
I
N
T
E
N
S
I
T
Y

3.
7.

3
–

C
O

L
O

R
TA

B
L

E
SC

A
L

E
3
×
R

4
G

et
C

ol
or

Ta
bl

e-
Pa

ra
m

et
er

fv
1,

1,
1,

1
Sc

al
e

fa
ct

or
s

ap
pl

ie
d

to
co

lo
rt

ab
le

en
tr

ie
s

3.
7.

3
pi

xe
l

C
O

L
O

R
TA

B
L

E
B

IA
S

3
×
R

4
G

et
C

ol
or

Ta
bl

e-
Pa

ra
m

et
er

fv
0,

0,
0,

0
B

ia
s

fa
ct

or
s

ap
pl

ie
d

to
co

lo
rt

ab
le

en
tr

ie
s

3.
7.

3
pi

xe
l

Table 6.39. Pixels (cont.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 447

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

C
O

N
V

O
L

U
T

IO
N

1D
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
1D

co
nv

ol
ut

io
n

is
do

ne
3.

7.
3

pi
xe

l/e
na

bl
e

C
O

N
V

O
L

U
T

IO
N

2D
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
2D

co
nv

ol
ut

io
n

is
do

ne
3.

7.
3

pi
xe

l/e
na

bl
e

SE
PA

R
A

B
L

E
2D

B
Is

E
na

bl
ed

F
A
L
S
E

Tr
ue

if
se

pa
ra

bl
e

2D
co

n-
vo

lu
tio

n
is

do
ne

3.
7.

3
pi

xe
l/e

na
bl

e

C
O

N
V

O
L

U
T

IO
N

x
D

2
×
I

G
et

C
on

vo
lu

tio
n-

Fi
lte

r
em

pt
y

C
on

vo
lu

tio
n

fil
te

rs
;x

is
1

or
2

3.
7.

3
–

SE
PA

R
A

B
L

E
2D

2
×
I

G
et

Se
pa

ra
bl

e-
Fi

l-
te

r
em

pt
y

Se
pa

ra
bl

e
co

nv
ol

ut
io

n
fil

te
r

3.
7.

3
–

C
O

N
V

O
L

U
T

IO
N

B
O

R
D

E
R

C
O

L
O

R
3
×
C

G
et

C
on

vo
lu

tio
n-

Pa
ra

m
et

er
fv

0,
0,

0,
0

C
on

vo
lu

tio
n

bo
rd

er
co

lo
r

3.
7.

6
pi

xe
l

C
O

N
V

O
L

U
T

IO
N

B
O

R
D

E
R

M
O

D
E

3
×
Z

4
G

et
C

on
vo

lu
tio

n-
Pa

ra
m

et
er

iv
R
E
D
U
C
E

C
on

vo
lu

tio
n

bo
rd

er
m

od
e

3.
7.

6
pi

xe
l

C
O

N
V

O
L

U
T

IO
N

FI
LT

E
R

SC
A

L
E

3
×
R

4
G

et
C

on
vo

lu
tio

n-
Pa

ra
m

et
er

fv
1,

1,
1,

1
Sc

al
e

fa
ct

or
s

ap
pl

ie
d

to
co

nv
ol

ut
io

n
fil

te
re

nt
ri

es
3.

7.
3

pi
xe

l

C
O

N
V

O
L

U
T

IO
N

FI
LT

E
R

B
IA

S
3
×
R

4
G

et
C

on
vo

lu
tio

n-
Pa

ra
m

et
er

fv
0,

0,
0,

0
B

ia
s

fa
ct

or
s

ap
pl

ie
d

to
co

nv
ol

ut
io

n
fil

te
re

nt
ri

es
3.

7.
3

pi
xe

l

C
O

N
V

O
L

U
T

IO
N

FO
R

M
A

T
3
×
Z

4
2

G
et

C
on

vo
lu

tio
n-

Pa
ra

m
et

er
iv

R
G
B
A

C
on

vo
lu

tio
n

fil
te

r
in

te
r-

na
lf

or
m

at
3.

7.
6

–

C
O

N
V

O
L

U
T

IO
N

W
ID

T
H

3
×
Z

+
G

et
C

on
vo

lu
tio

n-
Pa

ra
m

et
er

iv
0

C
on

vo
lu

tio
n

fil
te

rw
id

th
3.

7.
6

–

C
O

N
V

O
L

U
T

IO
N

H
E

IG
H

T
2
×
Z

+
G

et
C

on
vo

lu
tio

n-
Pa

ra
m

et
er

iv
0

C
on

vo
lu

tio
n

fil
te

rh
ei

gh
t

3.
7.

6
–

Table 6.40. Pixels (cont.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 448

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

PO
ST

C
O

N
V

O
L

U
T

IO
N

x
SC

A
L

E
R

G
et

Fl
oa

tv
1

C
om

po
ne

nt
sc

al
e

fa
ct

or
s

af
te

r
co

nv
ol

ut
io

n;
x

is
R
E
D

,
G
R
E
E
N

,
B
L
U
E

,
or

A
L
P
H
A

3.
7.

3
pi

xe
l

PO
ST

C
O

N
V

O
L

U
T

IO
N

x
B

IA
S

R
G

et
Fl

oa
tv

0
C

om
po

ne
nt

bi
as

fa
ct

or
s

af
te

rc
on

vo
lu

tio
n

3.
7.

3
pi

xe
l

PO
ST

C
O

L
O

R
M

A
T

R
IX

x
SC

A
L

E
R

G
et

Fl
oa

tv
1

C
om

po
ne

nt
sc

al
e

fa
ct

or
s

af
te

rc
ol

or
m

at
ri

x
3.

7.
3

pi
xe

l

PO
ST

C
O

L
O

R
M

A
T

R
IX

x
B

IA
S

R
G

et
Fl

oa
tv

0
C

om
po

ne
nt

bi
as

fa
ct

or
s

af
te

rc
ol

or
m

at
ri

x
3.

7.
3

pi
xe

l

H
IS

TO
G

R
A

M
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
hi

st
og

ra
m

m
in

g
is

en
ab

le
d

3.
7.

3
pi

xe
l/e

na
bl

e

H
IS

TO
G

R
A

M
I

G
et

H
is

to
gr

am
em

pt
y

H
is

to
gr

am
ta

bl
e

3.
7.

3
–

H
IS

TO
G

R
A

M
W

ID
T

H
2
×
Z

+
G

et
H

is
to

gr
am

-
Pa

ra
m

et
er

iv
0

H
is

to
gr

am
ta

bl
e

w
id

th
3.

7.
3

–

H
IS

TO
G

R
A

M
FO

R
M

A
T

2
×
Z

4
2

G
et

H
is

to
gr

am
-

Pa
ra

m
et

er
iv

R
G
B
A

H
is

to
gr

am
ta

bl
e

in
te

rn
al

fo
rm

at
3.

7.
3

–

H
IS

TO
G

R
A

M
x

SI
Z

E
5
×

2
×
Z

+
G

et
H

is
to

gr
am

-
Pa

ra
m

et
er

iv
0

H
is

to
gr

am
ta

bl
e

co
m

po
-

ne
nt

re
so

lu
tio

n;
x

is
R
E
D

,
G
R
E
E
N

,
B
L
U
E

,
A
L
P
H
A

,
or
L
U
M
I
N
A
N
C
E

3.
7.

3
–

H
IS

TO
G

R
A

M
SI

N
K

B
G

et
H

is
to

gr
am

-
Pa

ra
m

et
er

iv
F
A
L
S
E

Tr
ue

if
hi

st
og

ra
m

m
in

g
co

ns
um

es
pi

xe
lg

ro
up

s
3.

7.
3

–

Table 6.41. Pixels (cont.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 449

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

M
IN

M
A

X
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
m

in
m

ax
is

en
-

ab
le

d
3.

7.
3

pi
xe

l/e
na

bl
e

M
IN

M
A

X
R

n
G

et
M

in
m

ax
(M

,M
,M

,M
),(

m
,m

,m
,m

)
M

in
m

ax
ta

bl
e

3.
7.

3
–

M
IN

M
A

X
FO

R
M

A
T

Z
4
2

G
et

M
in

m
ax

-
Pa

ra
m

et
er

iv
R
G
B
A

M
in

m
ax

ta
bl

e
in

te
rn

al
fo

rm
at

3.
7.

3
–

M
IN

M
A

X
SI

N
K

B
G

et
M

in
m

ax
-

Pa
ra

m
et

er
iv

F
A
L
S
E

Tr
ue

if
m

in
m

ax
co

n-
su

m
es

pi
xe

lg
ro

up
s

3.
7.

3
–

Z
O

O
M

X
R

G
et

Fl
oa

tv
1.

0
x

zo
om

fa
ct

or
3.

7.
5

pi
xe

l
Z

O
O

M
Y

R
G

et
Fl

oa
tv

1.
0

y
zo

om
fa

ct
or

3.
7.

5
pi

xe
l

x
8
×

32
∗
×
R

G
et

Pi
xe

lM
ap

0’
s

R
G

B
A

Pi
xe

lM
ap

tr
an

s-
la

tio
n

ta
bl

es
;
x

is
a

m
ap

na
m

e
fr

om
ta

bl
e

3.
3

3.
7.

3
–

x
2
×

32
∗
×
Z

G
et

Pi
xe

lM
ap

0’
s

In
de

x
Pi

xe
lM

ap
tr

an
sl

a-
tio

n
ta

bl
es

;
x

is
a

m
ap

na
m

e
fr

om
ta

bl
e

3.
3

3.
7.

3
–

x
SI

Z
E

Z
+

G
et

In
te

ge
rv

1
Si

ze
of

ta
bl

e
x

3.
7.

3
–

Table 6.42. Pixels (cont.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 450

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
O

R
D

E
R

9
×
Z

8
∗

G
et

M
ap

iv
1

1d
m

ap
or

de
r

5.
1

–
O

R
D

E
R

9
×

2
×
Z

8
∗

G
et

M
ap

iv
1,

1
2d

m
ap

or
de

rs
5.

1
–

C
O

E
FF

9
×

8
∗
×
R

n
G

et
M

ap
fv

se
e

5.
1

1d
co

nt
ro

lp
oi

nt
s

5.
1

–
C

O
E

FF
9
×

8
∗
×

8
∗
×
R

n
G

et
M

ap
fv

se
e

5.
1

2d
co

nt
ro

lp
oi

nt
s

5.
1

–
D

O
M

A
IN

9
×

2
×
R

G
et

M
ap

fv
se

e
5.

1
1d

do
m

ai
n

en
dp

oi
nt

s
5.

1
–

D
O

M
A

IN
9
×

4
×
R

G
et

M
ap

fv
se

e
5.

1
2d

do
m

ai
n

en
dp

oi
nt

s
5.

1
–

M
A

P1
x

9
×
B

Is
E

na
bl

ed
F
A
L
S
E

1d
m

ap
en

ab
le

s:
x

is
m

ap
ty

pe
5.

1
ev

al
/e

na
bl

e
M

A
P2

x
9
×
B

Is
E

na
bl

ed
F
A
L
S
E

2d
m

ap
en

ab
le

s:
x

is
m

ap
ty

pe
5.

1
ev

al
/e

na
bl

e
M

A
P1

G
R

ID
D

O
M

A
IN

2
×
R

G
et

Fl
oa

tv
0,

1
1d

gr
id

en
dp

oi
nt

s
5.

1
ev

al
M

A
P2

G
R

ID
D

O
M

A
IN

4
×
R

G
et

Fl
oa

tv
0,

1;
0,

1
2d

gr
id

en
dp

oi
nt

s
5.

1
ev

al
M

A
P1

G
R

ID
SE

G
M

E
N

T
S

Z
+

G
et

Fl
oa

tv
1

1d
gr

id
di

vi
si

on
s

5.
1

ev
al

M
A

P2
G

R
ID

SE
G

M
E

N
T

S
2
×
Z

+
G

et
Fl

oa
tv

1,
1

2d
gr

id
di

vi
si

on
s

5.
1

ev
al

A
U

TO
N

O
R

M
A

L
B

Is
E

na
bl

ed
F
A
L
S
E

Tr
ue

if
au

to
m

at
ic

no
rm

al
ge

ne
ra

tio
n

en
ab

le
d

5.
1

ev
al

/e
na

bl
e

Table 6.43. Evaluators (GetMap takes a map name)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 451

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

SH
A

D
E

R
T

Y
PE

Z
3

G
et

Sh
ad

er
iv

-
Ty

pe
of

sh
ad

er
(v

er
te

x,
ge

om
et

ry
,o

r
fr

ag
m

en
t)

2.
14

.1
–

D
E

L
E

T
E

ST
A

T
U

S
B

G
et

Sh
ad

er
iv

F
A
L
S
E

Sh
ad

er
fla

gg
ed

fo
rd

el
et

io
n

2.
14

.1
–

C
O

M
PI

L
E

ST
A

T
U

S
B

G
et

Sh
ad

er
iv

F
A
L
S
E

L
as

tc
om

pi
le

su
cc

ee
de

d
2.

14
.1

–
-

S
G

et
Sh

ad
er

In
fo

L
og

em
pt

y
st

ri
ng

In
fo

lo
g

fo
rs

ha
de

ro
bj

ec
ts

6.
1.

17
–

IN
FO

L
O

G
L

E
N

G
T

H
Z

+
G

et
Sh

ad
er

iv
0

L
en

gt
h

of
in

fo
lo

g
6.

1.
17

–
-

S
G

et
Sh

ad
er

So
ur

ce
em

pt
y

st
ri

ng
So

ur
ce

co
de

fo
ra

sh
ad

er
2.

14
.1

–
SH

A
D

E
R

SO
U

R
C

E
L

E
N

G
T

H
Z

+
G

et
Sh

ad
er

iv
0

L
en

gt
h

of
so

ur
ce

co
de

6.
1.

17
–

Table 6.44. Shader Object State

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 452

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

C
U

R
R

E
N

T
PR

O
G

R
A

M
Z

+
G

et
In

te
ge

rv
0

N
am

e
of

cu
rr

en
tp

ro
gr

am
ob

je
ct

2.
14

.2
–

D
E

L
E

T
E

ST
A

T
U

S
B

G
et

Pr
og

ra
m

iv
F
A
L
S
E

Pr
og

ra
m

ob
je

ct
de

le
te

d
2.

14
.2

–

L
IN

K
ST

A
T

U
S

B
G

et
Pr

og
ra

m
iv

F
A
L
S
E

L
as

t
lin

k
at

te
m

pt
su

c-
ce

ed
ed

2.
14

.2
–

VA
L

ID
A

T
E

ST
A

T
U

S
B

G
et

Pr
og

ra
m

iv
F
A
L
S
E

L
as

tv
al

id
at

e
at

te
m

pt
su

c-
ce

ed
ed

2.
14

.2
–

A
T

TA
C

H
E

D
SH

A
D

E
R

S
Z

+
G

et
Pr

og
ra

m
iv

0
N

um
be

r
of

at
ta

ch
ed

sh
ad

er
ob

je
ct

s
6.

1.
17

–

-
0
∗
×
Z

+
G

et
A

tt
ac

he
dS

ha
de

rs
em

pt
y

Sh
ad

er
ob

je
ct

s
at

ta
ch

ed
6.

1.
17

–

-
S

G
et

Pr
og

ra
m

In
fo

L
og

em
pt

y
In

fo
lo

g
fo

r
pr

og
ra

m
ob

-
je

ct
6.

1.
17

–

IN
FO

L
O

G
L

E
N

G
T

H
Z

+
G

et
Pr

og
ra

m
iv

0
L

en
gt

h
of

in
fo

lo
g

2.
14

.4
–

A
C

T
IV

E
U

N
IF

O
R

M
S

Z
+

G
et

Pr
og

ra
m

iv
0

N
um

be
r

of
ac

tiv
e

un
i-

fo
rm

s
2.

14
.4

–

-
0
∗
×
Z

G
et

U
ni

fo
rm

L
oc

at
io

n
–

L
oc

at
io

n
of

ac
tiv

e
un

i-
fo

rm
s

6.
1.

17
–

-
0
∗
×
Z

+
G

et
A

ct
iv

eU
ni

fo
rm

–
Si

ze
of

ac
tiv

e
un

if
or

m
2.

14
.4

–
-

0
∗
×
Z

+
G

et
A

ct
iv

eU
ni

fo
rm

–
Ty

pe
of

ac
tiv

e
un

if
or

m
2.

14
.4

–
-

0
∗
×
c
h
a
r

G
et

A
ct

iv
eU

ni
fo

rm
em

pt
y

N
am

e
of

ac
tiv

e
un

if
or

m
2.

14
.4

–

A
C

T
IV

E
U

N
IF

O
R

M
M

A
X

L
E

N
G

T
H

Z
+

G
et

Pr
og

ra
m

iv
0

M
ax

im
um

ac
tiv

e
un

if
or

m
na

m
e

le
ng

th
6.

1.
17

–

51
2
∗
×
R

G
et

U
ni

fo
rm

0
U

ni
fo

rm
va

lu
e

2.
14

.4
–

A
C

T
IV

E
A

T
T

R
IB

U
T

E
S

Z
+

G
et

Pr
og

ra
m

iv
0

N
um

be
r

of
ac

tiv
e

at
-

tr
ib

ut
es

2.
14

.3
–

Table 6.45. Program Object State

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 453

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

-
0
∗
×
Z

G
et

A
tt

ri
bL

oc
at

io
n

–
L

oc
at

io
n

of
ac

tiv
e

ge
ne

ri
c

at
tr

ib
ut

e
2.

14
.3

–

-
0
∗
×
Z

+
G

et
A

ct
iv

eA
tt

ri
b

–
Si

ze
of

ac
tiv

e
at

tr
ib

ut
e

2.
14

.3
–

-
0
∗
×
Z

+
G

et
A

ct
iv

eA
tt

ri
b

–
Ty

pe
of

ac
tiv

e
at

tr
ib

ut
e

2.
14

.3
–

-
0
∗
×
c
h
a
r

G
et

A
ct

iv
eA

tt
ri

b
em

pt
y

N
am

e
of

ac
tiv

e
at

tr
ib

ut
e

2.
14

.3
–

A
C

T
IV

E
A

T
T

R
IB

U
T

E
M

A
X

L
E

N
G

T
H

Z
+

G
et

Pr
og

ra
m

iv
0

M
ax

im
um

ac
tiv

e
at

tr
ib

ut
e

na
m

e
le

ng
th

6.
1.

17
–

G
E

O
M

E
T

RY
V

E
R

T
IC

E
S

O
U

T
Z

+
G

et
Pr

og
ra

m
iv

0
M

ax
im

um
nu

m
be

r
of

ou
t-

pu
tv

er
tic

es
2.

15
.4

-

G
E

O
M

E
T

RY
IN

PU
T

T
Y

PE
Z

5
G

et
Pr

og
ra

m
iv

T
R
I
A
N
G
L
E
S

Pr
im

iti
ve

in
pu

tt
yp

e
2.

15
.1

-
G

E
O

M
E

T
RY

O
U

T
PU

T
T

Y
PE

Z
3

G
et

Pr
og

ra
m

iv
T
R
I
A
N
G
L
E
_
S
T
R
I
P

Pr
im

iti
ve

ou
tp

ut
ty

pe
2.

15
.2

-
T

R
A

N
SF

O
R

M
FE

E
D

B
A

C
K

B
U

FF
E

R
-

M
O

D
E

Z
2

G
et

Pr
og

ra
m

iv
I
N
T
E
R
L
E
A
V
E
D
_
-

A
T
T
R
I
B
S

Tr
an

sf
or

m
fe

ed
ba

ck
m

od
e

fo
rt

he
pr

og
ra

m
6.

1.
17

–

T
R

A
N

SF
O

R
M

FE
E

D
B

A
C

K
VA

RY
-

IN
G

S
Z

+
G

et
Pr

og
ra

m
iv

0
N

um
be

r
of

va
ry

in
gs

to
st

re
am

to
bu

ff
er

ob
je

ct
(s

)
6.

1.
17

–

T
R

A
N

SF
O

R
M

FE
E

D
B

A
C

K
VA

RY
-

IN
G

M
A

X
L

E
N

G
T

H
Z

+
G

et
Pr

og
ra

m
iv

0
M

ax
im

um
tr

an
sf

or
m

fe
ed

-
ba

ck
va

ry
in

g
na

m
e

le
ng

th
6.

1.
17

–

-
Z

+
G

et
Tr

an
sf

or
m

-
Fe

ed
ba

ck
Va

ry
in

g
-

Si
ze

of
ea

ch
tr

an
sf

or
m

fe
ed

ba
ck

va
ry

in
g

va
ri

ab
le

2.
14

.6
–

-
Z

+
G

et
Tr

an
sf

or
m

-
Fe

ed
ba

ck
Va

ry
in

g
-

Ty
pe

of
ea

ch
tr

an
sf

or
m

fe
ed

ba
ck

va
ry

in
g

va
ri

ab
le

2.
14

.6
–

-
0+
×
c
h
a
r

G
et

Tr
an

sf
or

m
-

Fe
ed

ba
ck

Va
ry

in
g

-
N

am
e

of
ea

ch
tr

an
sf

or
m

fe
ed

ba
ck

va
ry

in
g

va
ri

ab
le

2.
14

.6
–

Table 6.46. Program Object State (cont.)
OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 454

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

U
N

IF
O

R
M

B
U

FF
E

R
B

IN
D

IN
G

Z
+

G
et

In
te

ge
rv

0

U
ni

fo
rm

bu
ff

er
ob

je
ct

bo
un

d
to

th
e

co
nt

ex
t

fo
r

bu
ff

er
ob

je
ct

m
an

ip
ul

a-
tio

n

2.
14

.4
–

U
N

IF
O

R
M

B
U

FF
E

R
B

IN
D

IN
G

n
×
Z

+
G

et
In

te
ge

ri
v

0
U

ni
fo

rm
bu

ff
er

ob
je

ct
bo

un
d

to
th

e
sp

ec
ifi

ed
co

nt
ex

tb
in

di
ng

po
in

t
2.

14
.4

–

U
N

IF
O

R
M

B
U

FF
E

R
ST

A
R

T
n
×
Z

+
G

et
In

te
ge

r6
4i

v
0

St
ar

t
of

bo
un

d
un

if
or

m
bu

ff
er

re
gi

on
6.

1.
15

–

U
N

IF
O

R
M

B
U

FF
E

R
SI

Z
E

n
×
Z

+
G

et
In

te
ge

r6
4i

v
0

Si
ze

of
bo

un
d

un
if

or
m

bu
ff

er
re

gi
on

6.
1.

15
–

A
C

T
IV

E
U

N
IF

O
R

M
B

L
O

C
K

S
Z

+
G

et
Pr

og
ra

m
iv

0
N

um
be

r
of

ac
tiv

e
un

i-
fo

rm
bl

oc
ks

in
a

pr
og

ra
m

2.
14

.4
–

A
C

T
IV

E
U

N
IF

O
R

M
B

L
O

C
K

M
A

X
-

N
A

M
E

L
E

N
G

T
H

Z
+

G
et

Pr
og

ra
m

iv
0

L
en

gt
h

of
lo

ng
es

t
ac

tiv
e

un
if

or
m

bl
oc

k
na

m
e

2.
14

.4
–

U
N

IF
O

R
M

T
Y

PE
0
∗
×
Z

2
7

G
et

A
ct

iv
eU

ni
fo

rm
si

v
-

Ty
pe

of
ac

tiv
e

un
if

or
m

2.
14

.4
–

U
N

IF
O

R
M

SI
Z

E
0
∗
×
Z

+
G

et
A

ct
iv

eU
ni

fo
rm

si
v

-
Si

ze
of

ac
tiv

e
un

if
or

m
2.

14
.4

–

U
N

IF
O

R
M

N
A

M
E

L
E

N
G

T
H

0
∗
×
Z

+
G

et
A

ct
iv

eU
ni

fo
rm

si
v

-
U

ni
fo

rm
na

m
e

le
ng

th
2.

14
.4

–

U
N

IF
O

R
M

B
L

O
C

K
IN

D
E

X
0
∗
×
Z

G
et

A
ct

iv
eU

ni
fo

rm
si

v
-

U
ni

fo
rm

bl
oc

k
in

de
x

2.
14

.4
–

U
N

IF
O

R
M

O
FF

SE
T

0
∗
×
Z

G
et

A
ct

iv
eU

ni
fo

rm
si

v
-

U
ni

fo
rm

bu
ff

er
of

fs
et

2.
14

.4
–

Table 6.47. Program Object State (cont.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 455

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

U
N

IF
O

R
M

A
R

R
A

Y
ST

R
ID

E
0
∗
×
Z

G
et

A
ct

iv
eU

ni
fo

rm
si

v
-

U
ni

fo
rm

bu
ff

er
ar

ra
y

st
ri

de
2.

14
.4

–

U
N

IF
O

R
M

M
A

T
R

IX
ST

R
ID

E
0
∗
×
Z

G
et

A
ct

iv
eU

ni
fo

rm
si

v
-

U
ni

fo
rm

bu
ff

er
in

tr
a-

m
at

ri
x

st
ri

de
2.

14
.4

–

U
N

IF
O

R
M

IS
R

O
W

M
A

JO
R

0
∗
×
Z

+
G

et
A

ct
iv

eU
ni

fo
rm

si
v

-
W

he
th

er
un

if
or

m
is

a
ro

w
-m

aj
or

m
at

ri
x

2.
14

.4
–

U
N

IF
O

R
M

B
L

O
C

K
B

IN
D

IN
G

Z
+

G
et

A
ct

iv
e-

U
ni

fo
rm

B
lo

ck
iv

0

U
ni

fo
rm

bu
ff

er
bi

nd
in

g
po

in
ts

as
so

ci
at

ed
w

ith
th

e
sp

ec
ifi

ed
un

if
or

m
bl

oc
k

2.
14

.4
–

U
N

IF
O

R
M

B
L

O
C

K
D

A
TA

SI
Z

E
Z

+
G

et
A

ct
iv

e-
U

ni
fo

rm
B

lo
ck

iv
-

Si
ze

of
th

e
st

or
ag

e
ne

ed
ed

to
ho

ld
th

is
un

if
or

m
bl

oc
k’

s
da

ta
2.

14
.4

–

U
N

IF
O

R
M

B
L

O
C

K
A

C
T

IV
E

U
N

I-

FO
R

M
S

Z
+

G
et

A
ct

iv
e-

U
ni

fo
rm

B
lo

ck
iv

-
C

ou
nt

of
ac

tiv
e

un
if

or
m

s
in

th
e

sp
ec

ifi
ed

un
if

or
m

bl
oc

k
2.

14
.4

–

U
N

IF
O

R
M

B
L

O
C

K
A

C
T

IV
E

U
N

I-

FO
R

M
IN

D
IC

E
S

n
×
Z

+
G

et
A

ct
iv

e-
U

ni
fo

rm
B

lo
ck

iv
-

A
rr

ay
of

ac
tiv

e
un

if
or

m
in

di
ce

s
of

th
e

sp
ec

ifi
ed

un
if

or
m

bl
oc

k
2.

14
.4

–

U
N

IF
O

R
M

B
L

O
C

K
R

E
FE

R
E

N
C

E
D

-

B
Y

V
E

R
T

E
X

SH
A

D
E

R
B

G
et

A
ct

iv
e-

U
ni

fo
rm

B
lo

ck
iv

0
Tr

ue
if

un
if

or
m

bl
oc

k
is

ac
tiv

el
y

re
fe

re
nc

ed
by

th
e

ve
rt

ex
st

ag
e

2.
14

.4
–

U
N

IF
O

R
M

B
L

O
C

K
R

E
FE

R
E

N
C

E
D

-

B
Y

G
E

O
M

E
T

RY
SH

A
D

E
R

B
G

et
A

ct
iv

e-
U

ni
fo

rm
B

lo
ck

iv
0

Tr
ue

if
un

if
or

m
bl

oc
k

is
ac

tiv
el

y
re

fe
re

nc
ed

by
th

e
ge

om
et

ry
st

ag
e

2.
14

.4
–

U
N

IF
O

R
M

B
L

O
C

K
R

E
FE

R
E

N
C

E
D

-

B
Y

FR
A

G
M

E
N

T
SH

A
D

E
R

B
G

et
A

ct
iv

e-
U

ni
fo

rm
B

lo
ck

iv
0

Tr
ue

if
un

if
or

m
bl

oc
k

is
ac

tiv
el

y
re

fe
re

nc
ed

by
th

e
fr

ag
m

en
ts

ta
ge

2.
14

.4
–

Table 6.48. Program Object State (cont.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 456

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
V

E
R

T
E

X
PR

O
G

R
A

M
T

W
O

SI
D

E
B

Is
E

na
bl

ed
F
A
L
S
E

Tw
o-

si
de

d
co

lo
rm

od
e

2.
13

.1
en

ab
le

C
U

R
R

E
N

T
V

E
R

T
E

X
A

T
T

R
IB

16
∗
×
R

4
G

et
Ve

rt
ex

A
tt

ri
bf

v
0.

0,
0.

0,
0.

0,
1.

0
C

ur
re

nt
ge

ne
ri

c
ve

rt
ex

at
tr

ib
ut

e
va

l-
ue

s
2.

7
cu

rr
en

t

PR
O

G
R

A
M

PO
IN

T
SI

Z
E

B
Is

E
na

bl
ed

F
A
L
S
E

Po
in

ts
iz

e
m

od
e

3.
4

en
ab

le

Table 6.49. Vertex and Geometry Shader State

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 457

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
Q

U
E

RY
R

E
SU

LT
Z

+
G

et
Q

ue
ry

O
bj

ec
tu

iv
0

or
F
A
L
S
E

Q
ue

ry
ob

je
ct

re
su

lt
6.

1.
13

–
Q

U
E

RY
R

E
SU

LT
AV

A
IL

A
B

L
E

B
G

et
Q

ue
ry

O
bj

ec
tiv

F
A
L
S
E

Is
th

e
qu

er
y

ob
je

ct
re

su
lt

av
ai

la
bl

e?
6.

1.
13

–

Table 6.50. Query Object State

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 458

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e

T
R

A
N

SF
O

R
M

FE
E

D
B

A
C

K
B

U
FF

E
R

B
IN

D
IN

G
Z

+
G

et
In

te
ge

rv
0

B
uf

fe
r

ob
je

ct
bo

un
d

to
ge

ne
ri

c
bi

nd
po

in
t

fo
r

tr
an

sf
or

m
fe

ed
ba

ck
6.

1.
15

–

T
R

A
N

SF
O

R
M

FE
E

D
B

A
C

K
B

U
FF

E
R

B
IN

D
IN

G
n
×
Z

+
G

et
In

te
ge

ri
v

0
B

uf
fe

r
ob

je
ct

bo
un

d
to

ea
ch

tr
an

sf
or

m
fe

ed
ba

ck
at

tr
ib

ut
e

st
re

am
6.

1.
15

–

T
R

A
N

SF
O

R
M

FE
E

D
B

A
C

K
B

U
FF

E
R

ST
A

R
T

n
×
Z

+
G

et
In

te
ge

r6
4i

v
0

St
ar

t
of

fs
et

of
bi

nd
in

g
ra

ng
e

fo
r

ea
ch

tr
an

sf
or

m
fe

ed
ba

ck
at

tr
ib

.s
tr

ea
m

6.
1.

15
–

T
R

A
N

SF
O

R
M

FE
E

D
B

A
C

K
B

U
FF

E
R

SI
Z

E
n
×
Z

+
G

et
In

te
ge

r6
4i

v
0

Si
ze

of
bi

nd
in

g
ra

ng
e

fo
r

ea
ch

tr
an

sf
or

m
fe

ed
ba

ck
at

tr
ib

.s
tr

ea
m

6.
1.

15
–

Table 6.51. Transform Feedback State

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 459

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
O

B
JE

C
T

T
Y

PE
Z

1
G

et
Sy

nc
iv

S
Y
N
C
_
F
E
N
C
E

Ty
pe

of
sy

nc
ob

je
ct

5.
7

–
SY

N
C

ST
A

T
U

S
Z

2
G

et
Sy

nc
iv

U
N
S
I
G
N
A
L
E
D

Sy
nc

ob
je

ct
st

at
us

5.
7

–
SY

N
C

C
O

N
D

IT
IO

N
Z

1
G

et
Sy

nc
iv

S
Y
N
C
_
G
P
U
_
C
O
M
M
A
N
D
S
_
C
O
M
P
L
E
T
E

Sy
nc

ob
je

ct
co

nd
iti

on
5.

7
–

SY
N

C
FL

A
G

S
Z

G
et

Sy
nc

iv
0

Sy
nc

ob
je

ct
fla

gs
5.

7
–

Table 6.52. Sync (state per sync object)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 460

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
PE

R
SP

E
C

T
IV

E
C

O
R

R
E

C
T

IO
N

H
IN

T
Z

3
G

et
In

te
ge

rv
D
O
N
T
_
C
A
R
E

Pe
rs

pe
ct

iv
e

co
rr

ec
tio

n
hi

nt
5.

8
hi

nt
PO

IN
T

SM
O

O
T

H
H

IN
T

Z
3

G
et

In
te

ge
rv

D
O
N
T
_
C
A
R
E

Po
in

ts
m

oo
th

hi
nt

5.
8

hi
nt

L
IN

E
SM

O
O

T
H

H
IN

T
Z

3
G

et
In

te
ge

rv
D
O
N
T
_
C
A
R
E

L
in

e
sm

oo
th

hi
nt

5.
8

hi
nt

PO
LY

G
O

N
SM

O
O

T
H

H
IN

T
Z

3
G

et
In

te
ge

rv
D
O
N
T
_
C
A
R
E

Po
ly

go
n

sm
oo

th
hi

nt
5.

8
hi

nt
FO

G
H

IN
T

Z
3

G
et

In
te

ge
rv

D
O
N
T
_
C
A
R
E

Fo
g

hi
nt

5.
8

hi
nt

G
E

N
E

R
A

T
E

M
IP

M
A

P
H

IN
T

Z
3

G
et

In
te

ge
rv

D
O
N
T
_
C
A
R
E

M
ip

m
ap

ge
ne

ra
tio

n
hi

nt
5.

8
hi

nt
T

E
X

T
U

R
E

C
O

M
PR

E
SS

IO
N

H
IN

T
Z

3
G

et
In

te
ge

rv
D
O
N
T
_
C
A
R
E

Te
xt

ur
e

co
m

pr
es

si
on

qu
al

ity
hi

nt
5.

8
hi

nt

FR
A

G
M

E
N

T
SH

A
D

E
R

D
E

R
IV

A
T

IV
E

H
IN

T
Z

3
G

et
In

te
ge

rv
D
O
N
T
_
C
A
R
E

Fr
ag

m
en

t
sh

ad
er

de
riv

at
iv

e
ac

cu
-

ra
cy

hi
nt

5.
8

hi
nt

Table 6.53. Hints

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 461

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
A

ttr
ib

ut
e

M
A

X
L

IG
H

T
S

Z
+

G
et

In
te

ge
rv

8
M

ax
im

um
nu

m
be

ro
fl

ig
ht

s
2.

13
.1

–

M
A

X
C

L
IP

D
IS

TA
N

C
E

S
Z

+
G

et
In

te
ge

rv
8

M
ax

im
um

nu
m

be
r

of
us

er
cl

ip
pi

ng
pl

an
es

2.
22

–

M
A

X
C

O
L

O
R

M
A

T
R

IX
ST

A
C

K
D

E
PT

H
Z

+
G

et
In

te
ge

rv
2

M
ax

im
um

co
lo

rm
at

ri
x

st
ac

k
de

pt
h

3.
7.

3
–

M
A

X
M

O
D

E
LV

IE
W

ST
A

C
K

D
E

PT
H

Z
+

G
et

In
te

ge
rv

32
M

ax
im

um
m

od
el

-v
ie

w
st

ac
k

de
pt

h
2.

12
.1

–

M
A

X
PR

O
JE

C
T

IO
N

ST
A

C
K

D
E

PT
H

Z
+

G
et

In
te

ge
rv

2
M

ax
im

um
pr

oj
ec

tio
n

m
at

ri
x

st
ac

k
de

pt
h

2.
12

.1
–

M
A

X
T

E
X

T
U

R
E

ST
A

C
K

D
E

PT
H

Z
+

G
et

In
te

ge
rv

2
M

ax
im

um
nu

m
be

r
de

pt
h

of
te

xt
ur

e
m

at
ri

x
st

ac
k

2.
12

.1
–

SU
B

PI
X

E
L

B
IT

S
Z

+
G

et
In

te
ge

rv
4

N
um

be
ro

fb
its

of
su

bp
ix

el
pr

ec
is

io
n

in
sc

re
en
x

w
an

d
y w

3
–

M
A

X
3D

T
E

X
T

U
R

E
SI

Z
E

Z
+

G
et

In
te

ge
rv

25
6

M
ax

im
um

3D
te

xt
ur

e
im

ag
e

di
m

en
-

si
on

3.
9.

3
–

M
A

X
T

E
X

T
U

R
E

SI
Z

E
Z

+
G

et
In

te
ge

rv
10

24
M

ax
im

um
2D

/1
D

te
xt

ur
e

im
ag

e
di

-
m

en
si

on
3.

9.
3

–

M
A

X
A

R
R

A
Y

T
E

X
T

U
R

E
L

A
Y

E
R

S
Z

+
G

et
In

te
ge

rv
25

6
M

ax
im

um
nu

m
be

ro
fl

ay
er

s
fo

rt
ex

-
tu

re
ar

ra
ys

3.
9.

3
–

M
A

X
T

E
X

T
U

R
E

L
O

D
B

IA
S

R
+

G
et

Fl
oa

tv
2.

0
M

ax
im

um
ab

so
lu

te
te

xt
ur

e
le

ve
l

of
de

ta
il

bi
as

3.
9.

11
–

M
A

X
C

U
B

E
M

A
P

T
E

X
T

U
R

E
SI

Z
E

Z
+

G
et

In
te

ge
rv

10
24

M
ax

im
um

cu
be

m
ap

te
xt

ur
e

im
ag

e
di

m
en

si
on

3.
9.

3
–

M
A

X
R

E
N

D
E

R
B

U
FF

E
R

SI
Z

E
Z

+
G

et
In

te
ge

rv
10

24
M

ax
im

um
w

id
th

an
d

he
ig

ht
of

re
n-

de
rb

uf
fe

rs
4.

4.
2

–

Table 6.54. Implementation Dependent Values

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 462

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
A

ttr
ib

ut
e

M
A

X
PI

X
E

L
M

A
P

TA
B

L
E

Z
+

G
et

In
te

ge
rv

32
M

ax
im

um
si

ze
of

a
Pi

x-
el

M
ap

tr
an

sl
at

io
n

ta
bl

e
3.

7.
3

–

M
A

X
N

A
M

E
ST

A
C

K
D

E
PT

H
Z

+
G

et
In

te
ge

rv
64

M
ax

im
um

se
le

ct
io

n
na

m
e

st
ac

k
de

pt
h

5.
2

–

M
A

X
L

IS
T

N
E

ST
IN

G
Z

+
G

et
In

te
ge

rv
64

M
ax

im
um

di
sp

la
y

lis
t

ca
ll

ne
st

in
g

5.
5

–

M
A

X
E

VA
L

O
R

D
E

R
Z

+
G

et
In

te
ge

rv
8

M
ax

im
um

ev
al

ua
to

r
po

ly
-

no
m

ia
lo

rd
er

5.
1

–

M
A

X
V

IE
W

PO
R

T
D

IM
S

2
×
Z

+
G

et
In

te
ge

rv
se

e
2.

16
.1

M
ax

im
um

vi
ew

po
rt

di
m

en
si

on
s

2.
16

.1
–

M
A

X
A

T
T

R
IB

ST
A

C
K

D
E

PT
H

Z
+

G
et

In
te

ge
rv

16
M

ax
im

um
de

pt
h

of
th

e
se

rv
er

at
tr

ib
ut

e
st

ac
k

6
–

M
A

X
C

L
IE

N
T

A
T

T
R

IB
ST

A
C

K
D

E
PT

H
Z

+
G

et
In

te
ge

rv
16

M
ax

im
um

de
pt

h
of

th
e

cl
ie

nt
at

tr
ib

ut
e

st
ac

k
6

–

–
3
×
Z

+
-

32
M

ax
.s

iz
e

of
a

co
lo

rt
ab

le
3.

7.
3

–

–
Z

+
-

32
M

ax
.

si
ze

of
th

e
hi

st
og

ra
m

ta
bl

e
3.

7.
3

–

A
L

IA
SE

D
PO

IN
T

SI
Z

E
R

A
N

G
E

2
×
R

+
G

et
Fl

oa
tv

1,
1

R
an

ge
(l

o
to

hi
)

of
al

ia
se

d
po

in
ts

iz
es

3.
4

–

PO
IN

T
SI

Z
E

R
A

N
G

E
2
×
R

+
G

et
Fl

oa
tv

1,
1

R
an

ge
(l

o
to

hi
)

of
po

in
t

sp
ri

te
si

ze
s

3.
4

–

PO
IN

T
SI

Z
E

G
R

A
N

U
L

A
R

IT
Y

R
+

G
et

Fl
oa

tv
–

Po
in

t
sp

ri
te

si
ze

gr
an

ul
ar

-
ity

3.
4

–

Table 6.55. Implementation Dependent Values (cont.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 463

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
A

ttr
ib

ut
e

A
L

IA
SE

D
L

IN
E

W
ID

T
H

R
A

N
G

E
2
×
R

+
G

et
Fl

oa
tv

1,
1

R
an

ge
(l

o
to

hi
)o

fa
lia

se
d

lin
e

w
id

th
s

3.
5

–

SM
O

O
T

H
L

IN
E

W
ID

T
H

R
A

N
G

E
2
×
R

+
G

et
Fl

oa
tv

1,
1

R
an

ge
(l

o
to

hi
)

of
an

-
tia

lia
se

d
lin

e
w

id
th

s
3.

5
–

SM
O

O
T

H
L

IN
E

W
ID

T
H

G
R

A
N

U
L

A
R

IT
Y

R
+

G
et

Fl
oa

tv
–

A
nt

ia
lia

se
d

lin
e

w
id

th
gr

an
ul

ar
ity

3.
5

–

M
A

X
C

O
N

V
O

L
U

T
IO

N
W

ID
T

H
3
×
Z

+
G

et
C

on
vo

lu
tio

n-
Pa

ra
m

et
er

iv
3

M
ax

im
um

w
id

th
of

co
n-

vo
lu

tio
n

fil
te

r
4.

3
–

M
A

X
C

O
N

V
O

L
U

T
IO

N
H

E
IG

H
T

2
×
Z

+
G

et
C

on
vo

lu
tio

n-
Pa

ra
m

et
er

iv
3

M
ax

im
um

he
ig

ht
of

co
n-

vo
lu

tio
n

fil
te

r
4.

3
–

M
A

X
E

L
E

M
E

N
T

S
IN

D
IC

E
S

Z
+

G
et

In
te

ge
rv

–

R
ec

om
m

en
de

d
m

ax
.

nu
m

be
r

of
D

ra
w

R
an

ge
E

le
m

en
ts

in
di

ce
s

2.
8

–

M
A

X
E

L
E

M
E

N
T

S
V

E
R

T
IC

E
S

Z
+

G
et

In
te

ge
rv

–

R
ec

om
m

en
de

d
m

ax
.

nu
m

be
r

of
D

ra
w

R
an

ge
E

le
m

en
ts

ve
rt

ic
es

2.
8

–

C
O

M
PR

E
SS

E
D

T
E

X
T

U
R

E
FO

R
M

A
T

S
4
∗
×
Z

+
G

et
In

te
ge

rv
-

E
nu

m
er

at
ed

co
m

pr
es

se
d

te
xt

ur
e

fo
rm

at
s

3.
9.

5
–

N
U

M
C

O
M

PR
E

SS
E

D
T

E
X

T
U

R
E

FO
R

M
A

T
S

Z
+

G
et

In
te

ge
rv

4
N

um
be

r
of

co
m

pr
es

se
d

te
xt

ur
e

fo
rm

at
s

3.
9.

5
–

M
A

X
T

E
X

T
U

R
E

B
U

FF
E

R
SI

Z
E

Z
+

G
et

In
te

ge
rv

65
53

6
N

o.
of

ad
dr

es
sa

bl
e

te
xe

ls
fo

rb
uf

fe
rt

ex
tu

re
s

3.
9.

7
–

M
A

X
R

E
C

TA
N

G
L

E
T

E
X

T
U

R
E

SI
Z

E
Z

+
G

et
In

te
ge

rv
10

24
M

ax
.

w
id

th
&

he
ig

ht
of

re
ct

an
gu

la
rt

ex
tu

re
s

3.
9.

3
–

Table 6.56. Implementation Dependent Values (cont.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 464

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
A

ttr
ib

ut
e

E
X

T
E

N
SI

O
N

S
0
∗
×
S

G
et

St
ri

ng
i

–
Su

pp
or

te
d

in
di

vi
du

al
ex

-
te

ns
io

n
na

m
es

6.
1.

5
–

N
U

M
E

X
T

E
N

SI
O

N
S

Z
+

G
et

In
te

ge
rv

–
N

um
be

ro
fi

nd
iv

id
ua

le
x-

te
ns

io
n

na
m

es
6.

1.
5

–

M
A

JO
R

V
E

R
SI

O
N

Z
+

G
et

In
te

ge
rv

3
M

aj
or

ve
rs

io
n

nu
m

be
r

su
pp

or
te

d
6.

1.
5

–

M
IN

O
R

V
E

R
SI

O
N

Z
+

G
et

In
te

ge
rv

–
M

in
or

ve
rs

io
n

nu
m

be
r

su
pp

or
te

d
6.

1.
5

–

C
O

N
T

E
X

T
FL

A
G

S
Z

+
G

et
In

te
ge

rv
–

C
on

te
xt

fu
ll/

fo
rw

ar
d-

co
m

pa
tib

le
fla

g
6.

1.
5

–

E
X

T
E

N
SI

O
N

S
S

G
et

St
ri

ng
–

Su
pp

or
te

d
ex

te
ns

io
n

na
m

es
6.

1.
5

–

R
E

N
D

E
R

E
R

S
G

et
St

ri
ng

–
R

en
de

re
rs

tr
in

g
6.

1.
5

–

SH
A

D
IN

G
L

A
N

G
U

A
G

E
V

E
R

SI
O

N
S

G
et

St
ri

ng
–

Sh
ad

in
g

L
an

gu
ag

e
ve

r-
si

on
su

pp
or

te
d

6.
1.

5
–

V
E

N
D

O
R

S
G

et
St

ri
ng

–
V

en
do

rs
tr

in
g

6.
1.

5
–

V
E

R
SI

O
N

S
G

et
St

ri
ng

–
O

pe
nG

L
ve

rs
io

n
su

p-
po

rt
ed

6.
1.

5
–

Table 6.57. Implementation Dependent Version and Extension Support

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 465

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
A

ttr
ib

ut
e

M
A

X
V

E
R

T
E

X
A

T
T

R
IB

S
Z

+
G

et
In

te
ge

rv
16

N
um

be
r

of
ac

tiv
e

ve
rt

ex
at

tr
ib

ut
es

2.
7

–

M
A

X
V

E
R

T
E

X
U

N
IF

O
R

M
C

O
M

PO
N

E
N

T
S

Z
+

G
et

In
te

ge
rv

10
24

N
um

be
r

of
co

m
po

ne
nt

s
fo

rv
er

te
x

sh
ad

er
un

if
or

m
va

ri
ab

le
s

2.
14

.4
–

M
A

X
V

E
R

T
E

X
U

N
IF

O
R

M
B

L
O

C
K

S
Z

+
G

et
In

te
ge

rv
12

M
ax

nu
m

be
r

of
ve

rt
ex

un
if

or
m

bu
ff

er
s

pe
r

pr
o-

gr
am

2.
14

.4
–

M
A

X
V

E
R

T
E

X
O

U
T

PU
T

C
O

M
PO

N
E

N
T

S
Z

+
G

et
In

te
ge

rv
64

M
ax

nu
m

be
r

of
co

m
po

-
ne

nt
s

of
ou

tp
ut

s
w

ri
tte

n
by

a
ve

rt
ex

sh
ad

er
2.

14
.6

-

M
A

X
V

E
R

T
E

X
T

E
X

T
U

R
E

IM
A

G
E

U
N

IT
S

Z
+

G
et

In
te

ge
rv

16
N

um
be

ro
ft

ex
tu

re
im

ag
e

un
its

ac
ce

ss
ib

le
by

a
ve

r-
te

x
sh

ad
er

2.
14

.4
–

Table 6.58. Implementation Dependent Vertex Shader Limits

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 466

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
A

ttr
ib

ut
e

M
A

X
G

E
O

M
E

T
RY

U
N

IF
O

R
M

B
L

O
C

K
S

Z
+

G
et

In
te

ge
rv

12
M

ax
nu

m
be

ro
fg

eo
m

et
ry

un
if

or
m

bu
ff

er
s

pe
r

pr
o-

gr
am

2.
14

.4
–

M
A

X
G

E
O

M
E

T
RY

IN
PU

T
C

O
M

PO
N

E
N

T
S

Z
+

G
et

In
te

ge
rv

64
M

ax
nu

m
be

r
of

co
m

po
-

ne
nt

s
of

in
pu

ts
re

ad
by

a
ge

om
et

ry
sh

ad
er

2.
15

.4
-

M
A

X
G

E
O

M
E

T
RY

O
U

T
PU

T
C

O
M

PO
N

E
N

T
S

Z
+

G
et

In
te

ge
rv

12
8

M
ax

nu
m

be
r

of
co

m
po

-
ne

nt
s

of
ou

tp
ut

s
w

ri
tte

n
by

a
ge

om
et

ry
sh

ad
er

2.
15

.4
-

M
A

X
G

E
O

M
E

T
RY

O
U

T
PU

T
V

E
R

T
IC

E
S

Z
+

G
et

In
te

ge
rv

25
6

M
ax

im
um

nu
m

be
r

of
ve

rt
ic

es
th

at
an

y
ge

-
om

et
ry

sh
ad

er
ca

n
ca

n
em

it

2.
15

.4
-

M
A

X
G

E
O

M
E

T
RY

TO
TA

L
O

U
T

PU
T

C
O

M
PO

N
E

N
T

S
Z

+
G

et
In

te
ge

rv
10

24

M
ax

im
um

nu
m

be
r

of
to

-
ta

l
co

m
po

ne
nt

s
(a

ll
ve

r-
tic

es
)

of
ac

tiv
e

va
ry

in
gs

th
at

a
ge

om
et

ry
sh

ad
er

ca
n

em
it

2.
15

.4
-

M
A

X
G

E
O

M
E

T
RY

T
E

X
T

U
R

E
IM

A
G

E
U

N
IT

S
Z

+
G

et
In

te
ge

rv
16

N
um

be
ro

ft
ex

tu
re

im
ag

e
un

its
ac

ce
ss

ib
le

by
a

ge
-

om
et

ry
sh

ad
er

2.
15

.4
-

Table 6.59. Implementation Dependent Geometry Shader Limits

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 467

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
A

ttr
ib

ut
e

M
A

X
FR

A
G

M
E

N
T

U
N

IF
O

R
M

C
O

M
PO

N
E

N
T

S
Z

+
G

et
In

te
ge

rv
10

24
N

um
be

r
of

co
m

po
ne

nt
s

fo
r

fr
ag

.
sh

ad
er

un
if

or
m

va
ri

ab
le

s
3.

12
.1

–

M
A

X
FR

A
G

M
E

N
T

U
N

IF
O

R
M

B
L

O
C

K
S

Z
+

G
et

In
te

ge
rv

12
M

ax
nu

m
be

ro
ff

ra
gm

en
t

un
if

or
m

bu
ff

er
s

pe
r

pr
o-

gr
am

2.
14

.4
–

M
A

X
FR

A
G

M
E

N
T

IN
PU

T
C

O
M

PO
N

E
N

T
S

Z
+

G
et

In
te

ge
rv

12
8

M
ax

nu
m

be
r

of
co

m
po

-
ne

nt
s

of
in

pu
ts

re
ad

by
a

fr
ag

m
en

ts
ha

de
r

3.
12

.2
-

M
A

X
T

E
X

T
U

R
E

IM
A

G
E

U
N

IT
S

Z
+

G
et

In
te

ge
rv

16
N

um
be

r
of

te
xt

ur
e

im
-

ag
e

un
its

ac
ce

ss
ib

le
by

a
fr

ag
m

en
ts

ha
de

r
2.

14
.4

–

M
IN

PR
O

G
R

A
M

T
E

X
E

L
O

FF
SE

T
Z

G
et

In
te

ge
rv

-8
M

in
im

um
te

xe
lo

ff
se

ta
l-

lo
w

ed
in

lo
ok

up
2.

14
.4

–

M
A

X
PR

O
G

R
A

M
T

E
X

E
L

O
FF

SE
T

Z
G

et
In

te
ge

rv
7

M
ax

im
um

te
xe

lo
ff

se
ta

l-
lo

w
ed

in
lo

ok
up

2.
14

.4
–

M
A

X
T

E
X

T
U

R
E

U
N

IT
S

Z
+

G
et

In
te

ge
rv

2
N

um
be

r
of

fix
ed

-
fu

nc
tio

n
te

xt
ur

e
un

its
2.

5
–

M
A

X
T

E
X

T
U

R
E

C
O

O
R

D
S

Z
+

G
et

In
te

ge
rv

8
N

um
be

r
of

te
xt

ur
e

co
or

-
di

na
te

se
ts

2.
7

–

Table 6.60. Implementation Dependent Fragment Processing Limits

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 468

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
A

ttr
ib

ut
e

M
A

X
U

N
IF

O
R

M
B

U
FF

E
R

B
IN

D
IN

G
S

Z
+

G
et

In
te

ge
rv

36
M

ax
nu

m
be

r
of

un
if

or
m

bu
ff

er
bi

nd
in

g
po

in
ts

on
th

e
co

nt
ex

t
2.

14
.4

–

M
A

X
U

N
IF

O
R

M
B

L
O

C
K

SI
Z

E
Z

+
G

et
In

te
ge

rv
16

38
4

M
ax

si
ze

in
ba

si
c

m
a-

ch
in

e
un

its
of

a
un

if
or

m
bl

oc
k

2.
14

.4
–

U
N

IF
O

R
M

B
U

FF
E

R
O

FF
SE

T
A

L
IG

N
M

E
N

T
Z

+
G

et
In

te
ge

rv
1

M
in

im
um

re
qu

ir
ed

al
ig

n-
m

en
t

fo
r

un
if

or
m

bu
ff

er
si

ze
s

an
d

of
fs

et
s

2.
14

.4
–

M
A

X
C

O
M

B
IN

E
D

U
N

IF
O

R
M

B
L

O
C

K
S

Z
+

G
et

In
te

ge
rv

36
M

ax
nu

m
be

r
of

un
if

or
m

bu
ff

er
s

pe
rp

ro
gr

am
2.

14
.4

–

M
A

X
C

O
M

B
IN

E
D

V
E

R
T

E
X

U
N

IF
O

R
M

C
O

M
PO

-

N
E

N
T

S
Z

+
G

et
In

te
ge

rv
†

N
um

be
r

of
w

or
ds

fo
r

ve
rt

ex
sh

ad
er

un
if

or
m

va
ri

ab
le

s
in

al
l

un
i-

fo
rm

bl
oc

ks
(i

nc
lu

di
ng

de
fa

ul
t)

2.
14

.4
–

M
A

X
C

O
M

B
IN

E
D

FR
A

G
M

E
N

T
U

N
IF

O
R

M
C

O
M

PO
-

N
E

N
T

S
Z

+
G

et
In

te
ge

rv
†

N
um

be
r

of
w

or
ds

fo
r

fr
ag

m
en

t
sh

ad
er

un
if

or
m

va
ri

ab
le

s
in

al
l

un
i-

fo
rm

bl
oc

ks
(i

nc
lu

di
ng

de
fa

ul
t)

2.
14

.4
–

M
A

X
C

O
M

B
IN

E
D

G
E

O
M

E
T

RY
U

N
IF

O
R

M
C

O
M

PO
-

N
E

N
T

S
Z

+
G

et
In

te
ge

rv
†

N
um

be
r

of
w

or
ds

fo
r

ge
om

et
ry

sh
ad

er
un

if
or

m
va

ri
ab

le
s

in
al

l
un

i-
fo

rm
bl

oc
ks

(i
nc

lu
di

ng
de

fa
ul

t)

2.
14

.4
–

M
A

X
VA

RY
IN

G
C

O
M

PO
N

E
N

T
S

Z
+

G
et

In
te

ge
rv

60
N

um
be

r
of

co
m

po
ne

nt
s

fo
rv

ar
yi

ng
va

ri
ab

le
s

2.
14

.6
–

M
A

X
C

O
M

B
IN

E
D

T
E

X
T

U
R

E
IM

A
G

E
U

N
IT

S
Z

+
G

et
In

te
ge

rv
48

To
ta

l
nu

m
be

r
of

te
xt

ur
e

un
its

ac
ce

ss
ib

le
by

th
e

G
L

2.
14

.4
–

Table 6.61. Implementation Dependent Aggregate Shader Limits
† The minimum value for each stage is MAX_stage_UNIFORM_BLOCKS ×
MAX_UNIFORM_BLOCK_SIZE / 4 + MAX_stage_UNIFORM_COMPONENTS

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 469

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
A

ttr
ib

ut
e

M
A

X
SA

M
PL

E
M

A
SK

W
O

R
D

S
Z

+
G

et
In

te
ge

rv
1

M
ax

im
um

nu
m

be
r

of
sa

m
pl

e
m

as
k

w
or

ds
4.

1.
3

–

M
A

X
C

O
L

O
R

T
E

X
T

U
R

E
SA

M
PL

E
S

Z
+

G
et

In
te

ge
rv

1
M

ax
im

um
nu

m
be

r
of

sa
m

pl
es

in
a

co
lo

r
m

ul
tis

am
pl

e
te

xt
ur

e
4.

1.
3

–

M
A

X
D

E
PT

H
T

E
X

T
U

R
E

SA
M

PL
E

S
Z

+
G

et
In

te
ge

rv
1

M
ax

im
um

nu
m

be
r

of
sa

m
pl

es
in

a
de

pt
h/

st
en

ci
l

m
ul

ti-
sa

m
pl

e
te

xt
ur

e

4.
1.

3
–

M
A

X
IN

T
E

G
E

R
SA

M
PL

E
S

Z
+

G
et

In
te

ge
rv

1
M

ax
im

um
nu

m
be

r
of

sa
m

pl
es

in
in

te
ge

rf
or

m
at

m
ul

tis
am

pl
e

bu
ff

er
s

4.
4.

2
–

Q
U

A
D

S
FO

L
L

O
W

PR
O

V
O

K
IN

G
V

E
R

T
E

X
B

G
et

B
oo

le
an

v
–

W
he

th
er

qu
ad

s
fo

llo
w

pr
ov

ok
in

g
ve

rt
ex

co
nv

en
-

tio
n

2.
21

–

Q
U

E
RY

C
O

U
N

T
E

R
B

IT
S

3
×
Z

+
G

et
Q

ue
ry

iv
se

e
6.

1.
13

A
sy

nc
hr

on
ou

s
qu

er
y

co
un

te
rb

its
6.

1.
13

–

M
A

X
SE

RV
E

R
W

A
IT

T
IM

E
O

U
T

Z
+

G
et

In
te

ge
r6

4v
0

M
ax

im
um

W
ai

tS
yn

c
tim

eo
ut

in
te

rv
al

5.
7.

1
–

Table 6.62. Implementation Dependent Values (cont.)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 470

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
A

ttr
ib

ut
e

M
A

X
T

R
A

N
SF

O
R

M
FE

E
D

B
A

C
K

IN
T

E
R

L
E

AV
E

D
-

C
O

M
PO

N
E

N
T

S
Z

+
G

et
In

te
ge

rv
64

M
ax

nu
m

be
r

of
co

m
po

-
ne

nt
s

to
w

ri
te

to
a

si
n-

gl
e

bu
ff

er
in

in
te

rl
ea

ve
d

m
od

e

2.
19

–

M
A

X
T

R
A

N
SF

O
R

M
FE

E
D

B
A

C
K

SE
PA

R
A

T
E

A
T

T
R

IB
S

Z
+

G
et

In
te

ge
rv

4

M
ax

nu
m

be
r

of
se

pa
ra

te
at

tr
ib

ut
es

or
va

yi
ng

s
th

at
ca

n
be

ca
pt

ur
ed

in
tr

an
s-

fo
rm

fe
ed

ba
ck

2.
19

–

M
A

X
T

R
A

N
SF

O
R

M
FE

E
D

B
A

C
K

SE
PA

R
A

T
E

C
O

M
PO

-

N
E

N
T

S
Z

+
G

et
In

te
ge

rv
4

M
ax

nu
m

be
r

of
co

m
-

po
ne

nt
s

pe
r

at
tr

ib
ut

e
or

va
ry

in
g

in
se

pa
ra

te
m

od
e

2.
19

–

Table 6.63. Implementation Dependent Transform Feedback Limits

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 471

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

M
in

im
um

V
al

ue
D

es
cr

ip
tio

n
Se

c.
A

ttr
ib

ut
e

A
U

X
B

U
FF

E
R

S
Z

+
G

et
In

te
ge

rv
0

N
um

be
ro

fa
ux

ili
ar

y
bu

ff
er

s
4.

2.
1

–

M
A

X
D

R
A

W
B

U
FF

E
R

S
Z

+
G

et
In

te
ge

rv
8

M
ax

im
um

nu
m

be
r

of
ac

tiv
e

dr
aw

bu
ff

er
s

4.
2.

1
–

M
A

X
D

U
A

L
SO

U
R

C
E

D
R

A
W

B
U

FF
E

R
S

Z
+

G
et

In
te

ge
rv

1
M

ax
im

um
nu

m
be

r
of

ac
tiv

e
dr

aw
bu

ff
er

s
w

he
n

us
in

g
du

al
-s

ou
rc

e
bl

en
di

ng
4.

1.
8

–

R
G

B
A

M
O

D
E

B
G

et
B

oo
le

an
v

–
Tr

ue
if

co
lo

rb
uf

fe
rs

st
or

e
R

G
B

A
2.

7
–

IN
D

E
X

M
O

D
E

B
G

et
B

oo
le

an
v

–
Tr

ue
if

co
lo

rb
uf

fe
rs

st
or

e
in

de
xe

s
2.

7
–

D
O

U
B

L
E

B
U

FF
E

R
B

G
et

B
oo

le
an

v
–

Tr
ue

if
fr

on
t&

ba
ck

bu
ff

er
s

ex
is

t
4.

2.
1

–
ST

E
R

E
O

B
G

et
B

oo
le

an
v

–
Tr

ue
if

le
ft

&
ri

gh
tb

uf
fe

rs
ex

is
t

6
–

SA
M

PL
E

B
U

FF
E

R
S

Z
+

G
et

In
te

ge
rv

0
N

um
be

ro
fm

ul
tis

am
pl

e
bu

ff
er

s
3.

3.
1

–
SA

M
PL

E
S

Z
+

G
et

In
te

ge
rv

0
C

ov
er

ag
e

m
as

k
si

ze
3.

3.
1

–
SA

M
PL

E
PO

SI
T

IO
N

n
×

2
×
R

[0
,1

]
G

et
M

ul
tis

am
pl

ef
v

–
E

xp
lic

it
sa

m
pl

e
po

si
tio

ns
3.

3.
1

–

M
A

X
C

O
L

O
R

A
T

TA
C

H
M

E
N

T
S

Z
+

G
et

In
te

ge
rv

8
M

ax
im

um
nu

m
be

r
of

FB
O

at
ta

ch
-

m
en

tp
oi

nt
s

fo
rc

ol
or

bu
ff

er
s

4.
4.

2
–

M
A

X
SA

M
PL

E
S

Z
+

G
et

In
te

ge
rv

4
M

ax
im

um
nu

m
be

r
of

sa
m

pl
es

su
p-

po
rt

ed
fo

rm
ul

tis
am

pl
in

g
4.

4.
2

–

x
B

IT
S

Z
+

G
et

In
te

ge
rv

-
N

um
be

r
of

bi
ts

in
x

co
lo

r
bu

ff
er

co
m

po
ne

nt
.

x
is

on
e

of
R
E
D

,
G
R
E
E
N

,B
L
U
E

,A
L
P
H
A

,o
rI
N
D
E
X

4
–

D
E

PT
H

B
IT

S
Z

+
G

et
In

te
ge

rv
-

N
um

be
ro

fd
ep

th
bu

ff
er

pl
an

es
4

–
ST

E
N

C
IL

B
IT

S
Z

+
G

et
In

te
ge

rv
-

N
um

be
ro

fs
te

nc
il

pl
an

es
4

–

A
C

C
U

M
x

B
IT

S
Z

+
G

et
In

te
ge

rv
-

N
um

be
r

of
bi

ts
in

x
ac

cu
m

ul
a-

tio
n

bu
ff

er
co

m
po

ne
nt

(x
is
R
E
D

,
G
R
E
E
N

,B
L
U
E

,o
rA
L
P
H
A

4
–

Table 6.64. Framebuffer Dependent Values
OpenGL 3.3 (Compatibility Profile) - March 11, 2010

6.2. STATE TABLES 472

G
et

va
lu

e
Ty

pe
G

et
C

om
m

an
d

In
iti

al
V

al
ue

D
es

cr
ip

tio
n

Se
c.

A
ttr

ib
ut

e
L

IS
T

B
A

SE
Z

+
G

et
In

te
ge

rv
0

Se
tti

ng
of

L
is

tB
as

e
5.

5
lis

t

L
IS

T
IN

D
E

X
Z

+
G

et
In

te
ge

rv
0

N
um

be
r

of
di

sp
la

y
lis

t
un

de
r

co
n-

st
ru

ct
io

n;
0

if
no

ne
5.

5
–

L
IS

T
M

O
D

E
Z

+
G

et
In

te
ge

rv
0

M
od

e
of

di
sp

la
y

lis
tu

nd
er

co
ns

tr
uc

-
tio

n;
un

de
fin

ed
if

no
ne

5.
5

–

–
16
∗
×
A

–
em

pt
y

Se
rv

er
at

tr
ib

ut
e

st
ac

k
6

–
A

T
T

R
IB

ST
A

C
K

D
E

PT
H

Z
+

G
et

In
te

ge
rv

0
Se

rv
er

at
tr

ib
ut

e
st

ac
k

po
in

te
r

6
–

–
16
∗
×
A

–
em

pt
y

C
lie

nt
at

tr
ib

ut
e

st
ac

k
6

–
C

L
IE

N
T

A
T

T
R

IB
ST

A
C

K
D

E
PT

H
Z

+
G

et
In

te
ge

rv
0

C
lie

nt
at

tr
ib

ut
e

st
ac

k
po

in
te

r
6

–
N

A
M

E
ST

A
C

K
D

E
PT

H
Z

+
G

et
In

te
ge

rv
0

N
am

e
st

ac
k

de
pt

h
5.

2
–

R
E

N
D

E
R

M
O

D
E

Z
3

G
et

In
te

ge
rv

R
E
N
D
E
R

R
en

de
rM

od
e

se
tti

ng
5.

2
–

SE
L

E
C

T
IO

N
B

U
FF

E
R

PO
IN

T
E

R
Y

G
et

Po
in

te
rv

0
Se

le
ct

io
n

bu
ff

er
po

in
te

r
5.

2
se

le
ct

SE
L

E
C

T
IO

N
B

U
FF

E
R

SI
Z

E
Z

+
G

et
In

te
ge

rv
0

Se
le

ct
io

n
bu

ff
er

si
ze

5.
2

se
le

ct
FE

E
D

B
A

C
K

B
U

FF
E

R
PO

IN
T

E
R

Y
G

et
Po

in
te

rv
0

Fe
ed

ba
ck

bu
ff

er
po

in
te

r
5.

3
fe

ed
ba

ck
FE

E
D

B
A

C
K

B
U

FF
E

R
SI

Z
E

Z
+

G
et

In
te

ge
rv

0
Fe

ed
ba

ck
bu

ff
er

si
ze

5.
3

fe
ed

ba
ck

FE
E

D
B

A
C

K
B

U
FF

E
R

T
Y

PE
Z

5
G

et
In

te
ge

rv
2
D

Fe
ed

ba
ck

ty
pe

5.
3

fe
ed

ba
ck

–
n
×
Z

8
G

et
E

rr
or

0
C

ur
re

nt
er

ro
rc

od
e(

s)
2.

5
–

–
n
×
B

–
F
A
L
S
E

Tr
ue

if
th

er
e

is
a

co
rr

es
po

nd
in

g
er

ro
r

2.
5

–
B

–
F
A
L
S
E

O
cc

lu
si

on
qu

er
y

ac
tiv

e
4.

1.
7

–
C

U
R

R
E

N
T

Q
U

E
RY

3
×
Z

+
G

et
Q

ue
ry

iv
0

A
ct

iv
e

qu
er

y
ob

je
ct

na
m

es
6.

1.
13

–

C
O

PY
R

E
A

D
B

U
FF

E
R

Z
+

G
et

In
te

ge
rv

0
B

uf
fe

r
ob

je
ct

bo
un

d
to

co
py

bu
ff

er
“r

ea
d”

bi
nd

po
in

t
2.

9.
5

–

C
O

PY
W

R
IT

E
B

U
FF

E
R

Z
+

G
et

In
te

ge
rv

0
B

uf
fe

r
ob

je
ct

bo
un

d
to

co
py

bu
ff

er
“w

ri
te

”
bi

nd
po

in
t

2.
9.

5
–

T
E

X
T

U
R

E
C

U
B

E
M

A
P

SE
A

M
L

E
SS

B
Is

E
na

bl
ed

F
A
L
S
E

Se
am

le
ss

cu
be

m
ap

fil
te

ri
ng

en
ab

le
3.

9.
10

–

Table 6.65. Miscellaneous

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Appendix A

Invariance

The OpenGL specification is not pixel exact. It therefore does not guarantee an ex-
act match between images produced by different GL implementations. However,
the specification does specify exact matches, in some cases, for images produced
by the same implementation. The purpose of this appendix is to identify and pro-
vide justification for those cases that require exact matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of GL com-
mands. For any given GL and framebuffer state vector, and for any GL command,
the resulting GL and framebuffer state must be identical whenever the command is
executed on that initial GL and framebuffer state.

One purpose of repeatability is avoidance of visual artifacts when a double-
buffered scene is redrawn. If rendering is not repeatable, swapping between two
buffers rendered with the same command sequence may result in visible changes
in the image. Such false motion is distracting to the viewer. Another reason for
repeatability is testability.

Repeatability, while important, is a weak requirement. Given only repeata-
bility as a requirement, two scenes rendered with one (small) polygon changed
in position might differ at every pixel. Such a difference, while within the law
of repeatability, is certainly not within its spirit. Additional invariance rules are
desirable to ensure useful operation.

473

A.2. MULTI-PASS ALGORITHMS 474

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such al-
gorithms render multiple times, each time with a different GL mode vector, to
eventually produce a result in the framebuffer. Examples of these algorithms in-
clude:

• “Erasing” a primitive from the framebuffer by redrawing it, either in a dif-
ferent color or using the XOR logical operation.

• Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increase the complexity of high-
performance implementations of the GL. Even the weak repeatability requirement
significantly constrains a parallel implementation of the GL. Because GL imple-
mentations are required to implement ALL GL capabilities, not just a convenient
subset, those that utilize hardware acceleration are expected to alternate between
hardware and software modules based on the current GL mode vector. A strong
invariance requirement forces the behavior of the hardware and software modules
to be identical, something that may be very difficult to achieve (for example, if the
hardware does floating-point operations with different precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to port to
OpenGL.

A.3 Invariance Rules

For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebuffer state vector, and for any given GL com-
mand, the resulting GL and framebuffer state must be identical each time the com-
mand is executed on that initial GL and framebuffer state.

Rule 2 Changes to the following state values have no side effects (the use of any
other state value is not affected by the change):

Required:

• Framebuffer contents (all bitplanes)

• The color buffers enabled for writing

• The values of matrices other than the top-of-stack matrices

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

A.3. INVARIANCE RULES 475

• Scissor parameters (other than enable)

• Writemasks (color, index, depth, stencil)

• Clear values (color, index, depth, stencil, accumulation)

◦ Current values (color, index, normal, texture coords, edgeflag)

◦ Current raster color, index and texture coordinates.

◦ Material properties (ambient, diffuse, specular, emission, shininess)

Strongly suggested:

• Matrix mode

• Matrix stack depths

• Alpha test parameters (other than enable)

• Stencil parameters (other than enable)

• Depth test parameters (other than enable)

• Blend parameters (other than enable)

• Logical operation parameters (other than enable)

• Pixel storage and transfer state

• Evaluator state (except as it affects the vertex data generated by the
evaluators)

• Polygon offset parameters (other than enables, and except as they affect
the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state values
marked with • in Rule 2.

Corollary 2 The window coordinates (x, y, and z) of generated fragments are also
invariant with respect to

Required:

• Current values (color, color index, normal, texture coords, edgeflag)

• Current raster color, color index, and texture coordinates

• Material properties (ambient, diffuse, specular, emission, shininess)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

A.4. WHAT ALL THIS MEANS 476

Rule 3 The arithmetic of each per-fragment operation is invariant except with re-
spect to parameters that directly control it (the parameters that control the alpha
test, for instance, are the alpha test enable, the alpha test function, and the alpha
test reference value).

Corollary 3 Images rendered into different color buffers sharing the same frame-
buffer, either simultaneously or separately using the same command sequence, are
pixel identical.

Rule 4 The same vertex or fragment shader will produce the same result when
run multiple times with the same input. The wording ‘the same shader’ means a
program object that is populated with the same source strings, which are compiled
and then linked, possibly multiple times, and which program object is then executed
using the same GL state vector.

Rule 5 All fragment shaders that either conditionally or unconditionally assign
gl_FragCoord.z to gl_FragDepth are depth-invariant with respect to each
other, for those fragments where the assignment to gl_FragDepth actually is
done.

A.4 What All This Means

Hardware accelerated GL implementations are expected to default to software op-
eration when some GL state vectors are encountered. Even the weak repeatability
requirement means, for example, that OpenGL implementations cannot apply hys-
teresis to this swap, but must instead guarantee that a given mode vector implies
that a subsequent command always is executed in either the hardware or the soft-
ware machine.

The stronger invariance rules constrain when the switch from hardware to soft-
ware rendering can occur, given that the software and hardware renderers are not
pixel identical. For example, the switch can be made when blending is enabled or
disabled, but it should not be made when a change is made to the blending param-
eters.

Because floating point values may be represented using different formats in dif-
ferent renderers (hardware and software), many OpenGL state values may change
subtly when renderers are swapped. This is the type of state value change that Rule
1 seeks to avoid.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Appendix B

Corollaries

The following observations are derived from the body and the other appendixes of
the specification. Absence of an observation from this list in no way impugns its
veracity.

1. The CURRENT_RASTER_TEXTURE_COORDS must be maintained correctly at
all times, including periods while texture mapping is not enabled, and when
the GL is in color index mode.

2. When requested, texture coordinates returned in feedback mode are always
valid, including periods while texture mapping is not enabled, and when the
GL is in color index mode.

3. The error semantics of upward compatible OpenGL revisions may change,
and features deprecated in a previous revision may be removed. Otherwise,
only additions can be made to upward compatible revisions.

4. GL query commands are not required to satisfy the semantics of the Flush
or the Finish commands. All that is required is that the queried state be con-
sistent with complete execution of all previously executed GL commands.

5. Application specified point size and line width must be returned as specified
when queried. Implementation-dependent clamping affects the values only
while they are in use.

6. Bitmaps and pixel transfers do not cause selection hits.

7. The mask specified as the third argument to StencilFunc affects the operands
of the stencil comparison function, but has no direct effect on the update of
the stencil buffer. The mask specified by StencilMask has no effect on the

477

478

stencil comparison function; it limits the effect of the update of the stencil
buffer.

8. Polygon shading is completed before the polygon mode is interpreted. If the
shade model is FLAT, all of the points or lines generated by a single polygon
will have the same color.

9. A display list is just a group of commands and arguments, so errors generated
by commands in a display list must be generated when the list is executed.
If the list is created in COMPILE mode, errors should not be generated while
the list is being created.

10. RasterPos does not change the current raster index from its default value
in an RGBA mode GL context. Likewise, RasterPos does not change the
current raster color from its default value in a color index GL context. Both
the current raster index and the current raster color can be queried, however,
regardless of the color mode of the GL context.

11. A material property that is attached to the current color via ColorMaterial
always takes the value of the current color. Attempts to change that material
property via Material calls have no effect.

12. Material and ColorMaterial can be used to modify the RGBA material
properties, even in a color index context. Likewise, Material can be used to
modify the color index material properties, even in an RGBA context.

13. There is no atomicity requirement for OpenGL rendering commands, even
at the fragment level.

14. Because rasterization of non-antialiased polygons is point sampled, poly-
gons that have no area generate no fragments when they are rasterized in
FILL mode, and the fragments generated by the rasterization of “narrow”
polygons may not form a continuous array.

15. OpenGL does not force left- or right-handedness on any of its coordinates
systems. Consider, however, the following conditions: (1) the object coordi-
nate system is right-handed; (2) the only commands used to manipulate the
model-view matrix are Scale (with positive scaling values only), Rotate, and
Translate; (3) exactly one of either Frustum or Ortho is used to set the pro-
jection matrix; (4) the near value is less than the far value for DepthRange.
If these conditions are all satisfied, then the eye coordinate system is right-
handed and the clip, normalized device, and window coordinate systems are
left-handed.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

479

16. ColorMaterial has no effect on color index lighting.

17. (No pixel dropouts or duplicates.) Let two polygons share an identical edge.
That is, there exist vertices A and B of an edge of one polygon, and vertices
C and D of an edge of the other polygon; the positions of vertex A and
C are identical; and the positions of vertex B and D are identical. Vertex
positions are identical for the fixed-function pipeline if they are specified
with the same input values and the state of coordinate transformations is
identical when the vertices are processed; otherwise they are identical if the
gl_Position values output by the vertex (or if active, geometry) shader
are identical. Then, when the fragments produced by rasterization of both
polygons are taken together, each fragment intersecting the interior of the
shared edge is produced exactly once.

18. OpenGL state continues to be modified in FEEDBACK mode and in SELECT

mode. The contents of the framebuffer are not modified.

19. The current raster position, the user defined clip planes, the spot directions
and the light positions for LIGHTi, and the eye planes for texgen are trans-
formed when they are specified. They are not transformed during a PopAt-
trib, or when copying a context.

20. Dithering algorithms may be different for different components. In particu-
lar, alpha may be dithered differently from red, green, or blue, and an imple-
mentation may choose to not dither alpha at all.

21. For any GL and framebuffer state, and for any group of GL commands and
arguments, the resulting GL and framebuffer state is identical whether the
GL commands and arguments are executed normally or from a display list.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Appendix C

Compressed Texture Image
Formats

C.1 RGTC Compressed Texture Image Formats

Compressed texture images stored using the RGTC compressed image encodings
are represented as a collection of 4 × 4 texel blocks, where each block contains
64 or 128 bits of texel data. The image is encoded as a normal 2D raster image in
which each 4× 4 block is treated as a single pixel. If an RGTC image has a width
or height that is not a multiple of four, the data corresponding to texels outside the
image are irrelevant and undefined.

When an RGTC image with a width of w, height of h, and block size of block-
size (8 or 16 bytes) is decoded, the corresponding image size (in bytes) is:

dw
4
e × dh

4
e × blocksize.

When decoding an RGTC image, the block containing the texel at offset (x, y)
begins at an offset (in bytes) relative to the base of the image of:

blocksize×
(
dw

4
e × by

4
c+ bx

4
c
)
.

The data corresponding to a specific texel (x, y) are extracted from a 4×4 texel
block using a relative (x, y) value of

(x mod 4, y mod 4).

There are four distinct RGTC image formats:

480

C.1. RGTC COMPRESSED TEXTURE IMAGE FORMATS 481

C.1.1 Format COMPRESSED_RED_RGTC1

Each 4× 4 block of texels consists of 64 bits of unsigned red image data.
Each red image data block is encoded as a sequence of 8 bytes, called (in order

of increasing address):

red0, red1, bits0, bits1, bits2, bits3, bits4, bits5

The 6 bits∗ bytes of the block are decoded into a 48-bit bit vector:

bits = bits0+256×(bits1 + 256× (bits2 + 256× (bits3 + 256× (bits4 + 256× bits5))))

red0 and red1 are 8-bit unsigned integers that are unpacked to red values
RED0 and RED1 as though they were pixels with a format of LUMINANCE and a
type of UNSIGNED_BYTE.

bits is a 48-bit unsigned integer, from which a three-bit control code is ex-
tracted for a texel at location (x, y) in the block using:

code(x, y) = bits [3× (4× y + x) + 2 . . . 3× (4× y + x) + 0]

where bit 47 is the most significant and bit 0 is the least significant bit.
The red value R for a texel at location (x, y) in the block is given by:

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

C.1. RGTC COMPRESSED TEXTURE IMAGE FORMATS 482

R =



RED0, red0 > red1, code(x, y) = 0
RED1, red0 > red1, code(x, y) = 1
6RED0+RED1

7, red0 > red1, code(x, y) = 2
5RED0+2RED1

7, red0 > red1, code(x, y) = 3
4RED0+3RED1

7, red0 > red1, code(x, y) = 4
3RED0+4RED1

7, red0 > red1, code(x, y) = 5
2RED0+5RED1

7, red0 > red1, code(x, y) = 6
RED0+6RED1

7, red0 > red1, code(x, y) = 7

RED0, red0 ≤ red1, code(x, y) = 0
RED1, red0 ≤ red1, code(x, y) = 1
4RED0+RED1

5, red0 ≤ red1, code(x, y) = 2
3RED0+2RED1

5, red0 ≤ red1, code(x, y) = 3
2RED0+3RED1

5, red0 ≤ red1, code(x, y) = 4
RED0+4RED1

5, red0 ≤ red1, code(x, y) = 5

REDmin, red0 ≤ red1, code(x, y) = 6
REDmax, red0 ≤ red1, code(x, y) = 7

REDmin and REDmax are 0.0 and 1.0 respectively.
Since the decoded texel has a red format, the resulting RGBA value for the

texel is (R, 0, 0, 1).

C.1.2 Format COMPRESSED_SIGNED_RED_RGTC1

Each 4 × 4 block of texels consists of 64 bits of signed red image data. The red
values of a texel are extracted in the same way as COMPRESSED_RED_RGTC1 ex-
cept red 0, red 1, RED 0, RED 1, REDmin, and REDmax are signed values
defined as follows:

red0 and red1 are 8-bit signed (twos complement) integers.

RED0 =

{
red0
127.0, red0 > −128

−1.0, red0 = −128

RED1 =

{
red1
127.0, red1 > −128

−1.0, red1 = −128

REDmin = −1.0

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

C.1. RGTC COMPRESSED TEXTURE IMAGE FORMATS 483

REDmax = 1.0

CAVEAT for signed red0 and red1 values: the expressions red0 > red1 and
red0 ≤ red1 above are considered undefined (read: may vary by implementation)
when red0 = −127 and red1 = −128. This is because if red0 were remapped to
-127 prior to the comparison to reduce the latency of a hardware decompressor, the
expressions would reverse their logic. Encoders for the signed red-green formats
should avoid encoding blocks where red0 = −127 and red1 = −128.

C.1.3 Format COMPRESSED_RG_RGTC2

Each 4 × 4 block of texels consists of 64 bits of compressed unsigned red image
data followed by 64 bits of compressed unsigned green image data.

The first 64 bits of compressed red are decoded exactly like COMPRESSED_-

RED_RGTC1 above.
The second 64 bits of compressed green are decoded exactly like

COMPRESSED_RED_RGTC1 above except the decoded value R for this second
block is considered the resulting green value G.

Since the decoded texel has a red-green format, the resulting RGBA value for
the texel is (R,G, 0, 1).

C.1.4 Format COMPRESSED_SIGNED_RG_RGTC2

Each 4× 4 block of texels consists of 64 bits of compressed signed red image data
followed by 64 bits of compressed signed green image data.

The first 64 bits of compressed red are decoded exactly like COMPRESSED_-

SIGNED_RED_RGTC1 above.
The second 64 bits of compressed green are decoded exactly like

COMPRESSED_SIGNED_RED_RGTC1 above except the decoded value R for this
second block is considered the resulting green value G.

Since this image has a red-green format, the resulting RGBA value is
(R,G, 0, 1).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Appendix D

Shared Objects and Multiple
Contexts

This appendix describes special considerations for objects shared between multiple
OpenGL context, including deletion behavior and how changes to shared objects
are propagated between contexts.

Objects that can be shared between contexts include pixel and vertex buffer ob-
jects, display lists, program and shader objects, renderbuffer objects, sync objects,
and texture objects (except for the texture objects named zero).

Framebuffer, query, and vertex array objects are not shared.
Implementations may allow sharing between contexts implementing differ-

ent OpenGL versions or different profiles of the same OpenGL version (see ap-
pendix E). However, implementation-dependent behavior may result when aspects
and/or behaviors of such shared objects do not apply to, and/or are not described
by more than one version or profile.

D.1 Object Deletion Behavior

D.1.1 Automatic Unbinding of Deleted Objects

When a buffer, texture, or renderbuffer object is deleted, it is unbound from any
bind points it is bound to in the current context, as described for DeleteBuffers,
DeleteTextures, and DeleteRenderbuffers. Bind points in other contexts are not
affected.

484

D.2. SYNC OBJECTS AND MULTIPLE CONTEXTS 485

D.1.2 Deleted Object and Object Name Lifetimes

When a buffer, texture, renderbuffer, query, or sync object is deleted, its name
immediately becomes invalid (e.g. is marked unused), but the underlying object
will not be deleted until it is no longer in use. A buffer, texture, or renderbuffer
object is in use while it is attached to any container object or bound to a context
bind point in any context. A sync object is in use while there is a corresponding
fence command which has not yet completed and signaled the sync object, or while
there are any GL clients and/or servers blocked on the sync object as a result of
ClientWaitSync or WaitSync commands. A query object is in use so long as it is
the active query object for a query type and index, as described in section 2.17.

When a shader object or program object is deleted, it is flagged for deletion,
but its name remains valid until the underlying object can be deleted because it
is no longer in use. A shader object is in use while it is attached to any program
object. A program object is in use while it is the current program in any context.

Caution should be taken when deleting an object attached to a container object
(such as a buffer object attached to a vertex array object, or a renderbuffer or texture
attached to a framebuffer object), or a shared object bound in multiple contexts.
Following its deletion, the object’s name may be used by any context to create
a new object or returned by Gen* commands, even though the underlying object
state and data may still be referred to by container objects, or in use by contexts
other than the one in which the object was deleted. Such a container or other
context may continue using the object, and may still contain state identifying its
name as being currently bound, until such time as the container object is deleted,
the attachment point of the container object is changed to refer to another object, or
another attempt to bind or attach the name is made in that context. Since the name
is marked unused, binding the name will create a new object with the same name,
and attaching the name will generate an error. The underlying storage backing a
deleted object will not be reclaimed by the GL until all references to the object
from container object attachment points or context binding points are removed.

D.2 Sync Objects and Multiple Contexts

When multiple GL clients and/or servers are blocked on a single sync object and
that sync object is signalled, all such blocks are released. The order in which blocks
are released is implementation-dependent.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

D.3. PROPAGATING CHANGES TO OBJECTS 486

D.3 Propagating Changes to Objects

GL objects contain two types of information, data and state. Collectively these
are referred to below as the contents of an object. For the purposes of propagating
changes to object contents as described below, data and state are treated consis-
tently.

Data is information the GL implementation does not have to inspect, and does
not have an operational effect. Currently, data consists of:

• Pixels in the framebuffer.

• The contents of textures and renderbuffers.

• The contents of buffer objects.

State determines the configuration of the rendering pipeline and the driver does
have to inspect.

In hardware-accelerated GL implementations, state typically lives in GPU reg-
isters, while data typically lives in GPU memory.

When the contents of an object T are changed, such changes are not always
immediately visible, and do not always immediately affect GL operations involving
that object. Changes to an object may occur via any of the following means:

• State-setting commands, such as TexParameter.

• Data-setting commands, such as TexSubImage* or BufferSubData.

• Data-setting through rendering to attached renderbuffers or transform feed-
back operations.

• Commands that affect both state and data, such as TexImage* and Buffer-
Data.

• Changes to mapped buffer data followed by a command such as Unmap-
Buffer or FlushMappedBufferRange.

D.3.1 Determining Completion of Changes to an object

The contents of an object T are considered to have been changed once a command
such as described in section D.3 has completed. Completion of a command 1 may

1The GL already specifies that a single context processes commands in the order they are received.
This means that a change to an object in a context at time t must be completed by the time a command
issued in the same context at time t + 1 uses the result of that change.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

D.3. PROPAGATING CHANGES TO OBJECTS 487

be determined either by calling Finish, or by calling FenceSync and executing a
WaitSync command on the associated sync object. The second method does not
require a round trip to the GL server and may be more efficient, particularly when
changes to T in one context must be known to have completed before executing
commands dependent on those changes in another context.

D.3.2 Definitions

In the remainder of this section, the following terminology is used:

• An object T is directly attached to the current context if it has been bound to
one of the context binding points. Examples include but are not limited to
bound textures, bound framebuffers, bound vertex arrays, and current pro-
grams.

• T is indirectly attached to the current context if it is attached to another ob-
ject C, referred to as a container object, and C is itself directly or indirectly
attached. Examples include but are not limited to renderbuffers or textures
attached to framebuffers; buffers attached to vertex arrays; and shaders at-
tached to programs.

• An object T which is directly attached to the current context may be re-
attached by re-binding T at the same bind point. An object T which is indi-
rectly attached to the current context may be re-attached by re-attaching the
container object C to which T is attached.

Corollary: re-binding C to the current context re-attaches C and its hierarchy
of contained objects.

D.3.3 Rules

The following rules must be obeyed by all GL implementations:

Rule 1 If the contents of an object T are changed in the current context while T is
directly or indirectly attached, then all operations on T will use the new contents
in the current context.

Note: The intent of this rule is to address state changes in a single context only.
The multi-context case is handled by the other rules.

Note: “Updates” via rendering or transform feedback are treated consistently
with update via GL commands. Once EndTransformFeedback has been issued,
any command in the same context that uses the results of the transform feedback
operation will see the results. If a feedback loop is setup between rendering and
transform feedback (see above), results will be undefined.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

D.3. PROPAGATING CHANGES TO OBJECTS 488

Rule 2 While a container object C is bound, any changes made to the contents
of C’s attachments in the current context are guaranteed to be seen. To guarantee
seeing changes made in another context to objects attached to C, such changes
must be completed in that other context (see section D.3.1) prior to C being bound.
Changes made in another context but not determined to have completed as de-
scribed in section D.3.1, or after C is bound in the current context, are not guar-
anteed to be seen.

Rule 3 State Changes to the contents of shared objects are not automatically prop-
agated between contexts. If the contents of a shared object T are changed in a con-
text other than the current context, and T is already directly or indirectly attached
to the current context, any operations on the current context involving T via those
attachments are not guaranteed to use its new contents.

Rule 4 If the contents of an object T are changed in a context other than the cur-
rent context, T must be attached or re-attached to at least one binding point in the
current context in order to guarantee that the new contents of T are visible in the
current context.

Note: “Attached or re-attached” means either attaching an object to a binding
point it wasn’t already attached to, or attaching an object again to a binding point
it was already attached.

Note: This rule also applies to the pointer to the data store of an object. The
pointer itself is state, while the content of the data store are data, not state. To
guarantee that another context sees data updates to an object, you should attach
or re-attach the object in that context, since the pointer to the data store could have
changed.

Note: To be sure that a data update resulting from a transform-feedback opera-
tion in another context is visible in the current context, the app needs to make sure
that the command EndTransformFeedback has completed (see section D.3.1).

Example: If a texture image is bound to multiple texture bind points and the
texture is changed in another context, re-binding the texture at any one of the
texture bind points is sufficient to cause the changes to be visible at all texture
bind points.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Appendix E

Profiles and the Deprecation
Model

OpenGL 3.0 introduces a deprecation model in which certain features may be
marked as deprecated. Deprecated features are expected to be completely removed
from a future version of OpenGL. Deprecated features are summarized in sec-
tion E.2.

To aid developers in writing applications which will run on such future ver-
sions, it is possible to create an OpenGL 3.0 context which does not support dep-
recated features. Such a context is called a forward compatible context, while a
context supporting all OpenGL 3.0 features is called a full context. Forward com-
patible contexts cannot restore deprecated functionality through extensions, but
they may support additional, non-deprecated functionality through extensions.

Profiles define subsets of OpenGL functionality targeted to specific applica-
tion domains. OpenGL 3.2 defines two profiles (see below), and future versions
may introduce additional profiles addressing embedded systems or other domains.
OpenGL 3.2 implementations are not required to support all defined profiles, but
must support the core profile described below.

To enable application control of deprecation and profiles, new context creation
APIs have been defined as extensions to GLX and WGL. These APIs allow spec-
ifying a particular version, profile, and full or forward compatible status, and will
either create a context compatible with the request, or fail (if, for example, request-
ing an OpenGL version or profile not supported by the implementation),

Only the ARB may define OpenGL profiles and deprecated features.

489

E.1. CORE AND COMPATIBILITY PROFILES 490

E.1 Core and Compatibility Profiles

OpenGL 3.2 is the first version of OpenGL to define multiple profiles. The core
profile builds on OpenGL 3.1 by adding features described in section H.1. The
compatibility profile builds on the combination of OpenGL 3.1 with the special
GL_ARB_compatibility extension defined together with OpenGL 3.1, adding
the same new features and in some cases extending their definition to interact with
existing features of OpenGL 3.1 only found in GL_ARB_compatibility.

It is not possible to implement both core and compatibility profiles in a sin-
gle GL context, since the core profile mandates functional restrictions not present
in the compatibility profile. Refer to the WGL_ARB_create_context_profile
and GLX_ARB_create_context_profile extensions (see appendix J.3.68) for
information on creating a context implementing a specific profile.

E.2 Deprecated and Removed Features

OpenGL 3.0 defined a set of deprecated features. OpenGL 3.1 removed most of the
deprecated features and moved them into the optional GL_ARB_compatibility
extension. The OpenGL 3.2 core profile removes the same features as OpenGL
3.1, while the optional compatibility profile supports all those features.

Deprecated and removed features are summarized below in two groups: fea-
tures which are marked deprecated by the core profile, but have not yet been re-
moved, and features actually removed from the core profile of the current version
of OpenGL (no features have been removed from or deprecated in the compatibility
profile).

Functions which have been removed will generate an INVALID_OPERATION

error if called in the core profile or in a forward-compatible context. Functions
which are partially removed (e.g. no longer accept some parameter values) will
generate the errors appropriate for any other unrecognized value of that parame-
ter when a removed parameter value is passed in the core profile or a forward-
compatible context. Functions which are deprecated but have not yet been removed
from the core profile continue to operate normally except in a forward-compatible
context, where they are also removed.

E.2.1 Deprecated But Still Supported Features

The following features are deprecated, but still present in the core profile. They
may be removed from a future version of OpenGL, and are removed in a forward-
compatible context implementing the core profile.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

E.2. DEPRECATED AND REMOVED FEATURES 491

• Wide lines - LineWidth values greater than 1.0 will generate an INVALID_-
VALUE error.

• Global component limit query - the implementation-dependent values
MAX_VARYING_COMPONENTS and MAX_VARYING_FLOATS.

E.2.2 Removed Features

• Application-generated object names - the names of all object types, such as
buffer, query, and texture objects, must be generated using the correspond-
ing Gen* commands. Trying to bind an object name not returned by a Gen*
command will result in an INVALID_OPERATION error. This behavior is al-
ready the case for framebuffer, renderbuffer, and vertex array objects. Object
types which have default objects (objects named zero), such as vertex ar-
ray, framebuffer, and texture objects, may also bind the default object, even
though it is not returned by Gen*.

• Color index mode - No color index visuals are supplied by the window
system-binding APIs such as GLX and WGL, so the default framebuffer
is always in RGBA mode. All language and state related to color index
mode vertex, rasterization, and fragment processing behavior is removed.
COLOR_INDEX formats are also deprecated.

• OpenGL Shading Language versions 1.10 and 1.20. These versions of the
shading language depend on many API features that have also been depre-
cated.

• Begin / End primitive specification - Begin, End, and EdgeFlag* (sec-
tion 2.6.1); Color*, FogCoord*, Index*, Normal3*, SecondaryColor3*,
TexCoord*, Vertex* Vertex* (section 2.7); and all associated state in ta-
bles 6.7 and 6.8. Vertex arrays and array drawing commands must be used
to draw primitives. However, VertexAttrib* and the current vertex attribute
state are retained in order to provide default attribute values for disabled at-
tribute arrays.

• Edge flags and fixed-function vertex processing - ColorPointer, EdgeFlag-
Pointer, FogCoordPointer, IndexPointer, NormalPointer, Secondary-
ColorPointer, TexCoordPointer, VertexPointer, EnableClientState,
DisableClientState, and InterleavedArrays, ClientActiveTexture (sec-
tion 2.8); Frustum, LoadIdentity, LoadMatrix, LoadTransposeMa-
trix, MatrixMode, MultMatrix, MultTransposeMatrix, Ortho, PopMa-
trix, PushMatrix, Rotate, Scale, and Translate (section 2.12.1; En-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

E.2. DEPRECATED AND REMOVED FEATURES 492

able/Disable targets RESCALE_NORMAL and NORMALIZE (section 2.12.2);
TexGen* and Enable/Disable targets TEXTURE_GEN_* (section 2.12.3,
Material*, Light*, LightModel*, and ColorMaterial, ShadeModel,

and Enable/Disable targets LIGHTING. VERTEX_PROGRAM_TWO_SIDE,
LIGHTi, and COLOR_MATERIAL (sections 2.13.2 and 2.13.3; ClipPlane;
and all associated fixed-function vertex array, multitexture, matrix and ma-
trix stack, normal and texture coordinate, lighting, and clipping state. A
vertex shader must be defined in order to draw primitives.

Language referring to edge flags in the current specification is modified as
though all edge flags are TRUE.

Note that the FrontFace and ClampColor commands in section 2.13 are not
deprecated, as they still affect other non-deprecated functionality; however,
the ClampColor targets CLAMP_VERTEX_COLOR and CLAMP_FRAGMENT_-
COLOR are deprecated.

• Client vertex and index arrays - all vertex array attribute and element ar-
ray index pointers must refer to buffer objects (section 2.9.6). The default
vertex array object (the name zero) is also deprecated. Calling VertexAt-
tribPointer when no buffer object or no vertex array object is bound will
generate an INVALID_OPERATION error, as will calling any array drawing
command when no vertex array object is bound.

• Rectangles - Rect* (section 2.11).

• Current raster position - RasterPos* and WindowPos* (section 2.24), and
all associated state.

• Two-sided color selection (section 2.13.1) - Enable target VERTEX_-

PROGRAM_TWO_SIDE; OpenGL Shading Language builtins gl_BackColor
and gl_BackSecondaryColor; and all associated state.

• Non-sprite points (section 3.4) - Enable/Disable targets POINT_SMOOTH

and POINT_SPRITE, and all associated state. Point rasterization is always
performed as though POINT_SPRITE were enabled.

• Wide lines and line stipple - LineWidth is not deprecated, but values greater
than 1.0 will generate an INVALID_VALUE error; LineStipple and En-
able/Disable target LINE_STIPPLE (section 3.5.2, and all associated state.

• Quadrilateral and polygon primitives - vertex array drawing modes
POLYGON, QUADS, and QUAD_STRIP (section 2.6.1, related descriptions of
rasterization of non-triangle polygons in section 3.6, and all associated state.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

E.2. DEPRECATED AND REMOVED FEATURES 493

• Separate polygon draw mode - PolygonMode face values of FRONT and
BACK; polygons are always drawn in the same mode, no matter which face
is being rasterized.

• Polygon Stipple - PolygonStipple and Enable/Disable target POLYGON_-
STIPPLE (section 3.6.2), and all associated state.

• Pixel transfer modes and operations - all pixel transfer modes, including
pixel maps, shift and bias, color table lookup, color matrix, and convolution
commands and state (sections 3.7.2, 3.7.3, and 3.7.6), and all associated
state and commands defining that state.

• Pixel drawing - DrawPixels and PixelZoom (section 3.7.5). However, the
language describing pixel rectangles in section 3.7 is retained as it is required
for TexImage* and ReadPixels.

• Bitmaps - Bitmap (section 3.8) and the BITMAP external format.

• Legacy OpenGL 1.0 pixel formats - the values 1, 2, 3, and 4 are no longer
accepted as internal formats by TexImage* or any other command taking an
internal format argument. The initial internal format of a texel array is RGBA
instead of 1 (see section 3.9.15). TEXTURE_COMPONENTS is deprecated;
always use TEXTURE_INTERNAL_FORMAT.

• Legacy pixel formats - all ALPHA, LUMINANCE, LUMINANCE_ALPHA, and
INTENSITY external and internal formats, including compressed, floating-
point, and integer variants (see tables 3.6, 3.16, 3.18, 3.20, 3.25, and 6.1); all
references to luminance and intensity formats elsewhere in the specification,
including conversion to and from those formats; and all associated state.
including state describing the allocation or format of luminance and intensity
texture or framebuffer components.

• Depth texture mode - DEPTH_TEXTURE_MODE. Section 3.9.17 is to be
changed so that r is returned to texture samplers directly, and the OpenGL
Shading Language 1.30 Specification is to be changed so that (r, r, r, 1) is
always returned from depth texture samplers in this case.

• Texture wrap mode CLAMP - CLAMP is no longer accepted as a value of
texture parameters TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_-
WRAP_R.

• Texture borders - the border value to TexImage* must always be zero, or
an INVALID_VALUE error is generated (section 3.9.3); all language in sec-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

E.2. DEPRECATED AND REMOVED FEATURES 494

tion 3.9 referring to nonzero border widths during texture image specification
and texture sampling; and all associated state.

• Automatic mipmap generation - TexParameter* target GENERATE_MIPMAP
(section 3.9.11), and all associated state.

• Fixed-function fragment processing - AreTexturesResident, Prioritize-
Textures, and TexParameter target TEXTURE_PRIORITY; TexEnv target
TEXTURE_ENV, and all associated parameters; TexEnv target TEXTURE_-
FILTER_CONTROL, and parameter name TEXTURE_LOD_BIAS; Enable tar-
gets of all dimensionalities (TEXTURE_1D, TEXTURE_2D, TEXTURE_3D,
TEXTURE_1D_ARRAY, TEXTURE_2D_ARRAY, and TEXTURE_CUBE_MAP);
Enable target COLOR_SUM; Enable target FOG, Fog, and all associated pa-
rameters; the implementation-dependent values MAX_TEXTURE_UNITS and
MAX_TEXTURE_COORDS; and all associated state.

• Alpha test - AlphaFunc and Enable/Disable target ALPHA_TEST (sec-
tion 4.1.4), and all associated state.

• Accumulation buffers - ClearAccum, and ACCUM_BUFFER_BIT is not valid
as a bit in the argument to Clear (section 4.2.3); Accum (section 4.2.4); the
ACCUM_*_BITS framebuffer state describing the size of accumulation buffer
components (table 6.64); and all associated state.

Window system-binding APIs such as GLX and WGL may choose to either
not expose window configs containing accumulation buffers, or to ignore
accumulation buffers when the default framebuffer bound to a GL context
contains them.

• Pixel copying - CopyPixels (the comments also applying to CopyTexImage
will be moved to section 3.9.4).

• Auxiliary color buffers, including AUXi targets of the default framebuffer.

• Context framebuffer size queries - RED_BITS, GREEN_BITS, BLUE_BITS,
ALPHA_BITS, DEPTH_BITS, and STENCIL_BITS.

• Evaluators - Map*, EvalCoord*, MapGrid*, EvalMesh*, EvalPoint*, and
all evaluator map enables in table 5.1 (section 5.1, and all associated state.

• Selection and feedback modes - RenderMode, InitNames, PopName,
PushName, LoadName, and SelectBuffer (section 5.2); FeedbackBuffer
and PassThrough (section 5.3); and all associated state.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

E.2. DEPRECATED AND REMOVED FEATURES 495

• Display lists - NewList, EndList, CallList, CallLists, ListBase, GenLists,
IsList, and DeleteLists (section 5.5); all references to display lists and be-
havior when compiling commands into display lists elsewhere in the speci-
fication; and all associated state.

• Hints - the PERSPECTIVE_CORRECTION_HINT, POINT_SMOOTH_HINT,
FOG_HINT, and GENERATE_MIPMAP_HINT targets to Hint (section 5.8).

• Attribute stacks - PushAttrib, PushClientAttrib, PopAttrib, Pop-
ClientAttrib, the MAX_ATTRIB_STACK_DEPTH, MAX_CLIENT_ATTRIB_-
STACK_DEPTH, ATTRIB_STACK_DEPTH, and CLIENT_ATTRIB_STACK_-

DEPTH state, the client and server attribute stacks, and the values ALL_-

ATTRIB_BITS and CLIENT_ALL_ATTRIB_BITS (section 6.1.20).

• Unified extension string - EXTENSIONS target to GetString (section 6.1.5).

• Token names and queries - all token names and queries not otherwise men-
tioned above for deprecated state, as well as all query entry points where all
valid targets of that query are deprecated state (chapter 6 and the state tables)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Appendix F

Version 3.0 and Before

OpenGL version 3.0, released on August 11, 2008, is the eighth revision since
the original version 1.0. When using a full 3.0 context, OpenGL 3.0 is upward
compatible with earlier versions, meaning that any program that runs with a 2.1 or
earlier GL implementation will also run unchanged with a 3.0 GL implementation.
OpenGL 3.0 context creation is done using a window system binding API, and
on most platforms a new command, defined by extensions introduced along with
OpenGL 3.0, must be called to create a 3.0 context. Calling the older context
creation commands will return an OpenGL 2.1 context. When using a forward
compatible context, many OpenGL 2.1 features are not supported.

Following are brief descriptions of changes and additions to OpenGL 3.0. De-
scriptions of changes and additions in earlier versions of OpenGL (versions 1.1,
1.2, 1.2.1, 1.3, 1.4, 1.5, 2.0, and 2.1) are omitted in this specification, but may be
found in the OpenGL 3.0 Specification, available on the World Wide Web at URL

http://www.opengl.org/registry/

F.1 New Features

New features in OpenGL 3.0, including the extension or extensions if any on which
they were based, include:

• API support for the new texture lookup, texture format, and integer and un-
signed integer capabilities of the OpenGL Shading Language 1.30 specifica-
tion (GL_EXT_gpu_shader4).

• Conditional rendering (GL_NV_conditional_render).

496

http://www.opengl.org/registry/

F.2. DEPRECATION MODEL 497

• Fine control over mapping buffer subranges into client space and flushing
modified data (GL_APPLE_flush_buffer_range).

• Floating-point color and depth internal formats for textures and ren-
derbuffers (GL_ARB_color_buffer_float, GL_NV_depth_buffer_-

float, GL_ARB_texture_float, GL_EXT_packed_float, and GL_-

EXT_texture_shared_exponent).

• Framebuffer objects (GL_EXT_framebuffer_object).

• Half-float (16-bit) vertex array and pixel data formats (GL_NV_half_float
and GL_ARB_half_float_pixel).

• Multisample stretch blit functionality (GL_EXT_framebuffer_-
multisample and GL_EXT_framebuffer_blit).

• Non-normalized integer color internal formats for textures and renderbuffers
(GL_EXT_texture_integer).

• One- and two-dimensional layered texture targets (GL_EXT_texture_-
array).

• Packed depth/stencil internal formats for combined depth+stencil textures
and renderbuffers (GL_EXT_packed_depth_stencil).

• Per-color-attachment blend enables and color writemasks (GL_EXT_draw_-
buffers2).

• RGTC specific internal compressed formats
(GL_EXT_texture_compression_rgtc).

• Single- and double-channel (R and RG) internal formats for textures and ren-
derbuffers.

• Transform feedback (GL_EXT_transform_feedback).

• Vertex array objects (GL_APPLE_vertex_array_object).

• sRGB framebuffer mode (GL_EXT_framebuffer_sRGB)

F.2 Deprecation Model

OpenGL 3.0 introduces a deprecation model in which certain features may be
marked as deprecated. The deprecation model is described in detail in appendix E,
together with a summary of features deprecated in OpenGL 3.0.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

F.3. CHANGED TOKENS 498

New Token Name Old Token Name
COMPARE_REF_TO_TEXTURE COMPARE_R_TO_TEXTURE

MAX_VARYING_COMPONENTS MAX_VARYING_FLOATS

MAX_CLIP_DISTANCES MAX_CLIP_PLANES

CLIP_DISTANCEi CLIP_PLANEi

Table F.1: New token names and the old names they replace.

F.3 Changed Tokens

New token names are introduced to be used in place of old, inconsistent names.
However, the old token names continue to be supported, for backwards compati-
bility with code written for previous versions of OpenGL. The new names, and the
old names they replace, are shown in table F.1.

F.4 Change Log

Minor corrections to the OpenGL 3.0 Specification were made after its initial re-
lease.

Changes in the draft of September 23, 2008:

• Changed ClearBuffer* in section 4.2.3 to use DEPTH and STENCIL

buffer names. Changed GetFramebufferAttachmentParameteriv in sec-
tion 6.1.18 to accept only DEPTH and STENCIL to identify default frame-
buffer depth and stencil buffers, and only DEPTH_ATTACHMENT and
STENCIL_ATTACMENT to identify framebuffer object depth and stencil
buffers (bug 3744).

Changes in the draft of September 18, 2008:

• Added missing close-brace to ArrayElement pseudocode in section 2.8
(bug 3897).

• Noted in section 2.17 that BeginQuery will generate an INVALID_-

OPERATION error when called with an existing query object name whose
type does not match the specified target (bug 3712).

• Add description of gl_ClipDistance to shader outputs in section 2.14.4
and note that only one of gl_ClipVertex and gl_ClipDistance should
be written by a shader (bug 3898).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

F.4. CHANGE LOG 499

• Changed ClearBuffer* in section 4.2.3 to indirect through the draw
buffer state by specifying the buffer type and draw buffer number, rather
than the attachment name; also changed to accept DEPTH_BUFFER /
DEPTH_ATTACHMENT and STENCIL_BUFFER / STENCIL_ATTACHMENT in-
terchangeably, to reduce inconsistency between clearing the default frame-
buffer and framebuffer objects. Likewise changed GetFramebufferAttach-
mentParameteriv in section 6.1.18 to accept DEPTH_BUFFER / DEPTH_-
ATTACHMENT and STENCIL_BUFFER / STENCIL_ATTACMENT interchange-
ably (bug 3744).

• Add proper type suffix to query commands in tables 6.11 and 6.49 (Mark
Kilgard).

• Update deprecation list in section E.2 to itemize deprecated state for two-
sided color selection and include per-texture-unit LOD bias (bug 3735).

Changes in the draft of August 28, 2008:

• Sections 2.9, 2.9.3; tables 2.10, 2.11, and 6.14 - move buffer map/unmap
calls into their own subsection and rewrite MapBuffer in terms of Map-
BufferRange. Add buffer state BUFFER_ACCESS_FLAGS, BUFFER_MAP_-
OFFSET, BUFFER_MAP_LENGTH. Make MapBuffer and MapBufferRange
errors consistent (bug 3601).

• Section 2.10 - Extend INVALID_OPERATION error to any array pointer-
setting command called to specify a client array while a vertex array object
is bound, not just VertexAttrib*Pointer (bug 3696).

• Sections 2.16.1, 4.1.2, 4.2.1, and 4.3.4 - define initial state when a context is
bound with no default framebuffer - null viewport and scissor region, draw
buffer = read buffer = NONE, max viewport dims = max(display size - if any,
max renderbuffer size). Viewport/scissor language added to the GLX and
WGL create context extension specs as well (bug 2941).

• Section 2.19 - define “word-aligned” to be a multiple of 4 (e.g. 32 bits) (bug
3624).

• Section 5.5.1 - add MapBufferRange and FlushMappedBufferRange to
commands not compiled in display lists (bug 3704).

• Section 6.1.15 - Moved GetBufferParameteriv query from section 6.1.3
and changed formal argument specifying the parameter name from value to
pname (side effect of bug 3697).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

F.5. CREDITS AND ACKNOWLEDGEMENTS 500

• Section 6.1.18 - Moved GetFramebufferAttachmentiv query from sec-
tion 6.1.3. Querying framebuffer attachment parameters other than object
type and name when no attachment is present is an INVALID_ENUM error.
Querying texture parameters (level, cube map face, or layer) for a render-
buffer attachment is also an INVALID_ENUM error (note that this was allowed
in previous versions of the extension but the return values were not specified;
it should clearly be an error as are other parameters that don’t exist for the
type of attachment present). Also reorganized the description of this com-
mand quite a bit to improve readability and remove redundancy and internal
inconsistencies (bug 3697).

• Section 6.1.19 - Moved GetRenderbufferParameteriv query from sec-
tion 6.1.3 (side effect of bug 3697).

• Appendix D.1 - add language to clarify that attachments to an object affect
its reference count, and that object storage doesn’t go away until there are no
references remaining (bug 3725).

• Appendix E.2 - remove TEXTURE_BORDER_COLOR and CLAMP_TO_BORDER
mode from the deprecated feature list; they were put in by accident (bug
3750).

• Appendix F - Cite GL_EXT_texture_array instead of GL_EXT_-

geometry_shader4 as the source of 1D/2D array texture functionality. Fix
a typo. Add change log relative to initial 3.0 spec release.

F.5 Credits and Acknowledgements

OpenGL 3.0 is the result of the contributions of many people and companies.
Members of the Khronos OpenGL ARB Working Group during the development
of OpenGL 3.0, including the company that they represented at the time of their
contributions, follow. Some major contributions made by individuals are listed to-
gether with their name, including specific functionality developed in the form of
new ARB extensions together with OpenGL 3.0. In addition, many people partic-
ipated in developing earlier vendor and EXT extensions on which the OpenGL 3.0
functionality is based in part; those individuals are listed in the respective extension
specifications in the OpenGL Extension Registry.

Aaftab Munshi, Apple
Alain Bouchard, Matrox
Alexis Mather, AMD (Chair, ARB Marketing TSG)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

F.5. CREDITS AND ACKNOWLEDGEMENTS 501

Andreas Wolf, AMD
Avi Shapira, Graphic Remedy
Barthold Lichtenbelt, NVIDIA (Chair, Khronos OpenGL ARB Working Group)
Benjamin Lipchak, AMD
Benji Bowman, Imagination Technologies
Bill Licea-Kane, AMD (Chair, ARB Shading Language TSG)
Bob Beretta, Apple
Brent Insko, Intel
Brian Paul, Tungsten Graphics
Bruce Merry, ARM (Detailed specification review)
Cass Everitt, NVIDIA
Chris Dodd, NVIDIA
Daniel Horowitz, NVIDIA
Daniel Koch, TransGaming (Framebuffer objects, half float vertex formats, and

instanced rendering)
Daniel Omachi, Apple
Dave Shreiner, ARM
Eric Boumaour, AMD
Eskil Steenberg, Obsession
Evan Hart, NVIDIA
Folker Schamel, Spinor GMBH
Gavriel State, TransGaming
Geoff Stahl, Apple
Georg Kolling, Imagination Technologies
Gregory Prisament, NVIDIA
Guillaume Portier, HI Corp
Ian Romanick, IBM / Intel (Vertex array objects; GLX protocol)
James Helferty, TransGaming (Instanced rendering)
James Jones, NVIDIA
Jamie Gennis, NVIDIA
Jason Green, TransGaming
Jeff Bolz, NVIDIA
Jeff Juliano, NVIDIA
Jeremy Sandmel, Apple (Chair, ARB Nextgen (OpenGL 3.0) TSG)
John Kessenich, Intel (OpenGL Shading Language Specification Editor; depre-

cation model)
John Rosasco, Apple
Jon Leech, Independent (Chair, ARB Ecosystem TSG; OpenGL API Specifica-

tion Editor; R/RG image formats and new context creation APIs)
Marc Olano, U. Maryland

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

F.5. CREDITS AND ACKNOWLEDGEMENTS 502

Mark Callow, HI Corp
Mark Kilgard, NVIDIA (Many extensions on which OpenGL 3.0 features were

based)
Matti Paavola, Nokia
Michael Gold, NVIDIA (Framebuffer objects and instanced rendering)
Neil Trevett, NVIDIA (President, Khronos Group)
Nick Burns, Apple
Nick Haemel, AMD
Pat Brown, NVIDIA (Many extensions on which OpenGL 3.0 features were

based; detailed specification review)
Paul Martz, SimAuthor
Paul Ramsey, Sun
Pierre Boudier, AMD (Floating-point depth buffers)
Rob Barris, Blizzard (Framebuffer object and map buffer range)
Robert Palmer, Symbian
Robert Simpson, AMD
Steve Demlow, Vital Images
Thomas Roell, NVIDIA
Timo Suoranta, Futuremark
Tom Longo, AMD
Tom Olson, TI (Chair, Khronos OpenGL ES Working Group)
Travis Bryson, Sun
Yaki Tebeka, Graphic Remedy
Yanjun Zhang, S3 Graphics
Zack Rusin, Tungsten Graphics

The ARB gratefully acknowledges administrative support by the members of
Gold Standard Group, including Andrew Riegel, Elizabeth Riegel, Glenn Freder-
icks, and Michelle Clark, and technical support from James Riordon, webmaster
of Khronos.org and OpenGL.org.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Appendix G

Version 3.1

OpenGL version 3.1, released on March 24, 2009, is the ninth revision since the
original version 1.0.

Unlike earlier versions of OpenGL, OpenGL 3.1 is not upward compatible with
earlier versions. The commands and interfaces identified as deprecated in OpenGL
3.0 (see appendix F) have been removed from OpenGL 3.1 entirely, with the fol-
lowing exception:

• Wide lines have not been removed, and calling LineWidth with values
greater than 1.0 is not an error.

Implementations may restore such removed features using the GL_ARB_-

compatibility extension discussed in section G.2.
Following are brief descriptions of changes and additions to OpenGL 3.1.

G.1 New Features

New features in OpenGL 3.1, including the extension or extensions if any on which
they were based, include:

• Support for OpenGL Shading Language 1.30 and 1.40.

• Instanced rendering with a per-instance counter accessible to vertex shaders
(GL_ARB_draw_instanced).

• Data copying between buffer objects (GL_ARB_copy_buffer).

• Primitive restart (GL_NV_primitive_restart). Because client en-
able/disable no longer exists in OpenGL 3.1, the PRIMITIVE_RESTART

503

G.2. DEPRECATION MODEL 504

state has become server state, unlike the NV extension where it is client
state. As a result, the numeric values assigned to PRIMITIVE_RESTART and
PRIMITIVE_RESTART_INDEX differ from the NV versions of those tokens.

• At least 16 texture image units must be accessible to vertex shaders, in addi-
tion to the 16 already guaranteed to be accessible to fragment shaders.

• Texture buffer objects (GL_ARB_texture_buffer_object).

• Rectangular textures (GL_ARB_texture_rectangle).

• Uniform buffer objects (GL_ARB_uniform_buffer_object).

• Signed normalized texture component formats.

G.2 Deprecation Model

The features marked as deprecated in OpenGL 3.0 (see section E) have been re-
moved from OpenGL 3.1 (with the exception of line widths greater than one, which
are retained).

As described by the deprecation model, features removed from OpenGL 3.0
have been moved into the new extension GL_ARB_compatibility. If an imple-
mentation chooses to provide this extension, it restores all features deprecated by
OpenGL 3.0 and removed from OpenGL 3.1. This extension may only be provided
in an OpenGL 3.1 or later context version.

Because of the complexity of describing this extension relative to the OpenGL
3.1 core specification, it is not written up as a separate document, unlike other ex-
tensions in the extension registry. Instead, an alternate version of this specification
document has been generated with the deprecated material still present, but marked
in a distinct color.

No additional features are deprecated in OpenGL 3.1.

G.3 Change Log

Changes in the specification update of May 28, 2009:

• Update MAX_CLIP_DISTANCES from 6 to 8 in section 2.22 and table 6.54,
to match GLSL (bug 4803).

• Accept null pointers in CompressedTexImage* (section 3.9.5) and treat
them the same as for the corresponding TexImage* commands (bug 4863).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

G.4. CREDITS AND ACKNOWLEDGEMENTS 505

• Relax error conditions when specifying RGTC format texture images (sec-
tion 3.9.4) and subimages (section 3.9.5) so that non-power-of-two RGTC
images may be specified (also see section C.1), and edits to partial tiles at
the edge of such an image made (bug 4856).

• Relaxed texture magnification switch-over point calculation in section 3.9.12
(bug 4392).

• Clarify initial value of stencil value masks in section 4.1.5 and table 6.29
(bug 4378).

• Change FramebufferTextureLayer in section 4.4.2 to generate
INVALID_VALUE for negative layer only if texture is non-zero (bug
4084).

• Clarify RenderbufferStorageMultisample language in section 4.4.2 to al-
low, but not require creation of multisampled integer renderbuffers with more
one sample (bug 4396).

• Added language to section 6.1.4 disallowing data-type format mismatches
between internal and external texture formats in GetTexImage (bug 4163).

• Change initial value of FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_-

MAP_FACE in table 6.34 to NONE (bug 4407).

• Brought extension list in appendix J.3 up to date and correctly described ex-
tensions introduced along with OpenGL 3.0 and OpenGL 3.1 which imple-
ment subsets of new functionality in those versions to enable older hardware.

• Added missing contributors to the OpenGL 3.1 contributor list.

G.4 Credits and Acknowledgements

OpenGL 3.1 is the result of the contributions of many people and companies.
Members of the Khronos OpenGL ARB Working Group during the development
of OpenGL 3.1, including the company that they represented at the time of their
contributions, follow. Some major contributions made by individuals are listed to-
gether with their name, including specific functionality developed in the form of
new ARB extensions together with OpenGL 3.1. In addition, many people partic-
ipated in developing earlier vendor and EXT extensions on which the OpenGL 3.1
functionality is based in part; those individuals are listed in the respective extension
specifications in the OpenGL Extension Registry.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

G.4. CREDITS AND ACKNOWLEDGEMENTS 506

Alexis Mather, AMD (Chair, ARB Marketing TSG)
Avi Shapira, Graphic Remedy
Barthold Lichtenbelt, NVIDIA (Chair, Khronos OpenGL ARB Working Group)
Benjamin Lipchak, Apple (Uniform buffer objects)
Bill Licea-Kane, AMD (Chair, ARB Shading Language TSG; signed normalized

texture formats)
Brent Insko, Intel
Brian Paul, Tungsten Graphics
Bruce Merry, ARM (Detailed specification review)
Christopher Webb, NVIDIA
Daniel Koch, TransGaming
Daniel Omachi, Apple
Eric Werness, NVIDIA
Gavriel State, TransGaming
Geoff Stahl, Apple
Gregory Roth, NVIDIA
Ian Romanick, Intel
James Helferty, TransGaming
James Jones, NVIDIA
Jeff Bolz, NVIDIA (Buffer to buffer copies)
Jeremy Sandmel, Apple (Chair, ARB Nextgen (OpenGL 3.1) TSG; uniform

buffer objects)
John Kessenich, Intel (OpenGL Shading Language Specification Editor)
John Rosasco, Apple (Uniform buffer objects)
Jon Leech, Independent (OpenGL API Specification Editor)
Mark Callow, HI Corp
Mark Kilgard, NVIDIA (Many extensions on which OpenGL 3.0 features were

based)
Matt Craighead, NVIDIA
Michael Gold, NVIDIA
Neil Trevett, NVIDIA (President, Khronos Group)
Nick Haemel, AMD
Pat Brown, NVIDIA (Many extensions on which OpenGL 3.0 features were

based; detailed specification review)
Paul Martz, SimAuthor
Pierre Boudier, AMD
Rob Barris, Blizzard
Tom Olson, TI (Chair, Khronos OpenGL ES Working Group)
Yaki Tebeka, Graphic Remedy
Yanjun Zhang, S3 Graphics

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

G.4. CREDITS AND ACKNOWLEDGEMENTS 507

The ARB gratefully acknowledges administrative support by the members of
Gold Standard Group, including Andrew Riegel, Elizabeth Riegel, Glenn Freder-
icks, and Michelle Clark, and technical support from James Riordon, webmaster
of Khronos.org and OpenGL.org.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Appendix H

Version 3.2

OpenGL version 3.2, released on August 3, 2009, is the tenth revision since the
original version 1.0.

Separate versions of the OpenGL 3.2 Specification exist for the core and com-
patibility profiles described in appendix E, respectively subtitled the “Core Profile”
and the “Compatibility Profile”. This document describes the Compatibility Pro-
file. An OpenGL 3.2 implementation must be able to create a context supporting
the core profile, and may also be able to create a context supporting the compati-
bility profile.

Material specific to the compatibility profile specification is marked in a dis-
tinct color to clearly call out differences between the two profiles.

The OpenGL 3.2 core profile is upward compatible with OpenGL 3.1, but not
with earlier versions (see appendices G and F).

The OpenGL 3.2 compatibility profile is upward compatible with the combina-
tion of OpenGL 3.1 and the GL_ARB_compatibility extension, as well as with
all earlier versions of OpenGL.

Following are brief descriptions of changes and additions to OpenGL 3.2.

H.1 New Features

New features in OpenGL 3.2, including the extension or extensions if any on which
they were based, include:

• Introduction of core and compatibility profiles, superseding the GL_ARB_-

compatibility extension introduced with OpenGL 3.1.

• Support for OpenGL Shading Language 1.50.

508

H.2. DEPRECATION MODEL 509

• BGRA vertex component ordering (GL_ARB_vertex_array_bgra).

• Drawing commands allowing modification of the base vertex index (GL_-
ARB_draw_elements_base_vertex).

• Shader fragment coordinate convention control (GL_ARB_fragment_-
coord_conventions).

• Provoking vertex control (GL_ARB_provoking_vertex).

• Seamless cube map filtering (GL_ARB_seamless_cube_map).

• Multisampled textures and texture samplers for specific sample locations
(GL_ARB_texture_multisample).

• Fragment depth clamping (GL_ARB_depth_clamp).

• Geometry shaders (GL_ARB_geometry_shader4).

• Fence sync objects (GL_ARB_sync).

H.2 Deprecation Model

In addition to restoring features removed from OpenGL 3.1 core, the compatibility
profile defines some additional interactions between those features and new fea-
tures introduced by OpenGL 3.2.

The following features are newly deprecated by the OpenGL 3.2 core profile:

• Global component limit query - the implementation-dependent values
MAX_VARYING_COMPONENTS and MAX_VARYING_FLOATS.

No features are deprecated by the OpenGL 3.2 compatibility profile.

H.3 Changed Tokens

New token names are introduced to be used in place of old, less general names.
However, the old token names continue to be supported, for backwards compati-
bility with code written for previous versions of OpenGL. The new names, and the
old names they replace, are shown in table H.1.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

H.4. CHANGE LOG 510

New Token Name Old Token Name
PROGRAM_POINT_SIZE VERTEX_PROGRAM_POINT_SIZE

Table H.1: New token names and the old names they replace.

H.4 Change Log

Minor corrections to the OpenGL 3.2 Specification were made after its initial re-
lease in the update of December 7, 2009:

• Clean up description of GL command syntax in section 2.3, generalize the
list of object types in the introduction to section 2.5 instead of enumerat-
ing them all redundantly, add half float to the ArrayElement pseudocode
in section 2.8, fix BindBuffer (section 2.9.1), BeginQuery (section 2.17),
and BindTexture (section 3.9.1) to only generate errors for user generated
names in the core profile, remove P from computation of normalized device
coordinates in section 2.16, increase minimum number of clip half-spaces
to 8 in section 2.22, correct labelling of fragment processing selection in fig-
ure 3.1 for the compatibility profile, improve formatting and correct column
heading in tables 6.22 and 6.23, and a variety of minor editorial corrections
not enumerated here (Bug 5761).

• Remove “just as if they were unused” from description of names generated
by GenVertexArrays, GenFramebuffers, and GenRenderbuffers in sec-
tions 2.10, 4.4.1, and 4.4.2 (Bug 5201).

• Fix duplicate label formerly applied to sections 2.12 and 2.16 (Bug 5455).

• Moved error language resulting from trying to put client pointers into VAOs
from section 2.10 to section 2.8 (Bug 3975). This results in a forward refer-
ence, unfortunately.

• Remove reference to borders from texel fetch language in section 2.14.4 of
the core specification (Bug 5343).

• Remove INVALID_VALUE error when passing a program object to Trans-
formFeedbackVaryings in section 2.14.6 (Bug 5661).

• Changed number of query types from two to three in section 2.17 (Bug
5624).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

H.4. CHANGE LOG 511

• Change flat-shading source value description from “generic attribute” to
“varying” in sections 3.5.1 and 3.6.1 (Bug 5359).

• Remove leftover references in core spec sections 3.9.5 and 6.1.3 to depre-
cated texture border state (Bug 5579). Still need to fix gl3.h accordingly.

• Fix typo in second paragraph of section 3.9.8 (Bug 5625).

• Simplify and clean up equations in the coordinate wrapping and mipmapping
calculations of section 3.9.11, especially in the core profile where wrap mode
CLAMP does not exist (Bug 5615).

• Fix computation of u(x, y) and v(x, y) in scale factor calculations of sec-
tion 3.9.11 for rectangular textures (Bug 5700).

• Restructure definition of texture completeness in section 3.9.14 to sepa-
rate mipmap consistency from filter requirements and cover new texture
target types, and simplify how completness applies to texture fetches (sec-
tion 2.14.4) and lookups (sections 2.14.4 and 3.12.2) (Bugs 4264, 5749).

• Update sampling language in sections 3.9.14, 2.14.4, and 3.12.2 to not re-
quire texture completeness when non-mipmapped access to the texture is
being done (Bug 4264, based on ES bugs 4282 and 3499).

• Add fixed sample location state for multisample textures to section 3.9.15
(Bug 5454).

• Don’t use the sign of the input component in the description of dithering in
section 4.1.10 (Bug 5594).

• Change error condition for certain invalid buffers to DrawBuffers in sec-
tion 4.2.1 from INVALID_OPERATION to INVALID_ENUM (Bug 5576).

• Clarify error conditions in section 4.2.3 when the clear mask is zero or con-
tains invalid bits (Bug 5567).

• Change BlitFramebuffer in section 4.3.3 so format conversion is supported
only within the three equivalence classes of fixed-point and floating point
buffers, unsigned integer buffers, and signed integer buffers (Bug 5577).

• Include ClientWaitSync, FenceSync, and PrimitiveRestartIndex in the
commands not compiled into display lists in section 5.5.1 (for the compati-
bility spec only) (Bug 5091).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

H.5. CREDITS AND ACKNOWLEDGEMENTS 512

• Remove a reference to unreachable INVALID_OPERATION errors from the
core profile only in section 6.1.2 (Bug 5365).

• Specify that compressed texture component type queries in section 6.1.3 re-
turn how components are interpreted after decompression (Bug 5453).

• Increase value of MAX_UNIFORM_BUFFER_BINDINGS and
MAX_COMBINED_UNIFORM_BLOCKS in table 6.61 from 24 to 36 to reflect
addition of geometry shaders (Bug 5607).

• Update sharing rule 2 in appendix D.3.3 to read sensibly (Bug 5397).

• Update sharing rule 4 in appendix D.3.3 to cover the case where an object is
only attached or bound in a single place, clarify comments about transform
feedback, and state that reattachment is required to guarantee seeing changes
made in other contexts, but does not preclude implementations from making
changes visible without reattachment (Bugs 5546, 5777).

Changes in the specification for public release on August 3, 2009:

• Public release of OpenGL 3.2.

H.5 Credits and Acknowledgements

OpenGL 3.2 is the result of the contributions of many people and companies.
Members of the Khronos OpenGL ARB Working Group during the development
of OpenGL 3.2, including the company that they represented at the time of their
contributions, follow. Some major contributions made by individuals are listed to-
gether with their name, including specific functionality developed in the form of
new ARB extensions together with OpenGL 3.1. In addition, many people partic-
ipated in developing earlier vendor and EXT extensions on which the OpenGL 3.1
functionality is based in part; those individuals are listed in the respective extension
specifications in the OpenGL Extension Registry.

Aaftab Munshi, Apple
Acorn Pooley, NVIDIA
Barthold Lichtenbelt, NVIDIA (Chair, Khronos OpenGL ARB Working Group)
Benjamin Lipchak, Apple
Bill Licea-Kane, AMD (Chair, ARB Shading Language TSG)
Bruce Merry, ARM (Detailed specification review)
Cynthia Allison, NVIDIA

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

H.5. CREDITS AND ACKNOWLEDGEMENTS 513

Daniel Koch, TransGaming (base vertex offset drawing, fragment coordinate
conventions, provoking vertex control, BGRA attribute component ordering)

Dave Shreiner, ARM
David Garcia, AMD
Gavriel State, TransGaming
Geoff Stahl, Apple
Graham Sellers, AMD (seamless cube maps)
Gregory Roth, NVIDIA
Henri Verbeet, CodeWeavers
Ian Romanick, Intel
Jason Green, TransGaming
Jeff Bolz, NVIDIA (multisample textures)
Jeff Juliano, NVIDIA
Jeremy Sandmel, Apple (Chair, ARB Nextgen (OpenGL 3.2) TSG)
John Kessenich, Intel (OpenGL Shading Language Specification Editor)
Jon Leech, Independent (OpenGL API Specification Editor, fence sync objects)
Marcus Steyer, NVIDIA
Mark Callow, HI Corp
Mark Kilgard, NVIDIA (Many extensions on which OpenGL 3.2 features were

based, including depth clamp, fragment coordinate conventions, provoking
vertex control, and BGRA attribute component ordering)

Mark Krenek, Aspyr
Michael Gold, NVIDIA
Neil Trevett, NVIDIA (President, Khronos Group)
Nicholas Vining, Destineer
Nick Haemel, AMD
Pat Brown, NVIDIA (Many extensions on which OpenGL 3.0 features were

based; detailed specification review)
Patrick Doane, Blizzard
Paul Martz, Skew Matrix
Pierre Boudier, AMD
Rob Barris, Blizzard
Ryan Gordon, Destineer
Stefan Dosinger, CodeWeavers
Yanjun Zhang, S3 Graphics

The ARB gratefully acknowledges administrative support by the members of
Gold Standard Group, including Andrew Riegel, Elizabeth Riegel, Glenn Freder-
icks, and Michelle Clark, and technical support from James Riordon, webmaster

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

H.5. CREDITS AND ACKNOWLEDGEMENTS 514

of Khronos.org and OpenGL.org.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Appendix I

Version 3.3

OpenGL version 3.3, released on March 11, 2010, is the eleventh revision since the
original version 1.0.

Separate versions of the OpenGL 3.3 Specification exist for the core and com-
patibility profiles described in appendix E, respectively subtitled the “Core Profile”
and the “Compatibility Profile”. This document describes the Compatibility Pro-
file. An OpenGL 3.3 implementation must be able to create a context supporting
the core profile, and may also be able to create a context supporting the compati-
bility profile.

Material specific to the compatibility profile specification is marked in a dis-
tinct color to clearly call out differences between the two profiles.

The OpenGL 3.3 compatibility and core profiles are upward compatible with
the OpenGL 3.2 compatibility and core profiles, respectively (see appendix H).

Following are brief descriptions of changes and additions to OpenGL 3.3.

I.1 New Features

New features in OpenGL 3.3, including the extension or extensions if any on which
they were based, include:

• Support for OpenGL Shading Language 3.30, including built-in functions
for getting and setting the bit encoding for floating-point values (GL_ARB_-
shader_bit_encoding - this extension only affects the shading language,
not the API).

• New blending functions whereby a fragment shader may output two colors,
one of which is treated as the source color, and the other used as a blend-

515

I.2. DEPRECATION MODEL 516

ing factor for either source or destination colors (GL_ARB_blend_func_-
extended).

• A method to pre-assign attribute locations to named vertex shader inputs
and color numbers to named fragment shader outputs. This allows appli-
cations to globally assign a particular semantic meaning, such as diffuse
color or vertex normal, to a particular attribute location without knowing how
that attribute will be named in any particular shader (GL_ARB_explicit_-
attrib_location).

• Simple boolean occlusion queries, which are often sufficient in preference to
more general counter-based queries (GL_ARB_occlusion_query2).

• Sampler objects, which separate sampler state from texture image data. Sam-
plers may be bound to texture units to supplant the bound texture’s sampling
state, and a single sampler may be bound to more than one texture unit si-
multaneously, allowing different textures to be accessed with a single set of
shared sampling parameters, or the same texture image data to be sampled
with different sampling parameters (GL_ARB_sampler_objects).

• A new texture format for unsigned 10.10.10.2 integer textures (GL_ARB_-
texture_rgb10_a2ui).

• A mechanism to swizzle the components of a texture before they are ap-
plied according to the texture environment in fixed-function, or as they are
returned to the shader (GL_ARB_texture_swizzle).

• A query object-based mechanism to determine the amount of time it takes to
fully complete a set of GL commands without stalling the rendering pipeline
(GL_ARB_timer_query).

• Ability to specify an array ”divisor” for generic vertex array attributes, which
when non-zero specifies that the attribute is instanced. An instanced attribute
does not advance per-vertex as usual, but rather after every divisor concep-
tual draw calls (GL_ARB_instanced_arrays).

• Two new vertex attribute data formats, signed 2.10.10.10 and unsigned
2.10.10.10 (GL_ARB_vertex_type_2_10_10_10_rev).

I.2 Deprecation Model

No new features are deprecated by OpenGL 3.3. Features deprecated by OpenGL
3.2 remain deprecated, but have not yet been removed.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

I.3. CHANGE LOG 517

I.3 Change Log

I.4 Credits and Acknowledgements

OpenGL 3.3 is the result of the contributions of many people and companies.
Members of the Khronos OpenGL ARB Working Group during the development
of OpenGL 3.3, including the company that they represented at the time of their
contributions, follow. Some major contributions made by individuals are listed to-
gether with their name, including specific functionality developed in the form of
new ARB extensions together with OpenGL 3.2. In addition, many people partic-
ipated in developing earlier vendor and EXT extensions on which the OpenGL 3.3
functionality is based in part; those individuals are listed in the respective extension
specifications in the OpenGL Extension Registry.

Aaftab Munshi, Apple
Alex Chalfin, AMD
Aske Simon Christensen, ARM
Axel Mamode, Sony
Barthold Lichtenbelt, NVIDIA (Chair, Khronos OpenGL ARB Working Group)
Benj Lipchak, AMD
Benjamin Lipchak, Apple
Bill Licea-Kane, AMD (GL_ARB_occlusion_query2, GL_ARB_shader_-

bit_encoding)
Brian Harris, Id Software
Brian Paul, VMware
Bruce Merry, ARM (Detailed specification review)
Cass Everitt, Epic Games
Chris Dodd, NVIDIA
Daniel Koch, TransGaming Inc. (GL_ARB_instanced_arrays, GL_ARB_-

texture_rgb10_a2ui)
Dave Shreiner, ARM
Eric Boumaour, AMD
Eric Werness, NVIDIA
Eric Zolnowski, AMD
Evan Hart, AMD
Graham Sellers, AMD (GL_ARB_blend_func_extended, GL_ARB_-

sampler_objects, GL_ARB_vertex_type_2_10_10_10_rev)
Gregory Roth, NVIDIA
Ian Romanick, Intel (GL_ARB_explicit_attrib_location)
Ian Stewart, NVIDIA

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

I.4. CREDITS AND ACKNOWLEDGEMENTS 518

Ignacio Castano, NVIDIA
Jaakko Konttinen, AMD
James Helferty, TransGaming Inc. (GL_ARB_instanced_arrays)
James Jones, NVIDIA Corporation
Jason Green, TransGaming Inc.
Jeff Bolz, NVIDIA (GL_ARB_texture_swizzle)
Jeremy Sandmel, Apple (Chair, ARB Nextgen (OpenGL 4.0) TSG)
John Kessenich, Intel (OpenGL Shading Language Specification Editor)
John Rosasco, Apple
Jon Leech, Independent (OpenGL API Specification Editor)
Lijun Qu, AMD
Mais Alnasser, AMD
Mark Callow, HI Corp
Mark Young, AMD
Maurice Ribble, Qualcomm
Michael Gold, NVIDIA
Mike Strauss, NVIDIA
Mike Weiblen, Zebra Imaging
Murat Balci, AMD
Neil Trevett, NVIDIA (President, Khronos Group)
Nick Haemel, AMD (
Pat Brown, NVIDIA
Patrick Doane, Blizzard
Pierre Boudier, AMD
Piers Daniell, NVIDIA (GL_ARB_timer_query)
Piotr Uminski, Intel
Remi Arnaud, Sony
Rob Barris
Robert Simpson, Qualcomm
Timothy Lamb, AMD
Tom Olson, ARM
Tom Olson, TI (Chair, Khronos OpenGL ES Working Group)
Yanjun Zhang, S3 Graphics
Yunjun Zhang, AMD

The ARB gratefully acknowledges administrative support by the members of
Gold Standard Group, including Andrew Riegel, Elizabeth Riegel, Glenn Freder-
icks, and Michelle Clark, and technical support from James Riordon, webmaster
of Khronos.org and OpenGL.org.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Appendix J

Extension Registry, Header Files,
and ARB Extensions

J.1 Extension Registry

Many extensions to the OpenGL API have been defined by vendors, groups of
vendors, and the OpenGL ARB. In order not to compromise the readability of
the GL Specification, such extensions are not integrated into the core language;
instead, they are made available online in the OpenGL Extension Registry, together
with extensions to window system binding APIs, such as GLX and WGL, and with
specifications for OpenGL, GLX, and related APIs.

Extensions are documented as changes to a particular version of the Specifica-
tion. The Registry is available on the World Wide Web at URL

http://www.opengl.org/registry/

J.2 Header Files

Historically, C and C++ source code calling OpenGL was to #include a single
header file, <GL/gl.h>. In addition to the core OpenGL API, the APIs for all
extensions provided by an implementation were defined in this header.

When platforms became common where the OpenGL SDK (library and header
files) were not necessarily obtained from the same source as the OpenGL driver,
such as Microsoft Windows and Linux, <GL/gl.h> could not always be kept
in sync with new core API versions and extensions supported by drivers. At this
time the OpenGL ARB defined a new header, <GL/glext.h>, which could be

519

http://www.opengl.org/registry/

J.3. ARB EXTENSIONS 520

obtained directly from the OpenGL Extension Registry (see section J.1). The com-
bination of <GL/gl.h> and <GL/glext.h> always defines all APIs for all
profiles of the latest OpenGL version, as well as for all extensions defined in the
Registry.

<GL3/gl3.h> defines APIs for the core profile of OpenGL, together with
ARB extensions compatible with the core profile. It does not include APIs for
features only in the compatibility profile or for other extensions.

<GL3/gl3ext.h> defines APIs for additional ARB, EXT, and vendor exten-
sions compatible with the core profile, but not defined in <GL3/gl3.h>. Most
older extensions are not compatible with the core profile.

Applications using the compatibility profile (see appendices I and E) should
#include the traditional <GL/gl.h> and <GL/glext.h> headers.

Applications using the core profile should #include the new
<GL3/gl3.h> and <GL3/gl3ext.h> headers introduced with OpenGL 3.1.

By using <GL3/gl3.h> and <GL3/gl3ext.h>, instead of the legacy
<GL/gl.h> and <GL/glext.h>, newly developed applications are given in-
creased protection against accidentally using a “legacy” feature that has been re-
moved from the core profile This can assist in developing applications on a GL
implementation that supports the compatibility profile when the application is also
intended to run on other platforms supporting only the core profile.

Developers should always be able to download <GL3/gl3.h> and
<GL3/gl3ext.h> from the Registry, with these headers replacing, or being used
in place of older versions that may be provided by a platform SDK.

J.3 ARB Extensions

OpenGL extensions that have been approved by the OpenGL Architectural Review
Board (ARB) are summarized in this section. ARB extensions are not required
to be supported by a conformant OpenGL implementation, but are expected to be
widely available; they define functionality that is likely to move into the required
feature set in a future revision of the specification.

J.3.1 Naming Conventions

To distinguish ARB extensions from core OpenGL features and from vendor-
specific extensions, the following naming conventions are used:

• A unique name string of the form ”GL_ARB_name” is associated with each
extension. If the extension is supported by an implementation, this string
will be present in the EXTENSIONS string returned by GetString, and will

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

J.3. ARB EXTENSIONS 521

be among the EXTENSIONS strings returned by GetStringi, as described in
section 6.1.5.

• All functions defined by the extension will have names of the form Func-
tionARB

• All enumerants defined by the extension will have names of the form
NAME_ARB.

• In additional to OpenGL extensions, there are also ARB extensions to the
related GLX and WGL APIs. Such extensions have name strings prefixed by
"GLX_" and "WGL_" respectively. Not all GLX and WGL ARB extensions
are described here, but all such extensions are included in the registry.

J.3.2 Promoting Extensions to Core Features

ARB extensions can be promoted to required core features in later revisions of
OpenGL. When this occurs, the extension specifications are merged into the core
specification. Functions and enumerants that are part of such promoted extensions
will have the ARB affix removed.

GL implementations of such later revisions should continue to export the name
strings of promoted extensions in the EXTENSIONS string and continue to support
the ARB-affixed versions of functions and enumerants as a transition aid.

For descriptions of extensions promoted to core features in OpenGL 1.3 and
beyond, see the corresponding version of the OpenGL specification, or the de-
scriptions of that version in version-specific appendices to later versions of the
specification.

J.3.3 Multitexture

The name string for multitexture is GL_ARB_multitexture. It was promoted to
a core feature in OpenGL 1.3.

J.3.4 Transpose Matrix

The name string for transpose matrix is GL_ARB_transpose_matrix. It was
promoted to a core feature in OpenGL 1.3.

J.3.5 Multisample

The name string for multisample is GL_ARB_multisample. It was promoted to a
core feature in OpenGL 1.3.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

J.3. ARB EXTENSIONS 522

J.3.6 Texture Add Environment Mode

The name string for texture add mode is GL_ARB_texture_env_add. It was
promoted to a core feature in OpenGL 1.3.

J.3.7 Cube Map Textures

The name string for cube mapping is GL_ARB_texture_cube_map. It was pro-
moted to a core feature in OpenGL 1.3.

J.3.8 Compressed Textures

The name string for compressed textures is GL_ARB_texture_compression. It
was promoted to a core feature in OpenGL 1.3.

J.3.9 Texture Border Clamp

The name string for texture border clamp is GL_ARB_texture_border_clamp.
It was promoted to a core feature in OpenGL 1.3.

J.3.10 Point Parameters

The name string for point parameters is GL_ARB_point_parameters. It was
promoted to a core features in OpenGL 1.4.

J.3.11 Vertex Blend

Vertex blending replaces the single model-view transformation with multiple ver-
tex units. Each unit has its own transform matrix and an associated current weight.
Vertices are transformed by all the enabled units, scaled by their respective weights,
and summed to create the eye-space vertex. Normals are similarly transformed by
the inverse transpose of the model-view matrices.

The name string for vertex blend is GL_ARB_vertex_blend.

J.3.12 Matrix Palette

Matrix palette extends vertex blending to include a palette of model-view matrices.
Each vertex may be transformed by a different set of matrices chosen from the
palette.

The name string for matrix palette is GL_ARB_matrix_palette.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

J.3. ARB EXTENSIONS 523

J.3.13 Texture Combine Environment Mode

The name string for texture combine mode is GL_ARB_texture_env_combine.
It was promoted to a core feature in OpenGL 1.3.

J.3.14 Texture Crossbar Environment Mode

The name string for texture crossbar is GL_ARB_texture_env_crossbar. It
was promoted to a core features in OpenGL 1.4.

J.3.15 Texture Dot3 Environment Mode

The name string for DOT3 is GL_ARB_texture_env_dot3. It was promoted to
a core feature in OpenGL 1.3.

J.3.16 Texture Mirrored Repeat

The name string for texture mirrored repeat is GL_ARB_texture_mirrored_-
repeat. It was promoted to a core feature in OpenGL 1.4.

J.3.17 Depth Texture

The name string for depth texture is GL_ARB_depth_texture. It was promoted
to a core feature in OpenGL 1.4.

J.3.18 Shadow

The name string for shadow is GL_ARB_shadow. It was promoted to a core feature
in OpenGL 1.4.

J.3.19 Shadow Ambient

Shadow ambient extends the basic image-based shadow functionality by allowing
a texture value specified by the TEXTURE_COMPARE_FAIL_VALUE_ARB texture
parameter to be returned when the texture comparison fails. This may be used for
ambient lighting of shadowed fragments and other advanced lighting effects.

The name string for shadow ambient is GL_ARB_shadow_ambient.

J.3.20 Window Raster Position

The name string for window raster position is GL_ARB_window_pos. It was pro-
moted to a core feature in OpenGL 1.4.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

J.3. ARB EXTENSIONS 524

J.3.21 Low-Level Vertex Programming

Application-defined vertex programs may be specified in a new low-level program-
ming language, replacing the standard fixed-function vertex transformation, light-
ing, and texture coordinate generation pipeline. Vertex programs enable many new
effects and are an important first step towards future graphics pipelines that will be
fully programmable in an unrestricted, high-level shading language.

The name string for low-level vertex programming is GL_ARB_vertex_-

program.

J.3.22 Low-Level Fragment Programming

Application-defined fragment programs may be specified in the same low-level lan-
guage as GL_ARB_vertex_program, replacing the standard fixed-function vertex
texturing, fog, and color sum operations.

The name string for low-level fragment programming is GL_ARB_-

fragment_program.

J.3.23 Buffer Objects

The name string for buffer objects is GL_ARB_vertex_buffer_object. It was
promoted to a core feature in OpenGL 1.5.

J.3.24 Occlusion Queries

The name string for occlusion queries is GL_ARB_occlusion_query. It was
promoted to a core feature in OpenGL 1.5.

J.3.25 Shader Objects

The name string for shader objects is GL_ARB_shader_objects. It was pro-
moted to a core feature in OpenGL 2.0.

J.3.26 High-Level Vertex Programming

The name string for high-level vertex programming is GL_ARB_vertex_shader.
It was promoted to a core feature in OpenGL 2.0.

J.3.27 High-Level Fragment Programming

The name string for high-level fragment programming is GL_ARB_fragment_-
shader. It was promoted to a core feature in OpenGL 2.0.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

J.3. ARB EXTENSIONS 525

J.3.28 OpenGL Shading Language

The name string for the OpenGL Shading Language is GL_ARB_shading_-

language_100. The presence of this extension string indicates that programs
written in version 1 of the Shading Language are accepted by OpenGL. It was
promoted to a core feature in OpenGL 2.0.

J.3.29 Non-Power-Of-Two Textures

The name string for non-power-of-two textures is GL_ARB_texture_non_-

power_of_two. It was promoted to a core feature in OpenGL 2.0.

J.3.30 Point Sprites

The name string for point sprites is GL_ARB_point_sprite. It was promoted to
a core feature in OpenGL 2.0.

J.3.31 Fragment Program Shadow

Fragment program shadow extends low-level fragment programs defined with
GL_ARB_fragment_program to add shadow 1D, 2D, and 3D texture targets, and
remove the interaction with GL_ARB_shadow.

The name string for fragment program shadow is GL_ARB_fragment_-

program_shadow.

J.3.32 Multiple Render Targets

The name string for multiple render targets is GL_ARB_draw_buffers. It was
promoted to a core feature in OpenGL 2.0.

J.3.33 Rectangular Textures

Rectangular textures define a new texture target TEXTURE_RECTANGLE_ARB that
supports 2D textures without requiring power-of-two dimensions. Rectangular
textures are useful for storing video images that do not have power-of-two sizes
(POTS). Resampling artifacts are avoided and less texture memory may be re-
quired. They are are also useful for shadow maps and window-space texturing.
These textures are accessed by dimension-dependent (aka non-normalized) texture
coordinates.

Rectangular textures are a restricted version of non-power-of-two textures. The
differences are that rectangular textures are supported only for 2D; they require a
new texture target; and the new target uses non-normalized texture coordinates.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

J.3. ARB EXTENSIONS 526

The name string for texture rectangles is GL_ARB_texture_rectangle. It
was promoted to a core feature in OpenGL 3.1.

J.3.34 Floating-Point Color Buffers

Floating-point color buffers can represent values outside the normal [0, 1] range
of colors in the fixed-function OpenGL pipeline. This group of related exten-
sions enables controlling clamping of vertex colors, fragment colors throughout the
pipeline, and pixel data read back to client memory, and also includes WGL and
GLX extensions for creating frame buffers with floating-point color components
(referred to in GLX as framebuffer configurations, and in WGL as pixel formats).

The name strings for floating-point color buffers are GL_ARB_color_-

buffer_float, GLX_ARB_fbconfig_float, and WGL_ARB_pixel_-

format_float. GL_ARB_color_buffer_float was promoted to a core
feature in OpenGL 3.0.

J.3.35 Half-Precision Floating Point

This extension defines the representation of a 16-bit floating point data format, and
a corresponding type argument which may be used to specify and read back pixel
and texture images stored in this format in client memory. Half-precision floats are
smaller than full precision floats, but provide a larger dynamic range than similarly
sized (short) data types.

The name string for half-precision floating point is GL_ARB_half_float_-
pixel. It was promoted to a core feature in OpenGL 3.0.

J.3.36 Floating-Point Textures

Floating-point textures stored in both 32- and 16-bit formats may be defined using
new internalformat arguments to commands which specify and read back texture
images.

The name string for floating-point textures is GL_ARB_texture_float. It
was promoted to a core feature in OpenGL 3.0.

J.3.37 Pixel Buffer Objects

The buffer object interface is expanded by adding two new binding targets for
buffer objects, the pixel pack and unpack buffers. This permits buffer objects to be
used to store pixel data as well as vertex array data. Pixel-drawing and -reading
commands using data in pixel buffer objects may operate at greatly improved per-
formance compared to data in client memory.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

J.3. ARB EXTENSIONS 527

The name string for pixel buffer objects is GL_ARB_pixel_buffer_object.
It was promoted to a core feature in OpenGL 2.1.

J.3.38 Floating-Point Depth Buffers

The name string for floating-point depth buffers is GL_ARB_depth_buffer_-

float. This extension is equivalent to new core functionality introduced in
OpenGL 3.0, based on the earlier GL_NV_depth_buffer_float extension, and
is provided to enable this functionality in older drivers.

J.3.39 Instanced Rendering

The name string for instanced rendering is GL_ARB_draw_instanced. It was
promoted to a core feature in OpenGL 3.1.

J.3.40 Framebuffer Objects

The name string for framebuffer objects is GL_ARB_framebuffer_object. This
extension is equivalent to new core functionality introduced in OpenGL 3.0, based
on the earlier GL_EXT_framebuffer_object, GL_EXT_framebuffer_-

multisample, and GL_EXT_framebuffer_blit extensions, and is provided
to enable this functionality in older drivers.

J.3.41 sRGB Framebuffers

The name string for sRGB framebuffers is GL_ARB_framebuffer_sRGB. It was
promoted to a core feature in OpenGL 3.0. This extension is equivalent to new
core functionality introduced in OpenGL 3.0, based on the earlier GL_EXT_-

framebuffer_sRGB extension, and is provided to enable this functionality in
older drivers.

To create sRGB format surface for use on display devices, an additional pixel
format (config) attribute is required in the window system integration layer. The
name strings for the GLX and WGL sRGB pixel format interfaces are GLX_ARB_-
framebuffer_sRGB and WGL_ARB_framebuffer_sRGB respectively.

J.3.42 Geometry Shaders

This extension defines a new shader type called a geometry shader. Geometry
shaders are run after vertices are transformed, but prior to the remaining fixed-
function vertex processing, and may generate new vertices for, or remove vertices
from the primitive assembly process.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

J.3. ARB EXTENSIONS 528

The name string for geometry shaders is GL_ARB_geometry_shader4.

J.3.43 Half-Precision Vertex Data

The name string for half-precision vertex data GL_ARB_half_float_vertex.
This extension is equivalent to new core functionality introduced in OpenGL 3.0,
based on the earlier GL_NV_half_float extension, and is provided to enable this
functionality in older drivers.

J.3.44 Instanced Rendering

.
This instanced rendering interface is a less-capable form of GL_ARB_draw_-

instanced which can be supported on older hardware.
The name string for instanced rendering is GL_ARB_instanced_arrays.

J.3.45 Flexible Buffer Mapping

The name string for flexible buffer mapping is GL_ARB_map_buffer_range.
This extension is equivalent to new core functionality introduced in OpenGL 3.0,
based on the earlier GL_APPLE_flush_buffer_range extension, and is pro-
vided to enable this functionality in older drivers.

J.3.46 Texture Buffer Objects

The name string for texture buffer objects is GL_ARB_texture_buffer_-

object. It was promoted to a core feature in OpenGL 3.1.

J.3.47 RGTC Texture Compression Formats

The name string for RGTC texture compression formats is GL_ARB_texture_-
compression_rgtc. This extension is equivalent to new core functionality intro-
duced in OpenGL 3.0, based on the earlier GL_EXT_texture_compression_-
rgtc extension, and is provided to enable this functionality in older drivers.

It was promoted to a core feature in OpenGL 3.0.

J.3.48 One- and Two-Component Texture Formats

The name string for one- and two-component texture formats is GL_ARB_-

texture_rg. It was promoted to a core feature in OpenGL 3.0. This extension is

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

J.3. ARB EXTENSIONS 529

equivalent to new core functionality introduced in OpenGL 3.0, and is provided to
enable this functionality in older drivers.

J.3.49 Vertex Array Objects

The name string for vertex array objects is GL_ARB_vertex_array_object.
This extension is equivalent to new core functionality introduced in OpenGL 3.0,
based on the earlier GL_APPLE_vertex_array_object extension, and is pro-
vided to enable this functionality in older drivers.

It was promoted to a core feature in OpenGL 3.0.

J.3.50 Versioned Context Creation

Starting with OpenGL 3.0, a new context creation interface is required in the win-
dow system integration layer. This interface specifies the context version required
as well as other attributes of the context.

The name strings for the GLX and WGL context creation interfaces are GLX_-
ARB_create_context and WGL_ARB_create_context respectively.

J.3.51 Uniform Buffer Objects

The name string for uniform buffer objects is GL_ARB_uniform_buffer_-

object. This extension is equivalent to new core functionality introduced in
OpenGL 3.1 and is provided to enable this functionality in older drivers.

J.3.52 Restoration of features removed from OpenGL 3.0

OpenGL 3.1 removes a large number of features that were marked deprecated
in OpenGL 3.0 (see appendix G.2). GL implementations needing to maintain
these features to support existing applications may do so, following the depreca-
tion model, by exporting an extension string indicating those features are present.
Applications written for OpenGL 3.1 should not depend on any of the features cor-
responding to this extension, since they will not be available on all platforms with
3.1 implementations.

The name string for restoration of features deprecated by OpenGL 3.0 is GL_-
ARB_compatibility.

The profile terminology introduced with OpenGL 3.2 eliminates the necessity
for evolving this extension. Instead, interactions between features removed by
OpenGL 3.1 and new features introduced in later OpenGL versions are defined by
the compatibility profile corresponding to those versions.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

J.3. ARB EXTENSIONS 530

J.3.53 Fast Buffer-to-Buffer Copies

The name string for fast buffer-to-buffer copies is GL_ARB_copy_buffer. This
extension is equivalent to new core functionality introduced in OpenGL 3.1 and is
provided to enable this functionality in older drivers.

J.3.54 Shader Texture Level of Detail Control

The name string for shader texture level of detail control is GL_ARB_shader_-
texture_lod. This extension is equivalent to new core functions introduced in
OpenGL Shading Language 1.30 and is provided to enable this functionality in
older versions of the shading language.

J.3.55 Depth Clamp Control

The name string for depth clamp control is GL_ARB_depth_clamp. This exten-
sion is equivalent to new core functionality introduced in OpenGL 3.2 and is pro-
vided to enable this functionality in older drivers.

J.3.56 Base Vertex Offset Drawing Commands

The name string for base vertex offset drawing commands is GL_ARB_draw_-

elements_base_vertex. This extension is equivalent to new core functionality
introduced in OpenGL 3.2 and is provided to enable this functionality in older
drivers.

J.3.57 Fragment Coordinate Convention Control

The name string for fragment coordinate convention control is GL_ARB_-

fragment_coord_conventions. This extension is equivalent to new core func-
tionality introduced in OpenGL 3.2 and is provided to enable this functionality in
older drivers.

J.3.58 Provoking Vertex Control

The name string for provoking vertex control is GL_ARB_provoking_vertex.
This extension is equivalent to new core functionality introduced in OpenGL 3.2
and is provided to enable this functionality in older drivers.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

J.3. ARB EXTENSIONS 531

J.3.59 Seamless Cube Maps

The name string for seamless cube maps is GL_ARB_seamless_cube_map. This
extension is equivalent to new core functionality introduced in OpenGL 3.2 and is
provided to enable this functionality in older drivers.

J.3.60 Fence Sync Objects

The name string for fence sync objects is GL_ARB_sync. This extension is equiva-
lent to new core functionality introduced in OpenGL 3.2 and is provided to enable
this functionality in older drivers.

J.3.61 Multisample Textures

The name string for multisample textures is GL_ARB_texture_multisample.
This extension is equivalent to new core functionality introduced in OpenGL 3.2
and is provided to enable this functionality in older drivers.

J.3.62 BGRA Attribute Component Ordering

The name string for BGRA attribute component ordering is GL_ARB_vertex_-
array_bgra. This extension is equivalent to new core functionality introduced in
OpenGL 3.2 and is provided to enable this functionality in older drivers.

J.3.63 Per-Buffer Blend Control

The blending interface is extended to specify blend equation and blend function on
a per-draw-buffer basis.

The name string for per-buffer blend control is GL_ARB_draw_buffers_-

blend.

J.3.64 Sample Shading Control

Sample shading control adds the ability to request that an implementation use a
minimum number of unique sets of fragment computation inputs when multisam-
pling a pixel.

The name string for sample shading control is GL_ARB_sample_shading.

J.3.65 Cube Map Array Textures

A cube map array texture is a two-dimensional array texture that may contain many
cube map layers. Each cube map layer is a unique cube map image set.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

J.3. ARB EXTENSIONS 532

The name string for cube map array textures is GL_ARB_texture_cube_-
map_array.

J.3.66 Texture Gather

Texture gather adds a new set of texture functions (textureGather) to the
OpenGL Shading Language that determine the 2×2 footprint used for linear filter-
ing in a texture lookup, and return a vector consisting of the first component from
each of the four texels in the footprint.

The name string for texture gather is GL_ARB_texture_gather.

J.3.67 Texture Level-Of-Detail Queries

Texture level-of-detail queries adds a new set of fragment shader texture functions
(textureLOD) to the OpenGL Shading Language that return the results of au-
tomatic level-of-detail computations that would be performed if a texture lookup
were to be done.

The name string for texture level-of-detail queries is GL_ARB_texture_-

query_lod.

J.3.68 Profiled Context Creation

Starting with OpenGL 3.2, API profiles are defined. Profiled context creation ex-
tends the versioned context creation interface to specify a profile which must be
implemnented by the context.

The name strings for the GLX and WGL profiled context creation interfaces
are GLX_ARB_create_context_profile and WGL_ARB_create_context_-
profile respectively.

J.3.69 Shading Language Include

Shading language include adds support for #include directives to shaders, and
a named string API for defining the text corresponding to #include pathnames.

The name string for shading language include is GL_ARB_shading_-

language_include.

J.3.70 BPTC texture compression

BPTC texture compression provides new block compressed specific texture for-
mats which can improve quality in images with sharp edges and strong chromi-
nance transitions, and support high dynamic range floating-point formats.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

J.3. ARB EXTENSIONS 533

The name string for bptc texture compression is GL_ARB_texture_-

compression_bptc.

J.3.71 Extended Blend Functions

The name string for extended blend functions is GL_ARB_blend_func_-

extended. This extension is equivalent to new core functionality introduced in
OpenGL 3.3, and is provided to enable this functionality in older drivers.

J.3.72 Explicit Attribute Location

The name string for explicit attribute location is GL_ARB_explicit_attrib_-
location. This extension is equivalent to new core functionality introduced in
OpenGL 3.3 and is provided to enable this functionality in older drivers.

J.3.73 Boolean Occlusion Queries

The name string for boolean occlusion queries is GL_ARB_occlusion_query2.
This extension is equivalent to new core functionality introduced in OpenGL 3.3
and is provided to enable this functionality in older drivers.

J.3.74 Sampler Objects

The name string for sampler objects is GL_ARB_sampler_objects. This ex-
tension is equivalent to new core functionality introduced in OpenGL 3.3 and is
provided to enable this functionality in older drivers.

J.3.75 Shader Bit Encoding

The name string for shader bit encoding is GL_ARB_shader_bit_encoding.
This extension is equivalent to new core functionality introduced in OpenGL 3.3
and is provided to enable this functionality in older drivers.

J.3.76 RGB10A2 Integer Textures

The name string for rgb10a2 integer textures is GL_ARB_texture_rgb10_a2ui.
This extension is equivalent to new core functionality introduced in OpenGL 3.3
and is provided to enable this functionality in older drivers.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

J.3. ARB EXTENSIONS 534

J.3.77 Texture Swizzle

The name string for texture swizzle is GL_ARB_texture_swizzle. This ex-
tension is equivalent to new core functionality introduced in OpenGL 3.3 and is
provided to enable this functionality in older drivers.

J.3.78 Timer Queries

The name string for timer queries is GL_ARB_timer_query. This extension is
equivalent to new core functionality introduced in OpenGL 3.3 and is provided to
enable this functionality in older drivers.

J.3.79 Packed 2.10.10.10 Vertex Formats

The name string for packed 2.10.10.10 vertex formats is GL_ARB_vertex_-

type_2_10_10_10_rev. This extension is equivalent to new core functional-
ity introduced in OpenGL 3.3 and is provided to enable this functionality in older
drivers.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Index

x, 449
x BIAS, 178, 445
x BITS, 471
x SCALE, 178, 445
x SIZE, 449
*BaseVertex, 43
ColorP3ui, 33
ColorP4ui, 33
*CopyBufferSubData, 61
*GetString, 395
*GetStringi, 396
*MapBuffer, 59
*MapBufferRange, 57
*Pointer, 37
*WaitSync, 399
-, 451–453, 462
–, 414, 415, 472
472
2D, 367, 368, 472
2 BYTES, 371
3D, 367, 368
3D COLOR, 367, 368
3D COLOR TEXTURE, 367, 368
3 BYTES, 371
4D COLOR TEXTURE, 367, 368
4 BYTES, 371

1, 429
2, 429
3, 429

ACCUM, 320

Accum, 135, 152, 320, 494
ACCUM x BITS, 471
ACCUM * BITS, 494
ACCUM ALPHA BITS, 336
ACCUM BLUE BITS, 336
ACCUM BUFFER BIT, 316, 317, 410,

494
ACCUM CLEAR VALUE, 438
ACCUM GREEN BITS, 336
ACCUM RED BITS, 336
ACTIVE ATTRIBUTE MAX -

LENGTH, 93, 402, 453
ACTIVE ATTRIBUTES, 92, 402, 452
ACTIVE TEXTURE, 32, 70, 146, 217,

218, 220, 359, 382, 434
ACTIVE UNIFORM BLOCK -

MAX NAME LENGTH, 402,
454

ACTIVE UNIFORM BLOCKS, 97,
402, 454

ACTIVE UNIFORM MAX LENGTH,
100, 101, 402, 452

ACTIVE UNIFORMS, 99, 100, 402,
452

ActiveTexture, 111, 217, 218, 279
ADD, 270, 273, 274, 320
ADD SIGNED, 274
ALIASED LINE WIDTH RANGE,

463
ALIASED POINT SIZE RANGE, 462
ALL ATTRIB BITS, 409, 410, 495
ALPHA, 178, 192, 207, 208, 225, 228,

535

INDEX 536

232, 252–254, 271–273, 277,
305, 325, 329, 348, 388, 390,
431, 432, 441, 445, 446, 448,
471, 493

ALPHA12, 228
ALPHA16, 228
ALPHA4, 228
ALPHA8, 226, 228
ALPHA BIAS, 205
ALPHA BITS, 354, 494
ALPHA INTEGER, 192
ALPHA SCALE, 204, 270, 273, 435
ALPHA TEST, 297, 436, 494
ALPHA TEST FUNC, 436
ALPHA TEST REF, 436
AlphaFunc, 297, 494
ALREADY SIGNALED, 376
ALWAYS, 252, 277, 297–300, 436
AMBIENT, 82, 83, 85, 424, 425
AMBIENT AND DIFFUSE, 82, 83, 85
AND, 309
AND INVERTED, 309
AND REVERSE, 309
Antialiasing, 168
ANY SAMPLES -

PASSED, 134–136, 300, 301,
396, 397

AreTexturesResident, 219, 220, 372,
494

ARRAY BUFFER, 38, 53, 62
ARRAY BUFFER BINDING, 62, 420
ArrayElement, 29, 42, 62, 119, 370,

498, 510
ArrayElementInstanced, 40, 42, 43
ATTACHED SHADERS, 402, 403, 452
AttachShader, 89, 373
ATTRIB STACK DEPTH, 472, 495
AUTO NORMAL, 115, 360, 450
AUXi, 311–313, 406, 494
AUX0, 311

AUX BUFFERS, 311, 336, 471

BACK, 81, 82, 84, 169, 170, 172, 298,
302, 311, 312, 314–316, 318,
324, 334, 383, 427, 493

BACK LEFT, 312, 313, 406
BACK RIGHT, 312, 313, 406
Begin, 18, 22–25, 27–30, 42–44, 46,

65, 82, 85, 111, 120, 124, 128,
131, 135, 137, 141, 162, 165,
168, 172, 287, 306, 352, 353,
361, 362, 367, 491

BeginConditionalRender, 135, 136
BeginQuery, 133, 134, 139, 300, 367,

369, 498, 510
BeginTransformFeedback, 136–138
BGR, 192, 325, 329, 390
BGR INTEGER, 192
BGRA, 37–39, 43, 192, 195, 200, 325,

390
BGRA INTEGER, 192, 195
BindAttribLocation, 93, 94, 373
BindBuffer, 52, 54, 62, 251, 372, 510
BindBufferBase, 54, 110, 137, 138, 372
BindBufferRange, 54, 110, 111, 137,

138, 372
BindFragDataLocation, 289, 373
BindFragDataLocationIndexed, 289,

290, 306
BindFramebuffer, 335, 337, 351, 372
BindRenderbuffer, 338, 339, 372
BindSampler, 221, 223
BindTexture, 111, 218, 219, 270, 510
BindVertexArray, 64, 372
BITMAP, 171, 180, 183, 189, 191, 202,

214, 327, 389, 493
Bitmap, 111, 135, 152, 214, 215, 287,

355, 493
BITMAP TOKEN, 368

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 537

BLEND, 270, 273, 301, 302, 307, 308,
437

BLEND COLOR, 437
BLEND DST ALPHA, 437
BLEND DST RGB, 437
BLEND EQUATION ALPHA, 437
BLEND EQUATION RGB, 437
BLEND SRC ALPHA, 437
BLEND SRC RGB, 437
BlendColor, 303, 306
BlendEquation, 302
BlendEquationSeparate, 302
BlendFunc, 303
BlendFuncSeparate, 303
BlitFramebuffer, 321, 331, 333, 348,

373, 511
BLUE, 178, 192, 253, 271, 325, 329,

390, 431, 432, 441, 445, 446,
448, 471

BLUE BIAS, 205
BLUE BITS, 354, 494
BLUE INTEGER, 192
BLUE SCALE, 204
BOOL, 101
bool, 101, 107
BOOL VEC2, 101
BOOL VEC3, 102
BOOL VEC4, 102
BUFFER ACCESS, 53, 56, 58, 421
BUFFER ACCESS FLAGS, 53, 56, 58,

60, 421, 499
BUFFER MAP LENGTH, 53, 56, 58,

60, 421, 499
BUFFER MAP OFFSET, 53, 56, 58,

60, 421, 499
BUFFER MAP POINTER, 53, 56, 58,

60, 399, 400, 421
BUFFER MAPPED, 53, 56, 58, 60, 421
BUFFER SIZE, 53, 54, 56, 59, 421
BUFFER USAGE, 53, 56, 57, 421

BufferData, 54, 56, 96, 372, 486
BufferSubData, 56, 96, 372, 486
bvec2, 101, 106
bvec3, 102
bvec4, 102
BYTE, 37, 191, 327, 328, 371, 391

C3F V3F, 49, 50
C4F N3F V3F, 49, 50
C4UB V2F, 49, 50
C4UB V3F, 49, 50
CallList, 29, 370, 371, 495
CallLists, 29, 370, 371, 495
CCW, 169, 427
CheckFramebufferStatus, 351, 352, 372
CLAMP, 253, 259, 260, 493, 511
CLAMP FRAGMENT COLOR, 203,

332, 423, 492
CLAMP READ COLOR, 326, 423
CLAMP TO BORDER, 253, 255, 260,

500
CLAMP TO EDGE, 253, 255, 260,

269, 332
CLAMP VERTEX COLOR, 86, 423,

492
ClampColor, 86, 203, 326, 492
CLEAR, 309
Clear, 135, 152, 316–319, 356, 494
ClearAccum, 317, 494
ClearBuffer, 319
ClearBuffer*, 135, 152, 356, 498, 499
ClearBuffer{if ui}v, 318, 319
ClearBufferfi, 318, 319
ClearBufferfv, 318, 319
ClearBufferiv, 318, 319
ClearBufferuiv, 318
ClearColor, 317, 318
ClearDepth, 317–319
ClearIndex, 317
ClearStencil, 317–319

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 538

CLIENT ACTIVE TEXTURE, 40,
382, 420

CLIENT ALL ATTRIB BITS, 409,
410, 495

CLIENT ATTRIB STACK DEPTH,
472, 495

CLIENT PIXEL STORE BIT, 410
CLIENT VERTEX ARRAY BIT, 410
ClientActiveTexture, 30, 40, 372, 491
ClientWaitSync, 373, 375–378, 485,

511
CLIP DISTANCEi, 143, 422, 498
CLIP DISTANCE0, 143
CLIP PLANEi, 142, 422, 498
ClipPlane, 142, 492
COEFF, 384, 450
COLOR, 66, 67, 70, 71, 182, 186, 187,

238, 318, 319, 329
Color, 29, 32, 33, 76, 85, 91, 135, 145
Color*, 33, 491
Color3, 33
Color4, 33
COLOR ARRAY, 38, 51, 416
COLOR ARRAY BUFFER BIND-

ING, 419
COLOR ARRAY POINTER, 394, 416
COLOR ARRAY SIZE, 416
COLOR ARRAY STRIDE, 416
COLOR ARRAY TYPE, 416
COLOR ATTACHMENTi, 311, 312,

324, 342, 349
COLOR ATTACHMENTm, 311, 314
COLOR ATTACHMENTn, 336
COLOR ATTACHMENT0, 311, 314,

324, 336
COLOR BUFFER BIT, 316, 317, 319,

331, 332, 410
COLOR CLEAR VALUE, 438
COLOR INDEX, 171, 180, 183, 189,

192, 202, 205, 214, 325, 329,

387, 389, 491
COLOR INDEXES, 83, 86, 425
COLOR LOGIC OP, 308, 437
COLOR MATERIAL, 82, 85, 424, 492
COLOR MATERIAL FACE, 424
COLOR MATERIAL PARAMETER,

424
COLOR MATRIX, 389
COLOR MATRIX

(TRANSPOSE COLOR MATRIX),
422

COLOR MATRIX STACK DEPTH,
390, 422

COLOR SUM, 281, 423, 494
COLOR TABLE, 181, 183, 206, 446
COLOR TABLE x SIZE, 446
COLOR TABLE ALPHA SIZE, 392
COLOR TABLE BIAS, 180, 181, 392,

446
COLOR TABLE BLUE SIZE, 392
COLOR TABLE FORMAT, 392, 446
COLOR TABLE GREEN SIZE, 392
COLOR TABLE INTENSITY SIZE,

392
COLOR TABLE LUMINANCE SIZE,

392
COLOR TABLE RED SIZE, 392
COLOR TABLE SCALE, 180–182,

392, 446
COLOR TABLE WIDTH, 392, 446
COLOR WRITEMASK, 315, 438
ColorMask, 315, 316
ColorMaski, 315
ColorMaterial, 82, 84, 85, 360, 478, 492
ColorP*, 33
ColorP*uiv, 33
ColorPointer, 30, 36, 39, 51, 372, 491
ColorSubTable, 176, 182
ColorTable, 176, 180–184, 187, 188,

211, 212, 373

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 539

ColorTableParameter, 181
ColorTableParameterfv, 180
Colorub, 145
Colorui, 145
Colorus, 145
COMBINE, 270, 271, 274, 279
COMBINE ALPHA, 270, 271, 274,

275, 434
COMBINE RGB, 270, 271, 274, 275,

434
COMPARE R TO TEXTURE, 498
COMPARE REF TO TEXTURE, 252,

276, 498
COMPILE, 370, 478
COMPILE AND EXECUTE, 370, 371
COMPILE STATUS, 88, 401, 451
CompileShader, 88, 373
COMPRESSED ALPHA, 232
COMPRESSED INTENSITY, 232
COMPRESSED LUMINANCE, 232
COMPRESSED LUMINANCE AL-

PHA, 232
COMPRESSED RED, 232
COMPRESSED RED RGTC1, 227,

232, 481–483
COMPRESSED RG, 232
COMPRESSED RG RGTC2, 227,

232, 483
COMPRESSED RGB, 232
COMPRESSED RGBA, 232
COMPRESSED SIGNED -

RED RGTC1, 227, 232, 482,
483

COMPRESSED SIGNED RG -
RGTC2, 227, 232, 483

COMPRESSED SLUMINANCE, 232,
277

COMPRESSED SLUMINANCE AL-
PHA, 232, 277

COMPRESSED SRGB, 232, 277

COMPRESSED SRGB ALPHA, 232,
277

COMPRESSED TEXTURE FOR-
MATS, 225, 463

CompressedTexImage, 246
CompressedTexImagenD, 244
CompressedTexImage*, 351, 504
CompressedTexImage1D, 243–246
CompressedTexImage2D, 243–246
CompressedTexImage3D, 243–246
CompressedTexSubImagenD, 246
CompressedTexSubImage1D, 245–247
CompressedTexSubImage2D, 245–247
CompressedTexSubImage3D, 245–247
CONDITION SATISFIED, 376
CONSTANT, 273, 275, 435
CONSTANT ALPHA, 305
CONSTANT ATTENUATION, 83, 425
CONSTANT BORDER, 208–210
CONSTANT COLOR, 305
CONTEXT COMPATIBILITY PRO-

FILE BIT, 396
CONTEXT CORE PROFILE BIT, 396
CONTEXT FLAG FORWARD COM-

PATIBLE BIT, 395
CONTEXT FLAGS, 395, 464
CONTEXT PROFILE MASK, 395,

396
CONVOLUTION xD, 447
CONVOLUTION 1D, 184–186, 206,

236, 392, 447
CONVOLUTION 2D, 183–185, 207,

235, 392, 447
CONVOLUTION -

BORDER COLOR, 209, 392,
447

CONVOLUTION BORDER MODE,
208, 392, 447

CONVOLUTION FILTER BIAS, 184,
185, 392, 447

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 540

CONVOLUTION FILTER SCALE,
184–186, 392, 447

CONVOLUTION FORMAT, 392, 447
CONVOLUTION HEIGHT, 392, 447
CONVOLUTION WIDTH, 392, 447
ConvolutionFilter1D, 176, 184–186
ConvolutionFilter2D, 176, 183–186
ConvolutionParameter, 184, 208
ConvolutionParameterfv, 184, 185, 209
ConvolutionParameteriv, 185, 209
COORD REPLACE, 157, 160, 434
COPY, 309, 437
COPY INVERTED, 309
COPY PIXEL TOKEN, 368
COPY READ BUFFER, 53, 61, 472
COPY WRITE BUFFER, 53, 61, 472
CopyColorSubTable, 182, 329
CopyColorTable, 181, 182, 329
CopyConvolutionFilter*, 329
CopyConvolutionFilter1D, 186
CopyConvolutionFilter2D, 185, 186
CopyPixels, 135, 152, 175, 178, 182,

186, 207, 321, 329–332, 355,
356, 366, 494

CopyTexImage, 353, 494
CopyTexImage*, 329, 342, 348, 351
CopyTexImage1D, 207, 239, 240, 243,

263
CopyTexImage2D, 207, 238–240, 243,

263
CopyTexImage3D, 240
CopyTexSubImage, 353
CopyTexSubImage*, 243, 247, 329,

342
CopyTexSubImage1D, 207, 239, 240,

242, 243
CopyTexSubImage2D, 207, 239–243
CopyTexSubImage3D, 207, 239, 240,

242, 243
CreateProgram, 89, 373

CreateShader, 88, 89, 373
CULL FACE, 169, 427
CULL FACE MODE, 427
CullFace, 169, 170, 174
CURRENT BIT, 410
CURRENT COLOR, 415
CURRENT FOG COORD, 415
CURRENT INDEX, 415
CURRENT NORMAL, 415
CURRENT PROGRAM, 452
CURRENT QUERY, 396, 472
CURRENT RASTER COLOR, 415
CURRENT RASTER DISTANCE,

415
CURRENT RASTER INDEX, 415
CURRENT RASTER POSITION, 415
CURRENT RASTER POSITION -

VALID, 415
CURRENT RASTER SECONDARY -

COLOR, 415
CURRENT RASTER TEXTURE CO-

ORDS, 146, 415, 477
CURRENT SECONDARY COLOR,

415
CURRENT TEXTURE COORDS, 32,

415
CURRENT VERTEX ATTRIB, 404,

456
CW, 169

DECAL, 270, 272
DECR, 299
DECR WRAP, 299
DELETE STATUS, 89, 401, 402, 451,

452
DeleteBuffers, 52, 372, 484
DeleteFramebuffers, 335, 337, 372
DeleteLists, 372, 495
DeleteProgram, 91, 373
DeleteQueries, 134, 372

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 541

DeleteRenderbuffers, 339, 352, 372,
484

DeleteSamplers, 221, 223
DeleteShader, 89, 373
DeleteSync, 375, 376, 399
DeleteTextures, 219, 352, 372, 484
DeleteVertexArrays, 64, 372
DEPTH, 238, 318, 319, 329, 406, 432,

441, 445, 498
DEPTH24 STENCIL8, 227, 232
DEPTH32F STENCIL8, 227, 232
DEPTH ATTACHMENT, 336, 342,

350, 498, 499
DEPTH BIAS, 178, 205
DEPTH BITS, 331, 354, 471, 494
DEPTH BUFFER, 499
DEPTH BUFFER BIT, 316, 317, 319,

331–333, 410
DEPTH CLAMP, 143, 422
DEPTH CLEAR VALUE, 438
DEPTH COMPONENT, 118, 119, 180,

183, 192, 202, 224, 225, 232,
276, 279, 285, 323, 325, 329,
331, 349, 386, 387

DEPTH COMPONENT16, 227, 232
DEPTH COMPONENT24, 227, 232
DEPTH COMPONENT32, 232
DEPTH COMPONENT32F, 227, 232
DEPTH FUNC, 436
DEPTH RANGE, 422
DEPTH SCALE, 178, 204
DEPTH STENCIL, 118, 119, 180, 183,

189, 192, 195, 200–202, 204,
224, 225, 232, 238, 266, 276,
279, 285, 319, 321, 323, 325,
329, 331, 342, 346, 349, 386,
387

DEPTH STENCIL ATTACHMENT,
342, 346, 406

DEPTH TEST, 299, 436

DEPTH TEXTURE MODE, 252, 269,
276, 277, 431, 493

DEPTH WRITEMASK, 438
DepthFunc, 300, 321
DepthMask, 315, 316, 321
DepthRange, 132, 147, 381, 478
DetachShader, 90, 373
dFdx, 379
dFdy, 379
DIFFUSE, 82, 83, 424, 425
Disable, 42, 70, 71, 74, 77, 81, 82, 143,

152, 155–157, 162, 165, 169,
172, 174, 211–213, 218, 255,
278, 281, 295, 297–299, 302,
308, 359, 360, 492–494

DisableClientState, 30, 38, 40, 49, 51,
372, 491

Disablei, 301
DisableVertexAttribArray, 40, 372, 404
DITHER, 308, 437
DOMAIN, 384, 450
DONT CARE, 378, 379, 460
DOT3 RGB, 274
DOT3 RGBA, 274
DOUBLE, 37, 42
DOUBLEBUFFER, 471
DRAW BUFFER, 311, 314, 324
DRAW BUFFERi, 301, 302, 314, 315,

318, 350, 440
DRAW BUFFER0, 314
DRAW FRAMEBUFFER, 320, 335,

337, 341, 343, 352, 406, 439
DRAW FRAME-

BUFFER BINDING, 29, 202,
215, 262, 311, 313, 331, 333,
337, 352–354, 439

DRAW PIXEL TOKEN, 368
DrawArrays, 44, 45, 62, 64, 119, 370
DrawArraysInstanced, 45, 373
DrawArraysOneInstance, 44

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 542

DrawBuffer, 309–312, 314, 316, 319
DrawBuffers, 310–314, 511
DrawElements, 46–48, 62–64, 137,

306, 370
DrawElementsBaseVertex, 48, 49, 63
DrawElementsInstanced, 47, 63, 373
DrawElementsInstancedBaseVertex,

48, 63
DrawElementsOneInstance, 45, 46
DrawPixels, 111, 135, 139, 152, 171,

175–178, 180, 183, 194, 202–
204, 207, 213, 214, 287, 321,
329, 355, 366, 493

DrawRangeElements, 47, 48, 62, 63,
370, 463

DrawRangeElementsBaseVertex, 48, 63
DST ALPHA, 305
DST COLOR, 305
DYNAMIC COPY, 53, 55
DYNAMIC DRAW, 53, 55
DYNAMIC READ, 53, 55

EDGE FLAG, 415
EDGE FLAG ARRAY, 38, 49, 418
EDGE FLAG ARRAY BUFFER -

BINDING, 419
EDGE FLAG ARRAY POINTER,

394, 418
EDGE FLAG ARRAY STRIDE, 418
EdgeFlag, 29
EdgeFlag*, 491
EdgeFlagPointer, 30, 37, 39, 372, 491
EdgeFlagv, 29
ELEMENT ARRAY BUFFER, 53, 62,

63
ELEMENT ARRAY BUFFER BIND-

ING, 419
EMISSION, 82, 83, 424
Enable, 42, 70, 71, 74, 77, 81, 82, 143,

152, 155–157, 162, 165, 169,

172, 174, 211–213, 218, 255,
278, 281, 295, 297–299, 302,
308, 359, 360, 381, 492–494

ENABLE BIT, 410
EnableClientState, 30, 38, 40, 51, 372,

491
Enablei, 301
EnableVertexAttribArray, 38, 64, 372,

404
End, 18, 22, 24, 25, 27–30, 42, 43,

65, 82, 85, 111, 135, 141, 162,
168, 172, 352, 361, 362, 367,
491

EndConditionalRender, 135, 136
EndList, 370, 495
EndPrimitive, 355, 356
EndQuery, 134, 300, 301, 367, 369
EndTransformFeedback, 136, 137, 487,

488
EQUAL, 252, 277, 297, 299, 300
EQUIV, 309
EVAL BIT, 410
EvalCoord, 29, 359, 360
EvalCoord*, 494
EvalCoord1, 360–362
EvalCoord1d, 361
EvalCoord1f, 361
EvalCoord2, 360, 362, 363
EvalMesh*, 494
EvalMesh1, 135, 361
EvalMesh2, 135, 361, 362
EvalPoint, 29
EvalPoint*, 494
EvalPoint1, 362
EvalPoint2, 362
EXP, 282, 283, 423
EXP2, 282
EXTENSIONS, 178, 395, 396, 464,

495, 520, 521
EYE LINEAR, 73–75, 383, 434

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 543

EYE PLANE, 73, 74, 434

FALSE, 29, 37, 53, 56, 60, 78, 80, 88,
90, 91, 105, 106, 121, 122,
140, 141, 157, 176, 178, 187,
188, 202, 203, 205, 213, 220,
252, 268, 287, 296, 301, 321,
323, 326, 345, 381, 388, 389,
393, 394, 396, 398, 399, 401,
402, 404, 406, 408, 416–418,
420–429, 431, 432, 434, 436,
437, 441, 444–452, 456, 457,
472

FASTEST, 378, 379
FEEDBACK, 364–366, 479
FEEDBACK BUFFER POINTER,

394, 472
FEEDBACK BUFFER SIZE, 472
FEEDBACK BUFFER TYPE, 472
FeedbackBuffer, 365, 366, 372, 394,

494
FenceSync, 373–375, 378, 487, 511
FILL, 172–175, 361, 427, 478
Finish, 373, 374, 477, 487
FIRST VERTEX CONVENTION, 140
FIXED ONLY, 203, 326, 332, 334, 423
FLAT, 140, 478
flat, 126, 140
FLOAT, 37, 42, 50, 51, 93, 101, 189,

191, 225, 325, 326, 328, 371,
383, 385, 407, 416–418

float, 91, 101, 107
FLOAT 32 UNSIGNED INT -

24 8 REV, 189, 191, 193–195,
199, 323, 327, 328

FLOAT MAT2, 93, 102
FLOAT MAT2x3, 93, 102
FLOAT MAT2x4, 93, 102
FLOAT MAT3, 93, 102
FLOAT MAT3x2, 93, 102

FLOAT MAT3x4, 93, 102
FLOAT MAT4, 93, 102
FLOAT MAT4x2, 93, 102
FLOAT MAT4x3, 93, 102
FLOAT VEC2, 93, 101
FLOAT VEC3, 93, 101
FLOAT VEC4, 93, 101
Flush, 373, 374, 378, 477
FlushMappedBufferRange, 58, 60, 372,

486, 499
FOG, 281, 423, 494
Fog, 281, 282, 494
FOG BIT, 410
FOG COLOR, 282, 423
FOG COORD, 146, 281, 282
FOG COORD ARRAY, 38, 49, 416
FOG COORD ARRAY BUFFER -

BINDING, 419
FOG COORD ARRAY POINTER,

394, 416
FOG COORD ARRAY STRIDE, 416
FOG COORD ARRAY TYPE, 416
FOG COORD SRC, 147, 282, 283, 423
FOG DENSITY, 282, 423
FOG END, 282, 423
FOG HINT, 379, 460, 495
FOG INDEX, 282, 423
FOG MODE, 282, 283, 423
FOG START, 282, 423
FogCoord, 29, 32
FogCoord*, 491
FogCoordPointer, 30, 37, 39, 372, 491
FRAGMENT DEPTH, 281–283, 423
FRAGMENT SHADER, 283, 401
FRAGMENT SHADER DERIVA-

TIVE HINT, 379, 460
FRAMEBUFFER, 335, 341, 343, 352,

406
FRAMEBUFFER ATTACHMENT x -

SIZE, 441

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 544

FRAMEBUFFER ATTACHMENT -
ALPHA SIZE, 406

FRAMEBUFFER ATTACHMENT -
BLUE SIZE, 406

FRAMEBUFFER ATTACHMENT -
COLOR ENCODING, 302,
303, 307, 407, 441

FRAMEBUFFER ATTACHMENT -
COMPONENT TYPE, 407,
441

FRAMEBUFFER ATTACHMENT -
DEPTH SIZE, 406

FRAMEBUFFER ATTACHMENT -
GREEN SIZE, 406

FRAMEBUFFER ATTACH-
MENT LAYERED, 345, 408,
441

FRAMEBUFFER ATTACH-
MENT OBJECT NAME, 341,
345, 349, 406, 407, 441

FRAMEBUFFER ATTACH-
MENT OBJECT TYPE, 341,
345, 349, 350, 354, 406, 407,
441

FRAMEBUFFER ATTACHMENT -
RED SIZE, 406

FRAMEBUFFER ATTACHMENT -
STENCIL SIZE, 406

FRAMEBUFFER ATTACHMENT -
TEXTURE -
CUBE MAP FACE, 345, 407,
441, 505

FRAMEBUFFER ATTACHMENT -
TEXTURE LAYER, 345, 349,
354, 407, 441

FRAMEBUFFER ATTACHMENT -
TEXTURE LEVEL, 262, 345,
347, 407, 441

FRAMEBUFFER BINDING, 337
FRAMEBUFFER COMPLETE, 352

FRAMEBUFFER DEFAULT, 406
FRAMEBUFFER INCOMPLETE AT-

TACHMENT, 350
FRAMEBUFFER INCOMPLETE -

DRAW BUFFER, 350
FRAMEBUFFER INCOMPLETE -

LAYER TARGETS, 351
FRAMEBUFFER INCOMPLETE -

MISSING ATTACHMENT,
350

FRAMEBUFFER INCOMPLETE -
MULTISAMPLE, 351

FRAMEBUFFER INCOMPLETE -
READ BUFFER, 350

FRAMEBUFFER SRGB, 302, 303,
307, 437

FRAMEBUFFER UNDEFINED, 350
FRAMEBUFFER UNSUPPORTED,

350, 352
FramebufferRenderbuffer, 341, 342,

351, 373
FramebufferTexture, 343, 345, 372
FramebufferTexture*, 345, 346, 351
FramebufferTexture1D, 343, 344, 372
FramebufferTexture2D, 343–345, 373
FramebufferTexture3D, 343–345, 373
FramebufferTextureLayer, 344, 345,

373, 505
FRONT, 81, 82, 85, 169, 170, 172, 298,

302, 311, 312, 314–316, 318,
324, 334, 383, 493

FRONT AND BACK, 81, 82, 84, 85,
169, 172, 298, 302, 312, 314–
316, 318, 324

FRONT FACE, 427
FRONT LEFT, 312, 313, 406
FRONT RIGHT, 312, 313, 406
FrontFace, 81, 169, 287, 492
Frustum, 68, 69, 478, 491
ftransform, 120

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 545

FUNC ADD, 302, 304, 307, 437
FUNC REVERSE SUBTRACT, 302,

304
FUNC SUBTRACT, 302, 304
fwidth, 379

Gen*, 485, 491
GenBuffers, 52, 372
GENERATE MIPMAP, 252, 254, 265,

269, 431, 494
GENERATE MIPMAP HINT, 379,

460, 495
GenerateMipmap, 264, 372
GenFramebuffers, 335, 337, 372, 510
GenLists, 371, 372, 495
GenQueries, 134, 372
GenRenderbuffers, 338, 339, 372, 510
GenSampler, 221
GenSamplers, 221, 222, 389
GenTextures, 218, 372, 388
GenVertexArrays, 63, 64, 372, 510
GEOMETRY INPUT TYPE, 124, 402,

453
GEOMETRY OUTPUT TYPE, 126,

402, 453
GEOMETRY SHADER, 123, 401
GEOMETRY VERTICES OUT, 126,

129, 402, 453
GEQUAL, 252, 277, 297, 299, 300
Get, 32, 133, 146, 373, 380, 381
GetActiveUniformBlockiv, 455
GetActiveAttrib, 92, 93, 114, 453
GetActiveUniform, 100, 101, 103, 106,

452
GetActiveUniformBlockiv, 97
GetActiveUniformBlockName, 97
GetActiveUniformName, 99, 100
GetActiveUniformsiv, 100, 103, 454,

455
GetAttachedShaders, 403, 452

GetAttribLocation, 93, 94, 453
GetBooleani v, 315, 380, 438
GetBooleanv, 140, 296, 315, 380–382,

411, 415, 424, 428, 438, 444,
445, 469, 471

GetBufferParameteri64v, 399, 421
GetBufferParameteriv, 399, 421, 499
GetBufferPointerv, 400, 421
GetBufferSubData, 399, 421
GetClipPlane, 383, 422
GetColorTable, 183, 323, 390, 446
GetColorTable- Parameterfv, 446
GetColorTable- Parameteriv, 446
GetColorTableParameter, 390
GetCompressedTexImage, 244–247,

379, 385, 387, 388
GetConvolution- Filter, 447
GetConvolution- Parameterfv, 447
GetConvolution- Parameteriv, 447, 463
GetConvolutionFilter, 323, 392
GetConvolutionParameter, 392
GetConvolutionParameteriv, 184, 185
GetDoublev, 380–382, 411
GetError, 17, 18, 472
GetFloatv, 14, 296, 380–382, 389, 411,

415, 422–424, 426–428, 437,
438, 445, 448–450, 461–463

GetFragDataIndex, 289, 290
GetFragDataLocation, 289, 290
GetFramebufferAttachment-

Parameteriv, 441
GetFramebufferAttachmentiv, 500
GetFramebufferAttachmentParameteriv,

354, 406, 498, 499
GetHistogram, 188, 323, 393, 448
GetHistogram- Parameteriv, 448
GetHistogramParameter, 393
GetInteger64i v, 381, 400, 454, 458
GetInteger64v, 369, 377, 380, 381, 469
GetIntegeri v, 297, 380, 400, 428, 454,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 546

458
GetIntegerv, 48, 98, 107, 110, 154, 222,

304, 313, 314, 337, 339, 369,
380–382, 390, 395, 411, 415–
420, 422–424, 426, 427, 429,
430, 434, 436–440, 442, 444,
445, 449, 452, 454, 458, 460–
472

GetLight, 383
GetLightfv, 425
GetMap, 384
GetMapfv, 450
GetMapiv, 450
GetMaterial, 383
GetMaterialfv, 424, 425
GetMinmax, 323, 393, 449
GetMinmax- Parameteriv, 449
GetMinmaxParameter, 394
GetMultisamplefv, 117, 154, 471
GetPixelMap, 383, 449
GetPixelMapuiv, 383
GetPixelMapusv, 383
GetPointerv, 394, 416–418, 472
GetPolygonStipple, 323, 389, 427
GetProgramInfoLog, 90, 403, 452
GetProgramiv, 90, 92, 93, 97, 99, 100,

114, 121, 124, 126, 129, 402,
403, 452–454

GetQueryiv, 396, 469, 472
GetQueryObject*, 398
GetQueryObjecti64v, 397
GetQueryObjectiv, 397, 457
GetQueryObjectui64v, 397
GetQueryObjectuiv, 397, 457
GetRenderbufferParameteriv, 443
GetRenderbufferParameteriv, 354, 408,

500
GetSamplerParameter, 389, 433
GetSamplerParameter*, 221, 389
GetSamplerParameterfv, 433

GetSamplerParameterI{i ui}v, 389
GetSamplerParameterIiv, 389
GetSamplerParameterIuiv, 389
GetSamplerParameteriv, 433
GetSeparable- Filter, 447
GetSeparableFilter, 323, 392
GetShaderInfoLog, 89, 403, 451
GetShaderiv, 88, 89, 401, 403, 404, 451
GetShaderSource, 403, 451
GetString, 395, 396, 464, 495, 520
GetStringi, 464, 521
GetSynciv, 375, 398, 459
GetTexEnv, 383
GetTexEnvfv, 434, 435
GetTexEnviv, 434, 435
GetTexGen, 383
GetTexGenfv, 434
GetTexGeniv, 434
GetTexImage, 270, 323, 386, 387, 390–

394, 430, 505
GetTexLevelParameter, 384, 385, 432
GetTexParameter, 354, 384, 431
GetTexParameterfv, 220, 270, 431
GetTexParameterI, 384
GetTexParameterIiv, 384
GetTexParameterIuiv, 384
GetTexParameteriv, 220, 270, 431
GetTransformFeedbackVarying, 453
GetTransformFeedbackVarying, 114
GetUniform, 452
GetUniform*, 405
GetUniformBlockIndex, 96, 97
GetUniformfv, 405
GetUniformIndices, 99–101
GetUniformiv, 405
GetUniformLocation, 96, 100, 101,

111, 452
GetUniformuiv, 405
GetVertexAttribPointerv, 418
GetVertexAttribdv, 404, 405

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 547

GetVertexAttribfv, 404, 405, 456
GetVertexAttribIiv, 404, 405
GetVertexAttribIuiv, 404, 405
GetVertexAttribiv, 404, 405, 418, 419
GetVertexAttribPointerv, 405
GL APPLE flush buffer range, 497,

528
GL APPLE vertex array object, 497,

529
GL ARB blend func extended, 516,

517, 533
GL ARB color buffer float, 497, 526
GL ARB compatibility, 490, 503, 504,

508, 529
GL ARB copy buffer, 503, 530
GL ARB depth buffer float, 527
GL ARB depth clamp, 530
GL ARB depth texture, 523
GL ARB depth clamp, 509
GL ARB draw buffers, 525
GL ARB draw buffers blend, 531
GL ARB draw elements base vertex,

509, 530
GL ARB draw instanced, 503, 527,

528
GL ARB explicit attrib location, 516,

517, 533
GL ARB fragment coord conventions,

509, 530
GL ARB fragment program, 524, 525
GL ARB fragment program shadow,

525
GL ARB fragment shader, 524
GL ARB framebuffer object, 527
GL ARB framebuffer sRGB, 527
GL ARB geometry shader4, 528
GL ARB geometry shader4, 509
GL ARB half float pixel, 497, 526
GL ARB half float vertex, 528
GL ARB imaging, 178

GL ARB instanced arrays, 516–518,
528

GL ARB map buffer range, 528
GL ARB matrix palette, 522
GL ARB multisample, 521
GL ARB multitexture, 521
GL ARB occlusion query, 524
GL ARB occlusion query2, 516, 517,

533
GL ARB pixel buffer object, 527
GL ARB point parameters, 522
GL ARB point sprite, 525
GL ARB provoking vertex, 530
GL ARB provoking vertex, 509
GL ARB sample shading, 531
GL ARB sampler objects, 516, 517,

533
GL ARB seamless cube map, 531
GL ARB seamless cube map, 509
GL ARB shader bit encoding, 515,

517, 533
GL ARB shader objects, 524
GL ARB shader texture lod, 530
GL ARB shading language 100, 525
GL ARB shading language include,

532
GL ARB shadow, 523, 525
GL ARB shadow ambient, 523
GL ARB sync, 509, 531
GL ARB texture border clamp, 522
GL ARB texture buffer object, 504,

528
GL ARB texture compression, 522
GL ARB texture compression bptc,

533
GL ARB texture compression rgtc,

528
GL ARB texture cube map, 522
GL ARB texture cube map array, 532
GL ARB texture env add, 522

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 548

GL ARB texture env combine, 523
GL ARB texture env crossbar, 523
GL ARB texture env dot3, 523
GL ARB texture float, 497, 526
GL ARB texture gather, 532
GL ARB texture mirrored repeat, 523
GL ARB texture multisample, 531
GL ARB texture non power of two,

525
GL ARB texture query lod, 532
GL ARB texture rectangle, 504, 526
GL ARB texture rg, 528
GL ARB texture rgb10 a2ui, 516, 517,

533
GL ARB texture swizzle, 516, 518,

534
GL ARB texture multisample, 509
GL ARB timer query, 516, 518, 534
GL ARB transpose matrix, 521
GL ARB uniform buffer object, 504,

529
GL ARB vertex array bgra, 509, 531
GL ARB vertex array object, 529
GL ARB vertex blend, 522
GL ARB vertex buffer object, 524
GL ARB vertex program, 524
GL ARB vertex shader, 524
GL ARB vertex type 2 10 10 10 rev,

516, 517, 534
GL ARB window pos, 523
GL ARB name, 520
gl BackColor, 80, 119, 128, 129, 140,

492
gl BackSecondaryColor, 80, 119, 128,

129, 140, 492
gl ClipDistance, 120, 130, 498
gl ClipDistance[], 127, 143
gl ClipVertex, 120, 127, 130, 142, 143,

498
gl Color, 286

GL EXT draw buffers2, 497
GL EXT framebuffer blit, 497, 527
GL EXT framebuffer multisample,

497, 527
GL EXT framebuffer object, 497, 527
GL EXT framebuffer sRGB, 497, 527
GL EXT geometry shader4, 500
GL EXT gpu shader4, 496
GL EXT packed depth stencil, 497
GL EXT packed float, 497
GL EXT texture array, 497, 500
GL EXT texture compression rgtc,

497, 528
GL EXT texture integer, 497
GL EXT texture shared exponent, 497
GL EXT transform feedback, 497
gl FogFragCoord, 120, 128, 130, 146
gl FragColor, 288, 313, 314
gl FragCoord, 286
gl FragCoord.z, 476
gl FragData, 288, 313, 314
gl FragData[n], 288
gl FragDepth, 288, 476
gl FrontColor, 80, 119, 128, 129, 140
gl FrontFacing, 287
gl FrontSecondaryColor, 80, 119, 128,

129, 140
gl in[], 127
gl InstanceID, 44, 119
gl Layer, 130, 131, 355
GL NV conditional render, 496
GL NV depth buffer float, 497, 527
GL NV half float, 497, 528
GL NV primitive restart, 503
gl PointCoord, 160
gl PointSize, 120, 128, 130, 156
gl Position, 112, 120, 128, 130, 131,

479
gl PrimitiveID, 130, 287
gl PrimitiveIDIn, 128

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 549

gl SecondaryColor, 286
gl TexCoord, 120
gl TexCoord[], 128, 130
gl VertexID, 119, 287
GLX ARB create context, 529
GLX ARB create context profile, 490,

532
GLX ARB fbconfig float, 526
GLX ARB framebuffer sRGB, 527
GREATER, 252, 277, 297, 299, 300
GREEN, 178, 192, 253, 271, 325, 329,

390, 431, 432, 441, 445, 446,
448, 471

GREEN BIAS, 205
GREEN BITS, 354, 494
GREEN INTEGER, 192
GREEN SCALE, 204

HALF FLOAT, 37, 42, 191, 225, 325,
326, 328

Hint, 378, 495
HINT BIT, 410
HISTOGRAM, 187, 188, 212, 393, 448
Histogram, 187, 188, 213, 373
HISTOGRAM x SIZE, 448
HISTOGRAM ALPHA SIZE, 393
HISTOGRAM BLUE SIZE, 393
HISTOGRAM FORMAT, 393, 448
HISTOGRAM GREEN SIZE, 393
HISTOGRAM LUMINANCE SIZE,

393
HISTOGRAM RED SIZE, 393
HISTOGRAM SINK, 393, 448
HISTOGRAM WIDTH, 393, 448

INCR, 299
INCR WRAP, 299
INDEX, 407, 471
Index, 29, 33
Index*, 491

INDEX ARRAY, 38, 49, 417
INDEX ARRAY BUFFER BINDING,

419
INDEX ARRAY POINTER, 394, 417
INDEX ARRAY STRIDE, 417
INDEX ARRAY TYPE, 417
INDEX CLEAR VALUE, 438
INDEX LOGIC OP, 308, 437
INDEX MODE, 471
INDEX OFFSET, 178, 205, 445
INDEX SHIFT, 178, 205, 445
INDEX WRITEMASK, 438
IndexMask, 315
IndexPointer, 30, 36, 37, 39, 372, 491
INFO LOG LENGTH, 401–403, 451,

452
InitNames, 363, 494
INT, 37, 93, 101, 191, 327, 328, 371,

385, 391, 407
int, 101, 107
INT 2 10 10 10 REV, 30–33, 35, 37,

43
INT SAMPLER 1D, 102
INT SAMPLER 1D ARRAY, 102
INT SAMPLER 2D, 102
INT SAMPLER 2D ARRAY, 102
INT SAMPLER 2D MULTISAMPLE,

103
INT SAMPLER 2D MULTISAM-

PLE ARRAY, 103
INT SAMPLER 2D RECT, 103
INT SAMPLER 3D, 102
INT SAMPLER BUFFER, 103
INT SAMPLER CUBE, 102
INT VEC2, 93, 101
INT VEC3, 93, 101
INT VEC4, 93, 101
INTENSITY, 188, 207, 208, 225, 231,

232, 252, 254, 272, 273, 277,
388, 432, 446, 493

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 550

INTENSITY12, 231
INTENSITY16, 231
INTENSITY4, 231
INTENSITY8, 231
INTERLEAVED ATTRIBS, 113, 138,

402, 453
InterleavedArrays, 30, 49, 50, 372, 491
INTERPOLATE, 274
INVALID ENUM, 18, 19, 40, 44, 59,

74, 81, 177, 183, 188, 189,
218, 222, 238, 244–247, 252,
254, 270, 312–314, 319, 323,
324, 375, 387, 389, 398, 408,
500, 511

INVALID FRAMEBUFFER OPERA-
TION, 19, 29, 182, 186, 202,
215, 243, 324, 329, 331, 333,
353

INVALID INDEX, 97, 99
INVALID OPERATION, 19, 29, 30,

37, 54, 56, 59–62, 64, 70, 88–
91, 93, 94, 96, 106, 111, 112,
114, 120, 121, 124, 131, 134,
136–138, 177, 180, 193, 194,
202, 218, 219, 221, 224, 234,
238, 242, 244–249, 265, 289,
290, 306, 311, 313, 314, 319–
321, 323–325, 327, 331–333,
335, 339–341, 343, 344, 352,
359, 364, 366, 369, 370, 373,
382, 383, 385–388, 397, 401,
403, 405, 406, 408, 490–492,
498, 499, 511, 512

INVALID VALUE, 18, 19, 35, 37, 38,
40, 42, 44, 48, 54, 56, 59–61,
69, 70, 81, 87, 92, 93, 97–100,
110, 113, 114, 133, 136, 137,
154, 156, 157, 162, 176, 178,
179, 181, 182, 184, 185, 187,
220–222, 224, 233–236, 238,

240–242, 244, 246, 248, 254,
263, 282, 289, 295, 297, 302,
311, 313, 315, 317, 319, 340,
343, 344, 358, 359, 361, 370,
375–377, 381, 385, 387–389,
396, 398, 401, 404, 405, 491–
493, 505, 510

INVERT, 299, 309
Is, 373
isampler1D, 102
isampler1DArray, 102
isampler2D, 102
isampler2DArray, 102
isampler2DMS, 103
isampler2DMSArray, 103
isampler2DRect, 103
isampler3D, 102
isamplerBuffer, 103
isamplerCube, 102
IsBuffer, 399
IsEnabled, 295, 307, 381, 411, 416–

418, 420, 422–429, 434, 436,
437, 446–450, 456, 472

IsEnabledi, 307, 381, 437
IsFramebuffer, 405, 406
IsList, 372, 495
IsProgram, 401
IsQuery, 396
IsRenderbuffer, 408
IsSampler, 221, 388
IsShader, 401
IsSync, 398, 399
IsTexture, 388
IsVertexArray, 400, 401
ivec2, 101
ivec3, 101
ivec4, 101

KEEP, 299, 436

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 551

LAST VERTEX CONVENTION, 140,
423

Layered images, 338
layout, 108
LEFT, 302, 311, 312, 314, 315, 318, 324
LEQUAL, 252, 269, 277, 297, 299, 300,

431, 433
LESS, 252, 277, 297, 299, 300, 436
Light, 81–83
LIGHTi, 81, 82, 425, 479, 492
Light*, 492
LIGHT0, 81
LIGHT MODEL AMBIENT, 83, 424
LIGHT MODEL COLOR CONTROL,

83, 424
LIGHT MODEL LOCAL VIEWER,

83, 424
LIGHT MODEL TWO SIDE, 83, 424
LIGHTING, 77, 424, 492
LIGHTING BIT, 410
LightModel, 81, 83
LightModel*, 492
LINE, 172–175, 361, 362, 427
LINE BIT, 410
LINE LOOP, 22, 124, 131, 137
LINE RESET TOKEN, 368
LINE SMOOTH, 162, 168, 426
LINE SMOOTH HINT, 379, 460
LINE STIPPLE, 165, 426, 492
LINE STIPPLE PATTERN, 426
LINE STIPPLE REPEAT, 426
LINE STRIP, 22, 124, 125, 131, 137,

361, 402
LINE STRIP ADJACENCY, 25, 125,

131
LINE TOKEN, 368
LINE WIDTH, 426
LINEAR, 116, 252, 254, 255, 260, 262,

264–267, 269, 282, 332, 333,
347, 407, 431, 433

LINEAR ATTENUATION, 83, 425
LINEAR MIPMAP LINEAR, 253,

262, 264, 347
LINEAR MIPMAP NEAREST, 253,

262, 264, 347
LINES, 22, 124, 131, 136, 137, 165,

402
lines, 124
LINES ADJACENCY, 25, 125, 131,

402
lines adjacency, 125
LineStipple, 165, 492
LineWidth, 162, 491, 492, 503
LINK STATUS, 90, 402, 452
LinkProgram, 90–92, 94, 96, 97, 99,

100, 110, 111, 113, 114, 129,
138, 289, 373

LIST BASE, 472
LIST BIT, 410
LIST INDEX, 472
LIST MODE, 472
ListBase, 371, 373, 495
LOAD, 320
LoadIdentity, 68, 491
LoadMatrix, 67, 68, 491
LoadMatrix[fd], 68
LoadName, 363, 364, 494
LoadTransposeMatrix, 67, 491
LoadTransposeMatrix[fd], 67
LOGIC OP, 308
LOGIC OP MODE, 437
LogicOp, 309
LOWER LEFT, 157, 160, 161
LUMINANCE, 192, 201, 207, 208, 224,

225, 230–232, 252, 254, 269,
272, 273, 277, 325, 326, 329,
388, 390, 431, 432, 446, 448,
481, 493

LUMINANCE12, 231
LUMINANCE12 ALPHA12, 231

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 552

LUMINANCE12 ALPHA4, 231
LUMINANCE16, 231
LUMINANCE16 ALPHA16, 231
LUMINANCE4, 230
LUMINANCE4 ALPHA4, 231
LUMINANCE6 ALPHA2, 231
LUMINANCE8, 231, 268
LUMINANCE8 ALPHA8, 231
LUMINANCE ALPHA, 192, 201, 207,

208, 224, 225, 231, 232, 272,
273, 325, 326, 329, 388, 390,
493

MAJOR VERSION, 395, 464
Map*, 494
Map1, 357–359, 382
MAP1 x, 450
MAP1 COLOR 4, 358
MAP1 GRID DOMAIN, 450
MAP1 GRID SEGMENTS, 450
MAP1 INDEX, 358
MAP1 NORMAL, 358
MAP1 TEXTURE COORD 1, 358,

360
MAP1 TEXTURE COORD 2, 358,

360
MAP1 TEXTURE COORD 3, 358
MAP1 TEXTURE COORD 4, 358
MAP1 VERTEX 3, 358
MAP1 VERTEX 4, 358
Map2, 358, 359, 382
MAP2 x, 450
MAP2 GRID DOMAIN, 450
MAP2 GRID SEGMENTS, 450
MAP2 VERTEX 3, 360
MAP2 VERTEX 4, 360
MAP COLOR, 178, 205, 206, 445
MAP FLUSH EXPLICIT BIT, 58–60
MAP INVALIDATE BUFFER BIT,

58, 59

MAP INVALIDATE RANGE BIT, 57,
59

MAP READ BIT, 57–59
MAP STENCIL, 178, 206, 445
MAP UNSYNCHRONIZED BIT, 58,

59
MAP WRITE BIT, 57–59
Map{12}, 359
MapBuffer, 54, 56, 59, 96, 139, 372,

499
MapBufferRange, 56–59, 372, 499
MapGrid*, 494
MapGrid1, 361
MapGrid2, 361
matC, 108
matCxR, 108
mat2, 92, 102
mat2x3, 92, 102
mat2x4, 92, 102
mat3, 92, 102
mat3x2, 92, 102
mat3x4, 92, 102
mat4, 92, 102
mat4x2, 92, 102
mat4x3, 92, 102
Material, 29, 81–83, 86, 478
Material*, 492
MATRIX MODE, 70, 422
MatrixMode, 66, 491
MAX, 302, 304
MAX 3D TEXTURE SIZE, 234, 344,

461
MAX ARRAY TEXTURE LAYERS,

234, 461
MAX ATTRIB STACK DEPTH, 409,

462, 495
MAX CLIENT ATTRIB STACK -

DEPTH, 409, 462, 495
MAX CLIP DISTANCES, 461, 498,

504

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 553

MAX CLIP PLANES, 498
MAX COLOR ATTACHMENTS, 311,

312, 314, 335, 342, 353, 471
MAX COLOR MATRIX STACK -

DEPTH, 390, 461
MAX COLOR TEXTURE SAM-

PLES, 248, 469
MAX COMBINED FRAGMENT -

UNIFORM COMPONENTS,
283, 468

MAX COMBINED GEOMETRY -
UNIFORM COMPONENTS,
468

MAX COMBINED TEXTURE IM-
AGE UNITS, 118, 218, 382,
468

MAX COMBINED UNIFORM -
BLOCKS, 107, 468, 512

MAX COMBINED VERTEX UNI-
FORM COMPONENTS, 95,
468

MAX CONVOLUTION HEIGHT,
184, 392, 463

MAX CONVOLUTION WIDTH, 184,
185, 392, 463

MAX CUBE MAP TEXTURE SIZE,
234, 344, 461

MAX DEPTH TEXTURE SAMPLES,
248, 469

MAX DRAW BUFFERS, 289, 302,
304, 306, 313, 315, 319, 471

MAX DUAL SOURCE -
DRAW BUFFERS, 289, 290,
304, 306, 471

MAX ELEMENTS INDICES, 48, 463
MAX ELEMENTS VERTICES, 48,

463
MAX EVAL ORDER, 358, 359, 462
MAX FRAGMENT -

INPUT COMPONENTS, 287,

467
MAX FRAGMENT UNIFORM -

BLOCKS, 107, 467
MAX FRAGMENT UNI-

FORM COMPONENTS, 283,
467

MAX GEOMETRY -
INPUT COMPONENTS, 129,
466

MAX GEOMETRY OUTPUT COM-
PONENTS, 130, 466

MAX GEOMETRY OUTPUT VER-
TICES, 129, 466

MAX GEOMETRY TEXTURE IM-
AGE UNITS, 117, 466

MAX GEOMETRY TOTAL OUT-
PUT COMPONENTS, 129,
466

MAX GEOMETRY UNIFORM -
BLOCKS, 107, 466

MAX GEOMETRY UNIFORM -
COMPONENTS, 126

MAX INTEGER SAMPLES, 248, 340,
341, 469

MAX LIGHTS, 461
MAX LIST NESTING, 462
MAX MODELVIEW STACK -

DEPTH, 461
MAX NAME STACK DEPTH, 462
MAX PIXEL MAP TABLE, 179, 205,

462
MAX PROGRAM TEXEL OFFSET,

257, 467
MAX PROJECTION STACK -

DEPTH, 461
MAX RECTANGLE TEXTURE -

SIZE, 234, 463
MAX RENDERBUFFER SIZE, 340,

461
MAX SAMPLE MASK WORDS,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 554

297, 469
MAX SAMPLES, 248, 340, 341, 471
MAX SERVER WAIT TIMEOUT,

377, 469
MAX TEXTURE BUFFER SIZE,

249, 463
MAX TEXTURE COORDS, 32, 36,

51, 70, 218, 382, 467, 494
MAX TEXTURE IMAGE UNITS,

118, 221, 286, 467
MAX TEXTURE LOD BIAS, 256,

461
MAX TEXTURE SIZE, 234, 248, 344,

461
MAX TEXTURE STACK DEPTH,

461
MAX TEXTURE UNITS, 19, 218,

279, 411, 467, 494
MAX TRANSFORM FEEDBACK -

INTERLEAVED COMPO-
NENTS, 113, 470

MAX TRANSFORM FEEDBACK -
SEPARATE ATTRIBS, 113,
137, 138, 400, 470

MAX TRANSFORM FEEDBACK -
SEPARATE COMPONENTS,
113, 470

MAX UNIFORM BLOCK SIZE, 98,
468

MAX UNIFORM BUFFER BIND-
INGS, 110, 400, 468, 512

MAX VARYING COMPONENTS,
112, 468, 491, 498, 509

MAX VARYING FLOATS, 491, 498,
509

MAX VERTEX ATTRIBS, 34–36, 38,
40, 51, 92–94, 404, 405, 465

MAX VERTEX OUTPUT COMPO-
NENTS, 112, 129, 130, 287,
465

MAX VERTEX TEXTURE IMAGE -
UNITS, 117, 465

MAX VERTEX UNIFORM -
BLOCKS, 107, 465

MAX VERTEX UNIFORM COMPO-
NENTS, 95, 465

MAX VIEWPORT DIMS, 397, 462
MIN, 302, 304
MIN PROGRAM TEXEL OFFSET,

257, 467
MINMAX, 188, 213, 394, 449
Minmax, 188, 213
MINMAX FORMAT, 394, 449
MINMAX SINK, 394, 449
MINOR VERSION, 395, 464
MIRRORED REPEAT, 222, 253, 254,

260
MODELVIEW, 66, 67, 70, 71
MODELVIEW MATRIX, 382
MODELVIEW MATRIX

(TRANSPOSE MODELVIEW MATRIX),
422

MODELVIEW STACK DEPTH, 422
MODULATE, 270, 272–274, 434
MULT, 320
MultiDrawArrays, 45
MultiDrawElements, 47, 62, 63
MultiDrawElementsBaseVertex, 48, 63
MULTISAMPLE, 155, 161, 168, 174,

213, 216, 295, 309, 310, 428
MULTISAMPLE BIT, 410
MultiTexCoord, 29, 32, 40
MultMatrix, 67, 68, 491
MultMatrix[fd], 68
MultTransposeMatrix, 67, 491
MultTransposeMatrix[fd], 68

N3F V3F, 49, 50
NAME STACK DEPTH, 472
NAND, 309

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 555

NEAREST, 116, 117, 252, 254, 255,
259, 260, 262, 264, 265, 267,
277, 332, 347

NEAREST MIPMAP -
LINEAR, 253, 262, 264, 266,
269, 347

NEAREST MIPMAP NEAREST, 252,
262, 264, 266, 267, 277, 347

NEVER, 252, 277, 297, 299, 300
NewList, 370, 371, 495
NICEST, 378, 379
NO ERROR, 17, 18
NONE, 118, 252, 268, 269, 276, 285,

295, 306, 309, 311–314, 319,
324, 334, 349, 350, 385, 406,
431–433, 441, 499, 505

NOOP, 309
noperspective, 145
NOR, 309
Normal, 29, 32, 91
Normal3, 32
Normal3*, 491
NORMAL ARRAY, 38, 51, 416
NORMAL ARRAY BUFFER BIND-

ING, 419
NORMAL ARRAY POINTER, 394,

416
NORMAL ARRAY STRIDE, 416
NORMAL ARRAY TYPE, 416
NORMAL MAP, 73, 74
NORMALIZE, 71, 422, 492
NormalP3uiv, 32
NormalPointer, 30, 36, 37, 39, 51, 372,

491
NOTEQUAL, 252, 277, 297, 299, 300
NULL, 38, 51, 53, 56, 59, 63, 88, 92, 97,

99, 100, 114, 398, 400, 403,
404, 412, 418, 421

NUM COMPRESSED TEXTURE -
FORMATS, 225, 463

NUM EXTENSIONS, 396, 464
NV, 504

OBJECT LINEAR, 73, 75, 383
OBJECT PLANE, 73, 74, 434
OBJECT TYPE, 375, 398, 459
ONE, 253, 271, 303, 305, 307, 437
ONE MINUS CONSTANT ALPHA,

305
ONE MINUS CONSTANT COLOR,

305
ONE MINUS DST ALPHA, 305
ONE MINUS DST COLOR, 305
ONE MINUS SRC1 ALPHA,

304–306
ONE MINUS SRC1 COLOR,

304–306
ONE MINUS SRC ALPHA, 275, 305
ONE MINUS SRC COLOR, 275, 305
OPERAND0 ALPHA, 435
OPERAND0 RGB, 435
OPERAND1 ALPHA, 435
OPERAND1 RGB, 435
OPERAND2 ALPHA, 435
OPERAND2 RGB, 435
OPERANDn ALPHA, 270, 273, 275,

279
OPERANDn RGB, 270, 273, 275, 279
OR, 309
OR INVERTED, 309
OR REVERSE, 309
ORDER, 384, 450
Ortho, 68, 69, 478, 491
OUT OF MEMORY, 18, 19, 56, 59,

248, 340, 370

PACK ALIGNMENT, 323, 444
PACK IMAGE HEIGHT, 323, 387,

444
PACK LSB FIRST, 323, 444

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 556

PACK ROW LENGTH, 323, 444
PACK SKIP IMAGES, 323, 387, 444
PACK SKIP PIXELS, 323, 444
PACK SKIP ROWS, 323, 444
PACK SWAP BYTES, 323, 444
PASS THROUGH TOKEN, 368
PassThrough, 367, 494
PERSPECTIVE CORRECTION -

HINT, 379, 460, 495
PIXEL MAP A TO A, 179, 205
PIXEL MAP B TO B, 179, 205
PIXEL MAP G TO G, 179, 205
PIXEL MAP I TO A, 179, 205
PIXEL MAP I TO B, 179, 205
PIXEL MAP I TO G, 179, 205
PIXEL MAP I TO I, 179, 206
PIXEL MAP I TO R, 179, 205
PIXEL MAP R TO R, 179, 205
PIXEL MAP S TO S, 179, 206
PIXEL MODE BIT, 410
PIXEL PACK BUFFER, 53, 177, 321
PIXEL PACK BUFFER BINDING,

327, 383, 387, 444
PIXEL UNPACK BUFFER, 53, 177
PIXEL UNPACK BUFFER BIND-

ING, 179, 189, 244, 444
PixelMap, 176, 179, 180, 334
PixelStore, 30, 175, 176, 178, 323, 334,

372
PixelTransfer, 175, 178, 211, 334
PixelZoom, 203, 214, 493
POINT, 172–175, 361, 362, 427
POINT BIT, 410
POINT DISTANCE ATTENUATION,

157, 426
POINT FADE THRESHOLD SIZE,

157, 426
POINT SIZE, 426
POINT SIZE GRANULARITY, 462
POINT SIZE MAX, 157, 426

POINT SIZE MIN, 157, 426
POINT SIZE RANGE, 462
POINT SMOOTH, 157, 161, 426, 492
POINT SMOOTH HINT, 379, 460,

495
POINT SPRITE, 157, 161, 162, 270,

383, 426, 492
POINT SPRITE COORD ORIGIN,

157, 160, 161, 426
POINT TOKEN, 368
PointParameter, 156
PointParameter*, 157
POINTS, 22, 124, 125, 131, 136, 137,

172, 361, 402
points, 124
PointSize, 156
POLYGON, 23, 28, 29, 137, 287, 492
POLYGON BIT, 410
POLYGON MODE, 427
POLYGON OFFSET FACTOR, 427
POLYGON OFFSET FILL, 174, 427
POLYGON OFFSET LINE, 174, 427
POLYGON OFFSET POINT, 174, 427
POLYGON OFFSET UNITS, 427
POLYGON SMOOTH, 169, 174, 427
POLYGON SMOOTH HINT, 379, 460
POLYGON STIPPLE, 172, 427, 493
POLYGON STIPPLE BIT, 410
POLYGON TOKEN, 368
PolygonMode, 168, 172, 173, 175, 364,

366, 493
PolygonOffset, 173
PolygonStipple, 171, 176, 493
PopAttrib, 409, 411, 479, 495
PopClientAttrib, 30, 372, 409, 411, 495
PopMatrix, 71, 491
PopName, 363, 494
POSITION, 83, 383, 425
POST COLOR MATRIX x BIAS,

178, 448

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 557

POST COLOR MATRIX x SCALE,
178, 448

POST COLOR MATRIX ALPHA -
BIAS, 212

POST COLOR MATRIX ALPHA -
SCALE, 211

POST COLOR MATRIX BLUE -
BIAS, 211

POST COLOR MATRIX BLUE -
SCALE, 211

POST COLOR MATRIX COLOR -
TABLE, 181, 212, 446

POST COLOR MATRIX GREEN -
BIAS, 211

POST COLOR MATRIX GREEN -
SCALE, 211

POST COLOR MATRIX RED BIAS,
211

POST COLOR MATRIX RED -
SCALE, 211

POST CONVOLUTION x BIAS, 178,
448

POST CONVOLUTION x SCALE,
178, 448

POST CONVOLUTION ALPHA -
BIAS, 211

POST CONVOLUTION ALPHA -
SCALE, 211

POST CONVOLUTION BLUE BIAS,
211

POST CONVOLUTION BLUE -
SCALE, 211

POST CONVOLUTION COLOR TA-
BLE, 181, 211, 446

POST CONVOLUTION GREEN -
BIAS, 211

POST CONVOLUTION GREEN -
SCALE, 211

POST CONVOLUTION RED BIAS,
211

POST CONVOLUTION RED -
SCALE, 211

PREVIOUS, 273, 275, 435
PRIMARY COLOR, 275
PRIMITIVE RESTART, 42, 420, 503,

504
PRIMITIVE RESTART INDEX, 420,

504
PrimitiveRestartIndex, 42, 372, 511
PRIMITIVES GENERATED, 133,

139, 396, 397
PrioritizeTextures, 220, 494
PROGRAM POINT SIZE, 128, 156,

456, 510
PROJECTION, 66, 67, 70, 71
PROJECTION MATRIX

(TRANSPOSE PROJECTION MATRIX),
422

PROJECTION STACK DEPTH, 422
PROVOKING VERTEX, 423
ProvokingVertex, 140
PROXY COLOR TABLE, 181, 183,

373
PROXY HISTOGRAM, 187, 188, 373,

393
PROXY POST COLOR MATRIX -

COLOR TABLE, 181, 373
PROXY POST CONVOLUTION -

COLOR TABLE, 181, 373
PROXY TEXTURE 1D, 224, 236, 269,

373, 384
PROXY TEXTURE 1D ARRAY, 224,

235, 269, 373, 384
PROXY TEXTURE 2D, 224, 235, 269,

373, 384
PROXY TEXTURE 2D ARRAY, 223,

224, 269, 373, 384
PROXY TEXTURE 2D MULTISAM-

PLE, 248, 269, 384
PROXY TEXTURE 2D MULTISAM-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 558

PLE ARRAY, 248, 269, 384
PROXY TEXTURE 3D, 223, 269, 373,

384
PROXY TEXTURE CUBE MAP, 224,

235, 270, 373, 384
PROXY TEXTURE RECTANGLE,

224, 235, 244, 246, 269, 384
PushAttrib, 409, 411, 495
PushClientAttrib, 30, 372, 409, 411,

495
PushMatrix, 70, 491
PushName, 363, 494

Q, 73, 74, 383
QUAD STRIP, 24, 28, 137, 287, 492
QUADRATIC ATTENUATION, 83,

425
QUADS, 24, 28, 29, 137, 287, 492
QUADS FOLLOW -

PROVOKING VERTEX, 140,
141, 469

QUERY BY REGION NO WAIT, 136
QUERY BY REGION WAIT, 135, 136
QUERY COUNTER BITS, 397, 469
QUERY NO WAIT, 135
QUERY RESULT, 397, 457
QUERY RESULT AVAILABLE, 397,

398, 457
QUERY WAIT, 135
QueryCounter, 369

R, 73, 74, 383, 497
R11F G11F B10F, 226, 227, 229
R16, 226, 228, 250
R16 SNORM, 227, 228
R16F, 226, 229, 250
R16I, 226, 229, 250
R16UI, 226, 230, 250
R32F, 226, 229, 250
R32I, 226, 230, 250

R32UI, 226, 230, 250
R3 G3 B2, 229
R8, 226, 228, 250, 432
R8 SNORM, 227, 228
R8I, 226, 229, 250
R8UI, 226, 229, 250
RASTERIZER DISCARD, 152, 353
RasterPos, 120, 131, 146, 353, 364, 478
RasterPos*, 111, 492
RasterPos2, 146
RasterPos3, 146
RasterPos4, 146
READ BUFFER, 324, 350, 355, 440
READ FRAMEBUFFER, 320, 335,

337, 341, 343, 352, 406, 439
READ FRAMEBUFFER BINDING,

182, 186, 243, 323–325, 331,
333, 337, 439

READ ONLY, 53, 58, 59
READ WRITE, 53, 56, 58, 59, 421
ReadBuffer, 312, 324, 334
ReadPixels, 139, 175, 176, 178, 194,

207, 238, 321–327, 329, 331,
353, 356, 372, 387, 389, 390,
493

Rect, 64, 65, 169
Rect*, 492
RED, 178, 180, 192, 225, 228–230, 232,

252–254, 271–273, 277, 325,
329, 348, 388, 390, 431, 432,
441, 445, 446, 448, 471

RED BIAS, 205
RED BITS, 354, 494
RED INTEGER, 192
RED SCALE, 204
REDUCE, 208, 209, 211, 447
REFLECTION MAP, 73, 74
RENDER, 364, 365, 472
RENDER MODE, 472
RENDERBUFFER, 338, 339, 341, 354,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 559

406–408, 442
RENDERBUFFER ALPHA SIZE,

408, 443
RENDERBUFFER BINDING, 339,

442
RENDERBUFFER BLUE SIZE, 408,

443
RENDERBUFFER DEPTH SIZE,

408, 443
RENDERBUFFER GREEN SIZE,

408, 443
RENDERBUFFER HEIGHT, 340, 408,

443
RENDERBUFFER INTERNAL FOR-

MAT, 340, 408, 443
RENDERBUFFER RED SIZE, 408,

443
RENDERBUFFER SAMPLES, 340,

351–353, 408, 443
RENDERBUFFER STENCIL SIZE,

408, 443
RENDERBUFFER WIDTH, 340, 408,

443
RenderbufferStorage, 340, 351, 372
RenderbufferStorageMultisample, 339,

340, 372, 505
RENDERER, 395, 464
RenderMode, 364–367, 372, 494
REPEAT, 221, 253, 254, 260, 269
REPLACE, 270, 272, 274, 299
REPLICATE BORDER, 208, 210
RESCALE NORMAL, 71, 422, 492
ResetHistogram, 393
ResetMinmax, 394
RETURN, 320
RG, 180, 192, 225, 228–230, 232, 272,

273, 325, 329, 348, 388, 497
RG16, 226, 228, 250
RG16 SNORM, 227, 228
RG16F, 226, 229, 250

RG16I, 226, 230, 250
RG16UI, 226, 230, 250
RG32F, 226, 229, 250
RG32I, 226, 230, 250
RG32UI, 226, 230, 250
RG8, 226, 228, 250
RG8 SNORM, 227, 228
RG8I, 226, 230, 250
RG8UI, 226, 230, 250
RG INTEGER, 192
RGB, 192, 195, 200, 207, 208, 224, 225,

228–230, 232, 272, 273, 305,
325–327, 329, 348, 388, 390

RGB10, 229
RGB10 A2, 226, 229
RGB10 A2UI, 226, 229
RGB12, 229
RGB16, 226, 229
RGB16 SNORM, 226, 229
RGB16F, 226, 229
RGB16I, 226, 230
RGB16UI, 226, 230
RGB32F, 226, 229
RGB32I, 226, 230
RGB32UI, 226, 230
RGB4, 229
RGB5, 229
RGB5 A1, 229
RGB8, 227, 229
RGB8 SNORM, 227, 229
RGB8I, 227, 230
RGB8UI, 227, 230
RGB9 E5, 180, 227, 229, 278, 327
RGB INTEGER, 192, 195
RGB SCALE, 270, 273, 435
RGBA, 182, 183, 186, 188, 189, 192,

195, 200, 207, 208, 224, 225,
229, 230, 232, 272, 273, 325,
329, 348, 388, 390, 443, 446–
449, 493

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 560

RGBA12, 229
RGBA16, 226, 229, 250
RGBA16 SNORM, 226, 229
RGBA16F, 226, 229, 250
RGBA16I, 226, 230, 251
RGBA16UI, 226, 230, 251
RGBA2, 229
RGBA32F, 226, 229, 250
RGBA32I, 226, 230, 251
RGBA32UI, 226, 230, 251
RGBA4, 229
RGBA8, 226, 229, 250
RGBA8 SNORM, 226, 229
RGBA8I, 226, 230, 251
RGBA8UI, 226, 230, 251
RGBA INTEGER, 192, 195
RGBA MODE, 471
RIGHT, 302, 311, 312, 314, 315, 318,

324
Rotate, 68, 478, 491

S, 73, 74, 383
SAMPLE ALPHA TO COVERAGE,

295, 296, 428
SAMPLE ALPHA TO ONE, 295, 296,

428
SAMPLE BUFFERS, 154, 161, 168,

174, 213, 216, 295, 300, 309,
310, 316, 323, 331, 333, 352,
353, 471

SAMPLE COVERAGE, 295, 296, 428
SAMPLE COVERAGE INVERT, 295,

296, 428
SAMPLE COVERAGE VALUE, 295,

296, 428
SAMPLE MASK, 295, 297, 428
SAMPLE MASK VALUE, 295, 297,

428
SAMPLE POSITION, 154, 471

SAMPLE ALPHA TO COVERAGE,
295

SAMPLE ALPHA TO ONE, 295
SampleCoverage, 296
SampleMaski, 297
sampler1D, 102
sampler1DArray, 102
sampler1DArrayShadow, 102
sampler1DShadow, 102, 118, 285
sampler2D, 102, 111
sampler2DArray, 102
sampler2DArrayShadow, 102
sampler2DMS, 102
sampler2DMSArray, 102
sampler2DRect, 102
sampler2DRectShadow, 102, 118, 285
sampler2DShadow, 102, 118, 285
sampler3D, 102
SAMPLER 1D, 102
SAMPLER 1D ARRAY, 102
SAMPLER 1D ARRAY SHADOW,

102
SAMPLER 1D SHADOW, 102
SAMPLER 2D, 102
SAMPLER 2D ARRAY, 102
SAMPLER 2D ARRAY SHADOW,

102
SAMPLER 2D MULTISAMPLE, 102
SAMPLER 2D MULTISAMPLE AR-

RAY, 102
SAMPLER 2D RECT, 102
SAMPLER 2D RECT SHADOW, 102
SAMPLER 2D SHADOW, 102
SAMPLER 3D, 102
SAMPLER BINDING, 222, 430
SAMPLER BUFFER, 102
SAMPLER CUBE, 102
SAMPLER CUBE SHADOW, 102
samplerBuffer, 102
samplerCube, 102

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 561

samplerCubeShadow, 102
SamplerParameter, 222
SamplerParameter*, 221, 222, 389
SamplerParameterI{u ui}v, 222
SamplerParameterIiv, 222
SamplerParameterIuiv, 222
SamplerParameteriv, 222
SAMPLES, 154, 155, 301, 333, 352,

353, 471
SAMPLES PASSED, 134–136, 300,

396, 397
Scale, 68, 69, 478, 491
Scissor, 295
SCISSOR BIT, 410
SCISSOR BOX, 436
SCISSOR TEST, 295, 436
SECONDARY COLOR ARRAY, 38,

49, 417
SECONDARY COLOR ARRAY -

BUFFER BINDING, 419
SECONDARY COLOR ARRAY -

POINTER, 394, 417
SECONDARY COLOR ARRAY -

SIZE, 417
SECONDARY COLOR ARRAY -

STRIDE, 417
SECONDARY COLOR ARRAY -

TYPE, 417
SecondaryColor, 29, 33
SecondaryColor*, 33
SecondaryColor3, 32, 33
SecondaryColor3*, 491
SecondaryColorP*, 33
SecondaryColorP*uiv, 33
SecondaryColorPointer, 30, 36, 39, 372,

491
SELECT, 364, 365, 479
SelectBuffer, 364, 365, 372, 394, 494
SELECTION BUFFER POINTER,

394, 472

SELECTION BUFFER SIZE, 472
SEPARABLE 2D, 185, 207, 235, 392,

447
SeparableFilter2D, 176, 185
SEPARATE ATTRIBS, 113, 138, 402
SEPARATE SPECULAR COLOR, 79
SET, 309
SHADE MODEL, 423
ShadeModel, 140, 492
SHADER SOURCE LENGTH, 401,

404, 451
SHADER TYPE, 122, 401, 451
ShaderSource, 88, 373, 404
SHADING LANGUAGE VERSION,

395, 464
SHININESS, 83, 424
SHORT, 37, 191, 327, 328, 371, 391
SIGNALED, 375, 398
SIGNED NORMALIZED, 385, 407
SINGLE COLOR, 78, 79, 424
SLUMINANCE, 231, 277
SLUMINANCE8, 277
SLUMINANCE8 ALPHA8, 231, 277
SLUMINANCE ALPHA, 277
SMOOTH, 140, 423
SMOOTH LINE WIDTH GRANU-

LARITY, 463
SMOOTH LINE WIDTH RANGE,

463
SPECULAR, 82, 83, 424, 425
SPHERE MAP, 73–75
SPOT CUTOFF, 83, 425
SPOT DIRECTION, 83, 383, 425
SPOT EXPONENT, 83, 425
SRC0 ALPHA, 435
SRC0 RGB, 435
SRC1 ALPHA, 304–306, 435
SRC1 COLOR, 304–306
SRC1 RGB, 435
SRC2 ALPHA, 435

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 562

SRC2 RGB, 435
SRC ALPHA, 273, 275, 305, 306, 435
SRC ALPHA SATURATE, 305
SRC COLOR, 273, 275, 305, 306, 435
SRCn ALPHA, 270, 273, 275, 279
SRCn RGB, 270, 273, 275, 279
SRGB, 277, 302, 303, 307, 407
SRGB8, 227, 229, 277
SRGB8 ALPHA8, 226, 229, 277
SRGB ALPHA, 277
STACK OVERFLOW, 19, 71, 364, 409
STACK UNDERFLOW, 19, 71, 364,

409
STATIC COPY, 53, 55
STATIC DRAW, 53, 55, 421
STATIC READ, 53, 55
std140, 98, 108
STENCIL, 318, 319, 329, 406, 432,

441, 498
STENCIL ATTACHMENT, 336, 342,

350, 499
STENCIL ATTACMENT, 498, 499
STENCIL BACK FAIL, 436
STENCIL BACK FUNC, 436
STENCIL BACK PASS DEPTH -

FAIL, 436
STENCIL BACK PASS DEPTH -

PASS, 436
STENCIL BACK REF, 436
STENCIL BACK VALUE MASK, 436
STENCIL BACK WRITEMASK, 438
STENCIL BITS, 331, 354, 471, 494
STENCIL BUFFER, 499
STENCIL BUFFER -

BIT, 316, 317, 319, 331–333,
410

STENCIL CLEAR VALUE, 438
STENCIL FAIL, 436
STENCIL FUNC, 436
STENCIL INDEX, 180, 183, 189, 192,

202, 204, 223, 321, 324, 325,
329, 331, 340, 349, 387

STENCIL INDEX1, 340
STENCIL INDEX16, 340
STENCIL INDEX4, 340
STENCIL INDEX8, 340
STENCIL PASS DEPTH FAIL, 436
STENCIL PASS DEPTH PASS, 436
STENCIL REF, 436
STENCIL TEST, 298, 436
STENCIL VALUE MASK, 436
STENCIL WRITEMASK, 438
StencilFunc, 298, 299, 477
StencilFuncSeparate, 298, 299
StencilMask, 316, 321, 477
StencilMaskSeparate, 316, 321
StencilOp, 298, 299
StencilOpSeparate, 298, 299
STEREO, 471
STREAM COPY, 53, 55
STREAM DRAW, 53, 55
STREAM READ, 53, 55
SUBPIXEL BITS, 461
SUBTRACT, 274
SYNC CONDITION, 375, 398, 459
SYNC FENCE, 375, 398, 459
SYNC FLAGS, 375, 398, 459
SYNC FLUSH COMMANDS BIT,

376, 378
SYNC GPU COMMANDS COM-

PLETE, 375, 398, 459
SYNC STATUS, 375, 398, 459

T, 73, 383
T2F C3F V3F, 49, 50
T2F C4F N3F V3F, 49, 50
T2F C4UB V3F, 49, 50
T2F N3F V3F, 49, 50
T2F V3F, 49, 50
T4F C4F N3F V4F, 49, 50

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 563

T4F V4F, 49, 50
TABLE TOO LARGE, 19, 181, 187
TexBuffer, 249, 372
TexCoord, 29, 31
TexCoord*, 491
TexCoord*1*, 31
TexCoord*2*, 31
TexCoord*3*, 31
TexCoord*4*, 31
TexCoordP*uiv, 31
TexCoordP1ui*, 31
TexCoordP2ui*, 31
TexCoordP3ui*, 31
TexCoordP4ui*, 31
TexCoordPointer, 30, 37, 39, 40, 51,

372, 491
TexEnv, 70, 218, 270, 279, 494
TexEnv*, 157
TexGen, 70, 73, 74, 382
TexGen*, 492
TexImage, 218, 240
TexImage*, 486, 493, 504
TexImage*D, 175, 176
TexImage1D, 176, 207, 209, 231, 236,

237, 239, 240, 243, 245, 263,
269, 373

TexImage2D, 176, 207, 209, 231, 234–
238, 240, 243, 245, 263, 269,
270, 373

TexImage2DMultisample, 248, 269
TexImage3D, 176, 223, 231, 233, 235,

237, 240, 243, 245, 263, 269,
373, 387

TexImage3DMultisample, 248, 269
TexParameter, 218, 222, 251, 486, 494
TexParameter*, 222, 494
TexParameter[if], 257, 263
TexParameterf, 220
TexParameterfv, 220
TexParameterI, 251

TexParameteri, 220, 252
TexParameterIiv, 252
TexParameterIuiv, 252
TexParameteriv, 220, 252
TexSubImage, 240
TexSubImage*, 243, 247, 486
TexSubImage*D, 176
TexSubImage1D, 176, 207, 239, 240,

242, 245
TexSubImage2D, 176, 207, 239–242,

245
TexSubImage3D, 176, 239, 240, 242,

245
TEXTURE, 66, 70, 71, 273, 275, 345,

349, 354, 406, 407, 435
TEXTUREi, 31, 218
TEXTURE0, 31, 32, 41, 51, 218, 359,

366, 411, 420, 434
TEXTURE1, 411
TEXTURE x SIZE, 432
TEXTURE x TYPE, 432
TEXTURE xD, 429, 430
TEXTURE 1D, 218, 224, 236, 239,

251, 264, 278, 344, 384, 386,
494

TEXTURE 1D ARRAY, 218, 224, 235,
238, 240, 251, 264, 384, 386,
429, 430, 494

TEXTURE 2D, 111, 218, 224, 235,
238, 240, 251, 264, 278, 344,
384, 386, 494

TEXTURE 2D ARRAY, 218, 223, 224,
233, 240, 245, 247, 251, 264,
384, 386, 429, 430, 494

TEXTURE 2D MULTISAMPLE, 218,
248, 344, 384, 429

TEXTURE 2D MULTISAMPLE AR-
RAY, 218, 248, 344, 384, 429

TEXTURE 3D, 218, 223, 233, 240,
251, 264, 269, 278, 344, 384,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 564

386, 494
TEXTURE ALPHA SIZE, 385
TEXTURE ALPHA TYPE, 385
TEXTURE BASE LEVEL, 234, 252–

254, 262, 263, 269, 347, 431
TEXTURE BINDING xD, 429
TEXTURE BINDING 1D ARRAY,

429
TEXTURE BINDING 2D ARRAY,

429
TEXTURE BINDING 2D MULTI-

SAMPLE, 429
TEXTURE BINDING 2D MULTI-

SAMPLE ARRAY, 429
TEXTURE BINDING BUFFER, 429
TEXTURE BINDING CUBE MAP,

429
TEXTURE BINDING RECTANGLE,

429
TEXTURE BIT, 409, 410
TEXTURE BLUE SIZE, 385
TEXTURE BLUE TYPE, 385
TEXTURE BORDER, 245, 246, 385,

432
TEXTURE BORDER COLOR, 222,

252, 260, 268, 269, 384, 389,
431, 433, 500

TEXTURE BUFFER, 53, 218, 249,
251, 385, 429

TEXTURE BUFFER DATA STORE -
BINDING, 432

TEXTURE COMPARE FAIL -
VALUE ARB, 523

TEXTURE COMPARE FUNC, 222,
252, 269, 276, 431, 433

TEXTURE COMPARE MODE, 118,
222, 252, 269, 276, 285, 431,
433

TEXTURE COMPONENTS, 386, 493
TEXTURE COMPRESSED, 432

TEXTURE COMPRESSED -
IMAGE SIZE, 245, 246, 385,
387, 432

TEXTURE COMPRESSION HINT,
379, 460

TEXTURE COORD ARRAY, 38, 40,
51, 417

TEXTURE COORD ARRAY -
BUFFER BINDING, 419

TEXTURE COORD ARRAY -
POINTER, 394, 417

TEXTURE COORD ARRAY SIZE,
417

TEXTURE COORD ARRAY -
STRIDE, 417

TEXTURE COORD ARRAY TYPE,
417

TEXTURE CUBE MAP, 218, 224,
235, 251, 264, 278, 384, 385,
429, 494

TEXTURE CUBE MAP *, 235
TEXTURE CUBE MAP NEG-

ATIVE X, 235, 238, 240, 255,
343, 344, 356, 384, 386, 430

TEXTURE CUBE MAP NEG-
ATIVE Y, 235, 238, 240, 255,
343, 344, 356, 384, 386, 430

TEXTURE CUBE MAP NEG-
ATIVE Z, 235, 238, 240, 255,
343, 344, 356, 384, 386, 430

TEXTURE CUBE MAP POS-
ITIVE X, 235, 238, 240, 255,
343–345, 356, 384, 386, 430

TEXTURE CUBE MAP POS-
ITIVE Y, 235, 238, 240, 255,
343, 344, 356, 384, 386, 430

TEXTURE CUBE MAP POS-
ITIVE Z, 235, 238, 240, 255,
343, 344, 356, 384, 386, 430

TEXTURE CUBE MAP SEAMLESS,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 565

255, 472
TEXTURE DEPTH, 245–247, 385, 432
TEXTURE DEPTH SIZE, 385
TEXTURE DEPTH TYPE, 385
TEXTURE ENV, 270, 383, 494
TEXTURE ENV COLOR, 270, 434
TEXTURE ENV MODE, 270, 271,

279, 434
TEXTURE FILTER CONTROL, 270,

383, 494
TEXTURE FIXED SAMPLE LOCA-

TIONS, 351, 432
TEXTURE GEN x, 434
TEXTURE GEN *, 492
TEXTURE GEN MODE, 73–75, 434
TEXTURE GEN Q, 74
TEXTURE GEN R, 74
TEXTURE GEN S, 74
TEXTURE GEN T, 74
TEXTURE GREEN SIZE, 385
TEXTURE GREEN TYPE, 385
TEXTURE HEIGHT, 242, 245–247,

385, 432
TEXTURE INTENSITY SIZE, 385
TEXTURE INTENSITY TYPE, 385
TEXTURE INTERNAL FORMAT,

245, 246, 386, 493
TEXTURE INTERNAL FORMAT

(TEXTURE COMPONENTS),
432

TEXTURE LOD BIAS, 222, 252, 256,
270, 431, 433, 434, 494

TEXTURE LUMINANCE SIZE, 385
TEXTURE LUMINANCE TYPE, 385
TEXTURE MAG FILTER, 222, 252,

265, 269, 277, 431, 433
TEXTURE MATRIX

(TRANSPOSE TEXTURE MATRIX),
422

TEXTURE MAX LEVEL, 252, 253,

263, 269, 347, 431
TEXTURE MAX LOD, 222, 252, 253,

257, 269, 431, 433
TEXTURE MIN FILTER, 222, 252,

254, 259, 260, 262, 265–267,
269, 277, 347, 431, 433

TEXTURE MIN LOD, 222, 253, 257,
269, 431, 433

TEXTURE PRIORITY, 220, 252, 253,
269, 431, 494

TEXTURE RECTANGLE, 218, 224,
235, 236, 238, 240, 244–246,
251, 254, 344, 384, 386, 387,
429, 430

TEXTURE RECTANGLE ARB, 525
TEXTURE RED SIZE, 385
TEXTURE RED TYPE, 385
TEXTURE RESIDENT, 220, 269, 384,

431
TEXTURE SAMPLES, 351, 432
TEXTURE SHARED SIZE, 385, 432
TEXTURE STACK DEPTH, 422
TEXTURE STENCIL SIZE, 385
TEXTURE SWIZZLE A, 252, 253,

271, 431
TEXTURE SWIZZLE B, 252, 253,

271, 431
TEXTURE SWIZZLE G, 252, 253,

271, 431
TEXTURE SWIZZLE R, 252, 253,

271, 431
TEXTURE SWIZZLE RGBA, 252,

253
TEXTURE WIDTH, 242, 245–247,

385, 432
TEXTURE WRAP R, 221, 222, 253,

254, 259, 260, 431, 433, 493
TEXTURE WRAP S, 221, 222, 253,

254, 259, 260, 431, 433, 493
TEXTURE WRAP T, 221, 222, 253,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 566

254, 259, 260, 431, 433, 493
textureGather, 532
textureLOD, 532
TEXTUREn, 275, 279
TIME ELAPSED, 367, 369, 396, 397
TIMEOUT EXPIRED, 376
TIMEOUT IGNORED, 377
TIMESTAMP, 369, 396, 397
TRANSFORM BIT, 410
TRANSFORM FEED-

BACK BUFFER, 53, 54, 137,
138

TRANSFORM FEEDBACK -
BUFFER BINDING, 400, 458

TRANSFORM FEEDBACK -
BUFFER MODE, 402, 453

TRANSFORM FEEDBACK -
BUFFER SIZE, 400, 458

TRANSFORM FEEDBACK -
BUFFER START, 400, 458

TRANSFORM FEEDBACK PRIM-
ITIVES WRITTEN, 133, 138,
139, 396, 397

TRANSFORM FEEDBACK VARY-
ING MAX LENGTH, 114,
402, 453

TRANSFORM FEED-
BACK VARYINGS, 114, 402,
453

TransformFeedbackVaryings, 113, 114,
138, 372, 510

Translate, 68, 69, 478, 491
TRANSPOSE COLOR MATRIX, 382,

389
TRANSPOSE MODELVIEW MA-

TRIX, 382
TRANSPOSE PROJECTION MA-

TRIX, 382
TRANSPOSE TEXTURE MATRIX,

382

TRIANGLE FAN, 24, 28, 125, 131,
137

TRIANGLE STRIP, 23, 28, 125, 131,
137, 402, 453

TRIANGLE STRIP ADJACENCY, 27,
28, 125, 131

TRIANGLES, 24, 28, 29, 125, 131,
136–138, 402, 453

triangles, 125
TRIANGLES ADJACENCY, 25, 28,

125, 131, 402
triangles adjacency, 125
TRUE, 29, 35, 38, 53, 58, 60, 78, 80,

86, 88, 90, 106, 121, 140, 141,
144, 157, 160, 176, 178, 187,
188, 203, 219, 248, 252, 254,
265, 287, 296, 301, 315, 323,
326, 345, 351, 372, 381, 388,
393, 394, 396, 398, 399, 401,
402, 404, 406, 408, 415, 423,
428, 432, 437, 438, 492

uint, 107
Uniform, 14, 105
Uniform*, 95, 96, 106, 111
Uniform*f{v}, 105
Uniform*i{v}, 105
Uniform*ui{v}, 105
Uniform1f, 15
Uniform1i, 15
Uniform1i{v}, 105, 111
Uniform1iv, 106
Uniform2{if ui}*, 106
Uniform2f, 15
Uniform2i, 15
Uniform3f, 15
Uniform3i, 15
Uniform4f, 13, 15
Uniform4f{v}, 106
Uniform4i, 15

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 567

Uniform4i{v}, 106
UNIFORM ARRAY STRIDE, 104,

108, 455
UNIFORM BLOCK ACTIVE UNI-

FORM INDICES, 98, 455
UNIFORM BLOCK ACTIVE UNI-

FORMS, 98, 455
UNIFORM BLOCK BINDING, 98,

455
UNIFORM BLOCK DATA SIZE, 98,

111, 455
UNIFORM BLOCK INDEX, 104, 454
UNIFORM BLOCK NAME -

LENGTH, 98
UNIFORM BLOCK REFERENCED -

BY FRAGMENT SHADER,
98, 455

UNIFORM BLOCK REFERENCED -
BY GEOMETRY SHADER,
98, 455

UNIFORM BLOCK REFERENCED -
BY VERTEX SHADER, 98,
455

UNIFORM BUFFER, 53, 54, 110
UNIFORM BUFFER BINDING, 400,

454
UNIFORM BUFFER OFFSET -

ALIGNMENT, 110, 468
UNIFORM BUFFER SIZE, 400, 454
UNIFORM BUFFER START, 400, 454
UNIFORM IS ROW MAJOR, 104,

455
UNIFORM MATRIX STRIDE, 104,

108, 455
UNIFORM NAME LENGTH, 104,

454
UNIFORM OFFSET, 104, 454
UNIFORM SIZE, 104, 454
UNIFORM TYPE, 103, 104, 454
Uniform{1234}ui, 105

Uniform{1234}uiv, 105
UniformBlockBinding, 110
UniformMatrix2x4fv, 105
UniformMatrix3fv, 106
UniformMatrix{234}fv, 105
UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3}fv,

105
UnmapBuffer, 58, 60, 96, 372, 486
UNPACK ALIGNMENT, 176, 193,

223, 444
UNPACK IMAGE HEIGHT, 176, 223,

444
UNPACK LSB FIRST, 176, 202, 444
UNPACK ROW LENGTH, 176, 193,

194, 223, 444
UNPACK SKIP IMAGES, 176, 223,

235, 444
UNPACK SKIP PIXELS, 176, 194,

202, 444
UNPACK SKIP ROWS, 176, 194, 202,

444
UNPACK SWAP BYTES, 176, 193,

444
UNSIGNALED, 375, 398, 459
unsigned int, 101
UNSIGNED BYTE, 37, 46, 50, 191,

327, 328, 371, 391, 481
UNSIGNED BYTE 2 -

3 3 REV, 191, 195, 196, 328,
391

UNSIGNED BYTE 3 3 2, 191, 195,
196, 328, 391

UNSIGNED INT, 37, 46, 93, 101, 191,
327, 328, 371, 383, 385, 391,
407

UNSIGNED INT 10 10 10 2, 191,
195, 198, 328, 391

UNSIGNED INT 10F -
11F 11F REV, 191, 195, 198,
200, 225, 326–328

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 568

UNSIGNED INT 24 8, 189, 191, 195,
198, 323, 327, 328

UNSIGNED INT 2 10 10 10 -
REV, 30–33, 35, 37, 43, 191,
195, 198, 328, 391

UNSIGNED INT 5 9 9 9 REV,
191, 195, 198, 200, 225, 228,
326–328

UNSIGNED INT 8 8 8 8, 191, 195,
198, 328, 391

UNSIGNED INT 8 8 -
8 8 REV, 191, 195, 198, 328,
391

UNSIGNED INT SAMPLER 1D, 103
UNSIGNED INT SAMPLER 1D AR-

RAY, 103
UNSIGNED INT SAMPLER 2D, 103
UNSIGNED INT SAMPLER 2D AR-

RAY, 103
UNSIGNED INT SAMPLER 2D -

MULTISAMPLE, 103
UNSIGNED INT SAMPLER 2D -

MULTISAMPLE ARRAY,
103

UNSIGNED INT SAMPLER 2D -
RECT, 103

UNSIGNED INT SAMPLER 3D, 103
UNSIGNED INT SAMPLER -

BUFFER, 103
UNSIGNED INT SAMPLER CUBE,

103
UNSIGNED INT VEC2, 93, 101
UNSIGNED INT VEC3, 93, 101
UNSIGNED INT VEC4, 93, 101
UNSIGNED NORMALIZED, 385, 407
UNSIGNED SHORT, 37, 46, 191, 327,

328, 371, 383, 391
UNSIGNED SHORT 1 5 -

5 5 REV, 191, 195, 197, 328,
391

UNSIGNED SHORT 4 4 4 4, 191,
195, 197, 328, 391

UNSIGNED SHORT 4 4 -
4 4 REV, 191, 195, 197, 328,
391

UNSIGNED SHORT 5 5 5 1, 191,
195, 197, 328, 391

UNSIGNED SHORT 5 6 5, 191, 195,
197, 328, 391

UNSIGNED SHORT 5 6 5 REV, 191,
195, 197, 328, 391

UPPER LEFT, 157, 160, 161, 426
usampler1D, 103
usampler1DArray, 103
usampler2D, 103
usampler2DArray, 103
usampler2DMS, 103
usampler2DMSArray, 103
usampler2DRect, 103
usampler3D, 103
usamplerBuffer, 103
usamplerCube, 103
UseProgram, 90, 91, 115, 126, 138
uvec2, 101
uvec3, 101
uvec4, 101

V2F, 49, 50
V3F, 49, 50
VALIDATE STATUS, 121, 402, 452
ValidateProgram, 121, 373, 402
vec2, 91, 101
vec3, 91, 101
vec4, 91, 101, 106
VENDOR, 395, 464
VERSION, 395, 464
Vertex, 29, 30, 91, 146, 360
Vertex*, 491
Vertex*2*, 30
Vertex*3*, 30

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 569

Vertex*4*, 30
Vertex2, 35, 65
Vertex3, 35
Vertex4, 35
VERTEX ARRAY, 38, 51, 416
VERTEX ARRAY BINDING, 382,

404, 420
VERTEX ARRAY BUFFER BIND-

ING, 419
VERTEX ARRAY POINTER, 394,

416
VERTEX ARRAY SIZE, 416
VERTEX ARRAY STRIDE, 416
VERTEX ARRAY TYPE, 416
VERTEX ATTRIB ARRAY -

BUFFER BINDING, 62, 404,
419

VERTEX ATTRIB ARRAY DIVI-
SOR, 404, 418

VERTEX ATTRIB ARRAY EN-
ABLED, 404, 418

VERTEX ATTRIB ARRAY INTE-
GER, 404, 418

VERTEX ATTRIB ARRAY NOR-
MALIZED, 404, 418

VERTEX ATTRIB ARRAY -
POINTER, 405, 418

VERTEX ATTRIB ARRAY SIZE,
404, 418

VERTEX ATTRIB ARRAY STRIDE,
404, 418

VERTEX ATTRIB ARRAY TYPE,
404, 418

VERTEX PROGRAM POINT SIZE,
510

VERTEX PROGRAM TWO SIDE,
80, 81, 456, 492

VERTEX SHADER, 88, 401
VertexAttrib, 29, 34, 135
VertexAttrib*, 34, 35, 91, 491

VertexAttrib1*, 34
VertexAttrib2*, 34
VertexAttrib3*, 34
VertexAttrib4, 34
VertexAttrib4*, 34
VertexAttrib4N, 34
VertexAttrib4Nub, 34
VertexAttribDivisor, 40, 45
VertexAttribI, 34
VertexAttribI4, 35
VertexAttribIPointer, 37–39, 372, 404
VertexAttribP*, 35
VertexAttribP*uiv, 35
VertexAttribP1ui, 35
VertexAttribP2ui, 35
VertexAttribP3ui, 35
VertexAttribP4ui, 35
VertexAttribPointer, 30, 37–39, 62, 64,

372, 404, 492
VertexP*uiv, 30
VertexP2ui, 30
VertexP3ui, 30
VertexP4ui, 30
VertexPointer, 30, 36, 39, 51, 372, 491
VIEWPORT, 422
Viewport, 132
VIEWPORT BIT, 410

WAIT FAILED, 376
WaitSync, 375–378, 469, 485, 487
WGL ARB create context, 529
WGL ARB create context profile, 490,

532
WGL ARB framebuffer sRGB, 527
WGL ARB pixel format float, 526
WindowPos, 147, 364
WindowPos*, 492
WindowPos2, 147
WindowPos3, 147
WRITE ONLY, 53, 58, 59

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

INDEX 570

XOR, 309

ZERO, 253, 271, 299, 303, 305, 307,
437

ZOOM X, 449
ZOOM Y, 449

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

	1 Introduction
	1.1 Formatting of the OpenGL Specification
	1.1.1 Formatting of the Compatibility Profile
	1.1.2 Formatting of Optional Features

	1.2 What is the OpenGL Graphics System?
	1.3 Programmer's View of OpenGL
	1.4 Implementor's View of OpenGL
	1.5 Our View
	1.6 The Deprecation Model
	1.7 Companion Documents
	1.7.1 OpenGL Shading Language
	1.7.2 Window System Bindings

	2 OpenGL Operation
	2.1 OpenGL Fundamentals
	2.1.1 Floating-Point Computation
	2.1.2 16-Bit Floating-Point Numbers
	2.1.3 Unsigned 11-Bit Floating-Point Numbers
	2.1.4 Unsigned 10-Bit Floating-Point Numbers
	2.1.5 Fixed-Point Data Conversions

	2.2 GL State
	2.2.1 Shared Object State

	2.3 GL Command Syntax
	2.4 Basic GL Operation
	2.5 GL Errors
	2.6 Begin/End Paradigm
	2.6.1 Begin and End
	2.6.2 Polygon Edges
	2.6.3 GL Commands within Begin / End

	2.7 Vertex Specification
	2.8 Vertex Arrays
	2.8.1 Packed Vertex Data Formats
	2.8.2 Drawing Commands

	2.9 Buffer Objects
	2.9.1 Creating and Binding Buffer Objects
	2.9.2 Creating Buffer Object Data Stores
	2.9.3 Mapping and Unmapping Buffer Data
	2.9.4 Effects of Accessing Outside Buffer Bounds
	2.9.5 Copying Between Buffers
	2.9.6 Vertex Arrays in Buffer Objects
	2.9.7 Array Indices in Buffer Objects
	2.9.8 Buffer Object State

	2.10 Vertex Array Objects
	2.11 Rectangles
	2.12 Fixed-Function Vertex Transformations
	2.12.1 Matrices
	2.12.2 Normal Transformation
	2.12.3 Generating Texture Coordinates

	2.13 Fixed-Function Vertex Lighting and Coloring
	2.13.1 Lighting
	2.13.2 Lighting Parameter Specification
	2.13.3 ColorMaterial
	2.13.4 Lighting State
	2.13.5 Color Index Lighting
	2.13.6 Clamping or Masking

	2.14 Vertex Shaders
	2.14.1 Shader Objects
	2.14.2 Program Objects
	2.14.3 Vertex Attributes
	2.14.4 Uniform Variables
	2.14.5 Samplers
	2.14.6 Varying Variables
	2.14.7 Shader Execution
	2.14.8 Required State

	2.15 Geometry Shaders
	2.15.1 Geometry Shader Input Primitives
	2.15.2 Geometry Shader Output Primitives
	2.15.3 Geometry Shader Variables
	2.15.4 Geometry Shader Execution Environment

	2.16 Coordinate Transformations
	2.16.1 Controlling the Viewport

	2.17 Asynchronous Queries
	2.18 Conditional Rendering
	2.19 Transform Feedback
	2.20 Primitive Queries
	2.21 Flatshading
	2.22 Primitive Clipping
	2.22.1 Color and Associated Data Clipping

	2.23 Final Color Processing
	2.24 Current Raster Position

	3 Rasterization
	3.1 Discarding Primitives Before Rasterization
	3.2 Invariance
	3.3 Antialiasing
	3.3.1 Multisampling

	3.4 Points
	3.4.1 Basic Point Rasterization
	3.4.2 Point Rasterization State
	3.4.3 Point Multisample Rasterization

	3.5 Line Segments
	3.5.1 Basic Line Segment Rasterization
	3.5.2 Other Line Segment Features
	3.5.3 Line Rasterization State
	3.5.4 Line Multisample Rasterization

	3.6 Polygons
	3.6.1 Basic Polygon Rasterization
	3.6.2 Stippling
	3.6.3 Antialiasing
	3.6.4 Options Controlling Polygon Rasterization
	3.6.5 Depth Offset
	3.6.6 Polygon Multisample Rasterization
	3.6.7 Polygon Rasterization State

	3.7 Pixel Rectangles
	3.7.1 Pixel Storage Modes and Pixel Buffer Objects
	3.7.2 The Imaging Subset
	3.7.3 Pixel Transfer Modes
	3.7.4 Transfer of Pixel Rectangles
	3.7.5 Rasterization of Pixel Rectangles
	3.7.6 Pixel Transfer Operations
	3.7.7 Pixel Rectangle Multisample Rasterization

	3.8 Bitmaps
	3.9 Texturing
	3.9.1 Texture Objects
	3.9.2 Sampler Objects
	3.9.3 Texture Image Specification
	3.9.4 Alternate Texture Image Specification Commands
	3.9.5 Compressed Texture Images
	3.9.6 Multisample Textures
	3.9.7 Buffer Textures
	3.9.8 Texture Parameters
	3.9.9 Depth Component Textures
	3.9.10 Cube Map Texture Selection
	3.9.11 Texture Minification
	3.9.12 Texture Magnification
	3.9.13 Combined Depth/Stencil Textures
	3.9.14 Texture Completeness
	3.9.15 Texture State and Proxy State
	3.9.16 Texture Environments and Texture Functions
	3.9.17 Texture Comparison Modes
	3.9.18 sRGB Texture Color Conversion
	3.9.19 Shared Exponent Texture Color Conversion
	3.9.20 Texture Application

	3.10 Color Sum
	3.11 Fog
	3.12 Fragment Shaders
	3.12.1 Shader Variables
	3.12.2 Shader Execution

	3.13 Antialiasing Application
	3.14 Multisample Point Fade

	4 Per-Fragment Operations and the Framebuffer
	4.1 Per-Fragment Operations
	4.1.1 Pixel Ownership Test
	4.1.2 Scissor Test
	4.1.3 Multisample Fragment Operations
	4.1.4 Alpha Test
	4.1.5 Stencil Test
	4.1.6 Depth Buffer Test
	4.1.7 Occlusion Queries
	4.1.8 Blending
	4.1.9 sRGB Conversion
	4.1.10 Dithering
	4.1.11 Logical Operation
	4.1.12 Additional Multisample Fragment Operations

	4.2 Whole Framebuffer Operations
	4.2.1 Selecting a Buffer for Writing
	4.2.2 Fine Control of Buffer Updates
	4.2.3 Clearing the Buffers
	4.2.4 The Accumulation Buffer

	4.3 Drawing, Reading, and Copying Pixels
	4.3.1 Writing to the Stencil or Depth/Stencil Buffers
	4.3.2 Reading Pixels
	4.3.3 Copying Pixels
	4.3.4 Pixel Draw/Read State

	4.4 Framebuffer Objects
	4.4.1 Binding and Managing Framebuffer Objects
	4.4.2 Attaching Images to Framebuffer Objects
	4.4.3 Feedback Loops Between Textures and the Framebuffer
	4.4.4 Framebuffer Completeness
	4.4.5 Effects of Framebuffer State on Framebuffer Dependent Values
	4.4.6 Mapping between Pixel and Element in Attached Image
	4.4.7 Layered Framebuffers

	5 Special Functions
	5.1 Evaluators
	5.2 Selection
	5.3 Feedback
	5.4 Timer Queries
	5.5 Display Lists
	5.5.1 Commands Not Usable In Display Lists

	5.6 Flush and Finish
	5.7 Sync Objects and Fences
	5.7.1 Waiting for Sync Objects
	5.7.2 Signalling

	5.8 Hints

	6 State and State Requests
	6.1 Querying GL State
	6.1.1 Simple Queries
	6.1.2 Data Conversions
	6.1.3 Enumerated Queries
	6.1.4 Texture Queries
	6.1.5 Sampler Queries
	6.1.6 Stipple Query
	6.1.7 Color Matrix Query
	6.1.8 Color Table Query
	6.1.9 Convolution Query
	6.1.10 Histogram Query
	6.1.11 Minmax Query
	6.1.12 Pointer and String Queries
	6.1.13 Asynchronous Queries
	6.1.14 Sync Object Queries
	6.1.15 Buffer Object Queries
	6.1.16 Vertex Array Object Queries
	6.1.17 Shader and Program Queries
	6.1.18 Framebuffer Object Queries
	6.1.19 Renderbuffer Object Queries
	6.1.20 Saving and Restoring State

	6.2 State Tables

	A Invariance
	A.1 Repeatability
	A.2 Multi-pass Algorithms
	A.3 Invariance Rules
	A.4 What All This Means

	B Corollaries
	C Compressed Texture Image Formats
	C.1 RGTC Compressed Texture Image Formats
	C.1.1 Format COMPRESSED_RED_RGTC1
	C.1.2 Format COMPRESSED_SIGNED_RED_RGTC1
	C.1.3 Format COMPRESSED_RG_RGTC2
	C.1.4 Format COMPRESSED_SIGNED_RG_RGTC2

	D Shared Objects and Multiple Contexts
	D.1 Object Deletion Behavior
	D.1.1 Automatic Unbinding of Deleted Objects
	D.1.2 Deleted Object and Object Name Lifetimes

	D.2 Sync Objects and Multiple Contexts
	D.3 Propagating Changes to Objects
	D.3.1 Determining Completion of Changes to an object
	D.3.2 Definitions
	D.3.3 Rules

	E Profiles and the Deprecation Model
	E.1 Core and Compatibility Profiles
	E.2 Deprecated and Removed Features
	E.2.1 Deprecated But Still Supported Features
	E.2.2 Removed Features

	F Version 3.0 and Before
	F.1 New Features
	F.2 Deprecation Model
	F.3 Changed Tokens
	F.4 Change Log
	F.5 Credits and Acknowledgements

	G Version 3.1
	G.1 New Features
	G.2 Deprecation Model
	G.3 Change Log
	G.4 Credits and Acknowledgements

	H Version 3.2
	H.1 New Features
	H.2 Deprecation Model
	H.3 Changed Tokens
	H.4 Change Log
	H.5 Credits and Acknowledgements

	I Version 3.3
	I.1 New Features
	I.2 Deprecation Model
	I.3 Change Log
	I.4 Credits and Acknowledgements

	J Extension Registry, Header Files, and ARB Extensions
	J.1 Extension Registry
	J.2 Header Files
	J.3 ARB Extensions
	J.3.1 Naming Conventions
	J.3.2 Promoting Extensions to Core Features
	J.3.3 Multitexture
	J.3.4 Transpose Matrix
	J.3.5 Multisample
	J.3.6 Texture Add Environment Mode
	J.3.7 Cube Map Textures
	J.3.8 Compressed Textures
	J.3.9 Texture Border Clamp
	J.3.10 Point Parameters
	J.3.11 Vertex Blend
	J.3.12 Matrix Palette
	J.3.13 Texture Combine Environment Mode
	J.3.14 Texture Crossbar Environment Mode
	J.3.15 Texture Dot3 Environment Mode
	J.3.16 Texture Mirrored Repeat
	J.3.17 Depth Texture
	J.3.18 Shadow
	J.3.19 Shadow Ambient
	J.3.20 Window Raster Position
	J.3.21 Low-Level Vertex Programming
	J.3.22 Low-Level Fragment Programming
	J.3.23 Buffer Objects
	J.3.24 Occlusion Queries
	J.3.25 Shader Objects
	J.3.26 High-Level Vertex Programming
	J.3.27 High-Level Fragment Programming
	J.3.28 OpenGL Shading Language
	J.3.29 Non-Power-Of-Two Textures
	J.3.30 Point Sprites
	J.3.31 Fragment Program Shadow
	J.3.32 Multiple Render Targets
	J.3.33 Rectangular Textures
	J.3.34 Floating-Point Color Buffers
	J.3.35 Half-Precision Floating Point
	J.3.36 Floating-Point Textures
	J.3.37 Pixel Buffer Objects
	J.3.38 Floating-Point Depth Buffers
	J.3.39 Instanced Rendering
	J.3.40 Framebuffer Objects
	J.3.41 sRGB Framebuffers
	J.3.42 Geometry Shaders
	J.3.43 Half-Precision Vertex Data
	J.3.44 Instanced Rendering
	J.3.45 Flexible Buffer Mapping
	J.3.46 Texture Buffer Objects
	J.3.47 RGTC Texture Compression Formats
	J.3.48 One- and Two-Component Texture Formats
	J.3.49 Vertex Array Objects
	J.3.50 Versioned Context Creation
	J.3.51 Uniform Buffer Objects
	J.3.52 Restoration of features removed from OpenGL 3.0
	J.3.53 Fast Buffer-to-Buffer Copies
	J.3.54 Shader Texture Level of Detail Control
	J.3.55 Depth Clamp Control
	J.3.56 Base Vertex Offset Drawing Commands
	J.3.57 Fragment Coordinate Convention Control
	J.3.58 Provoking Vertex Control
	J.3.59 Seamless Cube Maps
	J.3.60 Fence Sync Objects
	J.3.61 Multisample Textures
	J.3.62 BGRA Attribute Component Ordering
	J.3.63 Per-Buffer Blend Control
	J.3.64 Sample Shading Control
	J.3.65 Cube Map Array Textures
	J.3.66 Texture Gather
	J.3.67 Texture Level-Of-Detail Queries
	J.3.68 Profiled Context Creation
	J.3.69 Shading Language Include
	J.3.70 BPTC texture compression
	J.3.71 Extended Blend Functions
	J.3.72 Explicit Attribute Location
	J.3.73 Boolean Occlusion Queries
	J.3.74 Sampler Objects
	J.3.75 Shader Bit Encoding
	J.3.76 RGB10A2 Integer Textures
	J.3.77 Texture Swizzle
	J.3.78 Timer Queries
	J.3.79 Packed 2.10.10.10 Vertex Formats

