The OpenGL® Graphics System:

A Specification
(Version 3.3 (Compatibility Profile) - March 11,
2010)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2-3.3): Jon Leech
Editor (version 2.0): Pat Brown

Copyright (© 2006-2010 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary
to the Khronos Group, Inc. It or any components may not be reproduced, repub-
lished, distributed, transmitted, displayed, broadcast or otherwise exploited in any
manner without the express prior written permission of Khronos Group. You may
use this specification for implementing the functionality therein, without altering or
removing any trademark, copyright or other notice from the specification, but the
receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor
or Adopter member of Khronos to copy and redistribute UNMODIFIED versions
of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version
of the API is used whenever possible. Such distributed specification may be re-
formatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A link
to the current version of this specification on the Khronos Group web-site should
be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or war-
ranties, express or implied, regarding this specification, including, without limita-
tion, any implied warranties of merchantability or fitness for a particular purpose
or non-infringement of any intellectual property. Khronos Group makes no, and
expressly disclaims any, warranties, express or implied, regarding the correctness,
accuracy, completeness, timeliness, and reliability of the specification. Under no
circumstances will the Khronos Group, or any of its Promoters, Contributors or
Members or their respective partners, officers, directors, employees, agents or rep-
resentatives be liable for any damages, whether direct, indirect, special or conse-
quential damages for lost revenues, lost profits, or otherwise, arising from or in
connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trade-
mark, and OpenGL ES is a trademark, of Silicon Graphics International.

Contents

1 Introduction 1
1.1 Formatting of the OpenGL Specification 1
1.1.1 Formatting of the Compatibility Profile 1

1.1.2 Formatting of Optional Features 1

1.2 What is the OpenGL Graphics System? 1
1.3 Programmer’s View of OpenGL 2
1.4 Implementor’s View of OpenGL 2
1.5 OurView 3
1.6 The Deprecation Model 3
1.7 Companion Documents 3
1.7.1 OpenGL Shading Language 3

1.7.2 Window System Bindings 4

2 OpenGL Operation 5
2.1 OpenGL Fundamentals 5
2.1.1 Floating-Point Computation 7

2.1.2 16-Bit Floating-Point Numbers 8

2.1.3 Unsigned 11-Bit Floating-Point Numbers 9

2.1.4 Unsigned 10-Bit Floating-Point Numbers 9

2.1.5 Fixed-Point Data Conversions 10

22 GLState o 12
2.2.1 Shared ObjectState 13

23 GLCommand Syntax 13
24 BasicGLOperation 15
25 GLErors e 17
2.6 Begin/End Paradigm 18
2.6.1 BeginandEnd 22

2.6.2 PolygonEdges 29

2.6.3 GL Commands within Begin/End 29

CONTENTS ii

2.7
2.8

29

2.10
2.11
2.12

2.13

2.14

2.15

Vertex Specification 30
Vertex AIrays oo 36
2.8.1 Packed Vertex Data Formats 43
2.8.2 Drawing Commands 44
BufferObjects 51
2.9.1 Creating and Binding Buffer Objects 52
2.9.2 Creating Buffer Object Data Stores 54
2.9.3 Mapping and Unmapping BufferData 56
2.9.4 Effects of Accessing Outside Buffer Bounds 61
2.9.5 Copying Between Buffers 61
2.9.6 Vertex Arrays in Buffer Objects 62
2.9.7 Array Indices in Buffer Objects 62
2.9.8 BufferObjectState 63
Vertex Array Objects 63
Rectangles 64
Fixed-Function Vertex Transformations 65
2121 Matriceso e 66
2.12.2 Normal Transformation. 71
2.12.3 Generating Texture Coordinates 73
Fixed-Function Vertex Lighting and Coloring 76
2.13.1 Lighting 77
2.13.2 Lighting Parameter Specification 81
2.13.3 ColorMaterial 82
2.13.4 LightingState 85
2.13.5 Color Index Lighting 85
2.13.6 Clamping or Masking 86
Vertex Shaders 87
2.14.1 Shader Objects 87
2.14.2 Program Objects 89
2.14.3 Vertex Attributeso 91
2.14.4 Uniform Variables 95
2.14.5 Samplers 111
2.14.6 Varying Variables 112
2.147 Shader Execution 115
2.14.8 Required State 122
Geometry Shaders, 123
2.15.1 Geometry Shader Input Primitives 124
2.15.2 Geometry Shader Output Primitives 125
2.15.3 Geometry Shader Variables 126
2.15.4 Geometry Shader Execution Environment 126

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

CONTENTS iii

2.16 Coordinate Transformations 131
2.16.1 Controlling the Viewport 132

2.17 Asynchronous Queries 133
2.18 Conditional Rendering 135
2.19 Transform Feedback 136
2.20 Primitive Queries 139
2.21 Flatshading 139
2.22 Primitive Clipping 142
2.22.1 Color and Associated Data Clipping 144

2.23 Final Color Processing 145
2.24 Current Raster Position 146
3 Rasterization 150
3.1 Discarding Primitives Before Rasterization 152
32 Invarianceo e 152
3.3 Antialiasing 152
3.3.1 Multisampling 154

34 Points 155
3.4.1 Basic Point Rasterization 157

3.4.2 Point Rasterization State 161

3.4.3 Point Multisample Rasterization 161

3.5 LineSegments 162
3.5.1 Basic Line Segment Rasterization 162

3.5.2 Other Line Segment Features 165

3.5.3 Line Rasterization State 168

3.5.4 Line Multisample Rasterization 168

3.6 Polygons 168
3.6.1 Basic Polygon Rasterization 169

3,62 Stippling 171

3.6.3 Antialiasing 172

3.6.4 Options Controlling Polygon Rasterization 172

3,65 DepthOffset 173

3.6.6 Polygon Multisample Rasterization 174

3.6.7 Polygon Rasterization State 175

3.7 PixelRectangles oL 175
3.7.1 Pixel Storage Modes and Pixel Buffer Objects 176

3.7.2 The Imaging Subset 177

373 Pixel TransferModes 178

3.7.4 Transfer of Pixel Rectangles 189

3.7.5 Rasterization of Pixel Rectangles 202

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

CONTENTS

3.7.6 Pixel Transfer Operations
3.7.7 Pixel Rectangle Multisample Rasterization
3.8 Bitmaps

39 Texturing

3.9.1
392
393
394
395
3.9.6
3.9.7
3.9.8
399
3.9.10
3.9.11
3.9.12
3.9.13
3.9.14
3.9.15
3.9.16
3.9.17
3.9.18
3.9.19
3.9.20

Texture Objects
Sampler Objects
Texture Image Specification
Alternate Texture Image Specification Commands

Compressed Texture Images
Multisample Textures
Buffer Textures
Texture Parameters
Depth Component Textures
Cube Map Texture Selection
Texture Minification
Texture Magnification
Combined Depth/Stencil Textures
Texture Completeness
Texture State and Proxy State
Texture Environments and Texture Functions
Texture Comparison Modes
SRGB Texture Color Conversion
Shared Exponent Texture Color Conversion
Texture Application.

310 ColorSum e

3.11 Fog

3.12 Fragment Shaders

3.12.1
3.122

Shader Variables
Shader Execution

3.13 Aantialiasing Application
3.14 Multisample PointFade

Per-Fragment Operations and the Framebuffer

4.1 Per-Fragment Operations

4.1.1
4.1.2
413
414
4.15
4.1.6

Pixel Ownership Test
Scissor Test
Multisample Fragment Operations
AlphaTest
Stencil Test Lo
Depth Buffer Test

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

v

204
213
214
216
218
221
223
238
243
247
249
251
254
254
256
265
266
266
268
270
276
277
278
278
281
281
283
283
284
290
291

CONTENTS v

4.1.7 Occlusion Queries 300
418 Blending 301
419 sRGBConversion 307
4.1.10 Dithering 307
4.1.11 Logical Operation 308
4.1.12 Additional Multisample Fragment Operations 309
4.2 Whole Framebuffer Operations 310
4.2.1 Selecting a Buffer for Writing 311
4.2.2 Fine Control of Buffer Updates 315
423 Clearingthe Buffers 316
424 The Accumulation Buffer 319
4.3 Drawing, Reading, and Copying Pixels 321
4.3.1 Writing to the Stencil or Depth/Stencil Buffers 321
432 ReadingPixels 321
433 CopyingPixels oL 329
43.4 Pixel Draw/Read State 334
4.4 Framebuffer Objects 334
4.4.1 Binding and Managing Framebuffer Objects 335
4.42 Attaching Images to Framebuffer Objects 337
4.4.3 Feedback Loops Between Textures and the Framebuffer . 346
444 Framebuffer Completeness 348

4.45 Effects of Framebuffer State on Framebuffer Dependent
Values 353
4.4.6 Mapping between Pixel and Element in Attached Image . 354
447 Layered Framebuffers 355
5 Special Functions 357
5.1 Evaluators 357
52 Selection 363
53 Feedback 365
54 TimerQueries 367
5.5 DisplayLists 369
5.5.1 Commands Not Usable In Display Lists 372
5.6 FlushandFinish. 374
5.7 SyncObjectsandFences 374
5.7.1 Waiting for Sync Objects 376
5.72 Signalling 378
5.8 Hints. e 378

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

CONTENTS

6 State and State Requests
6.1 QueryingGL State L.

6.1.1

Simple Queries

6.1.2 DataConversions
6.1.3 Enumerated Queries
6.1.4 Texture Queries
6.1.5 Sampler Queries L.
6.1.6 StippleQuery
6.1.7 ColorMatrixQuery
6.1.8 ColorTableQuery
6.1.9 ConvolutionQuery
6.1.10 Histogram Query
6.1.11 Minmax Query
6.1.12 Pointer and String Queries
6.1.13 Asynchronous Queries
6.1.14 Sync Object Queries
6.1.15 Buffer Object Queries
6.1.16 Vertex Array Object Queries
6.1.17 Shader and Program Queries
6.1.18 Framebuffer Object Queries
6.1.19 Renderbuffer Object Queries
6.1.20 Saving and Restoring State
6.2 StateTables

A Invariance
A.l1 Repeatability
A.2 Multi-pass Algorithms
A3 InvarianceRules.
A4 WhatAll ThisMeans

B Corollaries

C Compressed Texture Image Formats
C.1 RGTC Compressed Texture Image Formats
C.1.1 Format COMPRESSED_RED_RGTC1
C.1.2 Format COMPRESSED_SIGNED_RED_RGTC1l
C.1.3 Format COMPRESSED_RG_RGTC2 v
C.1.4 Format COMPRESSED_SIGNED_RG_RGTC2

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

vi

380
380
380
381
382
386
388
389
389
390
392
393
393
394
396
398
399
400
401
405
408
409
411

473
473
474
474
476

477

CONTENTS vii

D

Shared Objects and Multiple Contexts 484
D.1 Object Deletion Behavior 484

D.1.1 Automatic Unbinding of Deleted Objects 484

D.1.2 Deleted Object and Object Name Lifetimes 485
D.2 Sync Objects and Multiple Contexts 485
D.3 Propagating Changes to Objects 486

D.3.1 Determining Completion of Changes to an object 486

D.3.2 Definitions 487

D33 Rules 487
Profiles and the Deprecation Model 489
E.1 Core and Compatibility Profiles 490
E.2 Deprecated and Removed Features 490

E.2.1 Deprecated But Still Supported Features 490

E.2.2 Removed Features 491
Version 3.0 and Before 496
F1 NewPFeatures 496
F2 DeprecationModel 497
F3 ChangedTokens 498
F4 Changelog 498
F5 Credits and Acknowledgements 500
Version 3.1 503
G.1 NewPFeatures 503
G.2 Deprecation Model 504
G3 Changelog 504
G.4 Credits and Acknowledgements 505
Version 3.2 508
H.1 NewFeatures 508
H.2 Deprecation Model 509
H3 ChangedTokens 509
H4 Changelog 510
H.5 Credits and Acknowledgements 512
Version 3.3 515
I.1 NewPFeatures 515
1.2 Deprecation Model 516
I3 Changelog 517

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

CONTENTS viii

1.4 Credits and Acknowledgements 517
Extension Registry, Header Files, and ARB Extensions 519
J.1 ExtensionRegistry 519
J2 HeaderFiles L 519
J3 ARBExtensions.o 520
J.3.1 Naming Conventions 520
J.3.2 Promoting Extensions to Core Features 521
J.33 Multitexture oo 521
J.3.4 Transpose Matrix 521
J.3.5 Multisample Lo 521
J.3.6 Texture Add EnvironmentMode 522
J.3.77 CubeMap Textures 522
J.3.8 Compressed Textures 522
J.3.9 Texture BorderClamp 522
J.3.10 Point Parameters 522
J3.11 VertexBlend 522
J.3.12 Matrix Palette oL 522
J.3.13 Texture Combine Environment Mode 523
J.3.14 Texture Crossbar Environment Mode 523
J.3.15 Texture Dot3 Environment Mode 523
J.3.16 Texture Mirrored Repeat 523
J.3.17 DepthTexture 523
J318 Shadow 523
J.3.19 Shadow Ambient 523
J.3.20 Window Raster Position 523
J.3.21 Low-Level Vertex Programming 524
J.3.22 Low-Level Fragment Programming 524
J.3.23 BufferObjects, 524
J.3.24 Occlusion Queries 524
J.3.25 ShaderObjects 524
J.3.26 High-Level Vertex Programming 524
J.3.27 High-Level Fragment Programming 524
J.3.28 OpenGL Shading Language 525
J.3.29 Non-Power-Of-Two Textures 525
J.3.30 Point Sprites oL 525
J.3.31 Fragment Program Shadow 525
J.3.32 Multiple Render Targets 525
J.3.33 Rectangular Textures 525
J.3.34 Floating-Point Color Buffers 526

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

CONTENTS

J.3.35
J.3.36
J.3.37
J.3.38
J.3.39
1.3.40
J.3.41
1.3.42
J.3.43
J.3.44
J.3.45
J.3.46
1.3.47
1.3.48
J.3.49
J.3.50
J.3.51
J.3.52
J.3.53
J.3.54
J.3.55
J.3.56
J.3.57
J.3.58
J.3.59
J.3.60
J.3.61
J.3.62
J.3.63
J.3.64
J.3.65
J.3.66
1.3.67
J.3.68
J.3.69
J.3.70
J.3.71
1.3.72
J.3.73
1.3.74

Half-Precision Floating Point
Floating-Point Textures
Pixel Buffer Objects
Floating-Point Depth Buffers
Instanced Rendering
Framebuffer Objects
sRGB Framebuffers
Geometry Shaders
Half-Precision Vertex Data
Instanced Rendering
Flexible Buffer Mapping
Texture Buffer Objects
RGTC Texture Compression Formats
One- and Two-Component Texture Formats
Vertex Array Objects
Versioned Context Creation
Uniform Buffer Objects
Restoration of features removed from OpenGL 3.0
Fast Buffer-to-Buffer Copies
Shader Texture Level of Detail Control
Depth Clamp Control
Base Vertex Offset Drawing Commands
Fragment Coordinate Convention Control
Provoking Vertex Control
SeamlessCube Maps
Fence SyncObjects
Multisample Textures
BGRA Attribute Component Ordering
Per-Buffer Blend Control
Sample Shading Control
Cube Map Array Textures
Texture Gather
Texture Level-Of-Detail Queries
Profiled Context Creation
Shading Language Include
BPTC texture compression
Extended Blend Functions
Explicit Attribute Location
Boolean Occlusion Queries
Sampler Objects

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

X

CONTENTS

J.3.75
J.3.76
1.3.77
J.3.78
1.3.79

X
Shader Bit Encoding 533
RGB10A2 Integer Textures 533
Texture Swizzle 534
Timer Queries 534
Packed 2.10.10.10 Vertex Formats 534

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

List of Figures

2.1
2.2

23
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11

4.1
4.2

Block diagramofthe GL. 15
Creation of a processed vertex from a transformed vertex and cur-

rentvalues. o 19
Primitive assembly and processing. 21
Triangle strips, fans, and independent triangles. 23
Quadrilateral strips and independent quadrilaterals. 24
Lines with adjacency. 25
Triangles with adjacency. 25
Triangle strips with adjacency. 27
Vertex transformation sequence. 65
Processing of RGBA colors. 76
Processing of colorindices. 76
ColorMaterial operation. 82
Current raster position. 147
Rasterization. 150
Rasterization of non-antialiased wide points. 158
Rasterization of antialiased wide points. 158
Visualization of Bresenham’s algorithm. 163
Rasterization of non-antialiased wide lines. 166
The region used in rasterizing an antialiased line segment. 167
Transfer of pixel rectangles. 189
Selecting a subimage fromanimage 194
A bitmap and its associated parameters. 215
A texture image and the coordinates used to accessit. 237
Multitexture pipeline. 279
Per-fragment operations. L. 294
Operation of ReadPixels. 321

X1

LIST OF FIGURES

4.3 Operation of CopyPixels.

51 MapEvaluation..
5.2 Feedbacksyntax.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Xii

List of Tables

2.1
2.2
23
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1
32
33
34
35
3.6
3.7
3.8
39

3.10

GL command suffixes 14
GL datatypes e 16
Summary of GL errors 19
Triangles generated by triangle strips with adjacency. 28
Vertex array sizes (values per vertex) and data types 39
Packed component layout for non-BGRA formats. 43
Packed component layout for BGRA format. 43
Variables that direct the execution of InterleavedArrays. 50
Buffer object binding targets. 53
Buffer object parameters and their values. 53
Buffer object initial state. L. 56
Buffer object state set by MapBufferRange. 58
Summary of lighting parameters. 78
Correspondence of lighting parameter symbols to names. 83
OpenGL Shading Language type tokens 103
Transform feedback modes 137
Provoking vertex selection. oL 141
PixelStore parameters. 176
PixelTransfer parameters. 178
PixelMap parameters. 179
Colortablenames. 181
Pixeldatatypes. 191
Pixel data formats. L L. 192
Swap Bytes bitordering. 193
Packed pixel formats. oL 195
UNSIGNED_BYTE formats. Bit numbers are indicated for each

COMPONENL. . « . v v v v e o e e e e et e e e e e e 196
UNSIGNED_SHORT formats 197

xiii

LIST OF TABLES

3.11
3.12
3.13
3.14
3.15
3.16

3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25

3.26
3.27
3.28
3.29
3.30
3.31

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.11

4.12
4.13

UNSIGNED_INT formats
FLOAT UNSIGNED_INTformats
Packed pixel field assignments.
Color table lookup.
Computation of filtered color components.
Conversion from RGBA, depth, and stencil pixel components to
internal components.
Sized internal color formats. L
Sized internal luminance and intensity formats.
Sized internal depth and stencil formats.
Generic and specific compressed internal formats.
Internal formats for buffer textures
Texture parameters and their values.
Selection of cube map images.
Texel location wrap mode application.
Correspondence of filtered texture components to texture base
COMPONECNLS. « « « v v v v v e e e e e e e e e e e e e e e e
Texture functions REPLACE, MODULATE, and DECAL
Texture functions BLEND and ADD.
COMBINE texture functions.
Arguments for COMBINE_RGB functions.
Arguments for COMBINE_ALPHA functions.
Depth texture comparison functions.

RGB and Alpha blend equations.
Blending functions. L Lo
Arguments to LogicOp and their corresponding operations.
Buffer selection for the default framebuffer
Buffer selection for a framebuffer object
DrawBuffers buffer selection for the default framebuffer
PixelStore parameters.
ReadPixels index masks.
ReadPixels GL data types and reversed component conversion for-

Effective ReadPixels format for DEPTH_STENCIL CopyPixels
OPEration. v v v v i e e e e e e
Correspondence of renderbuffer sized to base internal formats. . .
Framebuffer attachment points.
Layer numbers for cube map texture faces.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

X1V

LIST OF TABLES

5.1
5.2
53
54

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35

Values specified by the targettoMapl.
Correspondence of feedback type to number of values per vertex. .
Initial properties of a sync object created with FenceSync.

Hint targets and descriptions

Texture, table, and filter return values.
Pixel data formats accepted for the imaging queries.
Pixel data types accepted for the imaging queries.
Contextprofilebits
State Variable Types
GL Internal begin-end state variables (inaccessible)
Current Values and Associated Data
Vertex Array ObjectState
Vertex Array Object State (cont.)
Vertex Array Object State (cont.)
Vertex Array Object State (cont.)
Vertex Array Data (not in Vertex Array objects)
Buffer Object State
Transformationstate
Coloring
Lighting (see also table 2.13 for defaults)
Lighting (cont.)
Rasterization
Rasterization (cont.)
Multisampling Lo
Textures (state per texture unit and binding point)
Textures (state per texture unit and binding point)(cont.)
Textures (state per texture object)
Textures (state per texture image)
Textures (state per sampler object)
Texture Environment and Generation
Texture Environment and Generation (cont.)
Pixel Operations
Pixel Operations (cont.)
Framebuffer Control
Framebuffer (state per target binding point)
Framebuffer (state per framebuffer object)
Framebuffer (state per attachment point)
Renderbuffer (state per target and binding point)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

XV

367
375

LIST OF TABLES XVi

6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57
6.58
6.59
6.60
6.61

6.62
6.63
6.64
6.65

F.1

H.1

Renderbuffer (state per renderbuffer object) 443
Pixels 444
Pixels(cont.)) 445
Pixels(cont.) 446
Pixels (cont.)) 447
Pixels(cont.) 448
Pixels(cont.) 449
Evaluators (GetMap takes amapname) 450
Shader Object State 451
Program Object State 452
Program Object State (cont.) 453
Program Object State (cont.) 454
Program Object State (cont.) 455
Vertex and Geometry Shader State 456
Query Object State 457
Transform Feedback State 458
Sync (state per syncobject)o L. 459
Hints. 460
Implementation Dependent Values 461
Implementation Dependent Values (cont.) 462
Implementation Dependent Values (cont.) 463
Implementation Dependent Version and Extension Support 464
Implementation Dependent Vertex Shader Limits 465
Implementation Dependent Geometry Shader Limits 466
Implementation Dependent Fragment Processing Limits 467
Implementation Dependent Aggregate Shader Limits

1 The minimum value for each stage is
MAX_stage UNIFORM_BLOCKS X MAX_UNIFORM BLOCK_SIZE

/ 4 +MAX_stage_UNIFORM_COMPONENTS 468
Implementation Dependent Values (cont.) 469
Implementation Dependent Transform Feedback Limits 470
Framebuffer Dependent Values 471
Miscellaneous 472
New tokennames 498
New tokennames 510

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it acts, and
what is required to implement it. We assume that the reader has at least a rudi-
mentary understanding of computer graphics. This means familiarity with the es-
sentials of computer graphics algorithms as well as familiarity with basic graphics
hardware and associated terms.

1.1 Formatting of the OpenGL Specification

1.1.1 Formatting of the Compatibility Profile

E

1.1.2 Formatting of Optional Features

Starting with version 1.2 of OpenGL, some features in the specification are consid-
ered optional; an OpenGL implementation may or may not choose to provide them
(see section 3.7.2).

Portions of the specification which are optional are so described where the
optional features are first defined (see section 3.7.2). State table entries which are
optional are typeset against a gray background .

1.2 What is the OpenGL Graphics System?

OpenGL (for “Open Graphics Library”) is a software interface to graphics hard-
ware. The interface consists of a set of several hundred procedures and functions

1.3. PROGRAMMER’S VIEW OF OPENGL 2

that allow a programmer to specify the objects and operations involved in produc-
ing high-quality graphical images, specifically color images of three-dimensional
objects.
Most of OpenGL requires that the graphics hardware contain a framebuffer.
Many OpenGL calls pertain to drawing objects such as points, lines,
but the way that some of this drawing occurs (such as when antialiasing
is enabled) relies on the existence of a framebuffer. Further, some of
OpenGL is specifically concerned with framebuffer manipulation.

1.3 Programmer’s View of OpenGL

To the programmer, OpenGL is a set of commands that allow the specification of
geometric objects in two or three dimensions, together with commands that control
how these objects are rendered into the framebuffer.

A typical program that uses OpenGL begins with calls to open a window into
the framebuffer into which the program will draw. Then, calls are made to allocate
a GL context and associate it with the window. Once a GL context is allocated,
the programmer is free to issue OpenGL commands. Some calls are used to draw
simple geometric objects (i.e. points, line segments, and polygons), while others
affect the rendering of these primitives including how they are lit or colored and
how they are mapped from the user’s two- or three-dimensional model space to
the two-dimensional screen. There are also calls to effect direct control of the
framebuffer, such as reading and writing pixels.

1.4 Implementor’s View of OpenGL

To the implementor, OpenGL is a set of commands that affect the operation of
graphics hardware. If the hardware consists only of an addressable framebuffer,
then OpenGL must be implemented almost entirely on the host CPU. More typi-
cally, the graphics hardware may comprise varying degrees of graphics accelera-
tion, from a raster subsystem capable of rendering two-dimensional lines and poly-
gons to sophisticated floating-point processors capable of transforming and com-
puting on geometric data. The OpenGL implementor’s task is to provide the CPU
software interface while dividing the work for each OpenGL command between
the CPU and the graphics hardware. This division must be tailored to the available
graphics hardware to obtain optimum performance in carrying out OpenGL calls.
OpenGL maintains a considerable amount of state information. This state con-
trols how objects are drawn into the framebuffer. Some of this state is directly

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

1.5. OUR VIEW 3

available to the user: he or she can make calls to obtain its value. Some of it, how-
ever, is visible only by the effect it has on what is drawn. One of the main goals of
this specification is to make OpenGL state information explicit, to elucidate how it
changes, and to indicate what its effects are.

1.5 Our View

We view OpenGL as a pipeline having some programmable stages and some state-
driven stages that control a set of specific drawing operations. This model should
engender a specification that satisfies the needs of both programmers and imple-
mentors. It does not, however, necessarily provide a model for implementation. An
implementation must produce results conforming to those produced by the speci-
fied methods, but there may be ways to carry out a particular computation that are
more efficient than the one specified.

1.6 The Deprecation Model

GL features marked as deprecated in one version of the specification are expected
to be removed in a future version, allowing applications time to transition away
from use of deprecated features. The deprecation model is described in more detail,
together with a summary of the commands and state deprecated from this version
of the API, in appendix E.

1.7 Companion Documents

1.7.1 OpenGL Shading Language

This specification should be read together with a companion document titled The
OpenGL Shading Language. The latter document (referred to as the OpenGL Shad-
ing Language Specification hereafter) defines the syntax and semantics of the pro-
gramming language used to write vertex and fragment shaders (see sections 2.14
and 3.12). These sections may include references to concepts and terms (such as
shading language variable types) defined in the companion document.

OpenGL 3.3 implementations are guaranteed to support version 3.30 of the
OpenGL Shading Language. All references to sections of that specification refer
to version 3.30. The supported version of the shading language may be queried as
described in section 6.1.5.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

1.7. COMPANION DOCUMENTS 4

1.7.2 Window System Bindings

OpenGL requires a companion API to create and manage graphics contexts, win-
dows to render into, and other resources beyond the scope of this Specification.
There are several such APIs supporting different operating and window systems.

OpenGL Graphics with the X Window System, also called the “GLX Specifica-
tion”, describes the GLX API for use of OpenGL in the X Window System. It is
primarily directed at Linux and Unix systems, but GLX implementations also exist
for Microsoft Windows, MacOS X, and some other platforms where X is avail-
able. The GLX Specification is available in the OpenGL Extension Registry (see
appendix J).

The WGL API supports use of OpenGL with Microsoft Windows. WGL is
documented in Microsoft’s MSDN system, although no full specification exists.

Several APIs exist supporting use of OpenGL with Quartz, the MacOS X win-
dow system, including CGL, AGL, and NSOpenGLView. These APIs are docu-
mented on Apple’s developer website.

The Khronos Native Platform Graphics Interface or “EGL Specification” de-
scribes the EGL API for use of OpenGL ES on mobile and embedded devices.
EGL implementations may be available supporting OpenGL as well. The EGL
Specification is available in the Khronos Extension Registry at URL

http://www.khronos.org/registry/egl

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

http://www.khronos.org/registry/egl

Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the “GL”) is concerned only with rendering into a frame-
buffer (and reading values stored in that framebuffer). There is no support for
other peripherals sometimes associated with graphics hardware, such as mice and
keyboards. Programmers must rely on other mechanisms to obtain user input.

The GL draws primitives subject to a number of selectable modes and shader

programs. Each primitive is a point, line segment,
Each mode may be changed independently; the setting of one does not affect the
settings of others (although many modes may interact to determine what eventually
ends up in the framebuffer). Modes are set, primitives specified, and other GL
operations described by sending commands in the form of function or procedure
calls.

Primitives are defined by a group of one or more vertices. A vertex defines
a point, an endpoint of an edge, or a corner of a polygon where two edges meet.
Data such as positional coordinates, colors, normals, texture coordinates, etc. are
associated with a vertex and each vertex is processed independently, in order, and
in the same way. The only exception to this rule is if the group of vertices must
be clipped so that the indicated primitive fits within a specified region; in this
case vertex data may be modified and new vertices created. The type of clipping
depends on which primitive the group of vertices represents.

Commands are always processed in the order in which they are received, al-
though there may be an indeterminate delay before the effects of a command are
realized. This means, for example, that one primitive must be drawn completely
before any subsequent one can affect the framebuffer. It also means that queries
and pixel read operations return state consistent with complete execution of all

2.1. OPENGL FUNDAMENTALS 6

previously invoked GL commands, except where explicitly specified otherwise. In
general, the effects of a GL. command on either GL modes or the framebuffer must
be complete before any subsequent command can have any such effects.

In the GL, data binding occurs on call. This means that data passed to a com-
mand are interpreted when that command is received. Even if the command re-
quires a pointer to data, those data are interpreted when the call is made, and any
subsequent changes to the data have no effect on the GL (unless the same pointer
is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D and 2D
graphics. This includes specification of parameters of application-defined shader
programs performing transformation, lighting, texturing, and shading operations,
as well as built-in functionality such as antialiasing and texture filtering. It does not
provide a means for describing or modeling complex geometric objects. Another
way to describe this situation is to say that the GL provides mechanisms to de-
scribe how complex geometric objects are to be rendered rather than mechanisms
to describe the complex objects themselves.

The model for interpretation of GL commands is client-server. That is, a pro-
gram (the client) issues commands, and these commands are interpreted and pro-
cessed by the GL (the server). The server may or may not operate on the same
computer as the client. In this sense, the GL is “network-transparent.” A server
may maintain a number of GL confexts, each of which is an encapsulation of cur-
rent GL state. A client may choose to connect to any one of these contexts. Issuing
GL commands when the program is not connected to a context results in undefined
behavior.

The GL interacts with two classes of framebuffers: window system-provided
and application-created. There is at most one window system-provided framebuffer
at any time, referred to as the default framebuffer. Application-created frame-
buffers, referred to as framebuffer objects, may be created as desired. These two
types of framebuffer are distinguished primarily by the interface for configuring
and managing their state.

The effects of GL commands on the default framebuffer are ultimately con-
trolled by the window system, which allocates framebuffer resources, determines
which portions of the default framebuffer the GL may access at any given time, and
communicates to the GL how those portions are structured. Therefore, there are
no GL commands to initialize a GL context or configure the default framebuffer.
Similarly, display of framebuffer contents on a physical display device (including
the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by the GL.

Allocation and configuration of the default framebuffer occurs outside of the
GL in conjunction with the window system, using companion APIs described in

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.1. OPENGL FUNDAMENTALS 7

section 1.7.2.

Allocation and initialization of GL contexts is also done using these companion
APIs. GL contexts can typically be associated with different default framebuffers,
and some context state is determined at the time this association is performed.

It is possible to use a GL context without a default framebuffer, in which case
a framebuffer object must be used to perform all rendering. This is useful for
applications needing to perform offscreen rendering.

The GL is designed to be run on a range of graphics platforms with varying
graphics capabilities and performance. To accommodate this variety, we specify
ideal behavior instead of actual behavior for certain GL operations. In cases where
deviation from the ideal is allowed, we also specify the rules that an implemen-
tation must obey if it is to approximate the ideal behavior usefully. This allowed
variation in GL behavior implies that two distinct GL implementations may not
agree pixel for pixel when presented with the same input even when run on identi-
cal framebuffer configurations.

Finally, command names, constants, and types are prefixed in the GL (by gl,
GL_, and GL, respectively in C) to reduce name clashes with other packages. The
prefixes are omitted in this document for clarity.

2.1.1 Floating-Point Computation

The GL must perform a number of floating-point operations during the course of
its operation. In some cases, the representation and/or precision of such opera-
tions is defined or limited; by the OpenGL Shading Language Specification for
operations in shaders, and in some cases implicitly limited by the specified format
of vertex, texture, or renderbuffer data consumed by the GL. Otherwise, the rep-
resentation of such floating-point numbers, and the details of how operations on
them are performed, is not specified. We require simply that numbers’ floating-
point parts contain enough bits and that their exponent fields are large enough so
that individual results of floating-point operations are accurate to about 1 part in
10°. The maximum representable magnitude of a floating-point number used to
represent positional, normal, or texture coordinates must be at least 232; the max-
imum representable magnitude for colors must be at least 2!°. The maximum
representable magnitude for all other floating-point values must be at least 232.
z-0 = 0.2 = 0 for any non-infinite and non-NaN z. 1-z =z -1 = =z.
24+0=0+4z =2 0" = 1. (Occasionally further requirements will be specified.)
Most single-precision floating-point formats meet these requirements.

The special values Inf and —Inf encode values with magnitudes too large to
be represented; the special value NaN encodes “Not A Number” values resulting

0

from undefined arithmetic operations such as . Implementations are permitted,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.1. OPENGL FUNDAMENTALS 8

but not required, to support Infs and NalNs in their floating-point computations.

Any representable floating-point value is legal as input to a GL. command that
requires floating-point data. The result of providing a value that is not a floating-
point number to such a command is unspecified, but must not lead to GL interrup-
tion or termination. In IEEE arithmetic, for example, providing a negative zero or a
denormalized number to a GL command yields predictable results, while providing
a NaN or an infinity yields unspecified results.

Some calculations require division. In such cases (including implied divisions
required by vector normalizations), a division by zero produces an unspecified re-
sult but must not lead to GL interruption or termination.

2.1.2 16-Bit Floating-Point Numbers

A 16-bit floating-point number has a 1-bit sign (S5), a 5-bit exponent (£), and a
10-bit mantissa (). The value V' of a 16-bit floating-point number is determined
by the following:

((—1)% % 0.0, E=0,M=0
(—1)% x 274 x JL E=0,M+#0
V=9 (D285 (1+45), 0<E<31
(—1)° x Inf, E=31,M=0
NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 16-bit integer NV, then

g {N mod 65536J
32768
o {N mod 32768J
1024
M =N mod 1024.

Any representable 16-bit floating-point value is legal as input to a GL command
that accepts 16-bit floating-point data. The result of providing a value that is not a
floating-point number (such as Inf or NaN) to such a command is unspecified, but
must not lead to GL interruption or termination. Providing a denormalized number
or negative zero to GL must yield predictable results.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.1. OPENGL FUNDAMENTALS 9

2.1.3 Unsigned 11-Bit Floating-Point Numbers

An unsigned 11-bit floating-point number has no sign bit, a 5-bit exponent (£'), and
a 6-bit mantissa (M). The value V' of an unsigned 11-bit floating-point number is
determined by the following:

(0.0, E=0,M=0

- M

27 x &, E=0,M+#0
V=920 x (1+4), 0<E<31

Inf, E=31,M=0

NaN, E=31,M#0

If the floating-point number is interpreted as an unsigned 11-bit integer IV, then

|3
64
M =N mod 64.

When a floating-point value is converted to an unsigned 11-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 65024 (the maximum finite representable unsigned 11-bit
floating-point value) are converted to 65024. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NalV.

Any representable unsigned 11-bit floating-point value is legal as input to a
GL command that accepts 11-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

2.1.4 Unsigned 10-Bit Floating-Point Numbers

An unsigned 10-bit floating-point number has no sign bit, a 5-bit exponent (£, and
a 5-bit mantissa (M). The value V' of an unsigned 10-bit floating-point number is
determined by the following:

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.1. OPENGL FUNDAMENTALS 10

0.0, E=0,M=0
- M
271 % &, E=0,M+#0
V=928 (1+28), 0<E<31
Inf, E=31,M=0
NaN, E=31,M=#0

If the floating-point number is interpreted as an unsigned 10-bit integer IV, then

p= | N
32
M =N mod 32.

When a floating-point value is converted to an unsigned 10-bit floating-point
representation, finite values are rounded to the closest representable finite value.
While less accurate, implementations are allowed to always round in the direction
of zero. This means negative values are converted to zero. Likewise, finite posi-
tive values greater than 64512 (the maximum finite representable unsigned 10-bit
floating-point value) are converted to 64512. Additionally: negative infinity is con-
verted to zero; positive infinity is converted to positive infinity; and both positive
and negative NaN are converted to positive NalV.

Any representable unsigned 10-bit floating-point value is legal as input to a
GL command that accepts 10-bit floating-point data. The result of providing a
value that is not a floating-point number (such as Inf or NaN) to such a command
is unspecified, but must not lead to GL interruption or termination. Providing a
denormalized number to GL must yield predictable results.

2.1.5 Fixed-Point Data Conversions

When generic vertex attributes and pixel color or depth components are repre-
sented as integers, they are often (but not always) considered to be normalized.
Normalized integer values are treated specially when being converted to and from
floating-point values, and are usually referred to as normalized fixed-point. Such
values are always either signed or unsigned.

In the remainder of this section, b denotes the bit width of the fixed-point in-
teger representation. When the integer is one of the types defined in table 2.2, b
is the minimum required bit width of that type. When the integer is a texture or
renderbuffer color or depth component (see section 3.9.3), b is the number of bits
allocated to that component in the internal format of the texture or renderbuffer.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.1. OPENGL FUNDAMENTALS 11

When the integer is a framebuffer color or depth component (see section 4), b is
the number of bits allocated to that component in the framebuffer. For framebuffer
and renderbuffer A components, b must be at least 2 if the buffer does not contain
an A component, or if there is only 1 bit of A in the buffer.

The signed and unsigned fixed-point representations are assumed to be b-bit
binary twos-complement integers and binary unsigned integers, respectively. The
signed fixed-point representation may be treated in one of two ways, as discussed
below.

All the conversions described below are performed as defined, even if the im-
plemented range of an integer data type is greater than the minimum required range.

Conversion from Normalized Fixed-Point to Floating-Point

Unsigned normalized fixed-point integers represent numbers in the range [0, 1].
The conversion from an unsigned normalized fixed-point value c to the correspond-
ing floating-point value f is defined as

C
f=g— 2.1)

Signed normalized fixed-point integers represent numbers in the range [—1, 1].
The conversion from a signed normalized fixed-point value c to the corresponding
floating-point value f may be performed in two ways:

ol 2.2)

20 —1

In this case the full range of the representation is used, so that —2°~! corre-
sponds to -1.0 and 2°~! — 1 corresponds to 1.0. For example, if b = 8, then the
integer value -128 corresponds to -1.0 and the value 127 corresponds to 1.0. Note
that it is not possible to exactly express 0 in this representation. In general, this rep-
resentation is used for signed normalized fixed-point parameters in GL commands,
such as vertex attribute values.

Alternatively, conversion may be performed using

C

In this case only the range [—2°~! + 1,201 — 1] is used to represent signed
fixed-point values in the range [—1,1]. For example, if b = 8, then the integer
value -127 corresponds to -1.0 and the value 127 corresponds to 1.0. Note that
while zero can be exactly expressed in this representation, one value (-128 in the
example) is outside the representable range, and must be clamped before use. In

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.2. GL STATE 12

general, this representation is used for signed normalized fixed-point texture or
framebuffer values.

Everywhere that signed normalized fixed-point values are converted, the equa-
tion used is specified.

Conversion from Floating-Point to Normalized Fixed-Point

The conversion from a floating-point value f to the corresponding unsigned nor-
malized fixed-point value c is defined by first clamping f to the range [0, 1], then
computing

fl=fx(2b-1). (2.4)

f is then cast to an unsigned binary integer value with exactly b bits.

The conversion from a floating-point value f to the corresponding signed nor-
malized fixed-point value ¢ may be performed in two ways, both beginning by
clamping f to the range [—1, 1]

frf=fx@-1-1
2
In general, this conversion is used when querying floating-point state (see sec-
tion 6) and returning integers.
Alternatively, conversion may be performed using

(2.5)

fl=fx @2t —1). (2.6)

In general, this conversion is used when specifying signed normalized fixed-
point texture or framebuffer values.

After conversion, f’ is then cast to a signed two’s-complement binary integer
value with exactly b bits.

Everywhere that floating-point values are converted to signed normalized fixed-
point, the equation used is specified.

2.2 GL State

The GL maintains considerable state. This document enumerates each state vari-
able and describes how each variable can be changed. For purposes of discussion,
state variables are categorized somewhat arbitrarily by their function. Although we
describe the operations that the GL performs on the framebuffer, the framebuffer
is not a part of GL state.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.3. GL COMMAND SYNTAX 13

We distinguish two types of state. The first type of state, called GL server
state, resides in the GL server. The majority of GL state falls into this category.
The second type of state, called GL client state, resides in the GL client. Unless
otherwise specified, all state referred to in this document is GL server state; GL
client state is specifically identified. Each instance of a GL context implies one
complete set of GL server state; each connection from a client to a server implies
a set of both GL client state and GL server state.

While an implementation of the GL may be hardware dependent, this discus-
sion is independent of the specific hardware on which a GL is implemented. We are
therefore concerned with the state of graphics hardware only when it corresponds
precisely to GL state.

2.2.1 Shared Object State

It is possible for groups of contexts to share certain state. Enabling such sharing
between contexts is done through window system binding APIs such as those de-
scribed in section 1.7.2. These APIs are responsible for creation and management
of contexts, and not discussed further here. More detailed discussion of the behav-
ior of shared objects is included in appendix D. Except as defined in this appendix,
all state in a context is specific to that context only.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands perform
the same operation but differ in how arguments are supplied to them. To conve-
niently accommodate this variation, we adopt a notation for describing commands
and their arguments.

GL commands are formed from a name which may be followed, depending on
the particular command, by a sequence of characters describing a parameter to the
command. If present, a digit indicates the required length (number of values) of the
indicated type. Next, a string of characters making up one of the type descriptors
from table 2.1 indicates the specific size and data type of parameter values. A
final v character, if present, indicates that the command takes a pointer to an array
(a vector) of values rather than a series of individual arguments. Two specific
examples are:

void Uniformdf(int location, float v0, float vl,
float v2, float v3);

and

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.3. GL COMMAND SYNTAX

Type Descriptor | Corresponding GL Type

b byte
S short
i int
i64 int64
f float
d double
ub ubyte
us ushort
ui uint
ui64 uint64

Table 2.1: Correspondence of command suffix type descriptors to GL argument
types. Refer to table 2.2 for definitions of the GL types.

void GetFloatv(enum value, float *data);

These examples show the ANSI C declarations for these commands. In general,
a command declaration has the form'

rtype Name{e1234}{c b sii64 f d ub us ui ui64}{cv}
([args,] Targl, ..., TargN [, args]) ;

rtype is the return type of the function. The braces ({}) enclose a series of type
descriptors (see table 2.1), of which one is selected. e indicates no type descriptor.
The arguments enclosed in brackets ([args ,] and [, args]) may or may not be
present. The NV arguments argl through arg/N have type T, which corresponds to
one of the type descriptors indicated in table 2.1 (if there are no letters, then the
arguments’ type is given explicitly). If the final character is not v, then NV is given
by the digit 1, 2, 3, or 4 (if there is no digit, then the number of arguments is fixed).
If the final character is v, then only arg/ is present and it is an array of N values of
the indicated type.
For example,

void Uniform{1234}{if}(int location, T value);

indicates the eight declarations

'The declarations shown in this document apply to ANSI C. Languages such as C++ and Ada
that allow passing of argument type information admit simpler declarations and fewer entry points.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

14

2.4. BASIC GL OPERATION 15

void Uniformli(int location, int value);

void Uniform1f(int location, float value);

void Uniform2i(int location, int v0, int vl);

void Uniform2f(int location, £loat v0, float vl);

void Uniform3i(int location, int v0, int vI, int v2);

void Uniform3f(int location, £loat vl, float v2,
float v2);

void Uniformdi(int location, int v0, int vI, int v2,
int v3);

void Uniformdf(int location, £loat v0, float vl,
float v2, float v3);

Arguments whose type is fixed (i.e. not indicated by a suffix on the command)
are of one of the GL data types summarized in table 2.2, or pointers to one of these

types.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL on the
left. Some commands specify geometric objects to be drawn while others control
how the objects are handled by the various stages. Most commands may be ac-
cumulated in a display list for processing by the GL at a later time. Otherwise,
commands are effectively sent through a processing pipeline.

The first stage provides an efficient means for approximating curve and surface
geometry by evaluating polynomial functions of input values. The next stage
operates on geometric primitives described by vertices: points, line segments, and
polygons. In this stage vertices are transformed and lit, followed by assembly into
geometric primitives, which may optionally be used by the next stage, geometry
shading, to generate new primitives. The final resulting primitives are clipped to
a viewing volume in preparation for the next stage, rasterization. The rasterizer
produces a series of framebuffer addresses and values using a two-dimensional
description of a point, line segment, or polygon. Each fragment so produced is
fed to the next stage that performs operations on individual fragments before they
finally alter the framebuffer. These operations include conditional updates into the
framebuffer based on incoming and previously stored depth values (to effect depth
buffering), blending of incoming fragment colors with stored colors, as well as
masking and other logical operations on fragment values.

Finally, there is a way to bypass the vertex processing portion of the pipeline to
send a block of fragments directly to the individual fragment operations, eventually
causing a block of pixels to be written to the framebuffer; values may also be read

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.4. BASIC GL OPERATION

16

GL Type Minimum | Description
Bit Width

boolean 1 Boolean

byte 8 Signed twos complement binary inte-
ger

ubyte 8 Unsigned binary integer

char 8 Characters making up strings

short 16 Signed twos complement binary inte-
ger

ushort 16 Unsigned binary integer

int 32 Signed twos complement binary inte-
ger

uint 32 Unsigned binary integer

inte64 64 Signed twos complement binary inte-
ger

uint64 64 Unsigned binary integer

sizei 32 Non-negative binary integer size

enum 32 Enumerated binary integer value

intptr ptrbits Signed twos complement binary inte-
ger

sizeiptr ptrbits Non-negative binary integer size

sync ptrbits Sync object handle (see section 5.7)

bitfield 32 Bit field

half 16 Half-precision floating-point value
encoded in an unsigned scalar

float 32 Floating-point value

clampf 32 Floating-point value clamped to [0, 1]

double 64 Floating-point value

clampd 64 Floating-point value clamped to [0, 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example, GL
type int is referred to as GLint outside this document, and is not necessarily
equivalent to the C type int. An implementation may use more bits than the
number indicated in the table to represent a GL type. Correct interpretation of
integer values outside the minimum range is not required, however.

ptrbits is the number of bits required to represent a pointer type; in other words,
types intptr, sizeiptr, and sync must be sufficiently large as to store any
address.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.5. GL ERRORS 17

Display
List
Per-Vertex
] Y Operations Rasteriz— Per—
Evaluator Primitive ation gragmte_:nt Framebuffer
Assembly perations
A
Texture
Memory
- Y > Pixel
Operations |
Figure 2.1.

back from the framebuffer or copied from one portion of the framebuffer to another.
These transfers may include some type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict rule
of how the GL is implemented, and we present it only as a means to organize the
various operations of the GL. Objects such as curved surfaces, for instance, may
be transformed before they are converted to polygons.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered errors.
This is because in many cases error checking would adversely impact the perfor-
mance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a numeric
code. When an error is detected, a flag is set and the code is recorded. Further
errors, if they occur, do not affect this recorded code. When GetError is called,
the code is returned and the flag is cleared, so that a further error will again record
its code. If a call to GetError returns NO_ERROR, then there has been no detectable
error since the last call to GetError (or since the GL was initialized).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 18

To allow for distributed implementations, there may be several flag-code pairs.
In this case, after a call to GetError returns a value other than NO_ERROR each
subsequent call returns the non-zero code of a distinct flag-code pair (in unspecified
order), until all non-NO_ERROR codes have been returned. When there are no more
non-NO_ERROR error codes, all flags are reset. This scheme requires some positive
number of pairs of a flag bit and an integer. The initial state of all flags is cleared
and the initial value of all codes is NO_ERROR.

Table 2.3 summarizes GL errors. Currently, when an error flag is set, results of
GL operation are undefined only if OUT_OF_MEMORY has occurred. In other cases,
the command generating the error is ignored so that it has no effect on GL state or
framebuffer contents. If the generating command returns a value, it returns zero. If
the generating command modifies values through a pointer argument, no change is
made to these values. These error semantics apply only to GL errors, not to system
errors such as memory access errors. This behavior is the current behavior; the
action of the GL in the presence of errors is subject to change.

Several error generation conditions are implicit in the description of every GL
command:

e If a command that requires an enumerated value is passed a symbolic con-
stant that is not one of those specified as allowable for that command, the
error INVALID_ENUM is generated. This is the case even if the argument is
a pointer to a symbolic constant, if the value pointed to is not allowable for
the given command.

e If a negative number is provided where an argument of type sizei or
sizeiptr is specified, the error INVALID_VALUE is generated.

o If memory is exhausted as a side effect of the execution of a command, the
error OUT_OF_MEMORY may be generated.

Otherwise, errors are generated only for conditions that are explicitly described in
this specification.

In the GL, most geometric objects are drawn by

Points, lines, polygons, and a variety of related
geometric objects (see section 2.6.1) can be drawn in this way.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 19

Error Description Offending com-
mand ignored?
INVALID_ENUM enum argument out of range Yes
INVALID_VALUE Numeric argument out of range | Yes
INVALID_OPERATION Operation illegal in current state | Yes
INVALID_FRAMEBUFFER_OPERATION || Framebuffer object is not com- | Yes
plete

OUT_OF_MEMORY Not enough memory left to exe- | Unknown
cute command

Table 2.3: Summary of GL errors

vertex attributes, current color, current secondary color, and current fog coordi-
nate may be used in processing each vertex. Normals are used by the GL in lighting
calculations; the current normal is a three-dimensional vector that may be set by
sending three coordinates that specify it. Texture coordinates determine how a tex-
ture image is mapped onto a primitive. Multiple sets of texture coordinates may
be used to specify how multiple texture images are mapped onto a primitive. The
number of texture units supported is implementation-dependent but must be at least
two. The number of texture units supported can be queried with the state MAX_—
TEXTURE_UNITS. Generic vertex attributes can be accessed from within vertex
shaders (section 2.14) and used to compute values for consumption by later pro-
cessing stages.

Primary and secondary colors are associated with each vertex (see sec-
tion 3.10). These associated colors are either based on the current color and current
secondary color or produced by lighting, depending on whether or not lighting is
enabled. Texture and fog coordinates are similarly associated with each vertex.
Multiple sets of texture coordinates may be associated with a vertex. Figure 2.2
summarizes the association of auxiliary data with a transformed vertex to produce
a processed vertex.

The current values are part of GL state. Vertices and normals are transformed,
colors may be affected or replaced by lighting, and texture coordinates are trans-
formed and possibly affected by a texture coordinate generation function. The

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM

Vertex
Coordinates In

Y

vertex / normal Transformed
L transformation L)
Coordinates
Current
Normal >
! Processed
> Vertex
Out
Current lighting Q< | gl Associated
Colors & G T Data
Materials T (Colors, Edge Flag)
Fog and Texture
Coordinates)
Current
Edge Flag &
Fog Coord 0—0{
Current
Texture J— texgen | texture
matrix 0
Coord Set 0 T
| {
Current
Texture texgen | texture
matrix 1
Coord Set 1 _| T
| {
Current
Texture texgen B texture
matrix 2
Coord Set 2 _| T
0{
Current
Texture texgen [Q—| texture
matrix 3
Coord Set 3 _| T
Figure 2.2.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM

Point culling;
Line Segment
Coordinates | Point, »| OrPolygon |
Line Segment, or o Clipping
P\r/oc:a.ssed Polygon Rasterization
ertices sssociated > (Primitive) > —
Data Assembly Color
Processing
A
Begin/End
State

Figure 2.3. Primitive assembly and processing.

processing indicated for each current value is applied for each vertex that is sent to
the GL.

The methods by which vertices, normals, texture coordinates, fog coordinate,
generic attributes, and colors are sent to the GL, as well as how normals are trans-
formed and how vertices are mapped to the two-dimensional screen, are discussed
later.

Before colors have been assigned to a vertex, the state required by a vertex
is the vertex’s coordinates, the current normal, the current edge flag (see sec-
tion 2.6.2), the current material properties (see section 2.13.2), the current fog co-
ordinate, the multiple generic vertex attribute sets, and the multiple current texture
coordinate sets. Because color assignment is done vertex-by-vertex, a processed
vertex comprises the vertex’s coordinates, its edge flag, its fog coordinate, its as-
signed colors, and its multiple texture coordinate sets.

Figure 2.3 shows the sequence of operations that builds a primitive (point, line
segment, or polygon) from a sequence of vertices. After a primitive is formed, it
is clipped to a viewing volume. This may alter the primitive by altering vertex
coordinates, texture coordinates, and colors. In the case of line and polygon prim-
itives, clipping may insert new vertices into the primitive. The vertices defining a
primitive to be rasterized have texture coordinates and colors associated with them.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

21

2.6. BEGIN/END PARADIGM 22

2.6.1 Begin and End

Vertices making up one of the supported geometric object types are specified by
enclosing commands defining those vertices between the two commands

void Begin(enum mode);
void End(void);

There is no limit on the number of vertices that may be specified between a Begin
and an End. The mode parameter of Begin determines the type of primitives to be
drawn using the vertices. The types, and the corresponding mode parameters, are:

Points

A series of individual points may be specified with mode POINTS. Each vertex
defines a separate point. No special state need be kept between Begin and End in
this case, since each point is independent of previous and following points.

Line Strips

A series of one or more connected line segments may be specified with mode
LINE_STRIP. In this case, the first vertex specifies the first segment’s start point
while the second vertex specifies the first segment’s endpoint and the second seg-
ment’s start point. In general, the ¢th vertex (for ¢ > 1) specifies the beginning of
the ith segment and the end of the ¢ — 1st. The last vertex specifies the end of the
last segment. If only one vertex is specified, then no primitive is generated.

The required state consists of the processed vertex produced from the last ver-
tex that was sent (so that a line segment can be generated from it to the current
vertex), and a boolean flag indicating if the current vertex is the first vertex.

Line Loops

Line loops may be specified with mode L.INE_1L0OOP. Loops are the same as
line strips except that a final segment is added from the final specified vertex to the
first vertex. The required state consists of the processed first vertex, in addition to
the state required for line strips.

Separate Lines

Individual line segments, each specified by a pair of vertices, may be specified
with mode LINES. The first two vertices between a Begin and End pair define the
first segment, with subsequent pairs of vertices each defining one more segment.
If the number of specified vertices is odd, then the last one is ignored. The state
required is the same as for line strips but it is used differently: a processed ver-
tex holding the first vertex of the current segment, and a boolean flag indicating
whether the current vertex is odd or even (a segment start or end).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 23

NN

1 3

(@) (b) ()

Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles. The
numbers give the sequencing of the vertices in order within the vertex arrays. Note
that in (a) and (b) triangle edge ordering is determined by the first triangle, while in
(c) the order of each triangle’s edges is independent of the other triangles.

Polygons

A polygon is described by specifying its boundary as a series of line segments.
When Begin is called with POLYGON, the bounding line segments are specified in
the same way as line loops. A polygon described with fewer than three vertices
does not generate a primitive.

The state required to support polygons consists of at least two processed ver-
tices (more than two are never required, although an implementation may use
more); this is because a convex polygon can be rasterized as its vertices arrive,
before all of them have been specified.

Triangle Strips

A triangle strip is a series of triangles connected along shared edges, and may
be specified with mode TRIANGLE_STRIP. In this case, the first three vertices
define the first triangle (and their order is significant, just as for polygons). Each
subsequent vertex defines a new triangle using that point along with two vertices
from the previous triangle. If fewer than three vertices are specified, no primitive
is produced. See figure 2.4.

The required state consists of a flag indicating if the first triangle has been
completed, two stored processed vertices, (called vertex A and vertex B), and a
one bit pointer indicating which stored vertex will be replaced with the next vertex.
After a Begin (TRIANGLE_STRIP), the pointer is initialized to point to vertex A.
Each successive vertex toggles the pointer. Therefore, the first vertex is stored as

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 24

vertex A, the second stored as vertex B, the third stored as vertex A, and so on.
Any vertex after the second one sent forms a triangle from vertex A, vertex B, and
the current vertex (in that order).

Triangle Fans

A triangle fan is the same as a triangle strip with one exception: each vertex
after the first always replaces vertex B of the two stored vertices. A triangle fan
may be specified with mode TRIANGLE_FAN.

Separate Triangles

Separate triangles are specified with mode TRIANGLES. In this case, The 3i 4
1st, 37 + 2nd, and 3¢ 4 3rd vertices (in that order) determine a triangle for each
i =20,1,...,n — 1, where there are 3n + k vertices drawn. k is either O, 1, or 2; if
k is not zero, the final k vertices are ignored. For each triangle, vertex A is vertex
31 and vertex B is vertex 37 + 1. Otherwise, separate triangles are the same as a
triangle strip.

Quadrilateral (quad) strips
Quad strips generate a series of edge-sharing quadrilaterals from vertices ap-
pearing between Begin and End, when Begin is called with QUAD_STRIP. If the

m vertices between the Begin and End are v, ..., vm, Where v; is the jth spec-
ified vertex, then quad 7 has vertices (in order) va;, V2;+1, V2;+3, and vg;42 with
i =0,...,|m/2]. The state required is thus three processed vertices, to store the

last two vertices of the previous quad along with the third vertex (the first new ver-
tex) of the current quad, a flag to indicate when the first quad has been completed,
and a one-bit counter to count members of a vertex pair. See figure 2.5.

A quad strip with fewer than four vertices generates no primitive. If the number
of vertices specified for a quadrilateral strip between Begin and End is odd, the
final vertex is ignored.

Separate Quadrilaterals

Separate quads are just like quad strips except that each group of four vertices,
the 45 + 1st, the 45 + 2nd, the 45 + 3rd, and the 45 + 4th, generate a single quad,
for j = 0,1,...,n — 1. The total number of vertices between Begin and End is
4dn+ k, where 0 < k < 3; if k is not zero, the final k vertices are ignored. Separate
quads are generated by calling Begin with the argument value QUADS.

Lines with Adjacency
Lines with adjacency are independent line segments where each endpoint has
a corresponding adjacent vertex that can be accessed by a geometry shader (sec-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 25

2 :4 - 6 > 6 >
A A A A
B vl Y B Y B y
1 3 5 1 4 5 8
(@) (b)
Figure 2.5.

tion 2.15). If a geometry shader is not active, the adjacent vertices are ignored.
They are generated with mode LINES_ADJACENCY.
A line segment is drawn from the 47 + 2nd vertex to the 47 + 3rd vertex for
eacht = 0,1,...,n — 1, where there are 4n + k vertices
k is either 0, 1, 2, or 3; if k is not zero, the final k vertices are ignored.
For line segment ¢, the 4¢ + 1st and 4¢ + 4th vertices are considered adjacent to the
47 4 2nd and 47 + 3rd vertices, respectively (see figure 2.6).

Line Strips with Adjacency

Line strips with adjacency are similar to line strips, except that each line seg-
ment has a pair of adjacent vertices that can be accessed by a geometry shader. If a
geometry shader is not active, the adjacent vertices are ignored. They are generated
with mode LINE_STRIP_ADJACENCY.

A line segment is drawn from the ¢ 4+ 2nd vertex to the ¢ + 3rd vertex for each
1 =0,1,...,n — 1, where there are n + 3 vertices
If there are fewer than four vertices, all vertices are ignored. For line segment i,
the ¢ + 1st and ¢ + 4th vertex are considered adjacent to the ¢ + 2nd and i + 3rd
vertices, respectively (see figure 2.6).

Triangles with Adjacency

Triangles with adjacency are similar to separate triangles, except that each tri-
angle edge has an adjacent vertex that can be accessed by a geometry shader. If a
geometry shader is not active, the adjacent vertices are ignored. They are generated
with mode TRIANGLES_ADJACENCY.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM

26

@ ---O—0O @

@ ---O—D - ®

O ---O—O—O—O O

Figure 2.6. Lines with adjacency (a) and line strips with adjacency (b). The vertices
connected with solid lines belong to the main primitives; the vertices connected by
dashed lines are the adjacent vertices that may be used in a geometry shader.

Figure 2.7. Triangles with adjacency. The vertices connected with solid lines be-
long to the main primitive; the vertices connected by dashed lines are the adjacent
vertices that may be used in a geometry shader.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 27

Figure 2.8. Triangle strips with adjacency. The vertices connected with solid lines
belong to the main primitives; the vertices connected by dashed lines are the adja-
cent vertices that may be used in a geometry shader.

The 67 + 1st, 6¢ + 3rd, and 67 + 5th vertices (in that order) determine a triangle
foreachi =0,1,...,n — 1, where there are 6n + k vertices
k is either O, 1, 2, 3, 4, or 5; if k is non-zero, the final k vertices are
ignored. For triangle ¢, the ¢ + 2nd, 7 + 4th, and 7 4 6th vertices are considered
adjacent to edges from the ¢ + 1st to the 7 4 3rd, from the ¢ + 3rd to the 7 4 5th,
and from the 7 + 5th to the 7 + 1st vertices, respectively (see figure 2.7).

Triangle Strips with Adjacency

Triangle strips with adjacency are similar to triangle strips, except that each line
triangle edge has an adjacent vertex that can be accessed by a geometry shader. If a
geometry shader is not active, the adjacent vertices are ignored. They are generated
with mode TRIANGLE_STRIP_ADJACENCY.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 28

Primitive Vertices Adjacent Vertices
Primitive Ist | 2nd | 3rd | 122 | 233 | 31
only t=0,n=1) 1 3 5 2 6 4
first (¢ = 0) 1 3 5 2 7 4
middle (¢ odd) 2043 | 2¢0+1 | 264+5 | 2¢0—1 | 2i+4 | 2047
middle (i even) 204+1 |20 4+3 | 204+5 | 20—1 | 20+7 | 20 +4
last(t=mn—1,70dd) | 2¢0+3 | 20+1|20+5|20—1|20+4]|2i+6
last (¢ =n —1,7even) | 204+1 | 20+3 | 20+5 | 20 —1 | 204+6 | 20+ 4

Table 2.4: Triangles generated by triangle strips with adjacency. Each triangle
is drawn using the vertices whose numbers are in the Ist, 2nd, and 3rd columns
under primitive vertices, in that order. The vertices in the 1/2, 2/3, and 3/1 columns
under adjacent vertices are considered adjacent to the edges from the first to the
second, from the second to the third, and from the third to the first vertex of the
triangle, respectively. The six rows correspond to six cases: the first and only
triangle (i = 0,n = 1), the first triangle of several (i = 0,n > 0), “odd” middle
triangles (¢ = 1,3,5...), “even” middle triangles (i = 2,4,6,...), and special
cases for the last triangle, when ¢ is either even or odd. For the purposes of this
table, the first vertex specified after Begin is numbered 1 and the first triangle is
numbered 0.

In triangle strips with adjacency, n triangles are drawn where there are 2(n +
2) 4 k vertices between a Begin and End pair. k is either 0 or 1; if k is 1, the final
vertex is ignored. If there are fewer than 6 vertices, the entire primitive is ignored.
Table 2.4 describes the vertices and order used to draw each triangle, and which
vertices are considered adjacent to each edge of the triangle (see figure 2.8).

Depending on the current state of the GL, a polygon primitive gener-
ated from a drawing command with mode POLYGON, QUADS, QUAD STRIP,
TRIANGLE_FAN, TRIANGLE_STRIP, TRIANGLES, TRIANGLES_ADJACENCY, or
TRIANGLE_STRIP_ADJACENCY may be rendered in one of several ways, such as
outlining its border or filling its interior. The order of vertices in such a prim-
itive is significant in lighting, polygon rasterization, and fragment shading (see
sections 2.13.1, 3.6.1, and 3.12.2). Only convex polygons are guaranteed to be
drawn correctly by the GL. If a specified polygon is nonconvex when projected
onto the window, then the rendered polygon need only lie within the convex hull
of the projected vertices defining its boundary.

The state required for Begin and End consists of an fifteen-valued integer in-
dicating either one of the fourteen possible Begin / End modes, or that no Begin /

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.6. BEGIN/END PARADIGM 29

End mode is being processed.

Calling Begin will result in an INVALID_FRAMEBUFFER_OPERATION error if
the object bound to DRAW_FRAMEBUFFER_BINDING is not framebuffer complete
(see section 4.4.4).

2.6.2 Polygon Edges

Each edge of each polygon primitive generated is flagged as either boundary or
non-boundary. These classifications are used during polygon rasterization; some
modes affect the interpretation of polygon boundary edges (see section 3.6.4). By
default, all edges are boundary edges, but the flagging of polygons, separate trian-
gles, or separate quadrilaterals may be altered by calling

void EdgeFlag(boolean flag);
void EdgeFlagv(const boolean *flag);

to change the value of a flag bit. If flag is zero, then the flag bit is set to FALSE; if
flag is non-zero, then the flag bit is set to TRUE.

When Begin is supplied with one of the argument values POLYGON,
TRIANGLES, or QUADS, each vertex specified within a Begin and End pair be-
gins an edge. If the edge flag bit is TRUE, then each specified vertex begins an edge
that is flagged as boundary. If the bit is FALSE, then induced edges are flagged as
non-boundary.

The state required for edge flagging consists of one current flag bit. Initially, the
bit is TRUE. In addition, each processed vertex of an assembled polygonal primitive
must be augmented with a bit indicating whether or not the edge beginning on that
vertex is boundary or non-boundary.

2.6.3 GL Commands within Begin / End

The only GL commands that are allowed within any Begin / End pairs are the
commands for specifying vertex coordinates, vertex colors, normal coordinates,
texture coordinates, generic vertex attributes, and fog coordinates (Vertex, Color,
SecondaryColor, Index, Normal, TexCoord and MultiTexCoord, VertexAttrib,
FogCoord), the ArrayElement command (see section 2.8), the EvalCoord and
EvalPoint commands (see section 5.1), commands for specifying lighting mate-
rial parameters (Material commands; see section 2.13.2), display list invocation
commands (CallList and CallLists; see section 5.5), and the EdgeFlag command.
Executing any other GL. command between the execution of Begin and the corre-
sponding execution of End results in the error INVALID_OPERATION. Executing

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.7. VERTEX SPECIFICATION 30

Begin after Begin has already been executed but before an End is executed gen-
erates the INVALID_OPERATION error, as does executing End without a previous
corresponding Begin.

Execution of the commands EnableClientState, DisableClientState, Push-
ClientAttrib, PopClientAttrib, ColorPointer, FogCoordPointer, EdgeFlag-
Pointer, IndexPointer, NormalPointer, TexCoordPointer, SecondaryCol-
orPointer, VertexPointer, VertexAttribPointer, ClientActiveTexture, Inter-
leavedArrays, and PixelStore is not allowed within any Begin / End pair, but
an error may or may not be generated if such execution occurs. If an error is not
generated, GL operation is undefined. (These commands are described in sections
2.8,3.7.1, and chapter 6.)

2.7 Vertex Specification

Vertices are specified by giving their coordinates in two, three, or four dimensions.
This is done using one of several versions of the Vertex command:

void Vertex{234}{sifd}(T coords);
void Vertex{234}{sifd}v(const T coords);

Vertex coordinates may be stored as packed components within a larger natural
type. Such data may be specified using

void VertexP{234}ui (enum type,uint coords)
void VertexP{234}uiv (enum type, const uint *coords)

These commands specify up to four coordinates as described above, packed
into a single natural type as described in section 2.8.1. The fype parameter must
be INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV, specifying
signed or unsigned data respectively. The first two (z,y), three (z,vy, z), or four
(x,y,z,w) components of the packed data are consumed by VertexP2ui, Vert-
exP3ui, and VertexP4ui, respectively. For VertexP*uiv, coords contains the ad-
dress of a single uint containing the packed coordinate components.

A call to any Vertex command specifies four coordinates: z, y, z, and w. The
x coordinate is the first coordinate, y is second, z is third, and w is fourth. A call
to Vertex*2* sets the « and y coordinates; the z coordinate is implicitly set to zero
and the w coordinate to one. Vertex*3* sets x, y, and z to the provided values
and w to one. Vertex*4* sets all four coordinates, allowing the specification of an
arbitrary point in projective three-space. Invoking a Vertex command outside of a
Begin / End pair results in undefined behavior.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.7. VERTEX SPECIFICATION 31

Current values are used in associating auxiliary data with a vertex as described
in section 2.5. A current value may be changed at any time by issuing an appropri-
ate command. The commands

void TexCoord{1234}{sifd}(T coords);
void TexCoord{1234}{sifd}v(const T coords);

specify the current homogeneous texture coordinates, named s, ¢, r, and q.
Texture coordinates may be stored as packed components within a larger natu-
ral type. Such data may be specified using

void TexCoordP{1234}ui (enum type, uint coords)
void TexCoordP{1234}uiv (enum fype, const uint
*coords)

This command specifies up to four components as described above, packed
into a single natural type as described in section 2.8.1. The fype parameter must
be INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV, specifying
signed or unsigned data, respectively. The first one (z), two (z,y), three (x,y, 2),
or four (z,y,z,w) components of the packed data are consumed by TexCo-
ordP1ui*, TexCoordP2ui*, TexCoordP3ui*, and TexCoordP4ui*, respectively.
For TexCoordP*uiv, coords contains the address of a single uint containing the
packed texture coordinate components.

The TexCoord*1* family of commands set the s coordinate to the provided
single argument while setting ¢ and 7 to 0 and ¢ to 1. Similarly, TexCoord*2* sets
s and t to the specified values, r to 0 and ¢ to 1; TexCoord*3* sets s, ¢, and r, with
q set to 1, and TexCoord*4* sets all four texture coordinates.

Implementations must support at least two sets of texture coordinates. The
commands

void MultiTexCoord{1234}{sifd} (enum texture, T coords)
void MultiTexCoord{1234}{sifd}v (enum fexture, const T
coords)
void MultiTexCoordP{1234}ui (enum texture, enum
type, uint coords)
void MultiTexCoordP{1234}uiv (enum texture, enum
type, const uint *coords)

take the coordinate set to be modified as the fexture parameter. texture is a symbolic
constant of the form TEXTURE, indicating that texture coordinate set 7 is to be
modified. The constants obey TEXTURE: = TEXTUREO + ¢ (¢ is in the range O to

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.7. VERTEX SPECIFICATION 32

k — 1, where k is the implementation-dependent number of texture coordinate sets
defined by MAX_TEXTURE_COORDS).

The TexCoord commands are exactly equivalent to the corresponding Multi-
TexCoord commands with texture set to TEXTUREQ.

Gets of CURRENT_TEXTURE_COORDS return the texture coordinate set defined
by the value of ACTIVE_TEXTURE.

Specifying an invalid texture coordinate set for the texture argument of Multi-
TexCoord results in undefined behavior.

The current normal is set using

void Normal3{bsifd}(T coords);
void Normal3{bsifd}v(const T coords);

Byte, short, or integer values passed to Normal are converted to floating-point
values as described in equation 2.2 for the corresponding (signed) type.

Normals may be stored as packed components within a larger natural type.
Such data may be specified using

void NormalP3ui (enum fype, uint normal)
void NormalP3uiv (enum type, uint *normal)

This specifies a three component normal, packed into the first three (z,y, z)
components of the natural type as described in section 2.8.1. fype must be INT_-—
2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV, specifying signed or
unsigned data, respectively. For NormalP3uiv, normal contains the address of a
single uint containing the packed normal components.

The current fog coordinate is set using

void FogCoord{fd}(T coord);
void FogCoord{fd}v(const T coord);

There are several ways to set the current color and secondary color. The GL
stores a current single-valued color index, as well as a current four-valued RGBA
color and secondary color. Either the index or the color and secondary color are
significant depending as the GL is in color index mode or RGBA mode. The mode
selection is made when the GL is initialized.

The commands to set RGBA colors are

void Color{34}{bsifd ubusui}(T components);
void Color{34}{bsifd ubusui}v(const T components);
void SecondaryColor3{bsifd ubusui}(T components);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.7. VERTEX SPECIFICATION 33

void SecondaryColor3{bsifd ubusui}v(const
T components);

The Color command has two major variants: Color3 and Color4. The four value
versions set all four values. The three value versions set R, G, and B to the provided
values; A is set to 1.0. (The conversion of integer color components (R, G, B, and
A) to floating-point values is discussed in section 2.13.)

The secondary color has only the three value versions. Secondary A is always
set to 1.0.

Versions of the Color and SecondaryColor commands that take floating-point
values accept values nominally between 0.0 and 1.0. 0.0 corresponds to the min-
imum while 1.0 corresponds to the maximum (machine dependent) value that a
component may take on in the framebuffer (see section 2.13 on colors and color-
ing). Values outside [0, 1] are not clamped.

RGBA colors may be stored as packed components within a larger natural type.
Such data may be specified using

void ColorP{34}ui (enum type, uint coords)

void ColorP{34}uiv (enum fype, const uint *coords)

void SecondaryColorP3ui (enum type, uint coords)

void SecondaryColorP3uiv (enum type, const uint
*coords)

The ColorP* commands set the primary color similarly to Color*, above. The
SecondaryColorP* commands set the secondary color similarly to Secondary-
Color*. type must be INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_-
10_REV, specifying signed or unsigned data, respectively. Colors are packed into
a single natural type as described in section 2.8.1. The first three (z, y, z) or four
(,y,z,w) components of the packed data are consumed by *ColorP3ui* and
ColorP4ui, respectively. For ColorP*uiv and SecondaryColorP*uiv, coords
contains the address of a single uint containing the packed color components.

The command

void Index{sifd ub}(T index);
void Index{sifd ub}v(const T index);

updates the current (single-valued) color index. It takes one argument, the value

to which the current color index should be set. Values outside the (machine-
dependent) representable range of color indices are not clamped.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.7. VERTEX SPECIFICATION 34

Vertex shaders (see section 2.14) access an array of 4-
component generic vertex attributes
. The first slot of this array is numbered 0, and the size of the array
is specified by the implementation-dependent constant MAX_VERTEX_ATTRIBS.
Current generic attribute values define generic attributes for a The cur-
rent values of a generic shader attribute declared as a floating-point scalar, vector,
or matrix may be changed at any time by issuing one of the commands

void VertexAttrib{1234}{sfd}(uint index, T values);

void VertexAttrib{123}{sfd}v(uint index, const
T values);

void VertexAttrib4{bsifd ub us wi}v(uint index, const
T values);

void VertexAttribdNub(uint index, T values);

void VertexAttrib4N{bsi ub us ui}v(uint index, const
T values);

The VertexAttrib4N* commands specify fixed-point values that are converted
to a normalized [0, 1] or [—1, 1] range as described in equations 2.1 and 2.2, re-
spectively, while the other commands specify values that are converted directly to
the internal floating-point representation.

The resulting value(s) are loaded into the generic attribute at slot index, whose
components are named x, y, z, and w. The VertexAttrib1* family of commands
sets the x coordinate to the provided single argument while setting y and z to 0 and
w to 1. Similarly, VertexAttrib2* commands set x and y to the specified values,
z to 0 and w to 1; VertexAttrib3* commands set x, y, and z, with w set to 1, and
VertexAttrib4* commands set all four coordinates.

The VertexAttrib* entry points may also be used to load shader attributes de-
clared as a floating-point matrix. Each column of a matrix takes up one generic
4-component attribute slot out of the MAX_VERTEX_ATTRIBS available slots. Ma-
trices are loaded into these slots in column major order. Matrix columns are loaded
in increasing slot numbers.

The resulting attribute values are undefined if the base type of the shader at-
tribute at slot index is not floating-point (e.g. is signed or unsigned integer). To
load current values of a generic shader attribute declared as a signed or unsigned
scalar or vector, use the commands

void VertexAttribI{1234}{i ui}(uint index, T values);
void VertexAttribI{1234}{i ui}v(uint index, const
T values);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.7. VERTEX SPECIFICATION 35

void VertexAttribI4{bs ubus}v(uint index, const
T values);

These commands specify values that are extended to full signed or unsigned
integers, then loaded into the generic attribute at slot index in the same fashion as
described above.

The resulting attribute values are undefined if the base type of the shader at-
tribute at slot index is floating-point; if the base type is integer and unsigned in-
teger values are supplied (the VertexAttribI*ui, VertexAttribI*us, and Vertex-
AttribI*ub commands); or if the base type is unsigned integer and signed integer
values are supplied (the VertexAttribI*i, VertexAttribI*s, and VertexAttribI*b
commands)

Vertex data may be stored as packed components within a larger natural type.
Such data may be specified using

void VertexAttribP{1234}ui (uint index, enum
type, boolean normalized, uint value)

void VertexAttribP{1234}uiv (uint index, enum
type, boolean normalized, const uint *value)

These commands specify up to four attribute component values, packed into
a single natural type as described in section 2.8.1, and load it into the generic
attribute at slot index. The type parameter must be INT_2_10_10_10_REV or
UNSIGNED_INT_2_10_10_10_REV, specifying signed or unsigned data respec-
tively. The first one (z), two (z,y), three (x, y, z), or four (z, y, z, w) components
of the packed data are consumed by VertexAttribPlui, VertexAttribP2ui, Ver-
texAttribP3ui, and VertexAttribP4ui, respectively. Data specified by VertexAt-
tribP* will be converted to floating point by normalizing if normalized is TRUE,
and converted directly to floating point otherwise. For VertexAttribP*uiv, value
contains the address of a single uint containing the packed attribute components.

The error INVALID_VALUE is generated by VertexAttrib* if index is greater
than or equal to MAX_VERTEX_ATTRIBS.

Setting generic vertex attribute zero specifies a vertex; the four vertex coordi-
nates are taken from the values of attribute zero. A Vertex2, Vertex3, or Vertex4
command is completely equivalent to the corresponding VertexAttrib* command
with an index of zero. Setting any other generic vertex attribute updates the current
values of the attribute. There are no current values for vertex attribute zero.

There is no aliasing among generic attributes and conventional attributes. In
other words, an application can set all MAX_VERTEX_ATTRIBS generic attributes
and all conventional attributes without fear of one particular attribute overwriting
the value of another attribute.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS

The state required to support vertex specification consists of four floating-point
numbers per texture coordinate set to store the current texture coordinates s, t, r,
and ¢, three floating-point numbers to store the three coordinates of the current
normal, one floating-point number to store the current fog coordinate, four floating-
point values to store the current RGBA color, four floating-point values to store the
current RGBA secondary color, one floating-point value to store the current color
index, and the value of MAX VERTEX ATTRIES — 1 four-component vectors to
store generic vertex attributes.

There is no notion of a current vertex, so no state is devoted to vertex coor-
dinates or generic attribute zero. The initial texture coordinates are (s,t,r,q) =
(0,0,0,1) for each texture coordinate set. The initial current normal has coor-
dinates (0,0,1). The initial fog coordinate is zero. The initial RGBA color is
(R,G,B,A) = (1,1,1,1) and the initial RGBA secondary color is (0,0,0,1).
The initial color index is 1. The initial values for all generic vertex attributes are
(0.0,0.0,0.0,1.0).

2.8 Vertex Arrays

The vertex specification commands described in section 2.7 accept data in almost
any format, but their use requires many command executions to specify even sim-
ple geometry. Vertex data may also be placed into arrays that are stored in the
client’s address space (described here) or in the server’s address space (described
in section 2.9). Blocks of data in these arrays may then be used to specify multiple
geometric primitives through the execution of a single GL command. The client
may specify up to seven plus the values of MAX TEXTURE_COORDS and MAX_
VERTEX_ATTRIBS arrays: one each to store vertex coordinates, normals, colors,
secondary colors, color indices, edge flags, fog coordinates, two or more texture
coordinate sets, and MAX_VERTEX_ATTRIBS arrays to store one or more generic
vertex attributes. The commands

void VertexPointer(int size, enum type, sizei stride,
const void *pointer);

void NormalPointer(enum type, sizei stride, const
void *pointer);

void ColorPointer(int size, enum type, sizei stride,
const void *pointer);

void SecondaryColorPointer(int size, enum type,
sizei stride, const void *pointer);

void IndexPointer(enum type, sizei stride, const
void *pointer);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

36

2.8. VERTEX ARRAYS 37

void EdgeFlagPointer(sizei stride, const void *pointer);

void FogCoordPointer(enum type, sizei stride, const
void *pointer);

void TexCoordPointer(int size, enum type, sizei stride,
const void *pointer);

void VertexAttribPointer(uint index, int size, enum type,
boolean normalized, sizei stride, const
void *pointer);

void VertexAttribIPointer(uint index, int size, enum type,
sizei stride, const void *pointer);

describe the locations and organizations of these arrays. For each command, fype
specifies the data type of the values stored in the array. Because edge flags are al-
ways type boolean, EdgeFlagPointer has no type argument. size, when present,
indicates the number of values per vertex that are stored in the array as well as
their component ordering. Because normals are always specified with three val-
ues, NormalPointer has no size argument. Likewise, because color indices and
edge flags are always specified with a single value, IndexPointer and EdgeFlag-
Pointer also have no size argument. Table 2.5 indicates the allowable values
for size and type (when present). For type the values BYTE, SHORT, INT, FLOAT,
HALF_FLOAT, and DOUBLE indicate types byte, short, int, float, half,
and double, respectively; the values UNSIGNED_BYTE, UNSIGNED_SHORT, and
UNSIGNED_INT indicate types ubyte, ushort, and uint, respectively; and
the values INT_2_10_10_10_REV and UNSIGNED_INT_2_ 10_10_10_REV, in-
dicating respectively four signed or unsigned elements packed into a single uint,
both correspond to the term packed in that table.

An INVALID_VALUE error is generated if size is not one of the values allowed
in table 2.5 for the corresponding command.

An INVALID_OPERATION error is generated under any of the following con-
ditions:

e size is BGRA and fype is not UNSIGNED_BYTE, INT_2_10_10_10_REV or
UNSTGNED_TINT_2_10_10_10_REV;

® fype is INT_2_10_10_10_REV or UNSIGNED_INT_2_10_10_10_REV,
and size is neither 4 or BGRA;

o for VertexAttribPointer only, size is BGRA and normalized is FALSE;
e any of the *Pointer commands specifying the location and organization of

vertex array data are called while a non-zero vertex array object is bound (see

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 38

section 2.10), zero is bound to the ARRAY_BUFFER buffer object binding
point (see section 2.9.6), and the pointer argument is not N1U7.7.2.

The index parameter in the VertexAttribPointer and VertexAttribIPointer
commands identifies the generic vertex attribute array being described. The er-
ror INVALID_VALUE is generated if index is greater than or equal to the value of
MAX_VERTEX_ATTRIBS. Generic attribute arrays with integer fype arguments can
be handled in one of three ways: converted to float by normalizing to [0, 1] or
[—1,1] as described in equations 2.1 and 2.2, respectively; converted directly to
float, or left as integers. Data for an array specified by VertexAttribPointer will
be converted to floating-point by normalizing if normalized is TRUE, and converted
directly to floating-point otherwise. Data for an array specified by VertexAttribl-
Pointer will always be left as integer values; such data are referred to as pure
integers.

The one, two, three, or four values in an array that correspond to a single vertex
comprise an array element. When size is BGRA, it indicates four values. The values
within each array element are stored sequentially in memory. However, if size is
BGRA, the first, second, third, and fourth values of each array element are taken
from the third, second, first, and fourth values in memory respectively. If stride
is specified as zero, then array elements are stored sequentially as well. The error
INVALID_VALUE is generated if stride is negative. Otherwise pointers to the ¢th
and (i 4+ 1)st elements of an array differ by stride basic machine units (typically
unsigned bytes), the pointer to the (i 4+ 1)st element being greater. For each com-
mand, pointer specifies the location in memory of the first value of the first element
of the array being specified.

An individual array is enabled or disabled by calling one of

void EnableClientState(enum array);
void DisableClientState(enum array);

with arrc 1y set to VERTEX_ARRAY, NORMAL_ARRAY, COLOR_ARRAY,
(_COLOR_ARRAY, INDEX_ARRAY, EDGE_FLAG_ARRAY, FOC

RD_ARRAY, Oor TEXTURE_COORD_ARRAY, for the vertex, normal, color,

secondary color, color index, edge flag, fog coordinate, or texture coordinate array,
respectively.

An individual generic vertex attribute array is enabled or disabled by calling
one of

void EnableVertexAttribArray(uint index);

2 This error makes it impossible to create a vertex array object containing client array pointers,
while still allowing buffer objects to be unbound.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 39

Sizes and
Component Integer
Command Ordering Handling | Types

VertexAttribPointer 1,2,3,4,BGRA | flag byte, ubyte,
short, ushort,
int, uint, float,
half, double, packed
VertexAttribIPointer 1,2,3,4 integer byte, ubyte, short,

ushort, int, uint

Table 2.5: Vertex array sizes (values per vertex) and data types. The “Integer
Handling” column indicates how fixed-point data types are handled: “cast” means
that they are converted to floating-point directly, “normalize” means that they are
converted to floating-point by normalizing to [0, 1] (for unsigned types) or [—1, 1]
(for signed types), “integer” means that they remain as integer values, and “flag”
means that either “cast” or “normalized” applies, depending on the setting of the
normalized flag in VertexAttribPointer. If size is BGRA, vertex array values are
always normalized, irrespective of the “normalize” table entry. packed is not a GL
type, but indicates commands accepting multiple components packed into a single
uint.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 40

void DisableVertexAttribArray(uint index);

where index identifies the generic vertex attribute array to enable or disable. The
error INVALID_VALUE is generated if index is greater than or equal to MAX_-
VERTEX_ATTRIBS.

The command

void VertexAttribDivisor(uint index, uint divisor);

modifies the rate at which generic vertex attributes advance when rendering multi-
ple instances of primitives in a single draw call. If divisor is zero, the attribute at
slot index advances once per vertex. If divisor is non-zero, the attribute advances
once per divisor instances of the set(s) of vertices being rendered. An attribute is
referred to as instanced if its divisor value is non-zero.

An INVALID_VALUE error is generated if index is greater than or equal to the
value of MAX_VERTEX_ATTRIBS.

The command

void ClientActiveTexture(enum fexture);

is used to select the vertex array client state parameters to be modified by the Tex-
CoordPointer command and the array affected by EnableClientState and Dis-
ableClientState with parameter TEXTURE_COORD_ARRAY. This command sets the
client state variable CLIENT_ACTIVE_TEXTURE. Each texture coordinate set has
a client state vector which is selected when this command is invoked. This state
vector includes the vertex array state. This call also selects the texture coordinate
set state used for queries of client state.

Specifying an invalid fexture generates the error INVALID_ENUM. Valid values
of texture are the same as for the MultiTexCoord commands described in sec-
tion 2.7.

The command

void ArrayElementInstanced(int i, int instance);

does not exist in the GL, but is used to describe functionality in the rest of this

section. This command transfers the ith element of every enabled, non-instanced

array, and the V’}’,‘.“’,t,‘.’f”‘“ffj ’th element of every enabled, instanced array, to the GL.
. arvisor

The effect of

ArrayElementInstanced (i, instance);

is the same as the effect of the command sequence

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 41

if (normal array enabled)
Normal3[type]v (normal array element i) ;
if (color array enabled)
Color[size][type]v (color array element 1) ;
if (secondary color array enabled)
SecondaryColor3[type]v (secondary color array element 1) ;
if (fog coordinate array enabled)
FogCoord|[type]v (fog coordinate array element i) ;
for (j = 0; j < textureUnits; j++) {
if (texture coordinate set j array enabled)
MultiTexCoord[size][type]v (TEXTUREO + 7, texcoord(j, 1));
}
if (color index array enabled)
Index[type]v (color index array element i) ;
if (edge flag array enabled)
EdgeFlagv (edge flag array element i) ;
for (j = 1; j < genericAttributes; j++) {
if (generic vertex attribute j array enabled) {
if (vertex attrib array divisor 3 > 0)
k = floor (instance / vertex attrib array divisor j);
else
k = 1;
VertexAttrib[size][typelv (7, genattrib(j, k));
}
¥

if (generic vertex attribute array O enabled) {
if (vertex attrib array divisor 0 > 0)

k = floor (instance / vertex attrib array divisor 0) ;
else
k = 1i;

VertexAttrib[size][type]v (0, genattrib (0, k));
} else if (vertex array enabled) {

Vertex[size][type]v (vertex array element 1) ;
}

genattrib (attrib, 1) represents the ith element of the vertex array for
generic attribute attrib, and texcoord (coord, 1) represents the ith element
of the vertex array for texture coordinate set coord. textureUnits and genericAt-
tributes give the number of texture coordinate sets and generic vertex attributes
supported by the implementation, respectively. “[size]” and “[type]” correspond

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 42

to the size and type of the corresponding array. For generic vertex attributes, it is
assumed that a complete set of vertex attribute commands exists, even though not
all such commands are provided by the GL.

When an array contains packed data, the pseudocode above will use the packed
equivalent with the type of that data. For example, when a generic vertex attribute
array contains packed data, the VertexAttribP[size]Juiv command will be called
instead of VertexAttrib[size][type]v.

Similarly when a generic vertex attribute array contains pure integer data, Ver-
texAttribI[size][type]v will be called; and when a generic attribute array normal-
ization flag is set, and the array data type is not FLOAT, HALF_FLOAT, or DOUBLE,
VertexAttrib[size]N[type]v will be called.

Changes made to array data between the execution of Begin and the corre-
sponding execution of End may affect calls to ArrayElementInstanced that are
made within the same Begin / End period in non-sequential ways. That is, a call
to ArrayElementInstanced that precedes a change to array data may access the
changed data, and a call that follows a change to array data may access original
data.

Specifying ¢ < O results in undefined behavior. Generating the error
INVALID_ VALUE is recommended in this case.

The command

void ArrayElement(int i);
behaves identically to
ArrayElementInstanced (i, 0) .
Primitive restarting is enabled or disabled by calling one of the commands
void Enable(enum farget);
and
void Disable(enum farget);
with farget PRIMITIVE_RESTART. The command

void PrimitiveRestartIndex(uint index);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 43

specifies the index of a vertex array element that is treated specially when prim-
itive restarting is enabled. This value is called the primitive restart index. When
ArrayElementInstanced is called between an execution of Begin and the corre-
sponding execution of End, if ¢ is equal to the primitive restart index, then no
vertex data is dereferenced, and no current vertex state is modified. Instead, it is
as if End were called, followed by a call to Begin where mode is the same as the
mode used by the previous Begin.

When one of the *BaseVertex drawing commands specified in section 2.8.2 is
used, the primitive restart comparison occurs before the basevertex offset is added
to the array index.

2.8.1 Packed Vertex Data Formats

UNSIGNED_INT_2_10_10_10_REvVand INT_2_10_10_10_REV vertex data for-
mats describe packed, 4 component formats stored in a single 32-bit word.

For the UNSIGNED_INT_2_10_10_10_REV vertex data format, the first (x),
second (y), and third (z) components are represented as 10-bit unsigned integer
values and the fourth (w) omponent is represented as a 2-bit unsigned integer value.

For the INT_2_10_10_10_REV vertex data format, the =, y and z compo-
nents are represented as 10-bit signed two’s complement integer values and the w
component is represented as a 2-bit signed two’s complement integer value.

The normalized value is used to indicate whether to normalize the data to [0, 1]
(for unsigned types) or [—1, 1] (for signed types). During normalization, the con-
version rules specified in equations 2.1 and 2.2 are followed.

Tables 2.6 and 2.7 describe how these components are laid out in a 32-bit word.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(v] : y :

Table 2.6: Packed component layout for non-BGRA formats. Bit numbers are indi-
cated for each component.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211109 8 7 6 5 4 3 2 1 0

(v] : y :

Table 2.7: Packed component layout for BGRA format. Bit numbers are indicated
for each component.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 44

2.8.2 Drawing Commands

The command

void DrawArraysOnelnstance(enum mode, int first,
sizeil count, int instance);

does not exist in the GL, but is used to describe functionality in the rest of this
section. This command constructs a sequence of geometric primitives using ele-
ments first through first + count — 1 of each enabled array. mode specifies what
kind of primitives are constructed, and accepts the same token values as the mode
parameter of the Begin command. If mode is not a valid primitive type, an
INVALID_ENUM error is generated. If count is negative, an INVALID_VALUE error
is generated.
The effect of

DrawArraysOnelnstance (mode, first, count, instance) ;
is the same as the effect of the command sequence

Begin (mode) ;

for (int 1 = 0; i < count ; i++)
ArrayElementInstanced (first + i, instance) ;
End () ;

with one exception: the current normal coordinate, color, secondary color, color
index, edge flag, fog coordinate, texture coordinates, and generic attribute values
are each indeterminate after execution of DrawArraysOnelnstance, if the corre-
sponding array is enabled. Current values corresponding to disabled arrays are not
modified by the execution of DrawArraysOnelnstance.

Specifying first < 0 results in undefined behavior. Generating the error
INVALID_VALUE is recommended in this case.

The command

void DrawArrays(enummode, int first, sizei count);
is equivalent to the command sequence
DrawArraysOnelnstance (mode, first, count, 0);

The internal counter instancelD is a 32-bit integer value which may be read by
a vertex shader as gl_InstancelID, as described in section 2.14.4. The value of
this counter is always zero, except as noted below.

The command

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS

void DrawArraysInstanced(enum mode, int first,
sizei count, sizei primcount);

45

behaves identically to DrawArrays except that primcount instances of the range
of elements are executed, the value of instancelD advances for each iteration, and
the instanced elements advance per instance depending on the value of the divisor

for that vertex attribute set with VertexAttribDivisor. It has the same effect as:

if (mode or count is invalid)
generate appropriate error
else {
for (i = 0; 1 < primcount; i++) {
instancelID = 1i;
DrawArraysOnelnstance (mode, first, count, 1i);

}

instancelID = 0;

}

The command

void MultiDrawArrays(enum mode, const int *first,
const sizei *count, sizei primcount);

behaves identically to DrawArraysInstanced except that primcount separate
ranges of elements are specified instead, all elements are treated as though they are

not instanced, and the value of instancelD stays at 0. It has the same effect as:

if (mode is invalid)
generate appropriate error
else {
for (i = 0; 1 < primcount; i++) {
if (count[i] > 0)

DrawArraysOnelnstance (mode, first[i], count[i],

}

The command

void DrawElementsOnelnstance(enum mode, sizei count,
enum type, const void *indices);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

0);

2.8. VERTEX ARRAYS 46

does not exist in the GL, but is used to describe functionality in the rest of this sec-
tion. This command constructs a sequence of geometric primitives using the count
elements whose indices are stored in indices. type must be one of UNSIGNED_ -
BYTE, UNSIGNED_SHORT, or UNSIGNED_INT, indicating that the index values are
of GL type ubyte, ushort, or uint respectively. mode specifies what kind of
primitives are constructed, and accepts the same token values as the mode parame-
ter of the Begin command.
The effect of

DrawElementsOnelnstance (mode, count, type, indices) ;
is the same as the effect of the command sequence

Begin (mode) ;

for (int 1 = 0; 1 < count ; i++)
ArrayElementInstanced (indices[1], instance) ;
End () ;

with one exception: the current normal coordinates, color, secondary color, color
index, edge flag, fog coordinate, texture coordinates, and generic attributes are
each indeterminate after execution of DrawElementsOnelnstance, if the corre-
sponding array is enabled. Current values corresponding to disabled arrays are not
modified by the execution of DrawElementsOnelnstance.

The command

void DrawElements(enum mode, sizei count, enum type,
const void *indices);

behaves identically to DrawElementsOnelnstance with the instance parameter set
to zero; the effect of calling

DrawElements (mode, count, type, indices) ;
is equivalent to the command sequence:

if (mode, count or type is invalid)
generate appropriate error
else
DrawElementsOnelnstance (mode, count, type, indices, 0);

The command

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 47

void DrawElementsInstanced(enum mode, sizei count,
enum fype, const void *indices, sizei primcount);

behaves identically to DrawElements except that primcount instances of the set of
elements are executed, the value of instancelD advances between each set, and the
instance advances between each set. It has the same effect as:

if (mode, count, or type is invalid)
generate appropriate error
else {
for (int i = 0; 1 < primcount; i++) {
instancelD = 1i;
DrawElementsOnelnstance (mode, count, type, indices, 1i);

}

instancelID = 0;

}

The command

void MultiDrawElements(enum mode, const
sizei *count, enumtype, const void **indices,
sizei primcount);

behaves identically to DrawElementsInstanced except that primcount separate
sets of elements are specified instead, all elements are treated as though they are
not instanced, and the value of instancelD stays at 0. It has the same effect as:

if (mode, count, or type is invalid)
generate appropriate error
else {
for (int 1 = 0; 1 < primcount; i++)
DrawElementsOnelnstance (mode, count[i], type, indices[1i], 0);

}

The command

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enumtype, const
void *indices);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 48

is a restricted form of DrawElements. mode, count, type, and indices match the
corresponding arguments to DrawElements, with the additional constraint that all
index values identified by indices must lie between start and end inclusive.

Implementations denote recommended maximum amounts of vertex and index
data, which may be queried by calling GetIntegerv with the symbolic constants
MAX_ELEMENTS_VERTICES and MAX_ELEMENTS_INDICES. If end — start + 1
is greater than the value of MAX_ELEMENTS_VERTICES, or if count is greater than
the value of MAX_ELEMENTS_INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start, end] be
referenced. However, the implementation may partially process unused vertices,
reducing performance from what could be achieved with an optimal index set.

The error INVALID_VALUE is generated if end < start. Invalid mode, count,
or type parameters generate the same errors as would the corresponding call to
DrawElements. It is an error for index values other than the primitive restart
index to lie outside the range [start, end], but implementations are not required to
check for this. Such indices will cause implementation-dependent behavior.

The commands

void DrawElementsBaseVertex(enummode, sizei count,
enum type, const void *ndices, int basevertex);
void DrawRangeElementsBaseVertex(enum mode,
uint start, uint end, sizei count, enum type, const
void *indices, int basevertex);
void DrawElementsInstancedBaseVertex(enum mode,
sizei count, enumtype, const void *indices,
sizei primcount, int basevertex);

are equivalent to the commands with the same base name (without the Base Vertex
suffix), except that the ith element transferred by the corresponding draw call will
be taken from element indices|i] + basevertex of each enabled array. If the result-
ing value is larger than the maximum value representable by fype, it should behave
as if the calculation were upconverted to 32-bit unsigned integers (with wrapping
on overflow conditions). The operation is undefined if the sum would be negative
and should be handled as described in section 2.9.4. For DrawRangeElementsBa-
seVertex, the index values must lie between start and end inclusive, prior to adding
the basevertex offset. Index values lying outside the range [start, end] are treated
in the same way as DrawRangeElements.
The command

void MultiDrawElementsBaseVertex(enum mode, const

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS 49

sizei *count, enumtype, const void **indices,
sizeil primcount, const int *basevertex);

behaves identically to DrawElementsBaseVertex, except that primcount separate
lists of elements are specified instead. It has the same effect as:

for (int i = 0; 1 < primcount; i++)
if (count[i] > 0)
DrawElementsBaseVertex (mode, count[i], type,
indices[1], basevertex[1i]) ;

The command

void InterleavedArrays(enum format, sizei stride, const
void *pointer);

efficiently initializes the six arrays and their enables to one of 14 configurations.

Jormat must be one of 14 symbolic constants: V2F, V3F, CAUB_V2F, CAUB_-

V3F, C3F_V3F, N3F_V3F, CAF_N3F_V3F, T2F_V3F, T4AF_VA4F, T2F_C4UB_V3F,

T2F_C3F_V3F, T2F_N3F_V3F, T2F_C4F_N3F_V3F, or TAF_C4F_N3F_VA4F.
The effect of

InterleavedArrays (format, stride, pointer) ;

is the same as the effect of the command sequence

if (format or stride is invalid)
generate appropriate error
else {
int str;
set e, €c, €y, St, Sc, Su, Ley Doy P, Pu, and s as a function
of table 2.8 and the value of format.
str = stride;
if (striszero)
str = s;
DisableClientState (EDGE_FLAG_ARRAY) ;
DisableClientState (INDEX_ARRAY) ;
DisableClientState (SECONDARY COLOR_ARRAY) ;
DisableClientState (FOG_COORD_ARRAY) ;

if (er) {

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.8. VERTEX ARRAYS

50

‘ format ey ‘ e ‘ en ‘ St ‘ Se ‘ Su te
V2F False | False | False 2
V3F False | False | False 3
C4UB_V2F False | True | Fualse 4 | 2 | UNSIGNED_BYTE
C4UB_V3F False | True | False 4 | 3 | UNSIGNED_BYTE
C3F_V3F False | True | False 313 FLOAT
N3F_V3F False | False | True 3
C4F_N3F_V3F False | True | True 4 1 3 FLOAT
T2F_V3F True | False | False | 2 3
T4F_VA4F True | False | False | 4 4
T2F_CAUB_V3F True | True | False | 2 | 4 | 3 | UNSIGNED_BYTE
T2F_C3F_V3F True | True | False | 2 | 3 | 3 FLOAT
T2F_N3F_V3F True | False | True | 2 3
T2F_C4F_N3F_V3F | True | True | True | 2 | 4 | 3 FLOAT
T4F_CAF_N3F_V4F | True | True | True | 4 | 4 | 4 FLOAT
’ format De ‘ Dn ‘ Dy ‘ S
V2F 0 2f
V3F 0 3f
CAUB_V2F 0 c c+2f
C4UB_V3F 0 c c+3f
C3F_V3F 0 3f 6f
N3F_V3F 0 3f 6f
C4F_N3F_V3F 0 | 4f 7f 10f
T2F_V3F 2f 5f
T4F_VAF 4f 8f
T2F_C4UB_V3F 2f c+2f | c+5f
T2F_C3F_V3F 2f 5f 8f
T2F_N3F_V3F 2f 5f 8f
T2F_CA4F_N3F_V3F | 2f | 6f 9f 12f
TAF_CA4F_N3F_V4F | 4f | 8f 11f 15f

Table 2.8: Variables that direct the execution of InterleavedArrays. f is
sizeof (FLOAT). c is 4 times sizeof (UNSIGNED_BYTE), rounded up to
the nearest multiple of f. All pointer arithmetic is performed in units of
sizeof (UNSIGNED_BYTE).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS

EnableClientState (TEXTURE_COORD_ARRAY) ;
TexCoordPointer (s;, FLOAT, str, pointer) ;

} else
DisableClientState (TEXTURE_COORD_ARRAY) ;
if (eq) {

EnableClientState (COLOR_ARRAY) ;
ColorPointer (s, t., str, pointer + p.) ;

} else
DisableClientState (COLOR_ARRAY) ;
if (ep) {

EnableClientState (NORMAL_ARRAY) ;

NormalPointer (FLOAT, str, pointer + py,) ;
} else

DisableClientState (NORMAL_ARRAY) ;
EnableClientState (VERTEX_ARRAY) ;
VertexPointer (s,, FLOAT, str, pointer + p,) ;

}

If the number of supported texture units (the value of MAX_ TEXTURE_COORDS)
is m and the number of supported generic vertex attributes (the value of MAX_ -
VERTEX_ATTRIBS) is nn, then the state required to implement vertex arrays consists
of an integer for the client active texture unit selector, 7 + m 4+ n boolean values,
7 + m 4+ n memory pointers, 7 + m + n integer stride values, 7 + m + n sym-
bolic constants representing array types, 3 + m + n integers representing values
per element, n boolean values indicating normalization, n boolean values indicat-
ing whether the attribute values are pure integers, n integers representing vertex
attribute divisors, and an unsigned integer representing the restart index.

In the initial state, the client active texture unit selector is TEXTUREOQ, the
boolean values are each false, the memory pointers are each NULL, the strides are
each zero, the array types are each FLOAT, the integers representing values per
element are each four, the normalized and pure integer flags are each false, the
divisors are each zero, and the restart index is zero.

2.9 Buffer Objects

Vertex array data (described in section 2.8) are stored in client memory. It is some-
times desirable to store frequently used client data, such as vertex array and pixel
data, in high-performance server memory. GL buffer objects provide a mechanism
that clients can use to allocate, initialize, and render from such memory. The name
space for buffer objects is the unsigned integers, with zero reserved for the GL.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

51

2.9. BUFFER OBJECTS 52

The command
void GenBuffers(sizei n, uint *buffers);

returns n previously unused buffer object names in buffers. These names are
marked as used, for the purposes of GenBuffers only, but they acquire buffer state
only when they are first bound with BindBuffer (see below), just as if they were
unused.

Buffer objects are deleted by calling

void DeleteBuffers(sizei n, const uint *buffers);

buffers contains n names of buffer objects to be deleted. After a buffer object is
deleted it has no contents, and its name is again unused. Unused names in buffers
are silently ignored, as is the value zero.

2.9.1 Creating and Binding Buffer Objects

A buffer object is created by binding to a buffer target. The
binding is effected by calling

void BindBuffer(enum target, uint buffer);

target must be one of the targets listed in table 2.9. If the buffer object named
buffer has not been previously bound,

the GL creates a new state vector, initialized with a zero-sized memory buffer and
comprising the state values listed in table 2.10.

Buffer objects created by binding to any of the valid rargers
are formally equivalent, but the GL may make different choices about storage lo-
cation and layout based on the initial binding.

BindBuffer may also be used to bind an existing buffer object. If the bind is
successful no change is made to the state of the newly bound buffer object, and any
previous binding to target is broken.

While a buffer object is bound, GL operations on the target to which it is bound
affect the bound buffer object, and queries of the target to which a buffer object is
bound return state from the bound object. Operations on the target also affect any
other bindings of that object.

If a buffer object is deleted while it is bound, all bindings to that object in
the current context (i.e. in the thread that called DeleteBuffers) are reset to zero.
Bindings to that buffer in other contexts and other threads are not affected, but
attempting to use a deleted buffer in another thread produces undefined results,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS

53

Target name Purpose Described in section(s) ‘

ARRAY_BUFFER Vertex attributes 2.9.6

COPY_READ_BUFFER Buffer copy source 2.9.5

COPY_WRITE_BUFFER Buffer copy destination 2.9.5

ELEMENT_ARRAY_BUFFER Vertex array indices 2.9.7

PIXEL_PACK_BUFFER Pixel read target 4.3.2,6.1

PIXEL_UNPACK_BUFFER Texture data source 3.7

TEXTURE_BUFFER Texture data buffer 39.7

TRANSFORM_FEEDBACK_BUFFER | Transform feedback buffer | 2.19

UNIFORM_BUFFER Uniform block storage 2.14.4

Table 2.9: Buffer object binding targets.

Name Type Initial Value | Legal Values

BUFFER_SIZE int64 0 any non-negative integer

BUFFER_USAGE enum STATIC_DRAW | STREAM_DRAW, STREAM_READ,
STREAM_COPY, STATIC_DRAW,
STATIC_READ, STATIC_COPY,
DYNAMIC_DRAW, DYNAMIC_READ,
DYNAMIC_COPY

BUFFER_ACCESS enum READ_WRITE | READ_ONLY, WRITE_ONLY,
READ_WRITE

BUFFER_ACCESS_FLAGS | int 0 See section 2.9.3

BUFFER_MAPPED boolean FALSE TRUE, FALSE

BUFFER_MAP_POINTER | void* NULL address

BUFFER_MAP_OFFSET int64 0 any non-negative integer

BUFFER_MAP_LENGTH int64 0 any non-negative integer

Table 2.10: Buffer object parameters and their values.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 54

including but not limited to possible GL errors and rendering corruption. Using
a deleted buffer in another context or thread may not, however, result in program
termination.

Initially, each buffer object target is bound to zero. There is no buffer object
corresponding to the name zero, so client attempts to modify or query buffer object
state for a target bound to zero generate an INVALID_OPERATION error.

Binding Buffer Objects to Indexed Targets

Buffer objects may be bound to indexed targets by calling one of the commands

void BindBufferRange(enum farget, uint index,
uint buffer, intptr offset, sizeiptr size);
void BindBufferBase(enum farget, uint index, uint buffer);

target must be TRANSFORM_FEEDBACK_BUFFER or UNIFORM_BUFFER. Addi-
tional language specific to each target is included in sections referred to for each
target in table 2.9.

Each target represents an indexed array of buffer object binding points, as well
as a single general binding point that can be used by other buffer object manipu-
lation functions (e.g. BindBuffer, MapBuffer). Both commands bind the buffer
object named by buffer to both the general binding point, and to the binding point
in the array given by index. The error INVALID_VALUE is generated if index is
greater than or equal to the number of target-specific indexed binding points.

For BindBufferRange, offset specifies a starting offset into the buffer object
buffer, and size specifies the amount of data that can be read from the buffer object
while used as an indexed target. Both offset and size are in basic machine units.
The error INVALID_VALUE is generated if size is less than or equal to zero or if
offset 4 size is greater than the value of BUFFER_SIZE. Additional errors may be
generated if offset violates target-specific alignment requirements.

BindBufferBase is equivalent to calling BindBufferRange with offser zero
and size equal to the size of buffer.

2.9.2 Creating Buffer Object Data Stores

The data store of a buffer object is created and initialized by calling

void BufferData(enum target, sizeiptr size, const
void *data, enum usage);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 55

with farget set to one of the targets listed in table 2.9, size set to the size of the data
store in basic machine units, and data pointing to the source data in client memory.
If data is non-null, then the source data is copied to the buffer object’s data store.
If data is null, then the contents of the buffer object’s data store are undefined.

usage is specified as one of nine enumerated values, indicating the expected
application usage pattern of the data store. The values are:

STREAM DRAW The data store contents will be specified once by the application,
and used at most a few times as the source for GL drawing and image speci-
fication commands.

STREAM_READ The data store contents will be specified once by reading data from
the GL, and queried at most a few times by the application.

STREAM_coPY The data store contents will be specified once by reading data from
the GL, and used at most a few times as the source for GL drawing and image
specification commands.

STATIC_DRAW The data store contents will be specified once by the application,
and used many times as the source for GL drawing and image specification
commands.

STATIC_READ The data store contents will be specified once by reading data from
the GL, and queried many times by the application.

STATIC_COPY The data store contents will be specified once by reading data from
the GL, and used many times as the source for GL drawing and image spec-
ification commands.

DYNAMIC_DRAW The data store contents will be respecified repeatedly by the ap-
plication, and used many times as the source for GL drawing and image
specification commands.

DYNAMIC_READ The data store contents will be respecified repeatedly by reading
data from the GL, and queried many times by the application.

DYNAMIC_coPY The data store contents will be respecified repeatedly by reading
data from the GL, and used many times as the source for GL drawing and
image specification commands.

usage is provided as a performance hint only. The specified usage value does
not constrain the actual usage pattern of the data store.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 56

Name Value
BUFFER_SIZE size
BUFFER_USAGE usage
BUFFER_ACCESS READ_WRITE
BUFFER_ACCESS_FLAGS | 0
BUFFER_MAPPED FALSE
BUFFER_MAP_POINTER | NULL
BUFFER_MAP_OFFSET 0
BUFFER_MAP_LENGTH 0

Table 2.11: Buffer object initial state.

BufferData deletes any existing data store, and sets the values of the buffer
object’s state variables as shown in table 2.11.

Clients must align data elements consistent with the requirements of the client
platform, with an additional base-level requirement that an offset within a buffer to
a datum comprising /V basic machine units be a multiple of N.

If the GL is unable to create a data store of the requested size, the error OUT_ -
OF_MEMORY is generated.

To modify some or all of the data contained in a buffer object’s data store, the
client may use the command

void BufferSubData(enum farget, intptr offset,
sizeiptr size, const void *data);

with target set to one of the targets listed in table 2.9. offset and size indicate the
range of data in the buffer object that is to be replaced, in terms of basic machine
units. data specifies a region of client memory size basic machine units in length,
containing the data that replace the specified buffer range. An INVALID_VALUE
error is generated if offset or size is less than zero or if offset + size is greater than
the value of BUFFER_SIZE. An INVALID_OPERATION error is generated if any
part of the specified buffer range is mapped with MapBufferRange or MapBuffer
(see section 2.9.3).

2.9.3 Mapping and Unmapping Buffer Data

All or part of the data store of a buffer object may be mapped into the client’s
address space by calling

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 57

void *MapBufferRange(enum target, intptr offset,
sizeiptr length, bitfield access);

with farget set to one of the targets listed in table 2.9. offset and length indicate the
range of data in the buffer object that is to be mapped, in terms of basic machine
units. access is a bitfield containing flags which describe the requested mapping.
These flags are described below.

If no error occurs, a pointer to the beginning of the mapped range is returned
once all pending operations on that buffer have completed, and may be used to
modify and/or query the corresponding range of the buffer, according to the fol-
lowing flag bits set in access:

e MAP_READ_BIT indicates that the returned pointer may be used to read
buffer object data. No GL error is generated if the pointer is used to query
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

e MAP_WRITE_BIT indicates that the returned pointer may be used to modify
buffer object data. No GL error is generated if the pointer is used to modify
a mapping which excludes this flag, but the result is undefined and system
errors (possibly including program termination) may occur.

Pointer values returned by MapBufferRange may not be passed as parameter
values to GL commands. For example, they may not be used to specify array
pointers, or to specify or query pixel or texture image data; such actions produce
undefined results, although implementations may not check for such behavior for
performance reasons.

Mappings to the data stores of buffer objects may have nonstandard perfor-
mance characteristics. For example, such mappings may be marked as uncacheable
regions of memory, and in such cases reading from them may be very slow. To en-
sure optimal performance, the client should use the mapping in a fashion consistent
with the values of BUFFER_USAGE and access. Using a mapping in a fashion in-
consistent with these values is liable to be multiple orders of magnitude slower
than using normal memory.

The following optional flag bits in access may be used to modify the mapping:

e MAP_INVALIDATE_RANGE_BIT indicates that the previous contents of the
specified range may be discarded. Data within this range are undefined with
the exception of subsequently written data. No GL error is generated if sub-
sequent GL operations access unwritten data, but the result is undefined and
system errors (possibly including program termination) may occur. This flag
may not be used in combination with MAP_READ_BIT.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 58

Name Value
BUFFER_ACCESS Depends on access'
BUFFER_ACCESS_FLAGS | access
BUFFER_MAPPED TRUE
BUFFER_MAP_POINTER | pointer to the data store
BUFFER_MAP_OFFSET offset
BUFFER_MAP_LENGTH length

Table 2.12: Buffer object state set by MapBufferRange.

! BUFFER_ACCESS is set to READ_ONLY, WRITE_ONLY, or READ_WRITE if access
& (MAP_READ_BIT|MAP_WRITE_BIT) is respectively MAP_READ_BIT, MAP_-
WRITE_BIT, Or MAP_READ_BIT|MAP_WRITE_BIT.

e MAP_INVALIDATE_BUFFER_BIT indicates that the previous contents of the
entire buffer may be discarded. Data within the entire buffer are undefined
with the exception of subsequently written data. No GL error is generated if
subsequent GL operations access unwritten data, but the result is undefined
and system errors (possibly including program termination) may occur. This
flag may not be used in combination with MAP_READ_BIT.

e MAP_FLUSH_EXPLICIT_BIT indicates that one or more discrete subranges
of the mapping may be modified. When this flag is set, modifications to
each subrange must be explicitly flushed by calling FlushMappedBuffer-
Range. No GL error is set if a subrange of the mapping is modified and
not flushed, but data within the corresponding subrange of the buffer are un-
defined. This flag may only be used in conjunction with MAP_WRITE_BIT.
When this option is selected, flushing is strictly limited to regions that are
explicitly indicated with calls to FlushMappedBufferRange prior to un-
map; if this option is not selected UnmapBuffer will automatically flush the
entire mapped range when called.

e MAP_UNSYNCHRONIZED_BIT indicates that the GL should not attempt to
synchronize pending operations on the buffer prior to returning from Map-
BufferRange. No GL error is generated if pending operations which source
or modify the buffer overlap the mapped region, but the result of such previ-
ous and any subsequent operations is undefined.

A successful MapBufferRange sets buffer object state values as shown in ta-
ble 2.12.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 59

Errors

If an error occurs, MapBufferRange returns a NULL pointer.

An INVALID_VALUE error is generated if offset or length is negative, if offset+
length is greater than the value of BUFFER_STIZE, or if access has any bits set other
than those defined above.

An INVALID_OPERATION error is generated for any of the following condi-
tions:

The buffer is already in a mapped state.

Neither MAP_ READ_BIT nor MAP_ WRITE_BIT is set.

MAP_READ_BIT is set and any of MAP_ INVALIDATE_RANGE_BIT, MAP_-—
INVALIDATE_BUFFER_BIT, or MAP_ UNSYNCHRONIZED_BIT is set.

MAP_FLUSH_EXPLICIT BIT is setand MAP_WRITE_BIT is not set.

An OUT_OF_MEMORY error is generated if MapBufferRange fails because
memory for the mapping could not be obtained.

No error is generated if memory outside the mapped range is modified or
queried, but the result is undefined and system errors (possibly including program
termination) may occur.

The entire data store of a buffer object can be mapped into the client’s address
space by calling

void *MapBuffer(enum target, enum access);

MapBuffer is equivalent to calling MapBufferRange with the same target, offset
of zero, length equal to the value of BUFFER_SIZE, and the access bitfield
value passed to MapBufferRange equal to

e MAP_READ_BIT, if mbaccess is READ_ONLY
e MAP_WRITE_BIT, if mbaccess is WRITE_ONLY

e MAP_READ_BIT|MAP_WRITE_BIT, if mbaccess is READ_WRITE

and mbaccess is the value of the access enum parameter passed to MapBuffer.
INVALID_ENUM is generated if access is not one of the values described above.
Other errors are generated as described above for MapBufferRange.
If a buffer is mapped with the MAP_FLUSH_EXPLICIT_BIT flag, modifications
to the mapped range may be indicated by calling

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 60

void FlushMappedBufferRange(enum rarget, intptr offset,
sizeiptr length);

with target set to one of the targets listed in table 2.9. offset and length indi-
cate a modified subrange of the mapping, in basic machine units. The specified
subrange to flush is relative to the start of the currently mapped range of buffer.
FlushMappedBufferRange may be called multiple times to indicate distinct sub-
ranges of the mapping which require flushing.

Errors

An INVALID_VALUE error is generated if offset or length is negative, or if
offset + length exceeds the size of the mapping.

An INVALID_OPERATION error is generated if zero is bound to target.

An INVALID_OPERATION error is generated if the buffer bound to rarget is
not mapped, or is mapped without the MAP_FLUSH_EXPLICIT_BIT flag.

Unmapping Buffers

After the client has specified the contents of a mapped buffer range, and before the
data in that range are dereferenced by any GL commands, the mapping must be
relinquished by calling

boolean UnmapBuffer(enum rarget);

with target set to one of the targets listed in table 2.9. Unmapping a mapped buffer
object invalidates the pointer to its data store and sets the object’s BUFFER_—
MAPPED, BUFFER_MAP_POINTER, BUFFER_ACCESS_FLAGS, BUFFER_MAP_ -
OFFSET, and BUFFER_MAP_ LENGTH state variables to the initial values shown in
table 2.11.

UnmapBuffer returns TRUE unless data values in the buffer’s data store have
become corrupted during the period that the buffer was mapped. Such corruption
can be the result of a screen resolution change or other window system-dependent
event that causes system heaps such as those for high-performance graphics mem-
ory to be discarded. GL implementations must guarantee that such corruption can
occur only during the periods that a buffer’s data store is mapped. If such corrup-
tion has occurred, UnmapBuffer returns FALSE, and the contents of the buffer’s
data store become undefined.

If the buffer data store is already in the unmapped state, UnmapBuffer returns
FALSE, and an INVALID_OPERATION error is generated. However, unmapping
that occurs as a side effect of buffer deletion or reinitialization is not an error.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 61

Effects of Mapping Buffers on Other GL. Commands

Most, but not all G commands will detect attempts to read data from a mapped
buffer object. When such an attempt is detected, an INVALID_OPERATION error
will be generated. Any command which does not detect these attempts, and per-
forms such an invalid read, has undefined results and may result in GL interruption
or termination.

2.9.4 Effects of Accessing Outside Buffer Bounds

Most, but not all GL commands operating on buffer objects will detect attempts to
read from or write to a location in a bound buffer object at an offset less than zero,
or greater than or equal to the buffer’s size. When such an attempt is detected, a
GL error will be generated. Any command which does not detect these attempts,
and performs such an invalid read or write, has undefined results, and may result
in GL interruption or termination.

2.9.5 Copying Between Buffers

All or part of the data store of a buffer object may be copied to the data store of
another buffer object by calling

void *CopyBufferSubData(enum readtarget,
enum writetarget, intptr readoffset, intptr writeoffset,
sizeiptr size);

with readtarget and writetarget each set to one of the targets listed in table 2.9.
While any of these targets may be used, the COPY_READ_BUFFER and COPY_—
WRITE_BUFFER targets are provided specifically for copies, so that they can be
done without affecting other buffer binding targets that may be in use. writeoffset
and size specify the range of data in the buffer object bound to writetarget that is
to be replaced, in terms of basic machine units. readoffset and size specify the
range of data in the buffer object bound to readtarget that is to be copied to the
corresponding region of writetarget.

An INVALID_VALUE error is generated if any of readoffset, writeoffset, or size
are negative, if readoffset + size exceeds the size of the buffer object bound to
readtarget, or if writeoffset + size exceeds the size of the buffer object bound to
writetarget.

An INVALID_VALUE error is generated if the same buffer object is bound to
both readtarget and writetarget, and the ranges [readoffset, readoffset + size) and
[writeoffset, writeoffset + size) overlap.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.9. BUFFER OBJECTS 62

An INVALID_OPERATION error is generated if zero is bound to readtarget or
writetarget.

An INVALID_OPERATION error is generated if the buffer objects bound to
either readtarget or writetarget are mapped.

2.9.6 Vertex Arrays in Buffer Objects

Blocks of vertex array data may be stored in buffer objects with the same format
and layout options supported for client-side vertex arrays. However, it is expected
that GL implementations will (at minimum) be optimized for data with all compo-
nents represented as floats, as well as for color data with components represented
as either floats or unsigned bytes. A buffer object binding point is added to the
client state associated with each vertex array type. The commands that specify
the locations and organizations of vertex arrays copy the buffer object name that
is bound to ARRAY_BUFFER to the binding point corresponding to the vertex ar-
ray of the type being specified. For example, the VertexAttribPointer command
copies the value of ARRAY_BUFFER_BINDING (the queriable name of the buffer
binding corresponding to the target ARRAY_BUFFER) to the client state variable
VERTEX_ATTRIB_ARRAY_BUFFER_BINDING for the specified index.

Rendering commands ArrayElement, DrawArrays, and the other drawing
commands defined in section 2.8.2 operate as previously defined, except that data
for enabled vertex and attrib arrays are sourced from buffers if the array’s buffer
binding is non-zero. When an array is sourced from a buffer object, the pointer
value of that array is used to compute an offset, in basic machine units, into the
data store of the buffer object. This offset is computed by subtracting a null pointer
from the pointer value, where both pointers are treated as pointers to basic machine
units.

[t is acceptable for vertex or attrib arrays to be sourced from any combination
of client memory and various buffer objects during a single rendering operation.

2.9.7 Array Indices in Buffer Objects

Blocks of array indices may be stored in buffer objects with the same format op-
tions that are supported for client-side index arrays. Initially zero is bound to
ELEMENT_ARRAY_BUFFER, indicating that DrawElements and DrawRangeEle-
ments are to source their indices from arrays passed as their indices parameters,
and that MultiDrawElements is to source its indices from the array of pointers to
arrays passed in as its indices parameter.

A buffer object is bound to ELEMENT_ARRAY_BUFFER by calling BindBuffer
with target set to ELEMENT_ARRAY_BUFFER, and buffer set to the name of the

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.10. VERTEX ARRAY OBJECTS 63

buffer object. If no corresponding buffer object exists, one is initialized as defined
in section 2.9.

DrawElements, DrawRangeElements, and DrawElementsInstanced source
their indices from using their indices parameters as offsets into
the buffer object in the same fashion as described in section 2.9.6. DrawElements-
BaseVertex, DrawRangeElementsBaseVertex, and DrawElementsInstanced-
BaseVertex also source their indices from that buffer object, adding the basevertex
offset to the appropriate vertex index as a final step before indexing into the vertex
buffer; this does not affect the calculation of the base pointer for the index array.
Finally, MultiDrawElements and MultiDrawElementsBaseVertex also source
their indices from that buffer object, using its indices parameter as a pointer to an
array of pointers that represent offsets into the buffer object.

In some cases performance will be optimized by storing indices and array data
in separate buffer objects, and by creating those buffer objects with the correspond-
ing binding points.

2.9.8 Buffer Object State

The state required to support buffer objects consists of binding names for each
of the buffer targets in table 2.9, and for each of the indexed buffer targets in sec-
tion 2.9.1. Additionally, each vertex array has an associated binding so there is a
buffer object binding for each of the

vertex attribute arrays. The initial values for all buffer object
bindings is zero.

The state of each buffer object consists of a buffer size in basic machine units, a
usage parameter, an access parameter, a mapped boolean, two integers for the offset
and size of the mapped region, a pointer to the mapped buffer (NULL if unmapped),
and the sized array of basic machine units for the buffer data.

2.10 Vertex Array Objects

The buffer objects that are to be used by the vertex stage of the GL are collected
together to form a vertex array object. All state related to the definition of data
used by the vertex processor is encapsulated in a vertex array object.

The command

void GenVertexArrays(sizei n, uint *arrays);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.11. RECTANGLES 64

returns n previous unused vertex array object names in arrays. These names are
marked as used, for the purposes of GenVertexArrays only, but they acquire array
state only when they are first bound.

Vertex array objects are deleted by calling

void DeleteVertexArrays(sizei n, const uint *arrays);

arrays contains n names of vertex array objects to be deleted. Once a vertex array
object is deleted it has no contents and its name is again unused. If a vertex array
object that is currently bound is deleted, the binding for that object reverts to zero
and the default vertex array becomes current. Unused names in arrays are silently
ignored, as is the value zero.

A vertex array object is created by binding a name returned by GenVertexAr-
rays with the command

void BindVertexArray(uint array);

array is the vertex array object name. The resulting vertex array object is a new
state vector, comprising all the state values listed in tables 6.9- 6.12.

BindVertexArray may also be used to bind an existing vertex array object.
If the bind is successful no change is made to the state of the bound vertex array
object, and any previous binding is broken.

The currently bound vertex array object is used for all commands which modify
vertex array state, such as VertexAttribPointer and EnableVertexAttribArray;
all commands which draw from vertex arrays, such as DrawArrays and DrawEle-
ments; and all queries of vertex array state (see chapter 6).

Bind VertexArray fails and an INVALID_OPERATION error is generated if ar-
ray is not zero or a name returned from a previous call to GenVertexArrays, or if
such a name has since been deleted with DeleteVertexArrays.

2.11 Rectangles

There is a set of GL commands to support efficient specification of rectangles as
two corner vertices.

void Rect{sifd}(Tx/, Tyl, Tx2, Ty2);
void Rect{sifd}v(const TviI[2], const Tv2[2]);

Each command takes either four arguments organized as two consecutive pairs of

(z,y) coordinates, or two pointers to arrays each of which contains an x value
followed by a y value. The effect of the Rect command

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 65

Rect (z1,y1,72,Y2) ;
is exactly the same as the following sequence of commands:

Begin (POLYGON) ;
Vertex2 (x1,v1) ;
Vertex2 (r2,y1) ;
Vertex2 (2, 12) ;
Vertex2 (z1,y2)

End () ;

4

The appropriate Vertex2 command would be invoked depending on which of the
Rect commands is issued.

2.12 Fixed-Function Vertex Transformations

This section and the following discussion through section 2.13 describe the state
values and operations necessary for transforming vertex attributes according to a
fixed-functionality method. An alternate programmable method for transforming
vertex attributes is described in section 2.14.

Vertices, normals, and texture coordinates are transformed before their coordi-
nates are used to produce an image in the framebuffer. We begin with a description
of how vertex coordinates are transformed and how this transformation is con-
trolled.

Figure 2.9 diagrams the sequence of transformations that are applied to ver-
tices. The vertex coordinates that are presented to the GL are termed object coor-
dinates. The model-view matrix is applied to these coordinates to yield eye coordi-
nates. Then another matrix, called the projection matrix, is applied to eye coordi-
nates to yield clip coordinates. Clip coordinates are further processed as described
in section 2.16.

Object coordinates, eye coordinates, and clip coordinates are four-dimensional,
consisting of x, y, z, and w coordinates (in that order). The model-view and pro-
jection matrices are thus 4 x 4.

If a vertex in object coordinates is given by and the model-view matrix

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS

66

Normalized

Object Model-View Eye Projection Perspective Device

Coordinates Division Coordinates

Coordinates Matrix Coordinates Matrix

Viewport Window

Transformation Coordinates

Figure 2.9. Vertex transformation sequence.

is M, then the vertex’s eye coordinates are found as

Te Lo
Ye | _ay | %o
Z(‘, ZU
We Wo

Similarly, if P is the projection matrix, then the vertex’s clip coordinates are

T Te
Ye | _ P Ye
Ze Ze
We We

2.12.1 Matrices

The projection matrix and model-view matrix are set and modified with a variety
of commands. The affected matrix is determined by the current matrix mode. The

current matrix mode is set with

void MatrixMode(enum mode);

which takes one of the pre-defined constants TEXTURE, MODELVIEW, COLOR, Or
PROJECTION as the argument value. TEXTURE is described later in section 2.12.1,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 67

and COLOR is described in section 3.7.3. If the current matrix mode is MODELVIEW,
then matrix operations apply to the model-view matrix; if PROJECTION, then they
apply to the projection matrix.

The two basic commands for affecting the current matrix are

void LoadMatrix{fd}(const T m/[I6]);
void MultMatrix{fd}(const T m[16]);

LoadMatrix takes a pointer to a 4 X 4 matrix stored in column-major order as 16
consecutive floating-point values, i.e. as

ai as ag as

az ag aip a4

az ar aip as

a4 ag a2 A
(This differs from the standard row-major C ordering for matrix elements. If the
standard ordering is used, all of the subsequent transformation equations are trans-
posed, and the columns representing vectors become rows.)

The specified matrix replaces the current matrix with the one pointed to. Mult-
Matrix takes the same type argument as LoadMatrix, but multiplies the current
matrix by the one pointed to and replaces the current matrix with the product. If C'
is the current matrix and M is the matrix pointed to by MultMatrix’s argument,
then the resulting current matrix, C’, is

C'=C- M.
The commands

void LoadTransposeMatrix{fd}(const T m[I6]);
void MultTransposeMatrix{fd}(const T m[16]);

take pointers to 4 x 4 matrices stored in row-major order as 16 consecutive floating-
point values, i.e. as

ay a2 az a4
as ag ay as
ag aip air a2
a3 a4 a5 Gi16

The effect of

LoadTransposeMatrix[fd] (m) ;

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 68

is the same as the effect of
LoadMatrix[fd] (m™) ;
The effect of
MultTransposeMatrix[fd] (m) ;
is the same as the effect of
MultMatrix[fd] (m7) ;
The command
void Loadldentity(void);

effectively calls LoadMatrix with the identity matrix:
1 000
0100
0010

1

There are a variety of other commands that manipulate matrices. Rotate,
Translate, Scale, Frustum, and Ortho manipulate the current matrix. Each com-
putes a matrix and then invokes MultMatrix with this matrix. In the case of

void Rotate{fd}(T 60, Tx, Ty, Tz);

0 gives an angle of rotation in degrees; the coordinates of a vector v are given by
v = (z y 2)T. The computed matrix is a counter-clockwise rotation about the line
through the origin with the specified axis when that axis is pointing up (i.e. the
right-hand rule determines the sense of the rotation angle). The matrix is thus

0
R 0
0
0 0 0 1
Letu=v/||v|] = (2 ¢ z’)T. If
0 —Zl y/
S=[2 0 -2
-y 0

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 69

then
R =uu’ + cosf(I — uu’) +sin6S.

The arguments to
void Translate{fd}(Tx, Ty, Tz);

give the coordinates of a translation vector as (x y z)”. The resulting matrix is a
translation by the specified vector:

1 0 0 =«
01 0 y
0 0 1 =z
0 0 0 1

void Scale{fd}(Tx, Ty, Tz);

produces a general scaling along the z-, y-, and z- axes. The corresponding matrix
is

z 000
0y 00
00 2 0
000 1

For

void Frustum(doublel, doubler, double b, doublet,
double n, doublef);

the coordinates (I b —n)” and (rt — n)? specify the points on the near clipping
plane that are mapped to the lower left and upper right corners of the window,
respectively (assuming that the eye is located at (0 0 0)7). f gives the distance
from the eye to the far clipping plane. If either n or f is less than or equal to zero,
[is equal to r, b is equal to ¢, or n is equal to f, the error INVALID_VALUE results.
The corresponding matrix is

2n r+l 0
ol 2n %N;ll)

o o i
0 0 —Fn " T-n
0 0 -1 0

void Ortho(double l, double r, double b, doublet,
double n, doublef);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS

describes a matrix that produces parallel projection. (I b —n)” and (rt —n)T
specify the points on the near clipping plane that are mapped to the lower left and
upper right corners of the window, respectively. f gives the distance from the eye
to the far clipping plane. If [is equal to 7, b is equal to ¢, or n is equal to f, the
error INVALID_VALUE results. The corresponding matrix is

2 +1
=3 o o
VT 02 7}1
n
0 0 -5 -7
0 0 0 1

For each texture coordinate set, a 4 x 4 matrix is applied to the corresponding
texture coordinates. This matrix is applied as

mi ms Mg M3 s
mz mg Mg Mi4 t
m3 my7 M1l Mis r|’
myg Mg Mi2 Mie q

where the left matrix is the current texture matrix. The matrix is applied to the
coordinates resulting from texture coordinate generation (which may simply be the
current texture coordinates), and the resulting transformed coordinates become the
texture coordinates associated with a vertex. Setting the matrix mode to TEXTURE
causes the already described matrix operations to apply to the texture matrix.

The active texture unit selector (see section 3.9) specifies the texture coordi-
nate set accessed by commands involving texture coordinate processing. Such
commands include those accessing the current matrix stack (if MATRIX_MODE is
TEXTURE), TexEnv commands controlling point sprite coordinate replacement
(see section 3.4), TexGen (section 2.12.3), Enable/Disable (if any texture co-
ordinate generation enum is selected), as well as queries of the current texture
coordinates and current raster texture coordinates. If the texture coordinate set
number corresponding to the current value of ACTIVE_TEXTURE is greater than
or equal to the implementation-dependent constant MAX_TEXTURE_COORDS, the
error INVALID_OPERATION is generated by any such command.

There is a stack of matrices for each of matrix modes MODELVIEW,
PROJECTION, and COLOR, and for each texture unit. For MODELVIEW mode, the
stack depth is at least 32 (that is, there is a stack of at least 32 model-view ma-
trices). For the other modes, the depth is at least 2. Texture matrix stacks for all
texture units have the same depth. The current matrix in any mode is the matrix on
the top of the stack for that mode.

void PushMatrix(void);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

70

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 71

pushes the stack down by one, duplicating the current matrix in both the top of the
stack and the entry below it.

void PopMatrix(void);

pops the top entry off of the stack, replacing the current matrix with the matrix
that was the second entry in the stack. The pushing or popping takes place on the
stack corresponding to the current matrix mode. Popping a matrix off a stack with
only one entry generates the error STACK_UNDERFLOW; pushing a matrix onto a
full stack generates STACK_OVERF LOW.

When the current matrix mode iS TEXTURE, the texture matrix stack of the
active texture unit is pushed or popped.

The state required to implement transformations consists of a four-valued in-
teger indicating the current matrix mode, one stack of at least two 4 x 4 matrices
for each of COLOR, PROJECTION, and each texture coordinate set, TEXTURE; and
a stack of at least 32 4 x 4 matrices for MODELVIEW. Each matrix stack has an
associated stack pointer. Initially, there is only one matrix on each stack, and all
matrices are set to the identity. The initial matrix mode is MODELVIEW.

2.12.2 Normal Transformation

Finally, we consider how the model-view matrix and transformation state affect
normals. Before use in lighting, normals are transformed to eye coordinates by a
matrix derived from the model-view matrix. Rescaling and normalization opera-
tions are performed on the transformed normals to make them unit length prior to
use in lighting. Rescaling and normalization are controlled by calling Enable and
Disable with rarget equal to RESCALE_NORMAL or NORMALIZE. This requires two
bits of state. The initial state is for normals not to be rescaled or normalized.

If the model-view matrix is M, then the normal is transformed to eye coordi-
nates by:

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 72

T
where, if Z are the associated vertex coordinates, then
w
0, w =0,
T
= 2.7
q - <nw Ny nz> Y 2.7)
z
o , wF#0

Implementations may choose instead to transform (nx Ny nz) to eye coor-
dinates using

(' my)= (ne my ne)- 0,7

where M, is the upper leftmost 3x3 matrix taken from M.
Rescale multiplies the transformed normals by a scale factor

(nx// ny// TLZ//) - f (nwf ny/ nzl)
If rescaling is disabled, then f = 1. If rescaling is enabled, then f is computed

as (m;; denotes the matrix element in row 4 and column j of M ~1, numbering the
topmost row of the matrix as row 1 and the leftmost column as column 1)

B 1
Vmz1? + ms3a? + ms3?
Note that if the normals sent to GL were unit length and the model-view matrix

uniformly scales space, then rescale makes the transformed normals unit length.
Alternatively, an implementation may choose f as

1
2 2 2
\/an + ny/ + nzl

recomputing f for each normal. This makes all non-zero length normals unit length
regardless of their input length and the nature of the model-view matrix.
After rescaling, the final transformed normal used in lighting, n, is computed

=

as

nf =-m (TLI” ny// nzll)

If normalization is disabled, then m = 1. Otherwise

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 73

1
2 2 2
\/nx// + 1, +n."

Because we specify neither the floating-point format nor the means for matrix
inversion, we cannot specify behavior in the case of a poorly-conditioned (nearly
singular) model-view matrix M. In case of an exactly singular matrix, the trans-
formed normal is undefined. If the GL implementation determines that the model-
view matrix is uninvertible, then the entries in the inverted matrix are arbitrary. In
any case, neither normal transformation nor use of the transformed normal may
lead to GL interruption or termination.

m =

2.12.3 Generating Texture Coordinates

Texture coordinates associated with a vertex may either be taken from the current
texture coordinates or generated according to a function dependent on vertex coor-
dinates. The command

void TexGen{ifd}(enum coord, enum pname, T param);
void TexGen{ifd}v(enum coord, enum pname, const
T params);

controls texture coordinate generation. coord must be one of the constants S, T, R,
or Q, indicating that the pertinent coordinate is the s, ¢, r, or ¢ coordinate, respec-
tively. In the first form of the command, param is a symbolic constant specifying a
single-valued texture generation parameter; in the second form, params is a pointer
to an array of values that specify texture generation parameters. pname must be one
of the three symbolic constants TEXTURE_GEN_MODE, OBJECT_PLANE, or EYE_ —
PLANE. If pname is TEXTURE_GEN_MODE, then either params points to or param is
an integer that is one of the symbolic constants OBJECT_LINEAR, EYE_LINEAR,
SPHERE_MAP, REFLECTION_MAP, or NORMAL_MAP.

If TEXTURE_GEN_MODE indicates OBJECT_LINEAR, then the generation func-
tion for the coordinate indicated by coord is

g = P1%To + P2Yo + P3Z0 + P4Wo.

Zo» Yo, 20, and w, are the object coordinates of the vertex. py, ..., py are specified
by calling TexGen with pname set to OBJECT_PLANE in which case params points
to an array containing py, ..., p4. There is a distinct group of plane equation co-
efficients for each texture coordinate; coord indicates the coordinate to which the
specified coefficients pertain.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.12. FIXED-FUNCTION VERTEX TRANSFORMATIONS 74

If TEXTURE_GEN_MODE indicates EYE_LINEAR, then the function is
/ / / /
g = P1%e + PoYe + D3Ze + PyWe

where
(P Py s ph)=(m p2 ps pa)M'

Ze, Ye» Ze» and w, are the eye coordinates of the vertex. pi,...,ps are set by
calling TexGen with pname set to EYE_PLANE in correspondence with setting the
coefficients in the OBJECT_PLANE case. M is the model-view matrix in effect
when p1, ..., ps are specified. Computed texture coordinates may be inaccurate or
undefined if M is poorly conditioned or singular.

When used with a suitably constructed texture image, calling TexGen with
TEXTURE_GEN_MODE indicating SPHERE_MAP can simulate the reflected image
of a spherical environment on a polygon. SPHERE_MAP texture coordinates are
generated as follows. Denote the unit vector pointing from the origin to the vertex
(in eye coordinates) by u. Denote the current normal, after transformation to eye

. T . .
coordinates, by n¢. Letr = (rx Ty rz) , the reflection vector, be given by

r=u-—2n¢ (npu),

and let m = 2\/ r2 472+ (r, + 1)2. Then the value assigned to an s coordinate

(the first TexGen argument value is S) is s = 7, /m + %; the value assigned to a ¢
coordinate is t = r,/m + % Calling TexGen with a coord of either R or Q when
pname indicates SPHERE_MAP generates the error INVALID_ENUM.

If TEXTURE_GEN_MODE indicates REFLECTION_MAP, compute the reflection
vector r as described for the SPHERE_MAP mode. Then the value assigned to an s
coordinate is s = r,; the value assigned to a ¢ coordinate is ¢ = r,; and the value
assigned to an 7 coordinate is » = r,. Calling TexGen with a coord of 0 when
pname indicates REFLECTION_MAP generates the error INVALID_ENUM.

If TEXTURE_GEN_MODE indicates NORMAL_MAP, compute the normal vector
ny as described in section 2.12.2. Then the value assigned to an s coordinate is
s = ny,; the value assigned to a ¢ coordinate is t = n o and the value assigned
to an r coordinate is r = ny_ (the values ny_, n fyr and ny_ are the components
of ny.) Calling TexGen with a coord of 0 when pname indicates NORMAT_MAP
generates the error INVALID_ENUM.

A texture coordinate generation function is enabled or disabled using En-
able and Disable with an argument of TEXTURE_GEN_S, TEXTURE_GEN_T,
TEXTURE_GEN_R, or TEXTURE_GEN_Q (each indicates the corresponding texture
coordinate). When enabled, the specified texture coordinate is computed according

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 75

[-1.0,1.0]

Convert to
[0,2K-1] —pm] -
[0.0,1.0] Current >0,
RGBA O-P Clamp to
Color m [0.0, 1.0]
[_2k’2k_1] | Convert to >O :

float

an———| Color I E— ,
Clipping

Convert to L Flatshade?

fixed—point .

Primitive
' : Clipping

Figure 2.10. Processing of RGBA colors. The heavy dotted lines indicate both
primary and secondary vertex colors, which are processed in the same fashion. % is
the minimum required bit width of the integer type representing a color component.

to the current EYE_TINEAR, OBJECT_LINEAR or SPHERE_MAP specification, de-
pending on the current setting of TEXTURE_GEN_MODE for that coordinate. When
disabled, subsequent vertices will take the indicated texture coordinate from the
current texture coordinates.

The state required for texture coordinate generation for each texture unit com-
prises a five-valued integer for each coordinate indicating coordinate generation
mode, and a bit for each coordinate to indicate whether texture coordinate genera-
tion is enabled or disabled. In addition, four coefficients are required for the four
coordinates for each of EYE_LINEAR and OBJECT_LINEAR. The initial state has
the texture generation function disabled for all texture coordinates. The initial val-
ues of p; for s are all 0 except p; which is one; for ¢ all the p; are zero except pa,
which is 1. The values of p; for r and ¢ are all 0. These values of p; apply for both
the EYE_ LINEAR and OBJECT_LINEAR versions. Initially all texture generation
modes are EYE_LINEAR.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 76

[0,2"-1] —p»] Convertto | gl ~\rent

float Color Mask to

float 1 Index O [0.0, 2N-1]

Color
‘ Clipping -
Convert to ‘_ Flatshade?

fixed—point N
P Primitive

* i Clipping

Figure 2.11. Processing of color indices. n is the number of bits in a color index.

2.13 Fixed-Function Vertex Lighting and Coloring

Figures 2.10 and 2.11 diagram the processing of RGBA colors and color indices
before rasterization. Incoming colors arrive in one of several formats. R, G, B, and
A components specified with unsigned and signed integer versions of the Color
command are converted to floating-point as described in equations 2.1 and 2.2, re-
spectively. As a result of limited precision, some converted values will not be rep-
resented exactly. In color index mode, a single-valued color index is not mapped.

Next, lighting, if enabled, produces either a color index or primary and sec-
ondary colors. If lighting is disabled, the current color index or current color (pri-
mary color) and current secondary color are used in further processing. After light-
ing, RGBA colors may be clamped to the range [0, 1] as described in section 2.13.6.
A color index is converted to fixed-point and then its integer portion is masked (see
section 2.13.6). After clamping or masking, a primitive may be flatshaded, indi-
cating that all vertices of the primitive are to have the same colors. Finally, if a
primitive is clipped, then colors (and texture coordinates) must be computed at the
vertices introduced or modified by clipping.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 77

2.13.1 Lighting

GL lighting computes colors for each vertex sent to the GL. This is accomplished
by applying an equation defined by a client-specified lighting model to a collection
of parameters that can include the vertex coordinates, the coordinates of one or
more light sources, the current normal, and parameters defining the characteristics
of the light sources and a current material. The following discussion assumes that
the GL is in RGBA mode. (Color index lighting is described in section 2.13.5.)

Lighting is turned on or off using the generic Enable or Disable commands
with the symbolic value LIGHTING. If lighting is off, the current color and current
secondary color are assigned to the vertex primary and secondary color, respec-
tively. If lighting is on, colors computed from the current lighting parameters are
assigned to the vertex primary and secondary colors.

Lighting Operation

A lighting parameter is of one of five types: color, position, direction, real, or
boolean. A color parameter consists of four floating-point values, one for each of
R, G, B, and A, in that order. There are no restrictions on the allowable values for
these parameters. A position parameter consists of four floating-point coordinates
(z, y, 2, and w) that specify a position in object coordinates (w may be zero,
indicating a point at infinity in the direction given by x, y, and 2). A direction
parameter consists of three floating-point coordinates (x, y, and z) that specify a
direction in object coordinates. A real parameter is one floating-point value. The
various values and their types are summarized in table 2.13. The result of a lighting
computation is undefined if a value for a parameter is specified that is outside the
range given for that parameter in the table.

There are n light sources, indexed by i = 0, ..., n—1. (nis an implementation-
dependent maximum that must be at least 8.) Note that the default values for d;;
and s.; differ for ¢ = 0 and ¢ > 0.

Before specifying the way that lighting computes colors, we introduce oper-
ators and notation that simplify the expressions involved. If ¢; and cy are col-
ors without alpha where ¢; = (r1,g1,b1) and ca = (r2,g2,b2), then define
¢y * cg = (r17r2,9192,b1b2). Addition of colors is accomplished by addition of
the components. Multiplication of colors by a scalar means multiplying each com-
ponent by that scalar. If d; and d» are directions, then define

d; ©dy = max{d1 -ds, 0}

(Directions are taken to have three coordinates.) If P; and Py are (homogeneous,
e —
with four coordinates) points then let PP be the unit vector that points from P

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 78
Parameter H Type ‘ Default Value ‘ Description
Material Parameters
acm color (0.2,0.2,0.2,1.0) | ambient color of material
den color (0.8,0.8,0.8,1.0) | diffuse color of material
Sem color (0.0,0.0,0.0,1.0) | specular color of material
€cm color (0.0,0.0,0.0,1.0) | emissive color of material
Srm, real 0.0 specular exponent (range:
[0.0,128.0])
Gm real 0.0 ambient color index
dm, real 1.0 diffuse color index
Sm real 1.0 specular color index
Light Source Parameters
ac; color (0.0,0.0,0.0,1.0) | ambient intensity of light 4
d;i(i =0) color | (1.0,1.0,1.0,1.0) | diffuse intensity of light O
dg;(i > 0) color | (0.0,0.0,0.0,1.0) | diffuse intensity of light
sqi(i = 0) color | (1.0,1.0,1.0,1.0) | specular intensity of light 0
sei(1 > 0) color | (0.0,0.0,0.0,1.0) | specular intensity of light 4
P position | (0.0,0.0,1.0,0.0) | position of light
Sdli direction | (0.0,0.0,—1.0) | direction of spotlight for light
Syl real 0.0 spotlight exponent for light ¢
(range: [0.0, 128.0])
Crli real 180.0 spotlight cutoff angle for light 7
(range: [0.0,90.0], 180.0)
koi real 1.0 constant attenuation factor for
light i (range: [0.0, 00))
kq; real 0.0 linear attenuation factor for
light i (range: [0.0, c0))
ko; real 0.0 quadratic attenuation factor for
light i (range: [0.0, 00))
Lighting Model Parameters
Acs color | (0.2,0.2,0.2,1.0) | ambient color of scene
Ubs boolean FALSE viewer assumed to be at
(0,0,0) in eye -coordinates
(TRUE) or (0,0, 00) (FALSE)
Ces enum SINGLE_COLOR | controls computation of colors
tps boolean FALSE use two-sided lighting mode

Table 2.13: Summary of lighting parameters. The range of individual color com-
ponents is (—00, +00).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 79

to Py lot)e that if P has a zero w coordinate and P has non-zero w coordinate,
then PP is the unit vector corresponding to the direction specified by the x, vy,
and z coordinateﬂ) P5; if P; has a zero w coordinate and P9 has a non-zero w
coordinate then PP is the unit vector that is the negative of that corresponding
to the direction specified by P;. If both P; and P have zero w coordinates, then
ITP; is the unit vector obtained by normalizing the direction corresponding to
P, —P;.

If d is an arbitrary direction, then let d be the unit vector in d’s direction. Let
|P1P2|| be the distance between P; and Py. Finally, let V be the point corre-
sponding to the vertex being lit, and n be the corresponding normal. Let P, be the
eyepoint ((0,0,0, 1) in eye coordinates).

Lighting produces two colors at a vertex: a primary color c,; and a secondary
color cge.. The values of c,; and c,.. depend on the light model color control, c.
If ccs = SINGLE_COLOR, then the equations to compute c; and Ce. are

Cpm‘ = €cm
+ Ay *acs
n—1
=+ Z(atti)<3170ti) [acm * Aclg
: —
i=0 + (0O VPy;)den *da;
+ (fz)(n O] hi)smnscm * Scli]
Csec = (070707 1)

If s = SEPARATE_SPECULAR_COLOR, then

Cpri = €cm
+ Acm * Acs
n—1
+ z(atti)(spoti) [acm * A
i=0 + (no VPpli)dcm * g
n—1
Csee = Z(atti)(spoti)(fi)(n O hy)* ™S * Sei;
i=0

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 80

where
1 VB,; #0
fi = ¢ L noVEi£O, 2.8)
0, otherwise,
VP, + VP
hi _ _)pl?, + e - Vps = TRUE, (29)
VB, + (0 0 1)°, wvy, =FALSE,
1 .)
Y lf P)ZL sw # 0’
att, koi + kil VPpii]| + hoil[VPl ' (2.10)
1.0, otherwise.
—) A~ S . —) A
(Poii V © 8413)°, cpyy 7 180.0, Py V © 815 > cos(cp;),
e —
spot; = 0.0, crti # 180.0, Py V © 845 < cos(c,;§2-11)
1.0, Crli = 180.0.

All computations are carried out in eye coordinates.

The value of A produced by lighting is the alpha value associated with dp,.
A is always associated with the primary color c,,;; the alpha component of ¢ is
always 1.

Results of lighting are undefined if the w, coordinate (w in eye coordinates) of
V is zero.

Lighting may operate in two-sided mode ({,s = TRUE), in which a front color
is computed with one set of material parameters (the front material) and a back
color is computed with a second set of material parameters (the back material).
This second computation replaces n with —n. If {;s = FALSE, then the back color
and front color are both assigned the color computed using the front material with
n.

Additionally, vertex and geometry shaders can operate in two-sided color
mode. When a vertex or geometry shader is active, front and back colors
can be computed by the shader and written to the gl_FrontColor, gl_-
BackColor, gl_FrontSecondaryColor and gl_BackSecondaryColor out-
puts. If VERTEX_PROGRAM_TWO_SIDE is enabled, the GL chooses between front
and back colors, as described below. Otherwise, the front color output is always

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 81

selected. Two-sided color mode is enabled and disabled by calling Enable or Dis-
able with the symbolic value VERTEX_PROGRAM_TWO_SIDE.

The selection between back and front colors depends on the primitive of which
the vertex being lit is a part. If the primitive is a point or a line segment, the front
color is always selected. If it is a polygon, then the selection is performed based
on the sign of the (clipped or unclipped) polygon’s area a computed in window
coordinates, as described in equation 3.8 of section 3.6.1. If the sign of a (including
the possible reversal of this sign as indicated by the last call to FrontFace) is
positive, the color of each vertex of the polygon becomes the front color computed
for that vertex; otherwise the back color is selected.

2.13.2 Lighting Parameter Specification

Lighting parameters are divided into three categories: material parameters, light
source parameters, and lighting model parameters (see table 2.13). Sets of lighting
parameters are specified with

void Material{if}(enum face, enum pname, T param);
void Material{if}v(enum face, enumpname, const
T params);
void Light{if}(enum light, enum pname, T param);
void Light{if}v(enum light, enum pname, const T params);
void LightModel{if}(enum pname, T param);
void LightModel{if}v(enum pname, const T params);

pname is a symbolic constant indicating which parameter is to be set (see ta-
ble 2.14). In the vector versions of the commands, params is a pointer to a group
of values to which to set the indicated parameter. The number of values pointed to
depends on the parameter being set. In the non-vector versions, param is a value
to which to set a single-valued parameter. (If param corresponds to a multi-valued
parameter, the error INVALID_ENUM results.) For the Material command, face
must be one of FRONT, BACK, or FRONT_AND_BACK, indicating that the property
name of the front or back material, or both, respectively, should be set. In the case
of Light, light is a symbolic constant of the form LIGHT4, indicating that light 7 is
to have the specified parameter set. The constants obey LIGHT? = LIGHTO + .
Table 2.14 gives, for each of the three parameter groups, the correspondence
between the pre-defined constant names and their names in the lighting equations,
along with the number of values that must be specified with each. Color param-
eters specified with Material and Light are converted to floating-point values (if
specified as integers) as described in equation 2.2. The error INVALID_VALUE

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 82

occurs if a specified lighting parameter lies outside the allowable range given in
table 2.13. (The symbol “oc0” indicates the maximum representable magnitude for
the indicated type.)

Material properties can be changed inside a Begin / End pair by calling Ma-
terial. However, when a vertex shader is active such property changes are not
guaranteed to update material parameters, defined in table 2.14, until the following
End command.

The current model-view matrix is applied to the position parameter indicated
with Light for a particular light source when that position is specified. These
transformed values are the values used in the lighting equation.

The spotlight direction is transformed when it is specified using only the upper
leftmost 3x3 portion of the model-view matrix. That is, if M, is the upper left 3x3
matrix taken from the current model-view matrix M, then the spotlight direction

dy
dy
d,
18 transformed to
d., d
d; =M, | dy
d., d,

An individual light is enabled or disabled by calling Enable or Disable with the
symbolic value LIGHT: (¢ is in the range O to n — 1, where n is the implementation-
dependent number of lights). If light ¢ is disabled, the ith term in the lighting
equation is effectively removed from the summation.

2.13.3 ColorMaterial

It is possible to attach one or more material properties to the current color, so

that they continuously track its component values. This behavior is enabled and

disabled by calling Enable or Disable with the symbolic value COLOR_MATERIAL.
The command that controls which of these modes is selected is

void ColorMaterial(enum face, enum mode);

face is one of FRONT, BACK, or FRONT_AND_BACK, indicating whether the front
material, back material, or both are affected by the current color. mode is one
of EMISSION, AMBIENT, DIFFUSE, SPECULAR, or AMBIENT_AND_DIFFUSE and
specifies which material property or properties track the current color. If mode
1S EMISSION, AMBIENT, DIFFUSE, or SPECULAR, then the value of e, acm,,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 83

Parameter H Name Number of values
Material Parameters (IMaterial)
aem AMBIENT 4
dem DIFFUSE 4
acm, dem AMBIENT_AND_DIFFUSE 4
Sem SPECULAR 4
€ecm EMISSION 4
Srm. SHININESS 1
Ay Ay Sy COLOR_INDEXES 3
Light Source Parameters (Light)
agy; AMBIENT 4
d; DIFFUSE 4
Scli SPECULAR 4
Py POSITION 4
Sdli SPOT_DIRECTION 3
Srli SPOT_EXPONENT 1
Crli SPOT_CUTOFF 1
ko CONSTANT_ATTENUATION 1
k1 LINEAR_ATTENUATION 1
ko QUADRATIC_ATTENUATION 1
Lighting Model Parameters (LightModel)
acs LIGHT_MODEL_AMBIENT 4
Vbs LIGHT_MODEL_LOCAL_VIEWER 1
ths LIGHT_MODEL_TWO_SIDE 1
Ces LIGHT_MODEIL_COLOR_CONTROL 1

Table 2.14: Correspondence of lighting parameter symbols to names. AMBIENT_—
AND_DIFFUSE is used to set a.,, and d.,, to the same value.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING

84

Current
Color

Color*() ========== > To subsequent vertex operations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,
/ and ColorMaterial is enabled. Down otherwise.

.Ko’ Front Ambient Ly To lighting equations

Material*(FRONT,AMBIENT) *=====s==s==sssfecssas »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,
/ and ColorMaterial is enabled. Down otherwise.

’Ko> Front Diffuse g lighting equations

Material*(FRONT,DIFFUSE) ==========s====sfezzzas »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is SPECULAR, and ColorMaterial is
/ enabled. Down otherwise.

.KO’ Front Specular |y To lighting equations

Material*(FRONT,SPECULAR) =============p====== »0 Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is EMISSION, and ColorMaterial is
/ enabled. Down otherwise.

K o »| Front Emission L ___ To lighting equations

Material(FRONT,EMISSION) =============x==s=x2= »0 Color

"""" = State values flow along this path only when a command is issued

= State values flow continuously along this path

Figure 2.12. ColorMaterial operation. Material properties are continuously up-
dated from the current color while ColorMaterial is enabled and has the appro-
priate mode. Only the front material properties are included in this figure. The

FRONT_AND_BACK.

back material properties are treated identically, except that face must be BACK or

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 85

d., or s.,, respectively, will track the current color. If mode is AMBIENT_AND_ -
DIFFUSE, both a.,;, and d.,, track the current color. The replacements made to
material properties are permanent; the replaced values remain until changed by
either sending a new color or by setting a new material value when ColorMaterial
is not currently enabled to override that particular value. When COLOR_MATERIAL
is enabled, the indicated parameter or parameters always track the current color.
For instance, calling

ColorMaterial (FRONT, AMBIENT)

while COLOR_MATERIAL is enabled sets the front material a.,, to the value of the
current color.

Material properties can be changed inside a Begin / End pair indirectly by
enabling ColorMaterial mode and making Color calls. However, when a ver-
tex shader is active such property changes are not guaranteed to update material
parameters, defined in table 2.14, until the following End command.

2.13.4 Lighting State

The state required for lighting consists of all of the lighting parameters (front and
back material parameters, lighting model parameters, and at least 8 sets of light pa-
rameters), a bit indicating whether a back color distinct from the front color should
be computed, at least 8 bits to indicate which lights are enabled, a five-valued vari-
able indicating the current ColorMaterial mode, a bit indicating whether or not
COLOR_MATERIAL is enabled, and a single bit to indicate whether lighting is en-
abled or disabled. In the initial state, all lighting parameters have their default val-
ues. Back color evaluation does not take place, ColorMaterial is FRONT_AND_—
BACK and AMBIENT_AND_DIFFUSE, and both lighting and COLOR_MATERIAL are
disabled.

2.13.5 Color Index Lighting

A simplified lighting computation applies in color index mode that uses many of
the parameters controlling RGBA lighting, but none of the RGBA material param-
eters. First, the RGBA diffuse and specular intensities of light ¢ (d.; and s,
respectively) determine color index diffuse and specular light intensities, dj; and
s; from

dii = (.30)R(dei) + (:59)G(deii) + (:11) B(dei)

and
sii = (:30)R(sai) + (:59)G(sei) + (-11) B(seis)-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.13. FIXED-FUNCTION VERTEX LIGHTING AND COLORING 86

R(x) indicates the R component of the color x and similarly for G(x) and B(x).
Next, let

n
s = Z(atti)(spoti)(sli)(ﬁ)(n ©® h;)®rm
i=0
where att; and spot; are given by equations 2.10 and 2.11, respectively, and f; and
h; are given by equations 2.8 and 2.9, respectively. Let s’ = min{s, 1}. Finally,
let

d =" (att;)(spot;)(dy;)(n ® VB,y,).
1=0

Then color index lighting produces a value ¢, given by
c=am+d(1—5)(dn—an)+ 8 (sm—an).

The final color index is
¢ = min{c, s, }.

The values a,,, d,,, and s,,, are material properties described in tables 2.13 and 2.14.
Any ambient light intensities are incorporated into a,,. As with RGBA lighting,
disabled lights cause the corresponding terms from the summations to be omitted.
The interpretation of 5, and the calculation of front and back colors is carried out
as has already been described for RGBA lighting.

The values a,,, d,,, and s,, are set with Material using a pname of COLOR_-
INDEXES. Their initial values are 0, 1, and 1, respectively. The additional state
consists of three floating-point values. These values have no effect on RGBA light-
ing.

2.13.6 Clamping or Masking

When the GL is in RGBA mode and vertex color clamping is enabled, all com-
ponents of both primary and secondary colors are clamped to the range [0, 1] af-
ter lighting. If color clamping is disabled, the primary and secondary colors are
unmodified. Vertex color clamping is controlled by calling ClampColor, as de-
scribed in section 3.7.5, with a target of CLAMP_VERTEX_COLOR.

For a color index, the index is first converted to fixed-point with an unspecified
number of bits to the right of the binary point; the nearest fixed-point value is
selected. Then, the bits to the right of the binary point are left alone while the
integer portion is masked (bitwise ANDed) with 2" — 1, where n is the number of
bits in a color in the color index buffer (buffers are discussed in chapter 4).

The state required for vertex color clamping is a three-valued integer, initially
set to TRUE.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 87

2.14 Vertex Shaders

2.12 2.13

describe the operations that occur on vertex values and their associ-
ated data.

A vertex shader is an array of strings containing source code for the operations
that are meant to occur on each vertex that is processed. The language used for
vertex shaders is described in the OpenGL Shading Language Specification.

To use a vertex shader, shader source code is first loaded into a shader ob-
ject and then compiled. One or more vertex shader objects are then attached to
a program object. A program object is then linked, which generates executable
code from all the compiled shader objects attached to the program. When a linked
program object is used as the current program object, the executable code for the
vertex shaders it contains is used to process vertices.

In addition to vertex shaders, geometry shaders and fragment shaders can be
created, compiled, and linked into program objects. Geometry shaders affect the
processing of primitives assembled from vertices (see section 2.15). Fragment
shaders affect the processing of fragments during rasterization (see section 3.12).
A single program object can contain all of vertex, geometry, and fragment shaders.

When the program object currently in use includes a vertex shader, its vertex
shader is considered active and is used to process vertices. If the program object
has no vertex shader, or no program object is currently in use,

A vertex shader can reference a number of variables as it executes. Vertex
attributes are the per-vertex values specified in section 2.7. Uniforms are per-
program variables that are constant during program execution. Samplers are a
special form of uniform used for texturing (section 3.9). Varying variables hold
the results of vertex shader execution that are used later in the pipeline. Each of
these variable types is described in more detail below.

2.14.1 Shader Objects

The source code that makes up a program that gets executed by one of the pro-
grammable stages is encapsulated in one or more shader objects.

The name space for shader objects is the unsigned integers, with zero reserved
for the GL. This name space is shared with program objects. The following sections
define commands that operate on shader and program objects by name. Commands
that accept shader or program object names will generate the error INVALID_—
VALUE if the provided name is not the name of either a shader or program object

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 88

and INVALID_OPERATION if the provided name identifies an object that is not the
expected type.
To create a shader object, use the command

uint CreateShader(enum type);

The shader object is empty when it is created. The fype argument specifies the type
of shader object to be created. For vertex shaders, type must be VERTEX_SHADER.
A non-zero name that can be used to reference the shader object is returned. If an
error occurs, zero will be returned.

The command

void ShaderSource(uint shader, sizei count, const
char **string, const int *length);

loads source code into the shader object named shader. string is an array of count
pointers to optionally null-terminated character strings that make up the source
code. The length argument is an array with the number of chaxrs in each string (the
string length). If an element in length is negative, its accompanying string is null-
terminated. If length is NULL, all strings in the string argument are considered null-
terminated. The ShaderSource command sets the source code for the shader to
the text strings in the string array. If shader previously had source code loaded into
it, the existing source code is completely replaced. Any length passed in excludes
the null terminator in its count.

The strings that are loaded into a shader object are expected to form the source
code for a valid shader as defined in the OpenGL Shading Language Specification.

Once the source code for a shader has been loaded, a shader object can be
compiled with the command

void CompileShader(uint shader);

Each shader object has a boolean status, COMPILE_STATUS, that is modified as
a result of compilation. This status can be queried with GetShaderiv (see sec-
tion 6.1.17). This status will be set to TRUE if shader was compiled without errors
and is ready for use, and FALSE otherwise. Compilation can fail for a variety of
reasons as listed in the OpenGL Shading Language Specification. If Compile-
Shader failed, any information about a previous compile is lost. Thus a failed
compile does not restore the old state of shader.

Changing the source code of a shader object with ShaderSource does not
change its compile status or the compiled shader code.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS &9

Each shader object has an information log, which is a text string that is over-
written as a result of compilation. This information log can be queried with Get-
ShaderInfolLog to obtain more information about the compilation attempt (see
section 6.1.17).

An INVALID_OPERATION error is generated if shader is not the name of a
valid shader object generated by CreateShader.

Shader objects can be deleted with the command

void DeleteShader(uint shader);

If shader is not attached to any program object, it is deleted immediately. Oth-
erwise, shader is flagged for deletion and will be deleted when it is no longer
attached to any program object. If an object is flagged for deletion, its boolean
status bit DELETE_STATUS is set to true. The value of DELETE_STATUS can be
queried with GetShaderiv (see section 6.1.17). DeleteShader will silently ignore
the value zero.

2.14.2 Program Objects

The shader objects that are to be used by the programmable stages of the GL are
collected together to form a program object. The programs that are executed by
these programmable stages are called executables. All information necessary for
defining an executable is encapsulated in a program object. A program object is
created with the command

uint CreateProgram(void);

Program objects are empty when they are created. A non-zero name that can be
used to reference the program object is returned. If an error occurs, zero will be
returned.

To attach a shader object to a program object, use the command

void AttachShader(uint program, uint shader);

The error INVALID_OPERATION is generated if shader is already attached to pro-
gram.

Shader objects may be attached to program objects before source code has
been loaded into the shader object, or before the shader object has been compiled.
Multiple shader objects of the same type may be attached to a single program
object, and a single shader object may be attached to more than one program object.

To detach a shader object from a program object, use the command

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 90

void DetachShader(uint program, uint shader);

The error INVALID_OPERATION is generated if shader is not attached to program.
If shader has been flagged for deletion and is not attached to any other program
object, it is deleted.

In order to use the shader objects contained in a program object, the program
object must be linked. The command

void LinkProgram(uint program);

will link the program object named program. Each program object has a boolean
status, LINK_STATUS, that is modified as a result of linking. This status can be
queried with GetProgramiv (see section 6.1.17). This status will be set to TRUE if
a valid executable is created, and FALSE otherwise. Linking can fail for a variety
of reasons as specified in the OpenGL Shading Language Specification. Linking
will also fail if one or more of the shader objects, attached to program are not
compiled successfully, or if more active uniform or active sampler variables are
used in program than allowed (see sections 2.14.4, 2.14.5, and 2.15.3).

Linking will also fail if the program object contains objects to form a geometry
shader (see section 2.15), and

e the program contains no objects to form a vertex shader;

e the input primitive type, output primitive type, or maximum output vertex
count is not specified in any compiled geometry shader object; or

e the input primitive type, output primitive type, or maximum output vertex
count is specified differently in multiple geometry shader objects.

If LinkProgram failed, any information about a previous link of that program
object is lost. Thus, a failed link does not restore the old state of program.

Each program object has an information log that is overwritten as a result of a
link operation. This information log can be queried with GetProgramInfol.og to
obtain more information about the link operation or the validation information (see
section 6.1.17).

If a valid executable is created, it can be made part of the current rendering
state with the command

void UseProgram(uint program);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 91

This command will install the executable code as part of current rendering state if
the program object program contains valid executable code, i.e. has been linked
successfully. If UseProgram is called with program set to 0,

If program has not been successfully linked, the error INVALID_OPERATION is
generated and the current rendering state is not modified.

While a program object is in use, applications are free to modify attached
shader objects, compile attached shader objects, attach additional shader objects,
and detach shader objects. These operations do not affect the link status or exe-
cutable code of the program object.

If the program object that is in use is re-linked successfully, the LinkProgram
command will install the generated executable code as part of the current rendering
state if the specified program object was already in use as a result of a previous call
to UseProgram.

If that program object that is in use is re-linked unsuccessfully, the link status
will be set to FALSE, but existing executable and associated state will remain part
of the current rendering state until a subsequent call to UseProgram removes it
from use. After such a program is removed from use, it can not be made part of the
current rendering state until it is successfully re-linked.

Program objects can be deleted with the command

void DeleteProgram(uint program);

If program is not the current program for any GL context, it is deleted immediately.
Otherwise, program is flagged for deletion and will be deleted when it is no longer
the current program for any context. When a program object is deleted, all shader
objects attached to it are detached. DeleteProgram will silently ignore the value
zero.

2.14.3 Vertex Attributes

Vertex shaders can

define named attribute variables, which are bound to the generic

vertex attributes that are set by VertexAttrib*. This binding can be specified by

the application before the program is linked, or automatically assigned by the GL
when the program is linked.

When an attribute variable declared as a f1oat, vec2, vec3 or vec4 is bound

to a generic attribute index 4, its value(s) are taken from the z, (z,y), (z,y, z), or

(x,y, z, w) components, respectively, of the generic attribute <. When an attribute

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 92

variable is declared as a mat2, mat3x2 or mat4x2, its matrix columns are taken
from the (x, y) components of generic attributes ¢ and i + 1 (mat2), from attributes
¢ through ¢ + 2 (mat3x2), or from attributes ¢ through ¢ + 3 (mat4x2). When an
attribute variable is declared as a mat2x3, mat3 or mat4x3, its matrix columns
are taken from the (z, y, z) components of generic attributes i and 7 + 1 (mat2x3),
from attributes ¢ through 7 4 2 (mat 3), or from attributes 7 through ¢ 4+ 3 (mat 4x3).
When an attribute variable is declared as a mat2x4, mat3x4 or mat4, its matrix
columns are taken from the (z, y, z, w) components of generic attributes ¢ and i + 1
(mat2x4), from attributes ¢ through ¢ + 2 (mat3x4), or from attributes ¢ through
1+ 3 (mat4).
is considered active if itis

determined by the compiler and linker that the attribute may be accessed when the
shader is executed. Attribute variables that are declared in a vertex shader but never
used will not count against the limit. In cases where the compiler and linker cannot
make a conclusive determination, an attribute will be considered active. A program
object will fail to link if the
attributes exceeds MAX_VERTEX_ATTRIBS.

To determine the set of active vertex attributes used by a program, and to de-
termine their types, use the command:

void GetActiveAttrib(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

This command provides information about the attribute selected by index. An in-
dex of 0 selects the first active attribute, and an index of ACTIVE_ATTRIBUTES — 1
selects the last active attribute. The value of ACTIVE_ATTRIBUTES can be queried
with GetProgramiv (see section 6.1.17). If index is greater than or equal to
ACTIVE_ATTRIBUTES, the error INVALID_VALUE is generated. Note that index
simply identifies a member in a list of active attributes, and has no relation to the
generic attribute that the corresponding variable is bound to.

The parameter program is the name of a program object for which the com-
mand LinkProgram has been issued in the past. It is not necessary for program to
have been linked successfully. The link could have failed because the number of
active attributes exceeded the limit.

The name of the selected attribute is returned as a null-terminated string in
name. The actual number of characters written into name, excluding the null termi-
nator, is returned in length. If length is NULL, no length is returned. The maximum
number of characters that may be written into name, including the null terminator,
is specified by bufSize. The returned attribute name

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 93

The length of
the longest attribute name in program is given by ACTIVE_ATTRIBUTE_MAX_—
LENGTH, which can be queried with GetProgramiv (see section 6.1.17).

For the selected attribute, the type of the attribute is returned into fype.
The size of the attribute is returned into size. The value in size is in units of
the type returned in type. The type returned can be any of FLOAT, FLOAT_ -
VEC2, FLOAT_VEC3, FLOAT_VEC4, FLOAT_MAT2, FLOAT_MAT3, FLOAT_MAT4,
FLOAT_MAT2x3, FLOAT_MAT2x4, FLOAT_MAT3x2, FLOAT_MAT3x4, FLOAT_-
MAT4x2, FLOAT_MAT4x3, INT, INT_VEC2, INT_VEC3, INT_VEC4, UNSIGNED_-
INT, UNSIGNED INT_VEC2, UNSIGNED_INT_VEC3, or UNSIGNED_INT_ VECA4.

If an error occurred, the return parameters length, size, type and name will be
unmodified.

This command will return as much information about active attributes as pos-
sible. If no information is available, length will be set to zero and name will be an
empty string. This situation could arise if GetActiveAttrib is issued after a failed
link.

After a program object has been linked successfully, the bindings of attribute
variable names to indices can be queried. The command

int GetAttribLocation(uint program, const char *name);

returns the generic attribute index that the attribute variable named name was bound
to when the program object named program was last linked. name must be a null-
terminated string. If name is active and is an attribute matrix, GetAttribLocation
returns the index of the first column of that matrix. If program has not been suc-
cessfully linked, the error INVALID_OPERATION is generated. If name is not an
active attribute, or if an error occurs, -1 will be
returned.

The binding of an attribute variable to a generic attribute index can also be
specified explicitly. The command

void BindAttribLocation(uint program, uint index, const
char *name);

specifies that the attribute variable named name in program program should be
bound to generic vertex attribute index when the program is next linked. If name
was bound previously, its assigned binding is replaced with index. name must be a
null-terminated string. The error INVALID_VALUE is generated if index is equal or
greater than MAX_VERTEX_ATTRIBS. BindAttribLocation has no effect until the

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 94

program is linked. In particular, it doesn’t modify the bindings of active attribute
variables in a program that has already been linked.

When a program is linked, any active attributes without a binding specified ei-
ther through BindAttribLocation or explicitly set within the shader text will au-
tomatically be bound to vertex attributes by the GL. Such bindings can be queried
using the command GetAttribLocation. LinkProgram will fail if the assigned
binding of an active attribute variable would cause the GL to reference a non-
existent generic attribute (one greater than or equal to the value of MAX_VERTEX_—
ATTRIBS). LinkProgram will fail if the attribute bindings assigned by BindAttri-
bLocation do not leave not enough space to assign a location for an active matrix
attribute or an active attribute array, both of which require multiple contiguous
generic attributes. If an active attribute has a binding explicitly set within the shader
text and a different binding assigned by BindAttribLocation, the assignment in
the shader text is used.

BindAttribLocation may be issued before any vertex shader objects are at-

tached to a program object. Hence it is allowed to bind any name

to an index, including a name that is never used as an at-
tribute in any vertex shader object. Assigned bindings for attribute variables that
do not exist or are not active are ignored.

The values of generic attributes sent to generic attribute index 7 are part of
current If a new program object has
been made active, then these values will be tracked by the GL in such a way that
the same values will be observed by attributes in the new program object that are
also bound to index <.

It is possible for an application to bind more than one attribute name to the
same location. This is referred to as aliasing. This will only work if only one of
the aliased attributes is active in the executable program, or if no path through the
shader consumes more than one attribute of a set of attributes aliased to the same
location. A link error can occur if the linker determines that every path through the
shader consumes multiple aliased attributes, but implementations are not required
to generate an error in this case. The compiler and linker are allowed to assume that
no aliasing is done, and may employ optimizations that work only in the absence
of aliasing.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 95

2.14.4 Uniform Variables

Shaders can declare named uniform variables, as described in the OpenGL Shading
Language Specification. Values for these uniforms are constant over a primitive,
and typically they are constant across many primitives. Uniforms are program
object-specific state. They retain their values once loaded, and their values are
restored whenever a program object is used, as long as the program object has not
been re-linked. A uniform is considered active if it is determined by the compiler
and linker that the uniform will actually be accessed when the executable code
is executed. In cases where the compiler and linker cannot make a conclusive
determination, the uniform will be considered active.

Sets of uniforms can be grouped into uniform blocks. The values of each uni-
form in such a set are extracted from the data store of a buffer object corresponding
to the uniform block. OpenGL Shading Language syntax serves to delimit named
blocks of uniforms that can be backed by a buffer object. These are referred to
as named uniform blocks, and are assigned a uniform block index. Uniforms that
are declared outside of a named uniform block are said to be part of the default
uniform block. Default uniform blocks have no name or uniform block index. Like
uniforms, uniform blocks can be active or inactive. Active uniform blocks are those
that contain active uniforms after a program has been compiled and linked.

The amount of storage available for uniform variables in the default uniform
block accessed by a vertex shader is specified by the value of the implementation-
dependent constant MAX_VERTEX_UNIFORM_COMPONENTS. The total amount of
combined storage available for uniform variables in all uniform blocks accessed
by a vertex shader (including the default uniform block) is specified by the value
of the implementation-dependent constant MAX_ COMBINED_VERTEX_UNIFORM_-—
COMPONENTS. These values represent the numbers of individual floating-point, in-
teger, or boolean values that can be held in uniform variable storage for a vertex
shader. A link error is generated if an attempt is made to utilize more than the space
available for vertex shader uniform variables.

When a program is successfully linked, all active uniforms belonging to the
program object’s default uniform block are initialized as defined by the version of
the OpenGL Shading Language used to compile the program. A successful link
will also generate a location for each active uniform in the default uniform block.
The values of active uniforms in the default uniform block can be changed using
this location and the appropriate Uniform* command (see below). These locations
are invalidated and new ones assigned after each successful re-link.

Similarly, when a program is successfully linked, all active uniforms belong-
ing to the program’s named uniform blocks are assigned offsets (and strides for
array and matrix type uniforms) within the uniform block according to layout rules

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 96

described below. Uniform buffer objects provide the storage for named uniform
blocks, so the values of active uniforms in named uniform blocks may be changed
by modifying the contents of the buffer object using commands such as Buffer-
Data, BufferSubData, MapBuffer, and UnmapBuffer. Uniforms in a named
uniform block are not assigned a location and may not be modified using the
Uniform* commands. The offsets and strides of all active uniforms belonging to
named uniform blocks of a program object are invalidated and new ones assigned
after each successful re-link.

To find the location within a program object of an active uniform variable as-
sociated with the default uniform block, use the command

int GetUniformLocation(uint program, const
char *name);

This command will return the location of uniform variable name if it is as-
sociated with the default uniform block. name must be a null-terminated string,
without white space. The value -1 will be returned if

if name does not correspond to an active uniform variable
name in program, or if name is associated with a named uniform block.

If program has not been successfully linked, the error INVALID_OPERATION
is generated. After a program is linked, the location of a uniform variable will not
change, unless the program is re-linked.

A valid name cannot be a structure, an array of structures, or any portion of
a single vector or a matrix. In order to identify a valid name, the " ." (dot) and
" [1" operators can be used in name to specify a member of a structure or element
of an array.

The first element of a uniform array is identified using the name of the uniform
array appended with " [0] ". Except if the last part of the string name indicates a
uniform array, then the location of the first element of that array can be retrieved
by either using the name of the uniform array, or the name of the uniform array
appended with " [0] ".

Named uniform blocks, like uniforms, are identified by name strings. Uniform
block indices corresponding to uniform block names can be queried by calling

uint GetUniformBlockIndex(uint program, const
char *uniformBlockName);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 97

uniformBlockName must contain a null-terminated string specifying the name
of a uniform block.

GetUniformBlockIndex returns the uniform block index for the uniform block
named uniformBlockName of program. If uniformBlockName does not identify an
active uniform block of program, or an error occurred, then INVALID_INDEX is
returned. The indices of the active uniform blocks of a program are assigned in
consecutive order, beginning with zero.

An active uniform block’s name string can be queried from its uniform block
index by calling

void GetActiveUniformBlockName(uint program,
uint uniformBlockindex, sizei bufSize, sizei *length,
char *uniformBlockName);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformBlockIndex must be an active uniform block index of program, in the
range zero to the value of ACTIVE_UNIFORM_BLOCKS - 1. The value of ACTIVE_—
UNIFORM_BLOCKS can be queried with GetProgramiv (see section 6.1.17). If
uniformBlockIndex is greater than or equal to the value of ACTIVE_UNIFORM_-
BLOCKS, the error INVALID_VALUE is generated.

The string name of the uniform block identified by uniformBlockIndex is re-
turned into uniformBlockName. The name is null-terminated. The actual number
of characters written into uniformBlockName, excluding the null terminator, is re-
turned in length. If length is NULL, no length is returned.

bufSize contains the maximum number of characters (including the null termi-
nator) that will be written back to uniformBlockName.

If an error occurs, nothing will be written to uniformBlockName or length.

Information about an active uniform block can be queried by calling

void GetActiveUniformBlockiv(uint program,
uint uniformBlockindex, enum pname, int *params);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformBlockIndex is an active uniform block index of program. If uniform-
BlockiIndex is greater than or equal to the value of ACTIVE_UNIFORM_BLOCKS, or

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 98

is not the index of an active uniform block in program, the error INVALID_VALUE
is generated.

If no error occurs, the uniform block parameter(s) specified by pname are re-
turned in params. Otherwise, nothing will be written to params.

If pname is UNIFORM_BLOCK_BINDING, then the index of the uniform buffer
binding point last selected by the uniform block specified by uniformBlockiIndex
for program is returned. If no uniform block has been previously specified, zero is
returned.

If pname is UNIFORM_BLOCK_DATA_SIZE, then the implementation-
dependent minimum total buffer object size, in basic machine units, required to
hold all active uniforms in the uniform block identified by uniformBlockIndex is
returned. It is neither guaranteed nor expected that a given implementation will
arrange uniform values as tightly packed in a buffer object. The exception to this
is the std140 uniform block layout, which guarantees specific packing behavior
and does not require the application to query for offsets and strides. In this case the
minimum size may still be queried, even though it is determined in advance based
only on the uniform block declaration (see “Standard Uniform Block Layout” in
section 2.14.4).

The total amount of buffer object storage available for any given uniform block
is subject to an implementation-dependent limit. The maximum amount of avail-
able space, in basic machine units, can be queried by calling GetIntegerv with
the constant MAX_UNIFORM_BLOCK_SIZE. If the amount of storage required for a
uniform block exceeds this limit, a program may fail to link.

If pname is UNIFORM_BLOCK_NAME_LENGTH, then the total length (includ-
ing the null terminator) of the name of the uniform block identified by uniform-
BlockIndex is returned.

If pname is UNIFORM_BLOCK_ACTIVE_UNIFORMS, then the number of active
uniforms in the uniform block identified by uniformBlockIndex is returned.

If pname is UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES, then a list of the
active uniform indices for the uniform block identified by uniformBlockIndex is
returned. The number of elements that will be written to params is the value of
UNIFORM_BLOCK_ACTIVE_UNIFORMS for uniformBlockIndex.

If pname is UNIFORM BLOCK_REFERENCED_BY -
VERTEX_SHADER, UNIFORM_BLOCK_REFERENCED_BY_GEOMETRY_SHADER, Or
UNIFORM_BLOCK_REFERENCED_BY_ FRAGMENT_SHADER, then a boolean value
indicating whether the uniform block identified by uniformBlockIndex is refer-
enced by the vertex, geometry, or fragment programming stages of program, re-
spectively, is returned.

Each active uniform, whether in a named uniform block or in the default block,
is assigned an index when a program is linked. Indices are assigned in consecutive

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 99

order, beginning with zero. The indices assigned to a set of uniforms in a program
may be queried by calling

void GetUniformIndices(uint program,
sizei uniformCount, const char **uniformNames,
uint *uniformindices);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformCount indicates both the number of elements in the array of names
uniformNames and the number of indices that may be written to uniformlindices.

uniformNames contains a list of uniformCount name strings identifying the uni-
form names to be queried for indices. For each name string in uniformNames, the
index assigned to the active uniform of that name will be written to the correspond-
ing element of uniformindices. If a string in uniformNames is not the name of an
active uniform, the value INVALID_INDEX will be written to the corresponding
element of uniformindices.

If an error occurs, nothing is written to uniformindices.

The name of an active uniform may be queried from the corresponding uniform
index by calling

void GetActiveUniformName(uint program,
uint uniformindex, sizei bufSize, sizei *length,
char *uniformName);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

uniformlndex must be an active uniform index of the program program, in
the range zero to the value of ACTIVE_UNIFORMS - 1. The value of ACTIVE_-
UNIFORMS can be queried with GetProgramiv. If uniformindex is greater than or
equal to the value of ACTIVE_UNIFORMS, the error INVALID_VALUE is generated.

The name of the uniform identified by uniformindex is returned as a null-
terminated string in uniformName. The actual number of characters written into
uniformName, excluding the null terminator, is returned in length. If length is
NULL, no length is returned. The maximum number of characters that may be writ-
ten into uniformName, including the null terminator, is specified by bufSize. The

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 100

returned uniform name can be the name of built-in uniform state as well. The com-
plete list of built-in uniform state is described in section 7.5 of the OpenGL Shad-
ing Language Specification. The length of the longest uniform name in program
is given by the value of ACTIVE_UNIFORM_MAX_LENGTH, which can be queried
with GetProgramiv.

If GetActiveUniformName is not successful, nothing is written to length or

uniformName.
Each uniform variable, declared in a shader, is broken down into one or more
strings using the " . " (dot) and " [] " operators, if necessary, to the point that it is

legal to pass each string back into GetUniformLocation, for default uniform block
uniform names, or GetUniformIndices, for named uniform block uniform names.
Information about active uniforms can be obtained by calling either

void GetActiveUniform(uint program, uint index,
sizei bufSize, sizei *length, int *size, enum *type,
char *name);

or

void GetActiveUniformsiv(uint program,
sizei uniformCount, const uint *uniformindices,
enum pname, int *params);

program is the name of a program object for which the command LinkProgram
has been issued in the past. It is not necessary for program to have been linked
successfully. The link could have failed because the number of active uniforms
exceeded the limit.

These commands provide information about the uniform or uniforms selected
by index or uniformindices, respectively. In GetActiveUniform, an index of 0
selects the first active uniform, and an index of the value of ACTIVE_UNIFORMS
- 1 selects the last active uniform. In GetActiveUniformsiv, uniformindices is an
array of such active uniform indices. If any index is greater than or equal to the
value of ACTIVE_UNIFORMS, the error INVALID_VALUE is generated.

For the selected uniform, GetActiveUniform returns the uniform name as a
null-terminated string in name. The actual number of characters written into name,
excluding the null terminator, is returned in length. If length is NULL, no length
is returned. The maximum number of characters that may be written into name,
including the null terminator, is specified by bufSize. The returned uniform name
can be the name of built-in uniform state as well. The complete list of built-in

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 101

uniform state is described in section 7.5 of the OpenGL Shading Language Speci-
fication. The length of the longest uniform name in program is given by ACTIVE_-
UNIFORM_MAX_LENGTH.

Each uniform variable, declared in a shader, is broken down into one or more
strings using the " . " (dot) and " [] " operators, if necessary, to the point that it is
legal to pass each string back into GetUniformLocation, for default uniform block
uniform names, or GetUniformIndices, for named uniform block uniform names.

For the selected uniform, GetActiveUniform returns the type of the uniform
into type and the size of the uniform is into size. The value in size is in units of the
uniform type, which can be any of the type name tokens in table 2.15, correspond-
ing to OpenGL Shading Language type keywords also shown in that table.

If one or more elements of an array are active, GetActiveUniform will return
the name of the array in name, subject to the restrictions listed above. The type of
the array is returned in fype. The size parameter contains the highest array element
index used, plus one. The compiler or linker determines the highest index used.
There will be only one active uniform reported by the GL per uniform array.

GetActiveUniform will return as much information about active uniforms as
possible. If no information is available, length will be set to zero and name will be
an empty string. This situation could arise if GetActiveUniform is issued after a
failed link.

If an error occurs, nothing is written to length, size, type, or name.

Type Name Token Keyword
FLOAT float
FLOAT_VEC2 vec2
FLOAT_VEC3 vec3
FLOAT_VEC4 vecd
INT int
INT_VEC2 ivec2
INT_VEC3 ivec3
INT_VEC4 ivecd
UNSIGNED_INT unsigned int
UNSIGNED_INT_VEC2 uvec?2
UNSIGNED_INT_VEC3 uvec3
UNSIGNED_INT_VEC4 uvec4d
BOOL bool
BOOL_VEC2 bvec2
(Continued on next page)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14.

VERTEX SHADERS

OpenGL Shading Language Type Tokens (continued)

Type Name Token Keyword
BOOL_VEC3 bvec3

BOOL_VEC4 bvecd
FLOAT_MATZ2 mat2

FLOAT_MAT3 mat3

FLOAT_MATA4 mat4
FLOAT_MAT2x3 mat2x3
FLOAT_MAT2x4 mat2x4
FLOAT_MAT3x2 mat3x2
FLOAT_MAT3x4 mat3x4
FLOAT_MAT4x2 mat4x2
FLOAT_MAT4x3 mat4x3
SAMPLER_1D samplerlD
SAMPLER_2D sampler2D
SAMPLER_3D sampler3D
SAMPLER_CUBE samplerCube
SAMPLER_1D_SHADOW samplerlDShadow
SAMPLER_2D_SHADOW sampler2DShadow
SAMPLER_1D_ARRAY samplerlDArray
SAMPLER_2D_ARRAY sampler2DArray

SAMPLER_1D_ARRAY_SHADOW

samplerlDArrayShadow

SAMPLER_2D_ARRAY_SHADOW

sampler2DArrayShadow

SAMPLER_2D_MULTISAMPLE

sampler2DMS

SAMPLER_2D_MULTISAMPLE_-—
ARRAY

sampler2DMSArray

SAMPLER_CUBE_SHADOW

samplerCubeShadow

SAMPLER_BUFFER samplerBuffer
SAMPLER_2D_RECT sampler2DRect
SAMPLER_2D_RECT_SHADOW sampler2DRectShadow
INT_SAMPLER_1D isamplerlD
INT_SAMPLER_2D isampler2D
INT_SAMPLER_3D isampler3D
INT_SAMPLER_CUBE isamplerCube
INT_SAMPLER_1D_ARRAY isamplerlDArray
INT_SAMPLER_2D_ARRAY isampler2DArray

(Continued on next page)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

102

2.14. VERTEX SHADERS 103

OpenGL Shading Language Type Tokens (continued)

Type Name Token Keyword
INT_SAMPLER_2D_ - isampler2DMS
MULTISAMPLE

INT_SAMPLER_2D_ - isampler2DMSArray
MULTISAMPLE_ARRAY

INT_SAMPLER_BUFFER isamplerBuffer
INT_SAMPLER_2D_RECT isampler2DRect

UNSIGNED_INT_SAMPLER_1D usamplerlD
UNSIGNED_INT_SAMPLER_2D usampler2D
UNSIGNED_INT_SAMPLER_3D usampler3D

UNSIGNED_INT_SAMPLER_ - usamplerCube
CUBE

UNSIGNED_INT_SAMPLER_ - usamplerlDArray
1D_ARRAY

UNSIGNED_INT_SAMPLER_ - usampler2DArray
2D_ARRAY

UNSIGNED_INT_SAMPLER_-— usampler2DMS
2D_MULTISAMPLE

UNSIGNED_INT_SAMPLER_ - usampler2DMSArray
2D_MULTISAMPLE_ARRAY
UNSIGNED_INT_SAMPLER_-— usamplerBuffer
BUFFER

UNSIGNED_INT_SAMPLER_- usampler2DRect
2D_RECT

Table 2.15: OpenGL Shading Language type tokens returned by
GetActiveUniform and GetActiveUniformsiv, and correspond-
ing shading language keywords declaring each such type.

For GetActiveUniformsiv, uniformCount indicates both the number of ele-
ments in the array of indices uniformiIndices and the number of parameters written
to params upon successful return. pname identifies a property of each uniform in
uniformlndices that should be written into the corresponding element of params.
If an error occurs, nothing will be written to params.

If pname is UNIFORM_TYPE, then an array identifying the types of the uniforms
specified by the corresponding array of uniformlindices is returned. The returned
types can be any of the values in table 2.15.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS

If pname is UNIFORM_SIZE, then an array identifying the size of the uniforms
specified by the corresponding array of uniformindices is returned. The sizes re-
turned are in units of the type returned by a query of UNIFORM_TYPE. For active
uniforms that are arrays, the size is the number of active elements in the array; for
all other uniforms, the size is one.

If pname is UNIFORM_NAME_LENGTH, then an array identifying the length,
including the terminating null character, of the uniform name strings specified by
the corresponding array of uniformlndices is returned.

If pname is UNIFORM_BLOCK_INDEX, then an array identifying the uniform
block index of each of the uniforms specified by the corresponding array of unifor-
mlndices is returned. The index of a uniform associated with the default uniform
block is -1.

If pname is UNIFORM_OFFSET, then an array of uniform buffer offsets is re-
turned. For uniforms in a named uniform block, the returned value will be its offset,
in basic machine units, relative to the beginning of the uniform block in the buffer
object data store. For uniforms in the default uniform block, -1 will be returned.

If pname is UNIFORM_ARRAY_ STRIDE, then an array identifying the stride
between elements, in basic machine units, of each of the uniforms specified by
the corresponding array of uniformindices is returned. The stride of a uniform
associated with the default uniform block is -1. Note that this information only
makes sense for uniforms that are arrays. For uniforms that are not arrays, but are
declared in a named uniform block, an array stride of zero is returned.

If pname is UNIFORM_MATRIX_STRIDE, then an array identifying the stride
between columns of a column-major matrix or rows of a row-major matrix, in ba-
sic machine units, of each of the uniforms specified by the corresponding array of
uniformindices is returned. The matrix stride of a uniform associated with the de-
fault uniform block is -1. Note that this information only makes sense for uniforms
that are matrices. For uniforms that are not matrices, but are declared in a named
uniform block, a matrix stride of zero is returned.

If pname is UNIFORM_IS_ROW_MAJOR, then an array identifying whether each
of the uniforms specified by the corresponding array of uniformlindices is a row-
major matrix or not is returned. A value of one indicates a row-major matrix, and
a value of zero indicates a column-major matrix, a matrix in the default uniform
block, or a non-matrix.

Loading Uniform Variables In The Default Uniform Block

To load values into the uniform variables of the default uniform block of the pro-
gram object that is currently in use, use the commands

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

104

2.14. VERTEX SHADERS 105

void Uniform{1234}{if}(int location, T value);

void Uniform{1234}{if}v(int location, sizei count, const
T value);

void Uniform{1234}ui(int location, T value);

void Uniform{1234}uiv(int location, sizei count, const
T value);

void UniformMatrix{234}fv(int location, sizei count,
boolean transpose, const float *value);

void UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 }fv(
int location, sizei count, boolean transpose, const
float *value);

The given values are loaded into the default uniform block uniform variable loca-
tion identified by location.

The Uniform*f{v} commands will load count sets of one to four floating-point
values into a uniform location defined as a float, a floating-point vector, an array of
floats, or an array of floating-point vectors.

The Uniform*i{v} commands will load count sets of one to four integer val-
ues into a uniform location defined as a sampler, an integer, an integer vector, an
array of samplers, an array of integers, or an array of integer vectors. Only the
Uniform1i{v} commands can be used to load sampler values (see below).

The Uniform*ui{v} commands will load count sets of one to four unsigned
integer values into a uniform location defined as a unsigned integer, an unsigned
integer vector, an array of unsigned integers or an array of unsigned integer vectors.

The UniformMatrix{234 }fv commands will load count 2 x 2,3 x 3, or 4 x 4
matrices (corresponding to 2, 3, or 4 in the command name) of floating-point values
into a uniform location defined as a matrix or an array of matrices. If transpose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

The UniformMatrix{2x3,3x2,2x4,4x2,3x4,4x3 }fv commands will load count
2x3,3%x2,2x4,4x%x2,3x4, or 4x 3 matrices (corresponding to the numbers in the
command name) of floating-point values into a uniform location defined as a matrix
or an array of matrices. The first number in the command name is the number of
columns; the second is the number of rows. For example, UniformMatrix2x4fv
is used to load a matrix consisting of two columns and four rows. If transpose
is FALSE, the matrix is specified in column major order, otherwise in row major
order.

When loading values for a uniform declared as a boolean, a boolean vector,
an array of booleans, or an array of boolean vectors, the Uniform*i{v}, Uni-
form*ui{v}, and Uniform*f{v} set of commands can be used to load boolean

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 106

values. Type conversion is done by the GL. The uniform is set to FALSE if the
input value is 0 or 0.0f, and set to TRUE otherwise. The Uniform* command used
must match the size of the uniform, as declared in the shader. For example, to
load a uniform declared as a bvec2, any of the Uniform2{if ui}* commands may
be used. An INVALID_OPERATION error will be generated if an attempt is made
to use a non-matching Uniform* command. In this example using Uniform1liv
would generate an error.

For all other uniform types the Uniform* command used must match the
size and type of the uniform, as declared in the shader. No type conversions are
done. For example, to load a uniform declared as a vec4, Uniform4f{v} must be
used. To load a 3 x 3 matrix, UniformMatrix3fv must be used. An INVALID_ -
OPERATION error will be generated if an attempt is made to use a non-matching
Uniform* command. In this example, using Uniformd4i{v} would generate an
error.

When loading N elements starting at an arbitrary position k in a uniform de-
clared as an array, elements k through £ + N — 1 in the array will be replaced
with the new values. Values for any array element that exceeds the highest array
element index used, as reported by GetActiveUniform, will be ignored by the GL.

If the value of location is -1, the Uniform* commands will silently ignore the
data passed in, and the current uniform values will not be changed.

If any of the following conditions occur, an INVALID_OPERATION error is
generated by the Uniform* commands, and no uniform values are changed:

e if the size indicated in the name of the Uniform* command used does not
match the size of the uniform declared in the shader,

e if the uniform declared in the shader is not of type boolean and the type
indicated in the name of the Uniform* command used does not match the
type of the uniform,

e if count is greater than one, and the uniform declared in the shader is not an
array variable,

e if no variable with a location of location exists in the program object cur-
rently in use and /ocation is not -1, or

o if there is no program object currently in use.

Uniform Blocks

The values of uniforms arranged in named uniform blocks are extracted from buffer
object storage. The mechanisms for placing individual uniforms in a buffer object

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 107

and connecting a uniform block to an individual buffer object are described below.

There is a set of implementation-dependent maximums for the number of
active uniform blocks used by each shader (vertex, geometry, and fragment).
If the number of uniform blocks used by any shader in the program exceeds
its corresponding limit, the program will fail to link. The limits for vertex,
geometry, and fragment shaders can be obtained by calling GetIntegerv with
pname values of MAX_VERTEX_UNIFORM_BLOCKS, MAX_GEOMETRY_UNIFORM_-
BLOCKS, and MAX_FRAGMENT_UNIFORM_BLOCKS, respectively.

Additionally, there is an implementation-dependent limit on the sum of the
number of active uniform blocks used by each shader of a program. If a uniform
block is used by multiple shaders, each such use counts separately against this
combined limit. The combined uniform block use limit can be obtained by calling
GetIntegerv with a pname of MAX_COMBINED_UNIFORM_BLOCKS.

When a named uniform block is declared by multiple shaders in a program, it
must be declared identically in each shader. The uniforms within the block must
be declared with the same names and types, and in the same order. If a program
contains multiple shaders with different declarations for the same named uniform
block differs between shader, the program will fail to link.

Uniform Buffer Object Storage

When stored in buffer objects associated with uniform blocks, uniforms are repre-
sented in memory as follows:

e Members of type boo1l are extracted from a buffer object by reading a single
uint-typed value at the specified offset. All non-zero values correspond to
true, and zero corresponds to false.

e Members of type int are extracted from a buffer object by reading a single
int-typed value at the specified offset.

e Members of type uint are extracted from a buffer object by reading a single
uint-typed value at the specified offset.

e Members of type float are extracted from a buffer object by reading a
single float-typed value at the specified offset.

e Vectors with NV elements with basic data types of bool, int, uint, or
float are extracted as /N values in consecutive memory locations begin-
ning at the specified offset, with components stored in order with the first
(X) component at the lowest offset. The GL data type used for component
extraction is derived according to the rules for scalar members above.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 108

e Column-major matrices with C' columns and R rows (using the type
matCxR, or simply matC if C' = R) are treated as an array of C' floating-
point column vectors, each consisting of R components. The column vec-
tors will be stored in order, with column zero at the lowest offset. The dif-
ference in offsets between consecutive columns of the matrix will be re-
ferred to as the column stride, and is constant across the matrix. The column
stride, UNIFORM_MATRIX_STRIDE, is an implementation-dependent value
and may be queried after a program is linked.

e Row-major matrices with C' columns and R rows (using the type matCxR,
or simply matC if C' = R) are treated as an array of R floating-point row
vectors, each consisting of C' components. The row vectors will be stored in
order, with row zero at the lowest offset. The difference in offsets between
consecutive rows of the matrix will be referred to as the row stride, and is
constant across the matrix. The row stride, UNIFORM_MATRIX_ STRIDE, iS
an implementation-dependent value and may be queried after a program is
linked.

e Arrays of scalars, vectors, and matrices are stored in memory by element
order, with array member zero at the lowest offset. The difference in offsets
between each pair of elements in the array in basic machine units is referred
to as the array stride, and is constant across the entire array. The array stride,
UNIFORM_ARRAY_STRIDE, is an implementation-dependent value and may
be queried after a program is linked.

Standard Uniform Block Layout

By default, uniforms contained within a uniform block are extracted from buffer
storage in an implementation-dependent manner. Applications may query the off-
sets assigned to uniforms inside uniform blocks with query functions provided by
the GL.

The layout qualifier provides shaders with control of the layout of uniforms
within a uniform block. When the std140 layout is specified, the offset of each
uniform in a uniform block can be derived from the definition of the uniform block
by applying the set of rules described below.

If a uniform block is declared in multiple shaders linked together into a single
program, the link will fail unless the uniform block declaration, including layout
qualifier, are identical in all such shaders.

When using the std140 storage layout, structures will be laid out in buffer
storage with its members stored in monotonically increasing order based on their
location in the declaration. A structure and each structure member have a base

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 109

offset and a base alignment, from which an aligned offset is computed by rounding
the base offset up to a multiple of the base alignment. The base offset of the first
member of a structure is taken from the aligned offset of the structure itself. The
base offset of all other structure members is derived by taking the offset of the
last basic machine unit consumed by the previous member and adding one. Each
structure member is stored in memory at its aligned offset. The members of a top-
level uniform block are laid out in buffer storage by treating the uniform block as
a structure with a base offset of zero.

1. If the member is a scalar consuming N basic machine units, the base align-
ment is N.

2. If the member is a two- or four-component vector with components consum-
ing N basic machine units, the base alignment is 2N or 4N, respectively.

3. If the member is a three-component vector with components consuming N
basic machine units, the base alignment is 4V.

4. If the member is an array of scalars or vectors, the base alignment and array
stride are set to match the base alignment of a single array element, according
to rules (1), (2), and (3), and rounded up to the base alignment of a vec4. The
array may have padding at the end; the base offset of the member following
the array is rounded up to the next multiple of the base alignment.

5. If the member is a column-major matrix with C' columns and R rows, the
matrix is stored identically to an array of C' column vectors with R compo-
nents each, according to rule (4).

6. If the member is an array of S column-major matrices with C' columns and
R rows, the matrix is stored identically to a row of S x C column vectors
with R components each, according to rule (4).

7. If the member is a row-major matrix with C' columns and R rows, the matrix
is stored identically to an array of R row vectors with C' components each,
according to rule (4).

8. If the member is an array of .S row-major matrices with C' columns and R
rows, the matrix is stored identically to a row of S x R row vectors with C
components each, according to rule (4).

9. If the member is a structure, the base alignment of the structure is /N, where
N is the largest base alignment value of any of its members, and rounded

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 110

up to the base alignment of a vec4. The individual members of this sub-
structure are then assigned offsets by applying this set of rules recursively,
where the base offset of the first member of the sub-structure is equal to the
aligned offset of the structure. The structure may have padding at the end;
the base offset of the member following the sub-structure is rounded up to
the next multiple of the base alignment of the structure.

10. If the member is an array of S structures, the S elements of the array are laid
out in order, according to rule (9).

Uniform Buffer Object Bindings

The value an active uniform inside a named uniform block is extracted from the
data store of a buffer object bound to one of an array of uniform buffer binding
points. The number of binding points can be queried using GetIntegerv with the
constant MAX_UNIFORM_BUFFER_BINDINGS.

Regions of buffer objects are bound as storage for uniform blocks by calling
one of the commands BindBufferRange or BindBufferBase (see section 2.9.1)
with farget set to UNIFORM_BUFFER. In addition to the general errors described in
section 2.9.1, BindBufferRange will generate an INVALID_VALUE error if index
is greater than or equal to the value of MAX_UNIFORM_BUFFER_BINDINGS, or if
offset is not a multiple of the implementation-dependent alignment requirement
(the value of UNIFORM_BUFFER_OFFSET_ALIGNMENT).

Each of a program’s active uniform blocks has a corresponding uniform buffer
object binding point. This binding point can be assigned by calling:

void UniformBlockBinding(uint program,
uint uniformBlockindex, uint uniformBlockBinding);

program is a name of a program object for which the command LinkProgram has
been issued in the past.

An INVALID_VALUE error is generated if uniformBlockIndex is not an active
uniform block index of program, or if uniformBlockBinding is greater than or equal
to the value of MAX_UNIFORM_BUFFER_BINDINGS.

If successful, UniformBlockBinding specifies that program will use the data
store of the buffer object bound to the binding point uniformBlockBinding to extract
the values of the uniforms in the uniform block identified by uniformBlockIndex.

When executing shaders that access uniform blocks, the binding point corre-
sponding to each active uniform block must be populated with a buffer object with
a size no smaller than the minimum required size of the uniform block (the value

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 111

of UNIFORM_BLOCK_DATA_SIZE). For binding points populated by BindBuffer-
Range, the size in question is the value of the size parameter. If any active uniform
block is not backed by a sufficiently large buffer object, the results of shader ex-
ecution are undefined, and may result in GL interruption or termination. Shaders
may be executed to process the primitives and vertices specified

by vertex array commands (see section 2.8).

When a program object is linked or re-linked, the uniform buffer object binding
point assigned to each of its active uniform blocks is reset to zero.

2.14.5 Samplers

Samplers are special uniforms used in the OpenGL Shading Language to identify
the texture object used for each texture lookup. The value of a sampler indicates
the texture image unit being accessed. Setting a sampler’s value to ¢ selects texture
image unit number ¢. The values of ¢ range from zero to the implementation-
dependent maximum supported number of texture image units.

The type of the sampler identifies the target on the texture image unit. The
texture object bound to that texture image unit’s target is then used for the texture
lookup. For example, a variable of type sampler2D selects target TEXTURE_2D
on its texture image unit. Binding of texture objects to targets is done as usual with
BindTexture. Selecting the texture image unit to bind to is done as usual with
ActiveTexture.

The location of a sampler needs to be queried with GetUniformLocation, just
like any uniform variable. Sampler values need to be set by calling Uniform1i{v}.
Loading samplers with any of the other Uniform* entry points is not allowed and
will result in an INVALID_OPERATION error.

It is not allowed to have variables of different sampler types pointing to the
same texture image unit within a program object. This situation can only be de-
tected at the next rendering command issued, and an INVALID_OPERATION error
will then be generated.

Active samplers are samplers actually being used in a program object. The
LinkProgram command determines if a sampler is active or not. The LinkPro-
gram command will attempt to determine if the active samplers in the shader(s)
contained in the program object exceed the maximum allowable limits. If it de-
termines that the count of active samplers exceeds the allowable limits, then the
link fails (these limits can be different for different types of shaders). Each active
sampler variable counts against the limit, even if multiple samplers refer to the
same texture image unit.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 112

2.14.6 Varying Variables

A vertex shader may define one or more varying variables (see the OpenGL Shad-
ing Language Specification). Varying variables are outputs of a vertex shader. The
OpenGL Shading Language Specification also defines a set of built-in varying and
special variables that vertex shaders can write to (see sections 7.1 and 7.6 of the
OpenGL Shading Language Specification). These varying variables are either used
as the mechanism to communicate values to a geometry shader, if one is active, or
to communicate values to the fragment shader and to the fixed-function processing
that occurs after vertex shading.

If a geometry shader is not active, the values of all varying and special vari-
ables are expected to be interpolated across the primitive being rendered, unless
flatshaded. Otherwise the values of all varying and special variables are collected
by the primitive assembly stage and passed on to the geometry shader once enough
data for one primitive has been collected (see section 2.15).

The number of components (individual scalar numeric values) of varying and
special variables that can be written by the vertex shader, whether or not a geometry
shader is active, is given by the value of the implementation-dependent constant
MAX_VERTEX_OUTPUT_COMPONENTS. Outputs declared as vectors, matrices, and
arrays will all consume multiple components.

When a program is linked, all components of any varying and special vari-
able written by a vertex shader will count against this limit. A program whose
vertex shader writes more than the value of MAX_VERTEX_OUTPUT_COMPONENTS
components worth of varying variables may fail to link, unless device-dependent
optimizations are able to make the program fit within available hardware resources.

Additionally, when linking a program containing only a vertex and frag-
ment shader, there is a limit on the total number of components used as vertex
shader outputs or fragment shader inputs. This limit is given by the value of the
implementation-dependent constant MAX_VARYING_COMPONENTS. Each varying
or special variable component used as either a vertex shader output or fragment
shader input count against this limit, except for the components of g1_Position.
A program containing only a vertex and fragment shader that accesses more than
this limit’s worth of components of varying and special variables may fail to link,
unless device-dependent optimizations are able to make the program fit within
available hardware resources.

Each program object can specify a set of one or more vertex or geometry shader
output variables to be recorded in transform feedback mode (see section 2.19).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 113

When a geometry shader is active (see section 2.15), transform feedback records
the values of the selected geometry shader output variables from the emitted ver-
tices. Otherwise, the values of the selected vertex shader output variables are
recorded. The values to record are specified with the command

void TransformFeedbackVaryings(uint program,
sizei count, const char **varyings, enum bufferMode);

program specifies the program object. count specifies the number of vary-
ing variables used for transform feedback. varyings is an array of count zero-
terminated strings specifying the names of the varying variables to use for trans-
form feedback.

Varying vari-
ables are written out in the order they appear in the array varyings. bufferMode is
either INTERLEAVED_ATTRIBS or SEPARATE_ATTRIBS, and identifies the mode
used to capture the varying variables when transform feedback is active. The error
INVALID_VALUE is generated if bufferMode is SEPARATE_ATTRIBS and count is
greater than the value of the implementation-dependent limit MAX_TRANSFORM_ -
FEEDBACK_SEPARATE_ATTRIBS.

The state set by TransformFeedbackVaryings has no effect on the execu-
tion of the program until program is subsequently linked. When LinkProgram is
called, the program is linked so that the values of the specified varying variables
for the vertices of each primitive generated by the GL are written to a single buffer
object (if the buffer mode is INTERLEAVED_ATTRIBS) or multiple buffer objects
(if the buffer mode is SEPARATE_ATTRIBS). A program will fail to link if:

e the count specified by TransformFeedbackVaryings is non-zero, but the
program object has no vertex or geometry shader;

e any variable name specified in the varyings array is not declared as an output
in the vertex shader (or the geometry shader, if active).

e any two entries in the varyings array specify the same varying variable;

o the total number of components to capture in any varying variable in varyings
is greater than the constant MAX_TRANSFORM_FEEDBACK_SEPARATE_-—
COMPONENTS and the buffer mode is SEPARATE_ATTRIBS; or

e the total number of components to capture is greater than the constant
MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS and the buffer
mode iS INTERLEAVED_ATTRIBS.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 114

To determine the set of varying variables in a linked program object that will
be captured in transform feedback mode, the command:

void GetTransformFeedbackVarying(uint program,
uint index, sizei bufSize, sizei *length, sizei *size,
enum *type, char *name);

provides information about the varying variable selected by index. An index of 0O
selects the first varying variable specified in the varyings array of TransformFeed-
backVaryings, and an index of TRANSFORM_FEEDBACK_VARYINGS-1 selects the
last such varying variable. The value of TRANSFORM_FEEDBACK_VARYINGS can
be queried with GetProgramiv (see section 6.1.17). If index is greater than or
equal to TRANSFORM_FEEDBACK_VARYINGS, the error INVALID_VALUE is gen-
erated. The parameter program is the name of a program object for which the com-
mand LinkProgram has been issued in the past. If program has not been linked,
the error INVALID_OPERATION is generated. If a new set of varying variables is
specified by TransformFeedback Varyings after a program object has been linked,
the information returned by GetTransformFeedbackVarying will not reflect those
variables until the program is re-linked.

The name of the selected varying is returned as a null-terminated string in
name. The actual number of characters written into name, excluding the null termi-
nator, is returned in length. If length is NULL, no length is returned. The maximum
number of characters that may be written into name, including the null termina-
tor, is specified by bufSize.

The length of the longest varying name in program is given by TRANSFORM_ -
FEEDBACK_VARYING_MAX_LENGTH, which can be queried with GetProgramiv
(see section 6.1.17).

For the selected varying variable, its type is returned into type. The size of
the varying is returned into size. The value in size is in units of the type returned
in type. The type returned can be any of the scalar, vector, or matrix attribute
types returned by GetActiveAttrib. If an error occurred, the return parameters
length, size, type and name will be unmodified. This command will return as much
information about the varying variables as possible. If no information is available,
length will be set to zero and name will be an empty string. This situation could
arise if GetTransformFeedbackVarying is called after a failed link.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14.

VERTEX SHADERS 115

2.14.7 Shader Execution

If a successfully linked program object that contains a vertex shader is made current
by calling UseProgram, the executable version of the vertex shader is used to
process incoming vertex values, rather than the fixed-function vertex processing
described in sections 2.12 through 2.13. In particular,

The model-view and projection matrices are not applied to vertex coordi-
nates (section 2.12).

The texture matrices are not applied to texture coordinates (section 2.12.1).

Normals are not transformed to eye coordinates, and are not rescaled or nor-
malized (section 2.12.2).

Normalization of AUTO_NORMATL evaluated normals is not performed. (sec-
tion 5.1).

Texture coordinates are not generated automatically (section 2.12.3).
Per vertex lighting is not performed (section 2.13.1).

Color material computations are not performed (section 2.13.3).
Color index lighting is not performed (section 2.13.5).

All of the above applies when setting the current raster position (sec-
tion 2.24).

If a geometry shader (see section 2.15) is active, vertices processed by the
vertex shader are passed to the geometry shader for further processing. Otherwise,
the following operations are applied to vertices processed by the vertex shader:

Color clamping or masking (section 2.13.6).

Perspective division on clip coordinates (section 2.16).

Viewport mapping, including depth range scaling (section 2.16.1).
Flatshading (section 2.21).

Clipping, including client-defined clip planes (section 2.22).

Front face determination (section 2.13.1).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 116

. attribute clipping (sec-
tion 2.22.1).

2.23

There are several special considerations for vertex shader execution described
in the following sections.

Shader Only Texturing

This section describes texture functionality that is accessible through vertex,
geometry, or fragment shaders. Also refer to section 3.9 and to section 8.7 of the
OpenGL Shading Language Specification,

Texel Fetches

The OpenGL Shading Language texel fetch functions provide the ability to extract
a single texel from a specified texture image. The integer coordinates passed to
the texel fetch functions are used directly as the texel coordinates (i, j, k) into the
texture image. This in turn means the texture image is point-sampled (no filtering
is performed).

The OpenGL Shading Language texel fetch functions provide the ability to ex-
tract a single texel from a specified texture image. The integer coordinates passed
to the texel fetch functions are used direetly as the texel coordinates (i, 7, k) into
the texture image. This in turn means the texture image is point-sampled (no filter-
ing is performed), but the remaining steps of texture access (described below) are
still applied.

The level of detail accessed is computed by adding the specified level-of-detail
parameter lod to the base level of the texture, levelpqge-

The texel fetch functions can not perform depth comparisons or access cube
maps. Unlike filtered texel accesses, texel fetches do not support LOD clamping or
any texture wrap mode, and require a mipmapped minification filter to access any
level of detail other than the base level.

The results of the texel fetch are undefined if any of the following conditions
hold:

o the computed level of detail is less than the texture’s base level (levelpqse) or
greater than the maximum level (level,,q:)

o the computed level of detail is not the texture’s base level and the texture’s
minification filter is NEAREST or LINEAR

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 117

e the layer specified for array textures is negative or greater than the number
of layers in the array texture,

e the texel coordinates (i, j, k) refer to a texel outside the defined extents of
the specified level of detail, where any of

and the size parameters ws, hg, and dg refer to the width,
height, and depth of the image, as in equation 3.17

o the texture being accessed is not complete, as defined in section 3.9.14.

Multisample Texel Fetches

Multisample buffers do not have mipmaps, and there is no level of detail parameter
for multisample texel fetches. Instead, an integer parameter selects the sample
number to be fetched from the buffer. The number identifying the sample is the
same as the value used to query the sample location using GetMultisamplefv.
Multisample textures support only NEAREST filtering.

Additionally, this fetch may only be performed on a multisample texture sam-
pler. No other sample or fetch commands may be performed on a multisample
texture sampler.

Texture Size Query

The OpenGL Shading Language texture size functions provide the ability to query
the size of a texture image. The LOD value lod passed in as an argument to the
texture size functions is added to the levely,s. Of the texture to determine a tex-
ture image level. The dimensions of that image level, excluding a possible bor-
der, are then returned. If the computed texture image level is outside the range
[levelpase, levelay], the results are undefined. When querying the size of an array
texture, both the dimensions and the layer index are returned.

Texture Access

Shaders have the ability to do a lookup into a texture map. The maximum num-
ber of texture image units available to vertex, geometry, or fragment shaders
are respectively the values of the implementation-dependent constants MAX_-
VERTEX_TEXTURE_IMAGE_UNITS, MAX GEOMETRY_ TEXTURE_IMAGE_UNITS,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 118

and MAX_TEXTURE_IMAGE_UNITS. The vertex shader, geometry shader, and frag-
ment combined cannot use more than the value of MAX COMBINED -
TEXTURE_IMAGE_UNITS texture image units. If more than one of the vertex
shader, geometry shader, and fragment processing stage access the same texture
image unit, each such access counts separately against the MAX_COMBINED_—
TEXTURE_IMAGE_UNITS limit.

When a texture lookup is performed in a vertex or geometry shader, the filtered
texture value 7 is computed in the manner described in sections 3.9.11 and 3.9.12,
and converted to a texture base color (3 as shown in table 3.25, followed by
application of the texture swizzle as described in section 3.9.16 to compute the
texture source color C; and Ajg.

The resulting four-component vector (Rs, G, Bs, As) is returned to the
shader. Texture lookup functions (see section 8.7 of the OpenGL Shading Lan-
guage Specification) may return floating-point, signed, or unsigned integer values
depending on the function and the internal format of the texture.

In a vertex or geometry shader, it is not possible to perform automatic level-of-
detail calculations using partial derivatives of the texture coordinates with respect
to window coordinates as described in section 3.9.11. Hence, there is no automatic
selection of an image array level. Minification or magnification of a texture map
is controlled by a level-of-detail value optionally passed as an argument in the
texture lookup functions. If the texture lookup function supplies an explicit level-
of-detail value [, then the pre-bias level-of-detail value Apyse (2, y) = [(replacing
equation 3.18). If the texture lookup function does not supply an explicit level-of-
detail value, then A\pyse(z,y) = 0. The scale factor p(x, y) and its approximation
function f(x,y) (see equation 3.22) are ignored.

Texture lookups involving textures with depth component data can either re-
turn the depth data directly or return the results of a comparison with a reference
depth value specified in the coordinates passed to the texture lookup function, as
described in section 3.9.17. The comparison operation is requested in the shader by
using any of the shadow sampler types (samplerlDShadow, sampler2DShadow,
or sampler2DRectShadow), and in the texture using the TEXTURE_COMPARE_ —
MODE parameter. These requests must be consistent; the results of a texture lookup
are undefined if any of the following conditions are true:

e The sampler used in a texture lookup function is not one of the shadow
sampler types, the texture object’s internal format is DEPTH_COMPONENT
or DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE is not NONE.

e The sampler used in a texture lookup function is one of the shadow sam-
pler types, the texture object’s internal format is DEPTH_COMPONENT oOr
DEPTH_STENCIL, and the TEXTURE_COMPARE_MODE iS NONE.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 119

e The sampler used in a texture lookup function is one of the shadow sampler
types, and the texture object’s internal format is not DEPTH_COMPONENT or
DEPTH_STENCIL.

The stencil index texture internal component is ignored if the base internal
format is DEPTH_STENCIL.

Using a sampler in a vertex or geometry shader will return (R, G, B, A) =
(0,0,0,1) if the sampler’s associated texture is not complete, as defined in sec-
tion 3.9.14.

Shader Inputs

Besides having access to vertex attributes and uniform variables, vertex shaders
can access the read-only built-in variables g1_vertexID and gl_InstanceID.

gl_VertexID holds the integer index 7 explicitly passed to ArrayElement to
specify the vertex, or implicitly passed by DrawArrays or one of the other drawing
commands defined in section 2.8.2. The value of g1_Vertex1D is defined if and
only if:

e the vertex comes from a vertex array command that specifies a complete
primitive (a vertex array drawing command other than ArrayElement).

e all enabled vertex arrays have non-zero buffer object bindings, and

e the vertex does not come from a display list, even if the display list was
compiled using one of the vertex array commands described above with data
sourced from buffer objects.

gl_InstanceID holds the integer index of the current primitive in an in-
stanced draw call (see section 2.8.2).

Section 7.1 of the OpenGL Shading Language Specification also describes
these variables.

Shader Outputs

A vertex shader can write to built-in as well as user-defined varying variables.
These values are expected to be interpolated across the primitive it outputs, unless
they are specified to be flat shaded. Refer to section 2.21 and sections 4.3.6, 7.1,
and 7.6 of the OpenGL Shading Language Specification for more detail.

The built-in output variables gl_FrontColor, gl_BackColor, gl_-
FrontSecondaryColor, and gl_BackSecondaryColor hold the front and
back colors for the primary and secondary colors for the current vertex.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 120

The built-in output variable g1_TexCoord[] is an array and holds the set of
texture coordinates for the current vertex.

The built-in output variable g1_FogFragCoord is used as the ¢ value de-
scribed in section 3.11.

The built-in special variable g1_Position is intended to hold the homoge-
neous vertex position. Writing g1_Position is optional.

The built-in special variables g1 _ClipVertex and gl _ClipDistance re-
spectively hold the vertex coordinate and clip distance(s) used in the clipping stage,
as described in section 2.22. If clipping is enabled, only one of g1 _Clipvertex
and gl_ClipDistance should be written.

The built in special variable g1_PointsSize, if written, holds the size of the
point to be rasterized, measured in pixels.

Position Invariance

If a vertex shader uses the built-in function ftransform to generate a vertex posi-
tion, then this generally guarantees that the transformed position will be the same
whether using this vertex shader or the fixed-function pipeline. This allows for cor-
rect multi-pass rendering algorithms, where some passes use fixed-function vertex
transformation and other passes use a vertex shader. If a vertex shader does not use
ftransform to generate a position, transformed positions are not guaranteed to
match, even if the sequence of instructions used to compute the position match the
sequence of transformations described in section 2.12.

Validation

It is not always possible to determine at link time if a program object actually will
execute. Therefore validation is done when the first rendering command is issued,
to determine if the currently active program object can be executed. If it cannot be
executed then no fragments will be rendered, and the error INVALID_OPERATION
will be generated.

This error is generated by Begin, RasterPos, or any command that performs
an implicit Begin if:

e any two active samplers in the current program object are of different types,
but refer to the same texture image unit,

e any active sampler in the current program object refers to a texture image
unit where fixed-function fragment processing accesses a texture target that
does not match the sampler type, or

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 121

The INVALID_OPERATION error reported by these rendering commands may
not provide enough information to find out why the currently active program object
would not execute. No information at all is available about a program object that
would still execute, but is inefficient or suboptimal given the current GL state. As
a development aid, use the command

void ValidateProgram(uint program);

to validate the program object program against the current GL state. Each program
object has a boolean status, VALIDATE_STATUS, that is modified as a result of
validation. This status can be queried with GetProgramiv (see section 6.1.17).
If validation succeeded this status will be set to TRUE, otherwise it will be set to
FALSE. If validation succeeded the program object is guaranteed to execute, given
the current GL state. If validation failed, the program object is guaranteed to not
execute, given the current GL state.

ValidateProgram will check for all the conditions that could lead to an
INVALID_OPERATION error when rendering commands are issued, and may check
for other conditions as well. For example, it could give a hint on how to optimize
some piece of shader code. The information log of program is overwritten with
information on the results of the validation, which could be an empty string. The
results written to the information log are typically only useful during application
development; an application should not expect different GL implementations to
produce identical information.

A shader should not fail to compile, and a program object should not fail to
link due to lack of instruction space or lack of temporary variables. Implementa-
tions should ensure that all valid shaders and program objects may be successfully
compiled, linked and executed.

Undefined Behavior

When using array or matrix variables in a shader, it is possible to access a vari-
able with an index computed at run time that is outside the declared extent of the
variable. Such out-of-bounds accesses have undefined behavior, and system er-
rors (possibly including program termination) may occur. The level of protection
provided against such errors in the shader is implementation-dependent.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.14. VERTEX SHADERS 122

2.14.8 Required State

The GL maintains state to indicate which shader and program object names are in
use. Initially, no shader or program objects exist, and no names are in use.
The state required per shader object consists of:

e An unsigned integer specifying the shader object name.

e An integer holding the value of SHADER_TYPE.

e A boolean holding the delete status, initially FALSE.

e A boolean holding the status of the last compile, initially FALSE.

e An array of type char containing the information log, initially empty.
e An integer holding the length of the information log.

e An array of type char containing the concatenated shader string, initially
empty.

e An integer holding the length of the concatenated shader string.

The state required per program object consists of:

e An unsigned integer indicating the program object name.

e A boolean holding the delete status, initially FALSE.

e A boolean holding the status of the last link attempt, initially FALSE.

e A boolean holding the status of the last validation attempt, initally FALSE.
e An integer holding the number of attached shader objects.

e A list of unsigned integers to keep track of the names of the shader objects
attached.

e An array of type char containing the information log, initially empty.

e An integer holding the length of the information log.

e An integer holding the number of active uniforms.

e For each active uniform, three integers, holding its location, size, and type,

and an array of type char holding its name.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.15. GEOMETRY SHADERS 123

e An array holding the values of each active uniform.
¢ An integer holding the number of active attributes.

e For each active attribute, three integers holding its location, size, and type,
and an array of type char holding its name.

Additional state required to support vertex shaders consists of:

e A bit indicating whether or not vertex program two-sided color mode is en-
abled, initially disabled.

e A bit indicating whether or not program point size mode (section 3.4.1) is
enabled, initially disabled.

Additionally, one unsigned integer is required to hold the name of the current pro-
gram object, if any.

2.15 Geometry Shaders

After vertices are processed, they are arranged into primitives, as described in sec-
tion 2.6.1. This section describes optional geometry shaders, an additional pipeline
stage defining operations to further process those primitives. Geometry shaders are
defined by source code in the OpenGL Shading Language, in the same manner as
vertex shaders. They operate on a single primitive at a time and emit one or more
output primitives, all of the same type, which are then processed like an equivalent
OpenGL primitive specified by the application. The original primitive is discarded
after geometry shader execution. The inputs available to a geometry shader are the
transformed attributes of all the vertices that belong to the primitive. Additional
adjacency primitives are available which also make the transformed attributes of
neighboring vertices available to the shader. The results of the shader are a new set
of transformed vertices, arranged into primitives by the shader.

The geometry shader pipeline stage is inserted after primitive assembly, prior
to transform feedback (section 2.19).

Geometry shaders are created as described in section 2.14.1 using a fype of
GEOMETRY_SHADER. They are attached to and used in program objects as described
in section 2.14.2. When the program object currently in use includes a geometry
shader, its geometry shader is considered active, and is used to process primitives.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.15. GEOMETRY SHADERS 124

If the program object has no geometry this
stage is bypassed.

A program object that includes a geometry shader must also include a vertex
shader; otherwise a link error will occur.

2.15.1 Geometry Shader Input Primitives

A geometry shader can operate on one of five input primitive types. Depending on
the input primitive type, one to six input vertices are available when the shader is
executed. Each input primitive type supports a subset of the primitives provided
by the GL. If a geometry shader is active,

will generate an INVALID_OPERATION error if the primitive
mode parameter is incompatible with the input primitive type of the currently active
program object, as discussed below.

A geometry shader that accesses more input vertices than are available for a
given input primitive type can be successfully compiled, because the input prim-
itive type is not part of the shader object. However, a program object containing
a shader object that accesses more input vertices than are available for the input
primitive type of the program object will not link.

The input primitive type is specified in the geometry shader source code using
an input layout qualifier, as described in the OpenGL Shading Language Specifi-
cation. A program will fail to link if the input primitive type is not specified by
any geometry shader object attached to the program, or if it is specified differently
by multiple geometry shader objects. The input primitive type may be queried by
calling GetProgramiv with the symbolic constant GEOMETRY_INPUT_TYPE. The
supported types and the corresponding OpenGL Shading Language input layout
qualifier keywords are:

Points (points)

Geometry shaders that operate on points are valid only for the POINTS primi-
tive type. There is only a single vertex available for each geometry shader invoca-
tion.

Lines (1ines)

Geometry shaders that operate on line segments are valid only for the LINES,
LINE_STRIP, and LINE_LOOP primitive types. There are two vertices available
for each geometry shader invocation. The first vertex refers to the vertex at the
beginning of the line segment and the second vertex refers to the vertex at the end
of the line segment. See also section 2.15.4.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.15. GEOMETRY SHADERS 125

Lines with Adjacency (1ines_adjacency)

Geometry shaders that operate on line segments with adjacent vertices are valid
only for the LINES_ADJACENCY and LINE_STRIP_ADJACENCY primitive types.
There are four vertices available for each program invocation. The second vertex
refers to attributes of the vertex at the beginning of the line segment and the third
vertex refers to the vertex at the end of the line segment. The first and fourth
vertices refer to the vertices adjacent to the beginning and end of the line segment,
respectively.

Triangles (triangles)

Geometry shaders that operate on triangles are valid for the TRIANGLES,
TRIANGLE_STRIP and TRIANGLE_FAN primitive types. There are three vertices
available for each program invocation. The first, second and third vertices refer to
attributes of the first, second and third vertex of the triangle, respectively.

Triangles with Adjacency (triangles_adjacency)

Geometry shaders that operate on triangles with adjacent vertices are valid
for the TRIANGLES_ADJACENCY and TRIANGLE_STRIP_ADJACENCY primitive
types. There are six vertices available for each program invocation. The first, third
and fifth vertices refer to attributes of the first, second and third vertex of the tri-
angle, respectively. The second, fourth and sixth vertices refer to attributes of the
vertices adjacent to the edges from the first to the second vertex, from the second
to the third vertex, and from the third to the first vertex, respectively.

2.15.2 Geometry Shader Output Primitives

A geometry shader can generate primitives of one of three types. The supported
output primitive types are points (POINTS), line strips (LINE_STRIP), and triangle
strips (TRIANGLE_STRIP). The vertices output by the geometry shader are assem-
bled into points, lines, or triangles based on the output primitive type in the man-
ner described in section 2.6.1. The resulting primitives are then further processed
as described in section 2.15.4. If the number of vertices emitted by the geometry
shader is not sufficient to produce a single primitive, nothing is drawn. The number
of vertices output by the geometry shader is limited to a maximum count specified
in the shader.

The output primitive type and maximum output vertex count are specified in
the geometry shader source code using an output layout qualifier, as described in
section 4.3.8.1 of the OpenGL Shading Language Specification. A program will
fail to link if either the output primitive type or maximum output vertex count are
not specified by any geometry shader object attached to the program, or if they

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.15. GEOMETRY SHADERS 126

are specified differently by multiple geometry shader objects. The output primi-
tive type and maximum output vertex count of a linked program may be queried
by calling GetProgramiv with the symbolic constants GEOMETRY_OUTPUT_TYPE
and GEOMETRY_VERTICES_OUT, respectively.

2.15.3 Geometry Shader Variables

Geometry shaders can access uniforms belonging to the current program ob-
ject. The amount of storage available for geometry shader uniform variables is
specified by the implementation dependent constant MAX_GEOMETRY_UNIFORM_ -
COMPONENTS. This value represents the number of individual floating-point, inte-
ger, or boolean values that can be held in uniform variable storage for a geometry
shader. A link error will be generated if an attempt is made to utilize more than the
space available for geometry shader uniform variables. Uniforms are manipulated
as described in section 2.14.4. Geometry shaders also have access to samplers to
perform texturing operations, as described in sections 2.14.5 and 3.9.

Geometry shaders can access the transformed attributes of all vertices for their
input primitive type using input varying variables. A vertex shader writing to out-
put varying variables generates the values of these input varying variables, includ-
ing values for built-in as well as user-defined varying variables. Values for any
varying variables that are not written by a vertex shader are undefined. Addition-
ally, a geometry shader has access to a built-in variable that holds the ID of the
current primitive. This ID is generated by the primitive assembly stage that sits in
between the vertex and geometry shader.

Additionally, geometry shaders can write to one or more varying variables for
each vertex they output. These values are optionally flatshaded (using the OpenGL
Shading Language varying qualifier £1at) and clipped, then the clipped values
interpolated across the primitive (if not flatshaded). The results of these interpo-
lations are available to

2.15.4 Geometry Shader Execution Environment

If a successfully linked program object that contains a geometry shader is made
current by calling UseProgram, the executable version of the geometry shader is
used to process primitives resulting from the primitive assembly stage.

The following operations are applied to the primitives that are the result of
executing a geometry shader:

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.15. GEOMETRY SHADERS 127

e Color clamping or masking (section 2.13.6).

e Perspective division on clip coordinates (section 2.16).

e Viewport mapping, including depth range scaling (section 2.16.1).
e Flatshading (section 2.21).

e Clipping, including client-defined clip planes (section 2.22).

e Front face determination (section 2.13.1).

e Color, texture coordinate, fog, point-size and generic attribute clipping (sec-
tion 2.22.1).

e Final color processing (section 2.23).

There are several special considerations for geometry shader execution de-
scribed in the following sections.

Texture Access

The Shader Only Texturing subsection of section 2.14.7 describes texture lookup
functionality accessible to a vertex shader. The texel fetch and texture size query
functionality described there also applies to geometry shaders.

Geometry Shader Inputs

Section 7.1 of the OpenGL Shading Language Specification describes the built-in
variable array g1_in [] available as input to a geometry shader. g1_in[] receives
values from equivalent built-in output variables written by the vertex shader, and
each array element of g1_in[] is a structure holding values for a specific vertex of
the input primitive. The length of g1_in[] is determined by the geometry shader
input type (see section 2.15.1). The members of each element of the g1_in[]
array are:

e Structure member g1_ClipDistance[] holds the per-vertex array of clip
distances, as written by the vertex shader to its built-in output variable g1_ -
ClipDistancel[].

e Structure member gl_ClipVertex holds the per-vertex position in clip co-
ordinates, as written by the vertex shader to its built-in output variable g1_

ClipVertex.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.15. GEOMETRY SHADERS 128

e Structure members gl_FrontColor, gl_BackColor, gl_-
FrontSecondaryColor and gl_BackSecondaryColor hold the
per-vertex front and back colors of the primary and secondary colors, as

written by the vertex shader to the corresponding built-in output variables.

e Structure member gl_FogFragCoord holds the per-vertex fog coordi-
nate, as written by the vertex shader to its built-in output variable g1_-

FogFragCoord.

e Structure member g1_TexCoord[] holds the per-vertex array of texture co-
ordinates written by the vertex shader to its built-in output varying variable

gl_TexCoord[].

e Structure member gl_PointSize holds the per-vertex point size written
by the vertex shader to its built-in output varying variable g1_PointSize.
If the vertex shader does not write gl_PointSize, the value of gl_-
PointSize is undefined, regardless of the value of the enable PROGRAM -
POINT_SIZE.

e Structure member gl_Position holds the per-vertex position, as written
by the vertex shader to its built-in output variable g1_Position. Note that
writing to g1_Position from either the vertex or geometry shader is op-
tional (also see section 7.1 of the OpenGL Shading Language Specification)

Geometry shaders also have available the built-in special variable gl_-
PrimitiveIDIn, which is not an array and has no vertex shader equivalent. It
is filled with the number of primitives processed since the last time Begin was
called (directly or indirectly via vertex array functions). The first primitive gener-
ated after a Begin is numbered zero, and the primitive ID counter is incremented
after every individual point, line, or triangle primitive is processed. For triangles
drawn in point or line mode, the primitive ID counter is incremented only once,
even though multiple points or lines may eventually be drawn. Restarting a prim-
itive topology using the primitive restart index has no effect on the primitive ID
counter.

Similarly to the built-in varying variables, each user-defined input varying vari-
able has a value for each vertex and thus needs to be declared as arrays or inside
input blocks declared as arrays. Declaring an array size is optional. If no size is
specified, it will be inferred by the linker from the input primitive type. If a size
is specified, it must match the number of vertices for the input primitive type; oth-
erwise, a link error will occur. The OpenGL Shading Language doesn’t support
multi-dimensional arrays; therefore, user-defined geometry shader inputs corre-
sponding to vertex shader outputs declared as arrays must be declared as array

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.15. GEOMETRY SHADERS 129

members of an input block that is itself declared as an array. See sections 4.3.6
and 7.6 of the OpenGL Shading Language Specification for more information.

Similarly to the limit on vertex shader output components (see section 2.14.6),
there is a limit on the number of components of built-in and user-defined input
varying variables that can be read by the geometry shader, given by the value of
the implementation-dependent constant MAX_GEOMETRY_INPUT_COMPONENTS.

When a program is linked, all components of any varying and special variable
read by a geometry shader will count against this limit. A program whose geometry
shader exceeds this limit may fail to link, unless device-dependent optimizations
are able to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.14.6).

Geometry Shader Outputs

A geometry shader is limited in the number of vertices it may emit per invocation.
The maximum number of vertices a geometry shader can possibly emit is spec-
ified in the geometry shader source and may be queried after linking by calling
GetProgramiv with the symbolic constant GEOMETRY_VERTICES_OUT. If a sin-
gle invocation of a geometry shader emits more vertices than this value, the emitted
vertices may have no effect.

There are two implementation-dependent limits on the value of GEOMETRY_ -
VERTICES_OUT; it may not exceed the value of MAX_GEOMETRY_OUTPUT_-—
VERTICES, and the product of the total number of vertices and the sum of all
components of all active varying variables may not exceed the value of MAX -
GEOMETRY_TOTAL_OUTPUT_COMPONENTS. LinkProgram will fail if it deter-
mines that the total component limit would be violated.

A geometry shader can write to built-in as well as user-defined varying vari-
ables. These values are expected to be interpolated across the primitive it outputs,
unless they are specified to be flat shaded. To enable seamlessly inserting or re-
moving a geometry shader from a program object, the rules, names and types of the
output built-in varying variables and user-defined varying variables are the same as
for the vertex shader. Refer to section 2.14.6, and sections 4.3.6, 7.1, and 7.6 of the
OpenGL Shading Language Specification for more detail.

After a geometry shader emits a vertex, all built-in and user-defined output vari-
ables are undefined, as described in section 8.10 of the OpenGL Shading Language
Specification.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.15. GEOMETRY SHADERS 130

3.11
The built-in special variable g1_Position is intended to hold the homoge-
neous vertex position. Writing g1_Position is optional.

2.22

The built-in special variable g1_ClipDistance holds the clip distance used
in the clipping stage, as described in section 2.22.

The built-in special variable g1_PointsSize, if written, holds the size of the
point to be rasterized, measured in pixels.

The built-in special variable g1_PrimitiveID holds the primitive ID counter
read by the fragment shader, replacing the value of g1_PrimitiveID generated
by drawing commands when no geometry shader is active. The geometry shader
must write to gl_PrimitiveID for the provoking vertex (see section 2.21) of a
primitive being generated, or the primitive ID counter read by the fragment shader
for that primitive is undefined.

The built-in special variable g1_Layer is used in layered rendering, and dis-
cussed further in the next section.

Similarly to the limit on vertex shader output components (see section 2.14.6),
there is a limit on the number of components of built-in and user-defined output
varying variables that can be written by the geometry shader, given by the value of
the implementation-dependent constant MAX_GEOMETRY_OUTPUT_COMPONENTS.

When a program is linked, all components of any varying and special vari-
able written by a geometry shader will count against this limit. A program whose
geometry shader exceeds this limit may fail to link, unless device-dependent opti-
mizations are able to make the program fit within available hardware resources.

Component counting rules for different variable types and variable declarations
are the same as for MAX_VERTEX_OUTPUT_COMPONENTS. (see section 2.14.6).

Layered Rendering

Geometry shaders can be used to render to one of several different layers of cube
map textures, three-dimensional textures, or one-or two-dimensional texture ar-
rays. This functionality allows an application to bind an entire complex texture
to a framebuffer object, and render primitives to arbitrary layers computed at run
time. For example, it can be used to project and render a scene onto all six faces
of a cubemap texture in one pass. The layer to render to is specified by writing

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.16. COORDINATE TRANSFORMATIONS 131

to the built-in output variable g1_Layer. Layered rendering requires the use of
framebuffer objects (see section 4.4.7).

Primitive Type Mismatches and Drawing Commands

A geometry shader will fail to execute if a mismatch exists between the type of
primitive being drawn and the input primitive type of the shader. If it cannot be
executed then no fragments will be rendered, and the error INVALID_OPERATION
will be generated.
This error is generated by
a geometry shader is active and:

e the input primitive type of the current geometry shader is POINTS and mode
is not POINTS;

e the input primitive type of the current geometry shader is LINES and mode
is not LINES, LINE_STRIP, or LINE_LOOP;

o the input primitive type of the current geometry shader is TRIANGLES and
mode is not TRIANGLES, TRIANGLE_STRIP or TRIANGLE_FAN;

e the input primitive type of the current geometry shader is LINES_-
ADJACENCY and mode 1s not LINES_ADJACENCY or LINE_STRIP_-
ADJACENCY; or,

e the input primitive type of the current geometry shader is TRIANGLES_—
ADJACENCY and mode is not TRIANGLES_ADJACENCY or TRIANGLE_-
STRIP_ADJACENCY.

2.16 Coordinate Transformations

Clip coordinates for a vertex result
from vertex or, if active, geometry shader execution, which yields

a vertex coordinate g1_Position. Perspective division on clip coordinates yields
normalized device coordinates, followed by a viewport transformation to convert
these coordinates into window coordinates.
Te
Ye

(&
We

If a vertex in clip coordinates is given by

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.16. COORDINATE TRANSFORMATIONS 132

then the vertex’s normalized device coordinates are

Tc

We
_ Y
Ya | = | wo
Ze
Zd we

2.16.1 Controlling the Viewport

The viewport transformation is determined by the viewport’s width and height in
pixels, p, and p,;, respectively, and its center (o, 0,) (also in pixels). The vertex’s

L
window coordinates, | vy, | , are given by
Zw
p
Yw | = %yd + 0y
2w f%n 2q + %f

The factor and offset applied to z; encoded by n and f are set using
void DepthRange(clampdn, clampdf);

zyw 18 represented as either fixed- or floating-point depending on whether the frame-
buffer’s depth buffer uses a fixed- or floating-point representation. If the depth
buffer uses fixed-point, we assume that it represents each value k /(2" — 1), where
k € {0,1,...,2"™ — 1}, as k (e.g. 1.0 is represented in binary as a string of all
ones). The parameters n and f are clamped to the range [0, 1], as are all arguments
of type clampd or clampf.

Viewport transformation parameters are specified using

void Viewport(int x, inty, sizeiw, sizeih);

where x and y give the x and y window coordinates of the viewport’s lower left
corner and w and h give the viewport’s width and height, respectively. The viewport
parameters shown in the above equations are found from these values as

Oy =T+ 75
oy:y—i-%
Pz =W
py = h.

Viewport width and height are clamped to implementation-dependent maxi-
mums when specified. The maximum width and height may be found by issuing

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.17. ASYNCHRONOUS QUERIES 133

an appropriate Get command (see chapter 6). The maximum viewport dimensions
must be greater than or equal to the larger of the visible dimensions of the display
being rendered to (if a display exists), and the largest renderbuffer image which
can be successfully created and attached to a framebuffer object (see chapter 4).
INVALID_VALUE is generated if either w or & is negative.

The state required to implement the viewport transformation is four integers
and two clamped floating-point values. In the initial state, w and h are set to the
width and height, respectively, of the window into which the GL is to do its ren-
dering. If the default framebuffer is bound but no default framebuffer is associated
with the GL context (see chapter 4), then w and # are initially set to zero. oz, 0y,

n, and f are set to %, %, 0.0, and 1.0, respectively.

2.17 Asynchronous Queries

Asynchronous queries provide a mechanism to return information about the pro-
cessing of a sequence of GL commands. There are four query types supported
by the GL. Primitive queries with a target of PRIMITIVES_GENERATED (see
section 2.20) return information on the number of primitives processed by the
GL. Primitive queries with a target of TRANSFORM_FEEDBACK_PRIMITIVES_-
WRITTEN (see section 2.20) return information on the number of primitives written
to one more buffer objects. Occlusion queries (see section 4.1.7) count the number
of fragments or samples that pass the depth test, or set a boolean to true when any
fragments or samples pass the depth test. Timer queries (see section 5.4) record
the amount of time needed to fully process these commands or the current time of
the GL.

The results of asynchronous queries are not returned by the GL immediately
after the completion of the last command in the set; subsequent commands can
be processed while the query results are not complete. When available, the query
results are stored in an associated query object. The commands described in sec-
tion 6.1.13 provide mechanisms to determine when query results are available and
return the actual results of the query. The name space for query objects is the
unsigned integers, with zero reserved by the GL.

Each type of query supported by the GL has an active query object name. If
the active query object name for a query type is non-zero, the GL is currently
tracking the information corresponding to that query type and the query results
will be written into the corresponding query object. If the active query object for a
query type name is zero, no such information is being tracked.

A query object is created and made active by calling

void BeginQuery(enum target, uint id);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.17. ASYNCHRONOUS QUERIES 134

target indicates the type of query to be performed; valid values of rarget are defined
in subsequent sections. If id is an unused query object name, the name is marked
as used and associated with a new query object of the type specified by target.
Otherwise id must be the name of an existing query object of that type.

BeginQuery sets the active query object name for the query type given by tar-
getto id. If BeginQuery is called with an id of zero, if the active query object name
for target is non-zero (for the targets SAMPLES_PASSED and ANY_SAMPLES_-
PASSED, if the active query for either target is non-zero), if id is the name of an
existing query object whose type does not match rarget, if id is the active query
object name for any query type, or if id is the active query object for condtional
rendering (see section 2.18), the error INVALID_OPERATION is generated.

The command

void EndQuery(enum target);

marks the end of the sequence of commands to be tracked for the query type given
by target. The active query object for target is updated to indicate that query results
are not available, and the active query object name for farget is reset to zero. When
the commands issued prior to EndQuery have completed and a final query result
is available, the query object active when EndQuery is called is updated by the
GL. The query object is updated to indicate that the query results are available and
to contain the query result. If the active query object name for farget is zero when
EndQuery is called, the error INVALID_OPERATION is generated.
The command

void GenQueries(sizei n, uint *ids);

returns n previously unused query object names in ids. These names are marked
as used, but no object is associated with them until the first time they are used by
BeginQuery.

Query objects are deleted by calling

void DeleteQueries(sizei n, const uint *ids);

ids contains n names of query objects to be deleted. After a query object is deleted,
its name is again unused. Unused names in ids are silently ignored. If an active
query object is deleted its name immediately becomes unused, but the underlying
object is not deleted until it is no longer active (see section D.1).

Query objects contain two pieces of state: a single bit indicating whether a
query result is available, and an integer containing the query result value. The

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.18. CONDITIONAL RENDERING 135

number of bits used to represent the query result is implementation-dependent. In
the initial state of a query object, the result is available and its value is zero.

The necessary state for each query type is an unsigned integer holding the
active query object name (zero if no query object is active), and any state necessary
to keep the current results of an asynchronous query in progress. Only a single type
of occlusion query can be active at one time, so the required state for occlusion
queries is shared.

2.18 Conditional Rendering

Conditional rendering can be used to discard rendering commands based on the
result of an occlusion query. Conditional rendering is started and stopped using the
commands

void BeginConditionalRender(uint id, enum mode);
void EndConditionalRender(void);

id specifies the name of an occlusion query object whose results are used to deter-
mine if the rendering commands are discarded. If the result (SAMPLES_PASSED) of
the query is zero, or if the result (ANY_SAMPLES_PASSED) is false, all rendering
commands between BeginConditionalRender and the corresponding EndCondi-
tionalRender are discarded. In this case,

2.8
3.7.5 3.8 4.2.4
5.1 4.3.3), as well as Clear
and ClearBuffer* (see section 4.2.3), have no effect. The effect of commands set-
ting current vertex state, such as VertexAttrib, are undefined. If the result

(saMPLES_PASSED) of the query is non-zero, or if the result (ANY_SAMPLES_ -
PASSED) is true, such commands are not discarded.

mode specifies how BeginConditionalRender interprets the results of the oc-
clusion query given by id. If mode is QUERY_WATIT, the GL waits for the results of
the query to be available and then uses the results to determine if subsquent render-
ing commands are discarded. If mode is QUERY_NO_WAIT, the GL may choose to
unconditionally execute the subsequent rendering commands without waiting for
the query to complete.

If mode is QUERY_BY_REGION_WAIT, the GL will also wait for occlusion
query results and discard rendering commands if the result of the occlusion query is
zero. If the query result is non-zero, subsequent rendering commands are executed,
but the GL may discard the results of the commands for any region of the frame-
buffer that did not contribute to the sample count in the specified occlusion query.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.19. TRANSFORM FEEDBACK 136

Any such discarding is done in an implementation-dependent manner, but the ren-
dering command results may not be discarded for any samples that contributed
to the occlusion query sample count. If mode is QUERY_BY_REGION_NO_WAIT,
the GL operates as in QUERY_BY_REGION_WAIT, but may choose to uncondition-
ally execute the subsequent rendering commands without waiting for the query to
complete.

If BeginConditionalRender is called while conditional rendering is in
progress, the error INVALID_OPERATION is generated. If id is not the name of
an existing query object, the error INVALID_VALUE is generated. If id is the name
of a query object with a target other than SAMPLES_PASSED or ANY_SAMPLES_ —
PASSED, or if id is the name of a query currently in progress, the error INVALID_-
OPERATION is generated.

If EndConditionalRender is called while conditional rendering is not in
progress, the error INVALID_OPERATION is generated.

2.19 Transform Feedback

In transform feedback mode, attributes of the vertices of transformed primitives
processed by a vertex shader, or primitives generated by a geometry shader if one
is active, are written out to one or more buffer objects. The vertices are fed back
after vertex color clamping, but before flatshading and clipping. If a geometry
shader is active, the vertices recorded are those emitted from the geometry shader.
The transformed vertices may be optionally discarded after being stored into one
or more buffer objects, or they can be passed on down to the clipping stage for
further processing. The set of attributes captured is determined when a program is
linked.
Transform feedback is started and finished by calling

void BeginTransformFeedback(enum primitiveMode);
and
void EndTransformFeedback(void);

respectively. Transform feedback is said to be active after a call to BeginTrans-
formFeedback and inactive after a call to EndTransformFeedback. primitive-
Mode is one of TRIANGLES, LINES, or POINTS, and specifies the output type of
primitives that will be recorded into the buffer objects bound for transform feed-
back (see below). primitiveMode restricts the primitive types that may be rendered
while transform feedback is active, as shown in table 2.16.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.19. TRANSFORM FEEDBACK 137

Transform Feedback | Allowed render primitive

primitiveMode (Begin) modes

POINTS POINTS

LINES LINES, LINE_LOOP, LINE_STRIP

TRIANGLES TRIANGLES, TRIANGLE_STRIP, TRIANGLE_FAN

Table 2.16: Legal combinations of the transform feedback primitive mode, as
passed to BeginTransformFeedback, and the current primitive mode.

Transform feedback commands must be paired; the error INVALID_ -
OPERATION is generated by BeginTransformFeedback if transform feedback is
active, and by EndTransformFeedback if transform feedback is inactive.

Transform feedback mode captures the values of varying variables written by
an active vertex or geometry shader. The error INVALID_OPERATION is generated
by BeginTransformFeedback if no vertex or geometry shader is active.

When transform feedback is active, all geometric primitives generated must be
compatible with the value of primitiveMode passed to BeginTransformFeedback.
The error INVALID_OPERATION is generated by Begin or any operation that im-
plicitly calls Begin (such as DrawElements) if mode is not one of the allowed
modes in table 2.16. If a geometry shader is active, its output primitive type is used
instead of of the mode parameter passed to drawing commands.

Regions of buffer objects are bound as the targets of transform feedback by
calling one of the commands BindBufferRange or BindBufferBase (see sec-
tion 2.9.1) with farget set to TRANSFORM_FEEDBACK_BUFFER. In addition to
the general errors described in section 2.9.1, BindBufferRange will generate an
INVALID_VALUE error if index is greater than or equal to the value of MAX_ -
TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS, or if offset is not a multiple of 4.

When an individual point, line, or triangle primitive reaches the transform feed-
back stage while transform feedback is active, the values of the specified varying
variables of the vertex are appended to the buffer objects bound to the transform
feedback binding points. The attributes of the first vertex received after Begin-
TransformFeedback are written at the starting offsets of the bound buffer objects
set by BindBufferRange, and subsequent vertex attributes are appended to the
buffer object. When capturing line and triangle primitives, all attributes of the first
vertex are written first, followed by attributes of the subsequent vertices. When
writing varying variables that are arrays, individual array elements are written in
order. For multi-component varying variables or varying array elements, the indi-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.19. TRANSFORM FEEDBACK 138

vidual components are written in order. The value for any attribute specified to be
streamed to a buffer object but not actually written by a vertex or geometry shader
is undefined.

Individual lines or triangles of a strip
or fan primitive will be extracted and recorded separately. Incomplete primitives
are not recorded.

Transform feedback can operate in either INTERLEAVED_ATTRIBS or
SEPARATE_ATTRIBS mode. In INTERLEAVED_ATTRIBS mode, the values of one
or more varyings are written, interleaved, into the buffer object bound to the first
transform feedback binding point (¢ndex = 0). If more than one varying variable is
written, they will be recorded in the order specified by TransformFeedback Vary-
ings (see section 2.14.6). In SEPARATE_ATTRIBS mode, the first varying variable
specified by TransformFeedbackVaryings is written to the first transform feed-
back binding point; subsequent varying variables are written to the subsequent
transform feedback binding points. The total number of variables that may be cap-
tured in separate mode is given by MAX_TRANSFORM_FEEDBACK_SEPARATE_—
ATTRIBS.

If recording the vertices of a primitive to the buffer objects being used for trans-
form feedback purposes would result in either exceeding the limits of any buffer
object’s size, or in exceeding the end position offset + size — 1, as set by Bind-
BufferRange, then no vertices of that primitive are recorded in any buffer object,
and the counter corresponding to the asynchronous query target TRANSFORM_ -
FEEDBACK_PRIMITIVES_WRITTEN (see section 2.20) is not incremented.

In either separate or interleaved modes, all transform feedback binding points
that will be written to must have buffer objects bound when BeginTransformFeed-
back is called. The error INVALID_OPERATION is generated by BeginTrans-
formFeedback if any binding point used in transform feedback mode does not
have a buffer object bound. In interleaved mode, only the first buffer object bind-
ing point is ever written to. The error INVALID_OPERATION is also generated
by BeginTransformFeedback if no binding points would be used, either because
no program object is active or because the active program object has specified no
varying variables to record.

While transform feedback is active, the set of attached buffer objects and the set
of varying variables captured may not be changed. If transform feedback is active,
the error INVALID_OPERATION is generated by UseProgram, by LinkProgram
if program is the currently active program object, and by BindBufferRange or
BindBufferBase if fargef is TRANSFORM_FEEDBACK_BUFFER.

Buffers should not be bound or in use for both transform feedback and other

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.20. PRIMITIVE QUERIES 139

purposes in the GL. Specifically, if a buffer object is simultaneously bound to a
transform feedback buffer binding point and elsewhere in the GL, any writes to
or reads from the buffer generate undefined values. Examples of such bindings
include ReadPixels to a pixel buffer object binding point and
client access to a buffer mapped with MapBuffer.

However, if a buffer object is written and read sequentially by transform feed-
back and other mechanisms, it is the responsibility of the GL to ensure that data
are accessed consistently, even if the implementation performs the operations in a
pipelined manner. For example, MapBuffer may need to block pending the com-
pletion of a previous transform feedback operation.

2.20 Primitive Queries

Primitive queries use query objects to track the number of primitives generated by
the GL and to track the number of primitives written to transform feedback buffers.

When BeginQuery is called with a target of PRIMITIVES_GENERATED, the
primitives-generated count maintained by the GL is set to zero. When the generated
primitive query is active, the primitives-generated count is incremented every time
a primitive reaches the transform feedback stage (see section 2.19), whether or
not transform feedback is active. This counter counts the number of primitives
emitted by a geometry shader, if active, possibly further tessellated into separate
primitives during the transform-feedback stage, if enabled.

When BeginQuery is called with a farget of TRANSFORM_FEEDBACK_-
PRIMITIVES_WRITTEN, the transform-feedback-primitives-written count main-
tained by the GL is set to zero. When the transform feedback primitive written
query is active, the transform-feedback-primitives-written count is incremented ev-
ery time a primitive is recorded into a buffer object. If transform feedback is not
active, this counter is not incremented. If the primitive does not fit in the buffer
object, the counter is not incremented.

These two queries can be used together to determine if all primitives have been
written to the bound feedback buffers; if both queries are run simultaneously and
the query results are equal, all primitives have been written to the buffer(s). If the
number of primitives written is less than the number of primitives generated, the
buffer is full.

2.21 Flatshading

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.21. FLATSHADING 140

the same color index (in color index mode). If a vertex shader is active, flatshading
a varying output means to assign all vertices of the primitive the same value for
that output.

The color and/or varying output values assigned are those of the provoking
vertex of the primitive. The provoking vertex is controlled with the command

void ProvokingVertex(enum provokeMode);

provokeMode must be either FIRST_VERTEX_CONVENTION or LAST_VERTEX_—
CONVENTION, and controls selection of the vertex whose values are assigned to
flatshaded colors and varying outputs, as shown in table 2.17

The provoking vertex behavior of quad primitives is implementation depen-
dent, and may be determined by calling GetBooleanv with the symbolic constant
QUADS_FOLLOW_PROVOKING_VERTEX. A return value of TRUE indicates that the
provoking vertex mode is respected for quad primitives, while a return value of
FALSE indicates that the implementation always behave as though the provoking
vertex mode were LAST_VERTEX_CONVENTION.

Flatshading of colors in fixed-function vertex processing, and of the built-in
varying variables gl_FrontColor,
gl_BackColor, gl_FrontSecondaryColor and gl_BackSecondaryColor
when a vertex shader is active, is controlled with the command

void ShadeModel(enum mode);

mode must be SMOOTH or FLAT. If mode is SMOOTH, vertex colors are treated in-
dividually. If mode is FLAT, flatshading is enabled and colors are taken from the
provoking vertex of the primitive. The colors selected are those derived from cur-
rent values, generated by lighting, or generated by vertex shading, if lighting is
disabled, enabled, or a vertex shader is in use, respectively.

If a vertex or geometry shader is active, user-defined varying outputs may be
flatshaded by using the flat qualifier when declaring the ouput, as described in
section 4.3.6 of the OpenGL Shading Language Specification

The state required for flatshading is one bit for the shade mode, one bit for the
provoking vertex mode, and one implementation-dependent bit for the provoking
vertex behavior of quad primitives. The initial value of the shade mode is SMOOTH
and the initial value of the provoking vertex mode is LAST_VERTEX_CONVENTION.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.21. FLATSHADING

141

Primitive type of polygon 7

First vertex convention

Last vertex convention

point 1 l

independent line 2 —1 21

line loop 1 1+ 1,ifi <n
1,ifi=n

line strip 1 1+1

independent triangle 31— 2 37

triangle strip i 1+ 2

triangle fan 141 142

line adjacency 49— 2 4i —1
line strip adjacency i+1 1+ 2

triangle adjacency 67 — 5 61 —1
triangle strip adjacency 2 —1 2i+3

Table 2.17: Provoking vertex selection. The vertex colors and/or varying values
used for flatshading the ith primitive generated by the indicated Begin / End type
are derived from the corresponding values of the vertex whose index is shown in
the table. Vertices are numbered 1 through n, where n is the number of vertices

between the Begin / End pair.

L If the value of QUADS_FOLLOW_PROVOKING_VERTEX iS TRUE.
2 1f the value of QUADS_FOLLOW_PROVOKING_VERTEX iS FALSE.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.22. PRIMITIVE CLIPPING 142

2.22 Primitive Clipping

Primitives are clipped to the clip volume. In clip coordinates, the view volume is
defined by

—we < xe < We

—We < Ye < We

—We < zZe < We.

This view volume may be further restricted by as many as n client-defined clip
planes to generate the clip volume. Each client-defined plane specifies a half-
space. (n is an implementation-dependent maximum that must be at least 8.)
The clip volume is the intersection of all such half-spaces with the view volume (if
no client-defined clip planes are enabled, the clip volume is the view volume).

A client-defined clip plane is specified with

void ClipPlane(enum p, const double eqn/[4]);

The value of the first argument, p, is a symbolic constant, CL.IP_PLANE(, where ¢ is
an integer between 0 and n — 1, indicating one of n client-defined clip planes. egn
is an array of four double-precision floating-point values. These are the coefficients
of a plane equation in object coordinates: pi, p2, p3, and p4 (in that order). The
inverse of the current model-view matrix is applied to these coefficients, at the time
they are specified, yielding

Wy vy vy Ph)=(p1 p2 ps pa) M7

(where M is the current model-view matrix; the resulting plane equation is unde-
fined if M is singular and may be inaccurate if M is poorly-conditioned) to obtain
the plane equation coefficients in eye coordinates. All points with eye coordinates
(rrc Ye Ze wE)T that satisfy

Te
Ye
(0 vy py ph) |7

We

lie in the half-space defined by the plane; points that do not satisfy this condition
do not lie in the half-space.

When a vertex shader is active, the vector (1€ Ye Ze w€)T is no longer
computed. Instead, the value of the g1_ClipVertex built-in variable is used in
its place. If g1_ClipVertex is not written by the vertex shader, its value is un-
defined, which implies that the results of clipping to any client-defined clip planes

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.22. PRIMITIVE CLIPPING 143

A vertex shader write a single clip
distance for each supported to elements of the g1_ClipDistancel(]
array. n is then given by the set of

points satisfying the inequality

cn(P) 20,

where ¢, (P) is the value of clip distance n at point P. For point primitives,
cn(P) is simply the clip distance for the vertex in question. For line and triangle
primitives, per-vertex clip distances are interpolated using a weighted mean, with
weights derived according to the algorithms described in sections 3.5 and 3.6.

Client-defined are enabled with the generic Enable command and
disabled with the Disable command. The value of the argument to either command
is CLIP_DISTANCE, where ¢ is an integer between 0 and n — 1; specifying a
value of ¢ enables or disables the plane equation with index 7. The constants obey
CLIP_DISTANCE; = CLIP_DISTANCEOQ + i.

Depth clamping is enabled with the generic Enable command and disabled
with the Disable command. The value of the argument to either command is
DEPTH_CLAMP. If depth clamping is enabled, the

—We < 2e < We

plane equation is ignored by view volume clipping (effectively, there is no near or
far plane clipping).

If the primitive under consideration is a point, then clipping passes it un-
changed if it lies within the clip volume; otherwise, it is discarded.

If the primitive is a line segment, then clipping does nothing to it if it lies
entirely within the clip volume, and discards it if it lies entirely outside the volume.

If part of the line segment lies in the volume and part lies outside, then the
line segment is clipped and new vertex coordinates are computed for one or both
vertices. A clipped line segment endpoint lies on both the original line segment
and the boundary of the clip volume.

This clipping produces a value, 0 < t < 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices’ coordinates are P
and Po, then ¢ is given by

P =P + (1 —t)Ps.

The value of ¢ is used to clip
vertex shader varying variables as described in section 2.22.1.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.22. PRIMITIVE CLIPPING 144

If the primitive is a polygon, then it is passed if every one of its edges lies
entirely inside the clip volume and either clipped or discarded otherwise. Polygon
clipping may cause polygon edges to be clipped, but because polygon connectivity
must be maintained, these clipped edges are connected by new edges that lie along
the clip volume’s boundary. Thus, clipping may require the introduction of new
vertices into a polygon. Edge flags are associated with these vertices so that edges
introduced by clipping are flagged as boundary (edge flag TRUE), and so that orig-
inal edges of the polygon that become cut off at these vertices retain their original
flags.

If it happens that a polygon intersects an edge of the clip volume’s boundary,
then the clipped polygon must include a point on this boundary edge. This point
must lie in the intersection of the boundary edge and the convex hull of the vertices
of the original polygon. We impose this requirement because the polygon may not
be exactly planar.

Primitives rendered with user-defined clip planes must satisfy a complementar-
ity criterion. Suppose a single clip plane with coefficients (p| p5 ph p}) (ora
number of similarly specified clip planes) is enabled and a series of primitives are
drawn. Next, suppose that the original clip plane is respecified with coefficients
(—pi —ph —ps —p}) (and correspondingly for any other clip planes) and the
primitives are drawn again (and the GL is otherwise in the same state). In this
case, primitives must not be missing any pixels, nor may any pixels be drawn twice
in regions where those primitives are cut by the clip planes.

The state required for clipping is at least 8 bits indicating which of the client-
defined plane equations are enabled, and at least 8 corresponding sets of plane
equations (each consisting of four double-precision floating-point coefficients) In
the initial state, all plane equations are disabled and all client-defined plane equa-
tion coefficients are zero.

2.22.1 Color and Associated Data Clipping

After lighting, clamping or masking and possible flatshading, colors are
clipped. Those colors associated with a vertex that lies within the clip volume
are unaffected by clipping. If a primitive is clipped, however, the colors assigned
to vertices produced by clipping are clipped.

Let the colors assigned to the two vertices Py and P of an unclipped edge be
c1 and co. The value of ¢ (section 2.22) for a clipped point P is used to obtain the
color associated with P as

c=tci+ (1 —t)ca.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.23. FINAL COLOR PROCESSING 145

(For a color index color, multiplying a color by a scalar means multiplying the
index by the scalar. For an RGBA color, it means multiplying each of R, G, B,
and A by the scalar. Both primary and secondary colors are treated in the same
fashion.)

Polygon clipping may create a clipped vertex along an edge of the clip volume’s
boundary. This situation is handled by noting that polygon clipping proceeds by
clipping against one plane of the clip volume’s boundary at a time. Color clipping
is done in the same way, so that clipped points always occur at the intersection of
polygon edges (possibly already clipped) with the clip volume’s boundary.

Texture and fog coordinates, vertex shader varying variables (section 2.14.6),
and point sizes computed on a per vertex basis must also be clipped when a prim-
itive is clipped. The method is exactly analogous to that used for color clipping.

For vertex shader varying variables specified to be interpolated without per-
spective correction (using the noperspective qualifier), the value of ¢ used to
obtain the varying value associated with P will be adjusted to produce results that
vary linearly in screen space.

Varying outputs of integer or unsigned integer type must always be declared
with the £1at qualifier. Since such varyings are constant over the primitive being
rasterized (see sections 3.5.1 and 3.6.1), no interpolation is performed.

2.23 Final Color Processing

In RGBA mode with vertex color clamping disabled, the floating- point RGBA
components are not modified.

In RGBA mode with vertex color clamping enabled, each color component
may be converted to a signed or unsigned normalized fixed-point value as described
in equations 2.4 and 2.6 (depending on the framebuffer format).

GL implementations are not required to convert clamped color components to
fixed-point.

Because a number of the form £/(2™ — 1) may not be represented exactly as
a limited-precision floating-point quantity, we place a further requirement on the
fixed-point conversion of RGBA components. Suppose that lighting is disabled, the
color associated with a vertex has not been clipped, and one of Colorub, Colorus,
or Colorui was used to specify that color. When these conditions are satisfied, an
RGBA component must convert to a value that matches the component as specified
in the Color command: if m is less than the number of bits b with which the
component was specified, then the converted value must equal the most significant
m bits of the specified value; otherwise, the most significant b bits of the converted
value must equal the specified value.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.24. CURRENT RASTER POSITION 146

A color index is converted (by rounding to nearest) to a fixed-point value with
at least as many bits as there are in the color index portion of the framebuffer.

2.24 Current Raster Position

The current raster position is used by commands that directly affect pixels in the
framebuffer. These commands, which bypass vertex transformation and primitive
assembly, are described in the next chapter. The current raster position, however,
shares some of the characteristics of a vertex.

The current raster position is set using one of the commands

void RasterPos{234}{sifd}(T coords);
void RasterPos{234}{sifd}v(const T coords);

RasterPos4 takes four values indicating x, y, z, and w. RasterPos3 (or Raster-
Pos2) is analogous, but sets only x, ¥, and z with w implicitly set to 1 (or only =
and y with z implicitly set to 0 and w implicitly set to 1).

Gets of CURRENT_RASTER_TEXTURE_COORDS are affected by the setting of
the state ACTIVE_TEXTURE.

The coordinates are treated as if they were specified in a Vertex command. If
a vertex shader is active, this vertex shader is executed using the z, y, z, and w
coordinates as the object coordinates of the vertex. Otherwise, the z, y, 2z, and
w coordinates are transformed by the current model-view and projection matri-
ces. These coordinates, along with current values, are used to generate primary
and secondary colors and texture coordinates just as is done for a vertex. The col-
ors and texture coordinates so produced replace the colors and texture coordinates
stored in the current raster position’s associated data. If a vertex shader is active
then the current raster distance is set to the value of the shader built in varying
gl_FogFragCoord. Otherwise, if the value of the fog source (see section 3.11)
is FOG_COORD, then the current raster distance is set to the value of the current
fog coordinate. Otherwise, the current raster distance is set to the distance from
the origin of the eye coordinate system to the vertex as transformed by only the
current model-view matrix. This distance may be approximated as discussed in
section 3.11.

If depth clamping (see section 2.22) is enabled, then raster position z, is first
clamped to the range [min(n, f), max(n, f)], where n and f are the current near
and far depth range values (see section 2.16.1).

Since vertex shaders may be executed when the raster position is set, any at-
tributes not written by the shader will result in undefined state in the current raster

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.24. CURRENT RASTER POSITION 147

position. Vertex shaders should output all varying variables that would be used
when rasterizing pixel primitives using the current raster position.

The transformed coordinates are passed to clipping as if they represented a
point. If the “point” is not culled, then the projection to window coordinates is
computed (section 2.16) and saved as the current raster position, and the valid bit
is set. If the “point” is culled, the current raster position and its associated data
become indeterminate and the valid bit is cleared. Figure 2.13 summarizes the
behavior of the current raster position.

Alternately, the current raster position may be set by one of the WindowPos
commands:

void WindowPos{23}{sifd}(T coords);
void WindowPos{23}{sifd}v(const T coords);

WindowPos3 takes three values indicating x, y and z, while WindowPos2
takes two values indicating = and y with z implicitly set to 0. The current raster
position, (Zy, Yw, 2w, We), is defined by:

Ty =T
Yw =Y
n, 2 <0
zw =S f, z>1
n+z(f —n), otherwise
we =1

where n and f are the values passed to DepthRange (see section 2.16.1).

Lighting, texture coordinate generation and transformation, and clipping are
not performed by the WindowPos functions. Instead, in RGBA mode, the current
raster color and secondary color are obtained from the current color and secondary
color, respectively. If vertex color clamping is enabled, the current raster color and
secondary color are clamped to [0, 1]. In color index mode, the current raster color
index is set to the current color index. The current raster texture coordinates are set
to the current texture coordinates, and the valid bit is set.

If the value of the fog source is FOG_COORD_SRC, then the current raster dis-
tance is set to the value of the current fog coordinate. Otherwise, the raster distance
is set to 0.

The current raster position requires six single-precision floating-point values
for its ., Yw, and 2z, window coordinates, its w, clip coordinate, its raster distance

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.24. CURRENT RASTER POSITION 148

[
Rasterpos In — |_> Clip M| Project

Raster
Position

Vertex/Normal

Current Transformation

Normal

i

|

|

|

|

Raster :
Distance >|
|

|

|

|

> :

|
I»

|

|

|

|

|

|

|

|

Current Lighting '

Color & T > S~ :
Materials ? _|_L

| Associated

|

|

|

|

|

q —a Texture Data
Current '_:\ Texgen Matrix O :
Texture T Ad Current |
Coord Set 0 Raster |
|
Position |
| —a__| Texture rr—"""- -
Current ° Texgen Matrix 1
Texture T
Coord Set 1
| —a__| Texture
Current ° Texgen Matrix 2
Texture T
Coord Set 2
—k | Texture
Current Lo Texgen Matrix 3
Texture T
Coord Set 3
Figure 2.13.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

2.24. CURRENT RASTER POSITION 149

(used as the fog coordinate in raster processing), a single valid bit, four floating-
point values to store the current RGBA color, four floating-point values to store the
current RGBA secondary color, one floating-point value to store the current color
index, and 4 floating-point values for texture coordinates for each texture unit. In
the initial state, the coordinates and texture coordinates are all (0,0, 0, 1), the eye
coordinate distance is 0, the fog coordinate is 0, the valid bit is set, the associated
RGBA coloris (1,1, 1, 1), the associated RGBA secondary color is (0, 0,0, 1), and
the associated color index color is 1. In RGBA mode, the associated color index
always has its initial value; in color index mode, the RGBA color and secondary
color always maintain their initial values.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-dimensional
image. Each point of this image contains such information as color and depth.
Thus, rasterizing a primitive consists of two parts. The first is to determine which
squares of an integer grid in window coordinates are occupied by the primitive. The
second is assigning a depth value and one or more color values to each such square.
The results of this process are passed on to the next stage of the GL (per-fragment
operations), which uses the information to update the appropriate locations in the
framebuffer. Figure 3.1 diagrams the rasterization process. The color values as-
signed to a fragment are
3.4 3.8
3.9,3.10 3.11 a fragment
shader as defined in section 3.12. The final depth value is initially determined by
the rasterization operations and may be modified or replaced by a fragment shader.
The results from rasterizing a point, line,
routed through a fragment shader.
A grid square along with its z (depth) and

varying shader output parameters is called a fragment; the
parameters are collectively dubbed the fragment’s associated data. A fragment is
located by its lower left corner, which lies on integer grid coordinates. Rasteriza-
tion operations also refer to a fragment’s center, which is offset by (1/2,1/2) from
its lower left corner (and so lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules are not
affected by the actual aspect ratio of the grid squares. Display of non-square grids,
however, will cause rasterized points and line segments to appear fatter in one
direction than the other. We assume that fragments are square, since it simplifies
antialiasing and texturing.

150

151

Figure 3.1.

Fixed function or fragment

shader selection

b

Point
Rasterization o\~
From Line
Prlmltlb\lle Rasterization [| Fragment
Assembly Texturing Program
Polygon
Rasterization [~ Y
Color Sum
Pixel
DrawPixels ——j] ! -
Rasterization
Y
\/
Bitmap Bitmap — Fo! [- F
= Rasterization 9 ragments

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.1. DISCARDING PRIMITIVES BEFORE RASTERIZATION 152

Several factors affect rasterization. Primitives may be discarded before ras-
terization. Lines and polygons may be stippled. Points may be given differing
diameters and line segments differing widths. A point, line segment, or polygon
may be antialiased.

3.1 Discarding Primitives Before Rasterization

Primitives can be optionally discarded before rasterization by calling Enable and
Disable with RASTERIZER_DISCARD. When enabled, primitives are discarded im-
mediately before the rasterization stage, but after the optional transform feedback
stage (see section 2.19). When disabled, primitives are passed through to the ras-
terization stage to be processed normally. When enabled, RASTERIZER_DISCARD
also causes the Accum, Bitmap, CopyPixels, DrawPixels, Clear, and Clear-
Buffer* commands to be ignored.

3.2 Invariance

Consider a primitive p’ obtained by translating a primitive p through an offset (z, y)
in window coordinates, where x and y are integers. As long as neither p’ nor p is
clipped, it must be the case that each fragment f’ produced from p’ is identical to
a corresponding fragment f from p except that the center of f is offset by (z,y)
from the center of f.

3.3 Antialiasing

Antialiasing of a point, line, or polygon is effected in one of two ways depending
on whether the GL is in RGBA or color index mode.

In RGBA mode, the R, G, and B values of the rasterized fragment are left
unaffected, but the A value is multiplied by a floating-point value in the range
[0, 1] that describes a fragment’s screen pixel coverage. The per-fragment stage of
the GL can be set up to use the A value to blend the incoming fragment with the
corresponding pixel already present in the framebuffer.

In color index mode, the least significant b bits (to the left of the binary point)
of the color index are used for antialiasing; b = min{4, m}, where m is the number
of bits in the color index portion of the framebuffer. The antialiasing process sets
these b bits based on the fragment’s coverage value: the bits are set to zero for no
coverage and to all ones for complete coverage.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.3. ANTIALIASING 153

The details of how antialiased fragment coverage values are computed are dif-
ficult to specify in general. The reason is that high-quality antialiasing may take
into account perceptual issues as well as characteristics of the monitor on which
the contents of the framebuffer are displayed. Such details cannot be addressed
within the scope of this document. Further, the coverage value computed for a
fragment of some primitive may depend on the primitive’s relationship to a num-
ber of grid squares neighboring the one corresponding to the fragment, and not just
on the fragment’s grid square. Another consideration is that accurate calculation
of coverage values may be computationally expensive; consequently we allow a
given GL implementation to approximate true coverage values by using a fast but
not entirely accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact an-
tialiasing in the prototypical case that each displayed pixel is a perfect square of
uniform intensity. The square is called a fragment square and has lower left corner
(x,y) and upper right corner (x+ 1, y+ 1). We recognize that this simple box filter
may not produce the most favorable antialiasing results, but it provides a simple,
well-defined model.

A GL implementation may use other methods to perform antialiasing, subject
to the following conditions:

1. If f1 and f5 are two fragments, and the portion of f; covered by some prim-
itive is a subset of the corresponding portion of fs covered by the primitive,
then the coverage computed for f; must be less than or equal to that com-
puted for fo.

2. The coverage computation for a fragment f must be local: it may depend
only on f’s relationship to the boundary of the primitive being rasterized. It
may not depend on f’s x and y coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasterizing a
particular primitive must be constant, independent of any rigid motions in
window coordinates, as long as none of those fragments lies along window
edges.

In some implementations, varying degrees of antialiasing quality may be obtained
by providing GL hints (section 5.8), allowing a user to make an image quality
versus speed tradeoff.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.3. ANTIALIASING 154

3.3.1 Multisampling

Multisampling is a mechanism to antialias all GL primitives: points, lines,

The technique is to sample all primitives multiple times
at each pixel. The color sample values are resolved to a single, displayable color
each time a pixel is updated, so the antialiasing appears to be automatic at the
application level. Because each sample includes color, depth, and stencil informa-
tion, the color (including texture operation), depth, and stencil functions perform
equivalently to the single-sample mode.

An additional buffer, called the multisample buffer, is added to the framebuffer.
Pixel sample values, including color, depth, and stencil values, are stored in this
buffer. Samples contain separate color values for each fragment color. When
the framebuffer includes a multisample buffer, it does not include depth or sten-
cil buffers, even if the multisample buffer does not store depth or stencil values.
Color buffers do coexist with the multisample buffer, however.

Multisample antialiasing is most valuable for rendering polygons, because it
requires no sorting for hidden surface elimination, and it correctly handles adjacent
polygons, object silhouettes, and even intersecting polygons. If only
lines are being rendered, the “smooth™ antialiasing mechanism provided by the
base GL may result in a higher quality image. This mechanism is designed to
allow multisample and smooth antialiasing techniques to be alternated during the
rendering of a single scene.

If the value of SAMPLE_BUFFERS is one, the rasterization of all primitives
is changed, and is referred to as multisample rasterization. Otherwise, primitive
rasterization is referred to as single-sample rasterization. The value of SAMPLE_ -
BUFFERS is queried by calling GetIntegerv with pname set to SAMPLE_BUFFERS.

During multisample rendering the contents of a pixel fragment are changed
in two ways. First, each fragment includes a coverage value with SAMPLES bits.
The value of SAMPLES is an implementation-dependent constant, and is queried by
calling GetIntegerv with pname set to SAMPLES.

The location of a given sample is queried with the command

void GetMultisamplefv(enum pname, uint index,
float *val);

pname must be SAMPLE_POSITION, and index corresponds to the sample for
which the location should be returned. The sample location is returned as two
floating point values in val[0] and val[1], each between 0 and 1, corresponding to
the and y locations respectively in GL pixel space of that sample. (0.5, 0.5) thus
corresponds to the pixel center. The error INVALID_VALUE is generated if index
is greater than or equal to the value of SAMPLES. If the multisample mode does not

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.4. POINTS 155

have fixed sample locations, the returned values may only reflect the locations of
samples within some pixels.

Second, each fragment includes SAMPLES depth values and sets of associated
data, instead of the single depth value and set of associated data that is maintained
in single-sample rendering mode. An implementation may choose to assign the
same associated data to more than one sample. The location for evaluating such
associated data can be anywhere within the pixel including the fragment center or
any of the sample locations. The different associated data values need not all be
evaluated at the same location. Each pixel fragment thus consists of integer x and y
grid coordinates, SAMPLES depth values and sets of associated data, and a coverage
value with a maximum of SAMPLES bits.

Multisample rasterization is enabled or disabled by calling Enable or Disable
with the symbolic constant MULTISAMPLE.

If MULTISAMPLE is disabled, multisample rasterization of all primitives is
equivalent to single-sample (fragment-center) rasterization, except that the frag-
ment coverage value is set to full coverage. The color and depth values and the
sets of texture coordinates may all be set to the values that would have been as-
signed by single-sample rasterization, or they may be assigned as described below
for multisample rasterization.

If MULTISAMPLE is enabled, multisample rasterization of all primitives differs
substantially from single-sample rasterization. It is understood that each pixel in
the framebuffer has SAMPLES locations associated with it. These locations are
exact positions, rather than regions or areas, and each is referred to as a sample
point. The sample points associated with a pixel may be located inside or outside
of the unit square that is considered to bound the pixel. Furthermore, the relative
locations of sample points may be identical for each pixel in the framebuffer, or
they may differ.

If the sample locations differ per pixel, they should be aligned to window, not
screen, boundaries. Otherwise rendering results will be window-position specific.
The invariance requirement described in section 3.2 is relaxed for all multisample
rasterization, because the sample locations may be a function of pixel location.

3.4 Points

A point is drawn by generating a set of fragments in the shape of a square or circle
centered around the vertex of the point. Each vertex has an associated point size
that controls the size of that square or circle.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.4. POINTS 156

void PointSize(float size);

size specifies the requested size of a point. The default value is 1.0. A value less
than or equal to zero results in the error INVALID_VALUE.

The requested point size is multiplied with a distance attenuation factor,
clamped to a specified point size range, and further clamped to the implementation-
dependent point size range to produce the derived point size:

1
derived_size = clamp <,s'1f,2(‘: X \/(u Thrdtor (12>>

where d is the eye-coordinate distance from the eye, (0,0, 0, 1) in eye coordinates,
to the vertex, and a, b, and ¢ are distance attenuation function coefficients.

If multisampling is not enabled, the derived size is passed on to rasterization as
the point width.

If a vertex or geometry shader is active and point size mode is enabled, then
the derived point size is taken from the (potentially clipped) shader built-in g1_-
PointSize written by the geometry shader, or written by the vertex shader if no
geometry shader is active, and clamped to the implementation-dependent point size
range. If the value written to g1_PointSize is less than or equal to zero, results
are undefined. If a vertex and/or geometry shader is active and point size mode is
disabled, then the derived point size is taken from the point size state as specified
by the PointSize command. [n this case no distance attenuation is performed.
Program point size mode is enabled and disabled by calling Enable or Disable
with the symbolic value PROGRAM_POINT_SIZE.

If multisampling is enabled, an implementation may optionally fade the point
alpha (see section 3.14) instead of allowing the point width to go below a given
threshold. In this case, the width of the rasterized point is

. derived_size derived_size > threshold
width = { threshold otherwise 3.1
and the fade factor is computed as follows:
1 derived_size > threshold
fade = derived_size \ 2 . (32)
(threshold) otherwise

The distance attenuation function coefficients a, b, and ¢, the bounds of the first
point size range clamp, and the point fade threshold are specified with

void PointParameter{if}(enum pname, T param);
void PointParameter{if}v(enum pname, const T params);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.4. POINTS 157

If pname is POINT_SIZE_MIN or POINT_SIZE_MAX, then param specifies,
or params points to the lower or upper bound respectively to which the derived
point size is clamped. If the lower bound is greater than the upper bound, the point
size after clamping is undefined. If pname is POINT_DISTANCE_ATTENUATION,
then params points to the coefficients a, b, and c. If pname is POINT_-
FADE_THRESHOLD_SIZE, then param specifies, or params points to the point fade
threshold. Values of POINT SIZE MIN, POINT SIZE MAX,Or POINT_FADE_-—
THRESHOLD_SIZE less than zero result in the error INVALID_VALUE.

Point antialiasing is enabled or disabled by calling Enable or Disable with the
symbolic constant POINT_SMOOTH. The default state is for point antialiasing to be
disabled.

Point sprites are enabled or disabled by calling Enable or Disable with the
symbolic constant POINT_SPRITE. The default state is for point sprites to be dis-
abled. When point sprites are enabled, the state of the point antialiasing enable is
ignored. In a deprecated context, point sprites are always enabled.

The point sprite texture coordinate replacement mode is set with one of the
TexEnv* commands described in section 3.9.16, where farget is POINT_SPRITE
and pname is COORD_REPLACE. The possible values for param are FALSE and
TRUE. The default value for each texture coordinate set is for point sprite texture
coordinate replacement to be disabled.

The point sprite texture coordinate origin is set with the PointParame-
ter* commands where pname is POINT_SPRITE_COORD_ORIGIN and param is
LOWER_LEFT or UPPER_LEFT. The default value is UPPER_LEFT.

3.4.1 Basic Point Rasterization

In the default state, a point is rasterized by truncating its x,, and y,, coordinates
(recall that the subscripts indicate that these are x and y window coordinates) to
integers. This (z,y) address, along with data derived from the data associated
with the vertex corresponding to the point, is sent as a single fragment to the per-
fragment stage of the GL.

The effect of a point width other than 1.0 depends on the state of point antialias-
ing and point sprites. If antialiasing and point sprites are disabled, the actual width
is determined by rounding the supplied width to the nearest integer, then clamp-
ing it to the implementation-dependent maximum non-antialiased point width.
This implementation-dependent value must be no less than the implementation-
dependent maximum antialiased point width, rounded to the nearest integer value,
and in any event no less than 1. If rounding the specified width results in the value

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.4. POINTS 158

1
1
-
|
|
1
-
1
|
|
-
1
1
1
-
1
1
1
-
1
1
1
-
1

__L___L___L___L___L___:__‘ 55

i i i e
1

05 15 25 35 45 55 05 15 25 35 45 55

Odd Width Even Width

Figure 3.2. Rasterization of non-antialiased wide points. The crosses show fragment
centers produced by rasterization for any point that lies within the shaded region.
The dotted grid lines lie on half-integer coordinates.

0, then it is as if the value were 1. If the resulting width is odd, then the point

5

(2,5) = (7] + 5 L) + 5

is computed from the vertex’s x,, and y,,, and a square grid of the odd width cen-
tered at (z,y) defines the centers of the rasterized fragments (recall that fragment
centers lie at half-integer window coordinate values). If the width is even, then the

center point is
1

(@9) = (120 +) Lo + 1)

the rasterized fragment centers are the half-integer window coordinate values
within the square of the even width centered on (z, y). See figure 3.2.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.4. POINTS 159

6.0

..

5.0

............................

4.0

.......

3.0

.......

: c i
¢ >, ,/ X __________
O ”*%%/ i
________________ et
0.0 .
0.0 1.0 2.0 3.0 4.0 5.0 6.0

Figure 3.3. Rasterization of antialiased wide points. The black dot indicates the
point to be rasterized. The shaded region has the specified width. The X marks
indicate those fragment centers produced by rasterization. A fragment’s computed
coverage value is based on the portion of the shaded region that covers the corre-
sponding fragment square. Solid lines lie on integer coordinates.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.4. POINTS 160

All fragments produced in rasterizing a non-antialiased point are assigned the
same associated data, which are those of the vertex corresponding to the point.

If antialiasing is enabled and point sprites are disabled, then point rasterization
produces a fragment for each fragment square that intersects the region lying within
the circle having diameter equal to the current point width and centered at the
point’s (., Y (figure 3.3). The coverage value for each fragment is the window
coordinate area of the intersection of the circular region with the corresponding
fragment square (but see section 3.3). This value is saved and used in the final
step of rasterization (section 3.13). The data associated with each fragment are
otherwise the data associated with the point being rasterized.

Not all widths need be supported when point antialiasing is on, but the width
1.0 must be provided. If an unsupported width is requested, the nearest supported
width is used instead. The range of supported widths and the width of evenly-
spaced gradations within that range are implementation-dependent. The range and
gradations may be obtained using the query mechanism described in chapter 6. If,
for instance, the width range is from 0.1 to 2.0 and the gradation width is 0.1, then
the widths 0.1,0.2,...,1.9,2.0 are supported.

If point sprites are enabled, then point rasterization produces a fragment for
each framebuffer pixel whose center lies inside a square centered at the point’s
(Zw, Yw), With side length equal to the current point size.

All fragments produced in rasterizing a point sprite are assigned the same as-
sociated data, which are those of the vertex corresponding to the point. However,
the fragment shader builtin g1_PointCoord contains point sprite texture coor-
dinates. Additionally, for each texture coordinate set where COORD_REPLACE is
TRUE, these texture coordinates are replaced with point sprite texture coordinates.

The s point sprite texture coordinate varies from 0O to 1 across the point hori-
zontally left-to-right. If POINT_SPRITE_COORD_ORIGIN is LOWER_LEFT, the ¢
coordinate varies from O to 1 vertically bottom-to-top. Otherwise if the point sprite
texture coordinate origin is UPPER_LEFT, the ¢ coordinate varies from O to 1 verti-
cally top-to-bottom. The r and ¢ coordinates are replaced with the constants 0 and
1, respectively.

The following formula is used to evaluate the s and ¢ point sprite texture coor-
dinates:

1 +3-
s=-+ M (3.3)
2 size

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.4. POINTS 161

"Fl_ w
P T+ %, POINT_SPRITE_COORD_ORIGIN = LOWER_LEFT
| 1 (¥39) pornr SPRITE COORD_ORIGIN = UPPER_LEFT
2 size ’ — — — - —

(3.4)
where size is the point’s size, xy and y are the (integral) window coordinates of
the fragment, and z,, and y,, are the exact, unrounded window coordinates of the
vertex for the point.

The widths supported for point sprites must be a superset of those supported
for antialiased points. There is no requirement that these widths must be equally
spaced. If an unsupported width is requested, the nearest supported width is used
instead.

3.4.2 Point Rasterization State

The state required to control point rasterization consists of the floating-point point
width, two floating-point values specifying the minimum and maximum point size,
three floating-point values specifying the distance attenuation coefficients, a bit in-
dicating whether or not antialiasing is enabled, a bit indicating whether or not point
sprites are enabled, a bit for the point sprite texture coordinate replacement mode
for each texture coordinate set, a bit indicating whether or not vertex program
point size mode is enabled, a bit for the point sprite texture coordinate origin, and
a floating-point value specifying the point fade threshold size.

3.4.3 Point Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then points
are rasterized using the following algorithm, regardless of whether point antialias-
ing (POINT_SMOOTH) is enabled or disabled. Point rasterization produces a frag-
ment for each framebuffer pixel with one or more sample points that intersect a
region centered at the point’s (x4, ¥y). This region is a circle having diameter
equal to the current point width if POINT_SPRITE is disabled, or a square with
side equal to the current point width if POINT_SPRITE is enabled. Coverage bits
that correspond to sample points that intersect the region are 1, other coverage bits
are 0. All data associated with each sample for the fragment are the data associ-
ated with the point being rasterized, with the exception of texture coordinates when
POINT_SPRITE is enabled; these texture coordinates are computed as described in
section 3.4.

Point size range and number of gradations are equivalent to those supported for
antialiased points when POINT _SPRITE is disabled. The set of point sizes sup-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.5. LINE SEGMENTS 162

ported is equivalent to those for point sprites without multisample

3.5 Line Segments

A line segment results from a line loop, or a
series of separate line segments. Line segment rasterization is controlled by several
variables. Line width, which may be set by calling

void LineWidth(float width);

with an appropriate positive floating-point width, controls the width of rasterized
line segments. The default width is 1.0. Values less than or equal to 0.0 generate
the error INVALID_VALUE. Antialiasing is controlled with Enable and Disable us-
ing the symbolic constant LINE_SMOOTH.

3.5.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either x-major
or y-major. x-major line segments have slope in the closed interval [—1,1]; all
other line segments are y-major (slope is determined by the segment’s endpoints).
We shall specify rasterization only for xz-major segments except in cases where the
modifications for y-major segments are not self-evident.

Ideally, the GL uses a “diamond-exit” rule to determine those fragments that
are produced by rasterizing a line segment. For each fragment f with center at win-
dow coordinates x s and yr, define a diamond-shaped region that is the intersection
of four half planes:

Ry ={(z,y) ||z —zs|+ |y —ys| <1/2.}

Essentially, a line segment starting at p, and ending at p; produces those frag-
ments f for which the segment intersects ¢, except if py is contained in Ry. See
figure 3.4.

To avoid difficulties when an endpoint lies on a boundary of R we (in princi-
ple) perturb the supplied endpoints by a tiny amount. Let p, and p; have window
coordinates (24, ya) and (xp, yp), respectively. Obtain the perturbed endpoints p/,
given by (24,%a) — (€, €?) and pj, given by (xp,) — (€, €%). Rasterizing the line
segment starting at p, and ending at p; produces those fragments f for which the
segment starting at p/, and ending on pj, intersects R, except if pj is contained in

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.5. LINE SEGMENTS 163

Figure 3.4. Visualization of Bresenham’s algorithm. A portion of a line segment is
shown. A diamond shaped region of height 1 is placed around each fragment center;
those regions that the line segment exits cause rasterization to produce correspond-
ing fragments.

Ry. €is chosen to be so small that rasterizing the line segment produces the same
fragments when ¢ is substituted for € for any 0 < § < e.

When p, and p, lie on fragment centers, this characterization of fragments
reduces to Bresenham’s algorithm with one modification: lines produced in this
description are “half-open,” meaning that the final fragment (corresponding to pp)
is not drawn. This means that when rasterizing a series of connected line segments,
shared endpoints will be produced only once rather than twice (as would occur with
Bresenham’s algorithm).

Because the initial and final conditions of the diamond-exit rule may be difficult
to implement, other line segment rasterization algorithms are allowed, subject to
the following rules:

1. The coordinates of a fragment produced by the algorithm may not deviate by
more than one unit in either = or y window coordinates from a corresponding
fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may differ from
that produced by the diamond-exit rule by no more than one.

3. For an z-major line, no two fragments may be produced that lie in the same

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.5. LINE SEGMENTS 164

window-coordinate column (for a y-major line, no two fragments may ap-
pear in the same row).

4. If two line segments share a common endpoint, and both segments are either
z-major (both left-to-right or both right-to-left) or y-major (both bottom-to-
top or both top-to-bottom), then rasterizing both segments may not produce
duplicate fragments, nor may any fragments be omitted so as to interrupt
continuity of the connected segments.

Next we must specify how the data associated with each rasterized fragment
are obtained. Let the window coordinates of a produced fragment center be given

by pr = (24, y4) and let p, = (T4, ya) and pp = (2, ys). Set

(pr - pa) ' (pb - pa)
Py — Pall?

(Note that ¢ = 0 at p, and ¢t = 1 at p;.) The value of an associated datum f for
the fragment, whether it be

t = (3.5)

or the clip w coordinate, is found as

(1 - t)fa/wa + tfb/wb
(1 —1t)/wq + t/wy
where f, and fj, are the data associated with the starting and ending endpoints of
the segment, respectively; w, and wy are the clip w coordinates of the starting and
ending endpoints of the segments, respectively. However, depth values for lines

must be interpolated by

f=

(3.6)

z2=(1—1t)zq + tz (3.7)

where z, and z, are the depth values of the starting and ending endpoints of the
segment, respectively.

noperspective and flat keywords used
to declare varying shader outputs affect how they are interpolated. When neither
keyword is specified, interpolation is performed as described in equation 3.6. When
the noperspective keyword is specified, interpolation is performed in the same
fashion as for depth values, as described in equation 3.7. When the f1at keyword
is specified, no interpolation is performed, and varying outputs are taken from the
corresponding varying value of the provoking vertex corresponding to that primi-
tive (see section 2.21).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.5. LINE SEGMENTS 165

3.5.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments of width
one using the default line stipple of '/"/F'F75. We now describe the rasterization
of line segments for general values of the line segment rasterization parameters.

Line Stipple

The command
void LineStipple(int factor, ushort pattern);

defines a line stipple. pattern is an unsigned short integer. The line stipple is taken
from the lowest order 16 bits of pattern. It determines those fragments that are to
be drawn when the line is rasterized. factor is a count that is used to modify the
effective line stipple by causing each bit in pattern to be used factor times. factor
is clamped to the range [1, 256]. Line stippling may be enabled or disabled using
Enable or Disable with the constant LINE_STIPPLE. When disabled, it is as if the
line stipple has its default value.

Line stippling masks certain fragments that are produced by rasterization so
that they are not sent to the per-fragment stage of the GL. The masking is achieved
using three parameters: the 16-bit line stipple p, the line repeat count 7, and an
integer stipple counter s. Let

b= [s/r] mod 16,

Then a fragment is produced if the bth bit of p is 1, and not produced otherwise.
The bits of p are numbered with 0 being the least significant and 15 being the
most significant. The initial value of s is zero; s is incremented after production
of each fragment of a line segment (fragments are produced in order, beginning at
the starting point and working towards the ending point). s is reset to O whenever
a Begin occurs, and before every line segment in a group of independent segments
(as specified when Begin is invoked with LINES).

If the line segment has been clipped, then the value of s at the beginning of the
line segment is indeterminate.

Wide Lines

The actual width of non-antialiased lines is determined by rounding the supplied
width to the nearest integer, then clamping it to the implementation-dependent
maximum non-antialiased line width. This implementation-dependent value must
be no less than the implementation-dependent maximum antialiased line width,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.5. LINE SEGMENTS 166

width =2 width =3

Figure 3.5. Rasterization of non-antialiased wide lines. x-major line segments are
shown. The heavy line segment is the one specified to be rasterized; the light seg-
ment is the offset segment used for rasterization. x marks indicate the fragment
centers produced by rasterization.

rounded to the nearest integer value, and in any event no less than 1. If rounding
the specified width results in the value 0, then it is as if the value were 1.

Non-antialiased line segments of width other than one are rasterized by off-
setting them in the minor direction (for an x-major line, the minor direction is
y, and for a y-major line, the minor direction is x) and replicating fragments in
the minor direction (see figure 3.5). Let w be the width rounded to the nearest
integer (if w = 0, then it is as if w = 1). If the line segment has endpoints
given by (xo,yo) and (z1,y;) in window coordinates, the segment with endpoints
(xo,yo — (w—1)/2) and (x1,y; — (w — 1)/2) is rasterized, but instead of a single
fragment, a column of fragments of height w (a row of fragments of length w for
a y-major segment) is produced at each = (y for y-major) location. The lowest
fragment of this column is the fragment that would be produced by rasterizing the
segment of width 1 with the modified coordinates. The whole column is not pro-
duced if the stipple bit for the column’s x location is zero; otherwise, the whole
column is produced.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.5. LINE SEGMENTS 167

Figure 3.6. The region used in rasterizing and finding corresponding coverage val-
ues for an antialiased line segment (an x-major line segment is shown).

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment squares
intersect a rectangle centered on the line segment. Two of the edges are parallel to
the specified line segment; each is at a distance of one-half the current width from
that segment: one above the segment and one below it. The other two edges pass
through the line endpoints and are perpendicular to the direction of the specified
line segment. Coverage values are computed for each fragment by computing the
area of the intersection of the rectangle with the fragment square (see figure 3.6;
see also section 3.3). Equation 3.6 is used to compute associated data values just as
with non-antialiased lines; equation 3.5 is used to find the value of ¢ for each frag-
ment whose square is intersected by the line segment’s rectangle. Not all widths
need be supported for line segment antialiasing, but width 1.0 antialiased segments
must be provided. As with the point width, a GL implementation may be queried
for the range and number of gradations of available antialiased line widths.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.6. POLYGONS 168

is rasterized as if it were an antialiased polygon, described below (but culling, non-
default settings of PolygonMode, and polygon stippling are not applied).

3.5.3 Line Rasterization State

The state required for line rasterization consists of the floating-point line width, a
bit indicating whether line antialiasing is on or off, a 16-bit line stipple, the line
stipple repeat count, and a bit indicating whether stippling is enabled or disabled.
In addition, during rasterization an integer stipple counter must be maintained to
implement line stippling. The initial value of the line width is 1.0. The initial
state of line segment antialiasing is disabled. The initial value of the line stipple is
FFFFig (astipple of all ones). The initial value of the line stipple repeat count is
one. The initial state of line stippling is disabled.

3.5.4 Line Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then lines
are rasterized using the following algorithm, regardless of whether line antialiasing
(LINE_SMOOTH) is enabled or disabled. Line rasterization produces a fragment for
each framebuffer pixel with one or more sample points that intersect the rectangular
region that is described in the Antialiasing portion of section 3.5.2 (Other Line
Segment Features). If line stippling is enabled, the rectangular region is subdivided
into adjacent unit-length rectangles, with some rectangles eliminated according to
the procedure given in section 3.5.2, where “fragment” is replaced by “rectangle”.

Coverage bits that correspond to sample points that intersect a retained rectan-
gle are 1, other coverage bits are 0. Each depth value and set of associated data is
produced by substituting the corresponding sample location into equation 3.5, then
using the result to evaluate equation 3.7. An implementation may choose to as-
sign the associated data to more than one sample by evaluating equation 3.5 at any
location within the pixel including the fragment center or any one of the sample
locations, then substituting into equation 3.6. The different associated data values
need not be evaluated at the same location.

Line width range and number of gradations are equivalent to those supported
for antialiased lines.

3.6 Polygons

A polygon results from a triangle arising from a triangle strip, triangle fan, or series
of separate triangles, a polygon Begin / End object, or a quadrilateral arising from a

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.6. POLYGONS 169

Like points
and line segments, polygon rasterization is controlled by several variables. Poly-
gon antialiasing is controlled with Enable and Disable with the symbolic constant
POLYGON_SMOOTH.

3.6.1 Basic Polygon Rasterization

The first step of polygon rasterization is to determine if the polygon is back-facing
or front-facing. This determination is made based on the sign of the (clipped or
unclipped) polygon’s area computed in window coordinates. One way to compute
this area is

—1
1% o o
a=5 wuu - o, (3.8)
=0

where 2%, and ! are the x and y window coordinates of the ith vertex of
the n-vertex polygon (vertices are numbered starting at zero for purposes of this
computation) and i@ 1 is (i+1) mod n. The interpretation of the sign of this value
is controlled with

void FrontFace(enumdir);

Setting dir to cCw (corresponding to counter-clockwise orientation of the pro-
jected polygon in window coordinates) uses a as computed above. Setting dir to
cw (corresponding to clockwise orientation) indicates that the sign of a should be
reversed prior to use. Front face determination requires one bit of state, and is
initially set to cCw.

If the sign of a (including the possible reversal of this sign as determined by
FrontFace) is positive, the polygon is front-facing; otherwise, it is back-facing.
This determination is used in conjunction with the CullFace enable bit and mode
value to decide whether or not a particular polygon is rasterized. The CullFace
mode is set by calling

void CullFace(enum mode);

mode is a symbolic constant: one of FRONT, BACK or FRONT_AND_BACK. Culling
is enabled or disabled with Enable or Disable using the symbolic constant CULL_ -
FACE. Front-facing polygons are rasterized if either culling is disabled or the Cull-
Face mode is BACK while back-facing polygons are rasterized only if either culling

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.6. POLYGONS 170

is disabled or the CullFace mode is FRONT. The initial setting of the CullFace
mode is BACK. Initially, culling is disabled.

The rule for determining which fragments are produced by polygon rasteriza-
tion is called point sampling. The two-dimensional projection obtained by taking
the x and y window coordinates of the polygon’s vertices is formed. Fragment
centers that lie inside of this polygon are produced by rasterization. Special treat-
ment is given to a fragment whose center lies on a polygon edge. In
such a case we require that if two polygons lie on either side of a common edge
(with identical endpoints) on which a fragment center lies, then exactly one of the
polygons results in the production of the fragment during rasterization.

As for the data associated with each fragment produced by rasterizing a poly-
gon, we begin by specifying how these values are produced for fragments in a
triangle. Define barycentric coordinates for a triangle. Barycentric coordinates are
a set of three numbers, a, b, and ¢, each in the range [0, 1], witha + b + ¢ = 1.
These coordinates uniquely specify any point p within the triangle or on the trian-
gle’s boundary as

p = apq + bpp + cpe,

where p,, py, and p. are the vertices of the triangle. a, b, and ¢ can be found as

_ A(ppype) b A(ppape) . A(ppapy)

A(papope)’ A(papspe)’ A(paprpe)’

where A (Imn) denotes the area in window coordinates of the triangle with vertices
[, m, and n.

Denote an associated datum at p,, pp, Or p. as fq, fb, or fe, respectively. Then
the value f of a datum at a fragment produced by rasterizing a triangle is given by

afa/wa + bfb/wb + cfc/wc

a/wg + b/wy + ¢/w,
where w,, wp and w, are the clip w coordinates of p,, py, and p., respectively.
a, b, and c are the barycentric coordinates of the fragment for which the data are
produced. a, b, and ¢ must correspond precisely to the exact coordinates of the
center of the fragment. Another way of saying this is that the data associated with
a fragment must be sampled at the fragment’s center. However, depth values for
polygons must be interpolated by

f= (3.9)

Z = azq + bzp + czc (3.10)

where z,, 25, and z. are the depth values of p,, py, and p., respectively.
noperspective and flat keywords used
to declare varying shader outputs affect how they are interpolated. When neither

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.6. POLYGONS 171

keyword is specified, interpolation is performed as described in equation 3.9. When
the noperspective keyword is specified, interpolation is performed in the same
fashion as for depth values, as described in equation 3.10. When the flat key-
word is specified, no interpolation is performed, and varying outputs are taken
from the corresponding varying value of the provoking vertex corresponding to
that primitive (see section 2.21).

For a polygon with more than three edges, we require only that a convex
combination of the values of the datum at the polygon’s vertices can be used to
obtain the value assigned to each fragment produced by the rasterization algorithm.
That is, it must be the case that at every fragment

F=Yaif;
i=1

where n is the number of vertices in the polygon, f; is the value of the f at vertex
1; foreach 70 < a; < 1 and Z?:l a; = 1. The values of the a; may differ from
fragment to fragment, but at vertex ¢, a; = 0,j # i and a; = 1.

One algorithm that achieves the required behavior is to triangulate a polygon
(without adding any vertices) and then treat each triangle individually as already
discussed. A scan-line rasterizer that linearly interpolates data along each edge
and then linearly interpolates data across each horizontal span from edge to edge
also satisfies the restrictions (in this case, the numerator and denominator of equa-
tion 3.9 should be iterated independently and a division performed for each frag-
ment).

3.6.2 Stippling

Polygon stippling works much the same way as line stippling, masking out certain
fragments produced by rasterization so that they are not sent to the next stage of
the GL. This is the case regardless of the state of polygon antialiasing. Stippling is
controlled with

void PolygonStipple(const ubyte *pattern);

pattern is a pointer to memory into which a 32 x 32 pattern is packed. The pattern
is unpacked from memory according to the procedure given in section 3.7.5 for
DrawPixels; it is as if the height and width passed to that command were both equal
to 32, the type were BITMAP, and the format were COLOR_INDEX. The unpacked
values (before any conversion or arithmetic would have been performed) form a
stipple pattern of zeros and ones.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.6. POLYGONS 172

If z,, and y,, are the window coordinates of a rasterized polygon fragment,
then that fragment is sent to the next stage of the GL if and only if the bit of the
pattern (z,, mod 32, y,, mod 32) is 1.

Polygon stippling may be enabled or disabled with Enable or Disable using the
constant POLYGON_STIPPLE. When disabled, it is as if the stipple pattern were all
ones.

3.6.3 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever the
interior of the polygon intersects that fragment’s square. A coverage value is com-
puted at each such fragment, and this value is saved to be applied as described
in section 3.13. An associated datum is assigned to a fragment by integrating the
datum’s value over the region of the intersection of the fragment square with the
polygon’s interior and dividing this integrated value by the area of the intersection.
For a fragment square lying entirely within the polygon, the value of a datum at the
fragment’s center may be used instead of integrating the value across the fragment.

Polygon stippling operates in the same way whether polygon antialiasing is
enabled or not. The polygon point sampling rule defined in section 3.6.1, however,
is not enforced for antialiased polygons.

3.6.4 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using
void PolygonMode(enum face, enum mode);

face is one of FRONT, BACK, or FRONT_AND_BACK, indicating that the rasterizing
method described by mode respectively replaces the rasterizing method for front-
facing polygons, back-facing polygons, or both front- and back-facing polygons.
mode is one of the symbolic constants POINT, LINE, or FILL. Calling Polygon-
Mode with POINT causes certain vertices of a polygon to be treated, for rasteriza-
tion purposes, just as if they were enclosed within a Begin(POINTS) and End pair.
The vertices selected for this treatment are those that have been tagged as having a
polygon boundary edge beginning on them (see section 2.6.2). LINE causes edges
that are tagged as boundary to be rasterized as line segments. (The line stipple
counter is reset at the beginning of the first rasterized edge of the polygon, but not
for subsequent edges.) FILL is the default mode of polygon rasterization, cor-
responding to the description in sections 3.6.1, 3.6.2, and 3.6.3. Note that these

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.6. POLYGONS 173

modes affect only the final rasterization of polygons: in particular, a polygon’s ver-
tices are lit, and the polygon is clipped and possibly culled before these modes are
applied.

Polygon antialiasing applies only to the FILL state of PolygonMode. For
POINT or LINE, point antialiasing or line segment antialiasing, respectively, ap-

ply.

3.6.5 Depth Offset

The depth values of all fragments generated by the rasterization of a polygon may
be offset by a single value that is computed for that polygon. The function that
determines this value is specified by calling

void PolygonOffset(float factor, float units);

factor scales the maximum depth slope of the polygon, and units scales an
implementation-dependent constant that relates to the usable resolution of the
depth buffer. The resulting values are summed to produce the polygon offset value.
Both factor and units may be either positive or negative.

The maximum depth slope m of a triangle is

0z 2 0z 2
m:\/ (a) *(aﬁ G-AD

where (), Yw, 2) 18 @ point on the triangle. m may be approximated as

Ozw | |02y
3.11

)

3.12

The minimum resolvable difference r is an implementation-dependent param-
eter that depends on the depth buffer representation. It is the smallest difference in
window coordinate z values that is guaranteed to remain distinct throughout poly-
gon rasterization and in the depth buffer. All pairs of fragments generated by the
rasterization of two polygons with otherwise identical vertices, but z,, values that
differ by r, will have distinct depth values.

For fixed-point depth buffer representations, r is constant throughout the range
of the entire depth buffer. For floating-point depth buffers, there is no single min-
imum resolvable difference. In this case, the minimum resolvable difference for a

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.6. POLYGONS 174

given polygon is dependent on the maximum exponent, e, in the range of z values
spanned by the primitive. If n is the number of bits in the floating-point mantissa,
the minimum resolvable difference, r, for the given primitive is defined as

r=2"

The offset value o for a polygon is
o =m X factor + r X units. (3.13)

m is computed as described above. If the depth buffer uses a fixed-point represen-
tation, m is a function of depth values in the range [0, 1], and o is applied to depth
values in the same range.

Boolean state values POLYGON_OFFSET_POINT, POLYGON_OFFSET_LINE,
and POLYGON_OFFSET_FILL determine whether o is applied during the rasteriza-
tion of polygons in POINT, LINE, and FI1LL modes. These boolean state values are
enabled and disabled as argument values to the commands Enable and Disable.
If POLYGON_OFFSET_POINT is enabled, o is added to the depth value of each
fragment produced by the rasterization of a polygon in POINT mode. Likewise,
if POLYGON_OFFSET_LINE or POLYGON_OFFSET_FILL is enabled, o is added to
the depth value of each fragment produced by the rasterization of a polygon in
LINE or FILL modes, respectively.

For fixed-point depth buffers, fragment depth values are always limited to the
range [0, 1], either by clamping after offset addition is performed (preferred), or by
clamping the vertex values used in the rasterization of the polygon. Fragment depth
values are clamped even when the depth buffer uses a floating-point representation.

3.6.6 Polygon Multisample Rasterization

If MULTISAMPLE is enabled and the value of SAMPLE_BUFFERS is one, then poly-
gons are rasterized using the following algorithm, regardless of whether polygon
antialiasing (POLYGON_SMOOTH) is enabled or disabled. Polygon rasterization pro-
duces a fragment for each framebuffer pixel with one or more sample points that
satisfy the point sampling criteria described in 3.6.1

If a polygon
is culled, based on its orientation and the CullFace mode, then no fragments are
produced during rasterization.

Coverage bits that correspond to sample points that satisfy the point sampling

criteria are 1, other coverage bits are 0. Each associated datum is produced as
described in section 3.6.1, but using the corresponding sample location instead of

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 175

the fragment center. An implementation may choose to assign the same associated
data values to more than one sample by barycentric evaluation using any location
within the pixel including the fragment center or one of the sample locations. The
color value and the set of texture coordinates need not be evaluated at the same
location.

When using a vertex shader, the noperspective and £1at qualifiers affect
how varying shader outputs are interpolated in the same fashion as described for
for basic polygon rasterization in section 3.6.1.

The rasterization described above applies only to the FILL state of Polygon-
Mode. For POINT and LINE, the rasterizations described in sections 3.4.3 (Point
Multisample Rasterization) and 3.5.4 (Line Multisample Rasterization) apply.

3.6.7 Polygon Rasterization State

The state required for polygon rasterization consists of a polygon stipple pattern,
whether stippling is enabled or disabled, the current state of polygon antialiasing
(enabled or disabled), the current values of the PolygonMode sctting for each of
front- and back-facing polygons, whether point, line, and fill mode polygon offsets
are enabled or disabled, and the factor and bias values of the polygon offset equa-
tion. The initial stipple pattern is all ones; initially stippling is disabled. The initial
setting of polygon antialiasing is disabled. The initial state for PolygonMode is
FILL for both front- and back-facing polygons. The initial polygon offset factor
and bias values are both 0; initially polygon offset is disabled for all modes.

3.7 Pixel Rectangles

Rectangles of color, depth, and certain other values may be specified to the GL
using TexImage*D (see section 3.9.3) or converted to fragments using the Draw-
Pixels command (described in section 3.7.5) Some of the parameters and opera-
tions governing the operation of these commands are shared by CopyPixels (used
to copy pixels from one framebuffer location to another) and ReadPixels (used
to obtain pixel values from the framebuffer); the discussion of CopyPixels and
ReadPixels, however, is deferred until chapter 4 after the framebuffer has been
discussed in detail. Nevertheless, we note in this section when parameters and
state pertaining to these commands also pertain to CopyPixels or ReadPixels.

A number of parameters control the encoding of pixels in buffer object or client
memory (for reading and writing) and how pixels are processed before being placed
in or after being read from the framebuffer (for reading, writing, and copying).
These parameters are set with three commands: PixelStore, PixelTransfer, and

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 176

Parameter Name Type Initial Value ‘ Valid Range ‘
UNPACK_SWAP_BYTES boolean FALSE TRUE/FALSE
UNPACK_LSB_FIRST boolean FALSE TRUE/FALSE
UNPACK_ROW_LENGTH integer 0 [0, 00)
UNPACK_SKIP_ROWS integer 0 [0, 00)
UNPACK_SKIP_PIXELS integer 0 [0, 00)
UNPACK_ALIGNMENT integer 4 1,2,4,8
UNPACK_IMAGE_HEIGHT | integer 0 [0, 00)
UNPACK_SKIP_IMAGES | integer 0 [0, 00)

Table 3.1: PixelStore parameters pertaining to one or more of

TexImagelD, TexImage2D, TexImage3D, Tex-
SubImagelD, TexSubImage2D, and TexSubImage3D.

3.7.1 Pixel Storage Modes and Pixel Buffer Objects

Pixel storage modes affect the operation of
and ReadPixels 3.6.2
3.8) when one of these commands is issued.

5.5). Pixel storage modes are set with
void PixelStore{if}(enum pname, T param);

pname is a symbolic constant indicating a parameter to be set, and param is the
value to set it to. Table 3.1 summarizes the pixel storage parameters, their types,
their initial values, and their allowable ranges. Setting a parameter to a value out-
side the given range results in the error INVALID_VALUE.

The version of PixelStore that takes a floating-point value may be used to
set any type of parameter; if the parameter is boolean, then it is set to FALSE if
the passed value is 0.0 and TRUE otherwise, while if the parameter is an integer,
then the passed value is rounded to the nearest integer. The integer version of
the command may also be used to set any type of parameter; if the parameter is
boolean, then it is set to FALSE if the passed value is 0 and TRUE otherwise, while
if the parameter is a floating-point value, then the passed value is converted to
floating-point.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 177

In addition to storing pixel data in client memory, pixel data may also be
stored in buffer objects (described in section 2.9). The current pixel unpack and
pack buffer objects are designated by the PIXEL_UNPACK_BUFFER and PIXEL_—
PACK_BUFFER targets respectively.

Initially, zero is bound for the PIXEL_UNPACK_BUFFER, indicating that im-
age specification commands such as DrawPixels source their pixels from client
memory pointer parameters. However, if a non-zero buffer object is bound as the
current pixel unpack buffer, then the pointer parameter is treated as an offset into
the designated buffer object.

3.7.2 The Imaging Subset

Some pixel transfer and per-fragment operations are only made available in GL
implementations which incorporate the optional imaging subset. The imaging sub-
set includes both new commands, and new enumerants allowed as parameters to
existing commands. If the subset is supported, all of these calls and enumerants
must be implemented as described later in the GL specification. If the subset is
not supported, calling any unsupported command generates the error INVALID_ -
OPERATION, and using any of the new enumerants generates the error INVALID_ -
ENUM.

The individual operations available only in the imaging subset are described in
section 3.7.3. Imaging subset operations include:

1. Color tables, including all commands and enumerants described in sub-
sections Color Table Specification, Alternate Color Table Specification
Commands, Color Table State and Proxy State, Color Table Lookup,
Post Convolution Color Table Lookup, and Post Color Matrix Color Ta-
ble Lookup, as well as the query commands described in section 6.1.8.

2. Convolution, including all commands and enumerants described in sub-
sections Convolution Filter Specification, Alternate Convolution Filter
Specification Commands, and Convolution, as well as the query com-
mands described in section 6.1.9.

3. Color matrix, including all commands and enumerants described in subsec-
tions Color Matrix Specification and Color Matrix Transformation, as
well as the simple query commands described in section 6.1.7.

4. Histogram and minmax, including all commands and enumerants described
in subsections Histogram Table Specification, Histogram State and
Proxy State, Histogram, Minmax Table Specification, and Minmax, as
well as the query commands described in section 6.1.10 and section 6.1.11.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 178

Parameter Name Type Initial Value ‘ Valid Range ‘
MAP_COLOR boolean FALSE TRUE/FALSE
MAP_STENCIL boolean FALSE TRUE/FALSE
INDEX_SHIFT integer 0 (—00, 00)
INDEX_OFFSET integer 0 (—00,00)
r_SCALE float 1.0 (—00, 00)
DEPTH_SCALE float 1.0 (—00, 00)
r_BIAS float 0.0 (—00, 00)
DEPTH_BIAS float 0.0 (—00, 00)
POST_CONVOLUTION_z_SCALE float 1.0 (—00, 00)
POST_CONVOLUTION_z_BIAS float 0.0 (—00, 00)
POST_COLOR_MATRIX_z_SCALE | float 1.0 (—00, 00)
POST_COLOR_MATRIX_z_BIAS float 0.0 (—00,00)

Table 3.2: PixelTransfer parameters. x is RED, GREEN, BLUE, or ALPHA.

The imaging subset is supported only if the EXTENSIONS string includes
the substring "GL_ARB_imaging” Querying EXTENSIONS is described in sec-
tion 6.1.5.

If the imaging subset is not supported, the related pixel transfer operations are
not performed; pixels are passed unchanged to the next operation.

3.7.3 Pixel Transfer Modes

Pixel transfer modes affect the operation of DrawPixels (section 3.7.5), ReadPix-
els (section 4.3.2), and CopyPixels (section 4.3.3) at the time when one of these
commands is executed (which may differ from the time the command is issued).
Some pixel transfer modes are set with

void PixelTransfer{if}(enum param, T value);

param is a symbolic constant indicating a parameter to be set, and value is the value
to set it to. Table 3.2 summarizes the pixel transfer parameters that are set with
PixelTransfer, their types, their initial values, and their allowable ranges. Setting
a parameter to a value outside the given range results in the error INVALID_—
VALUE. The same versions of the command exist as for PixelStore, and the same
rules apply to accepting and converting passed values to set parameters.

The pixel map lookup tables are set with

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 179

Map Name ‘ ‘ Address Value Init. Size | Init. Value
PIXEL_MAP_I_TO_I color idx color idx 1 0.0
PIXEL_MAP_S_TO_S || stencil idx | stencil idx 1 0
PIXEL_MAP_I_TO_R || coloridx R 1 0.0
PIXEL_MAP_I_TO_G color idx G 1 0.0
PIXEL_MAP_I_TO_B || coloridx B 1 0.0
PIXEL_MAP_I_TO_A || coloridx A 1 0.0
PIXEL_MAP_R_TO_R R R 1 0.0
PIXEL_MAP_G_TO_G G G 1 0.0
PIXEL_MAP_B_TO_B B B 1 0.0
PIXEL_MAP_A_TO_A A A 1 0.0

Table 3.3: PixelMap parameters.

void PixelMap{ui us f}v(enum map, sizei size, const
T values);

map is a symbolic map name, indicating the map to set, size indicates the size of
the map, and values refers to an array of size map values.

The entries of a table may be specified using one of three types: single-
precision floating-point, unsigned short integer, or unsigned integer, depending on
which of the three versions of PixelMap is called. A table entry is converted to
the appropriate type when it is specified. An entry giving a color component value
is converted as described in equation 2.1 and then clamped to the range [0, 1]. An
entry giving a color index value is converted from an unsigned short integer or un-
signed integer to floating-point. An entry giving a stencil index is converted from
single-precision floating-point to an integer by rounding to nearest. The various ta-
bles and their initial sizes and entries are summarized in table 3.3. A table that takes
an index as an address must have size = 2™ or the error INVALID_ VALUE results.
The maximum allowable size of each table is specified by the implementation-
dependent value MAX_PIXEL_MAP_TABLE, but must be at least 32 (a single maxi-
mum applies to all tables). The error INVALID_VALUE is generated if a size larger
than the implemented maximum, or less than one, is given to PixelMap.

If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_-
UNPACK_BUFFER_BINDING), values is an offset into the pixel unpack buffer; oth-
erwise, values is a pointer to client memory. All pixel storage and pixel transfer
modes are ignored when specifying a pixel map. n machine units are read where n
is the size of the pixel map times the size of a f1oat, uint, or ushort datum in
basic machine units, depending on the respective PixelMap version. If a pixel un-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 180

pack buffer object is bound and data + n is greater than the size of the pixel buffer,
an INVALID_OPERATION error results. If a pixel unpack buffer object is bound
and values is not evenly divisible by the number of basic machine units needed to
store in memory a f1loat, uint, or ushort datum depending on their respective
PixelMap version, an INVALID_OPERATION error results.

Color Table Specification

Color lookup tables are specified with

void ColorTable(enum farget, enum internalformat,
sizei width, enum format, enumtype, const
void *data);

target must be one of the regular color table names listed in table 3.4 to define
the table. A proxy table name is a special case discussed later in this section.
width, format, type, and data specify an image in memory with the same mean-
ing and allowed values as the corresponding arguments to DrawPixels (see sec-
tion 3.7.5), with height taken to be 1. The maximum allowable width of a ta-
ble is implementation-dependent, but must be at least 32. The formats COLOR_—
INDEX, DEPTH_COMPONENT, DEPTH_STENCIIL, and STENCIL_INDEX and the
type BITMAP are not allowed.

The specified image is taken from memory and processed just as if DrawPixels
were called, stopping after the final expansion to RGBA. The R, G, B, and A com-
ponents of each pixel are then scaled by the four COLOR_TABLE_SCALE param-
eters and biased by the four COLOR_TABLE_BIAS parameters. These parameters
are set by calling ColorTableParameterfv as described below. If fragment color
clamping is enabled or internalformat is fixed-point, components are clamped to
[0, 1]. Otherwise, components are not modified.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with the base internal format specified by (or derived from) inter-
nalformat, in the same manner as for textures (section 3.9.3). internalformat must
be one of the formats in table 3.16 or tables 3.17- 3.19, with the exception of the
RED, RG, DEPTH_COMPONENT, and DEPTH_STENCIL base and sized internal for-
mats in those tables, all sized internal formats with non-fixed internal data types
(see section 3.9), and sized internal format RGB9_ES5.

The color lookup table is redefined to have width entries, each with the speci-
fied internal format. The table is formed with indices 0 through width — 1. Table
location 7 is specified by the ith image pixel, counting from zero.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 181

Table Name ‘ ‘ Type

COLOR_TABLE regular
POST_CONVOLUTION_COLOR_TABLE
POST_COLOR_MATRIX_COLOR_TABLE
PROXY_COLOR_TABLE proxy
PROXY_POST_CONVOLUTION_COLOR_TABLE
PROXY_POST_COLOR_MATRIX_ COLOR_TABLE

Table 3.4: Color table names. Regular tables have associated image data. Proxy
tables have no image data, and are used only to determine if an image can be loaded
into the corresponding regular table.

The error INVALID_VALUE is generated if width is not zero or a non-negative
power of two. The error TABLE_TOO_LARGE is generated if the specified color
lookup table is too large for the implementation.

The scale and bias parameters for a table are specified by calling

void ColorTableParameter{if}v(enum target, enum pname,
const T params);

target must be a regular color table name. pname is one of COLOR_TABLE_SCALE
or COLOR_TABLE_BIAS. params points to an array of four values: red, green, blue,
and alpha, in that order.

A GL implementation may vary its allocation of internal component resolution
based on any ColorTable parameter, but the allocation must not be a function of
any other factor, and cannot be changed once it is established. Allocations must
be invariant; the same allocation must be made each time a color table is specified
with the same parameter values. These allocation rules also apply to proxy color
tables, which are described later in this section.

Alternate Color Table Specification Commands

Color tables may also be specified using image data taken directly from the frame-
buffer, and portions of existing tables may be respecified.
The command

void CopyColorTable(enum target, enum internalformat,
int x, inty, sizei width);

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 182

defines a color table in exactly the manner of ColorTable, except that table data
are taken from the framebuffer, rather than from client memory. farget must be a
regular color table name. x, y, and width correspond precisely to the corresponding
arguments of CopyPixels (refer to section 4.3.3); they specify the image’s width
and the lower left (x,y) coordinates of the framebuffer region to be copied. The
image is taken from the framebuffer exactly as if these arguments were passed to
CopyPixels with argument type set to COLOR and height set to 1, stopping after the
final expansion to RGBA.

Subsequent processing is identical to that described for ColorTable, begin-
ning with scaling by COLOR_TABLE_SCALE. Parameters target, internalformat and
width are specified using the same values, with the same meanings, as the equiva-
lent arguments of ColorTable. format is taken to be RGBA.

Two additional commands,

void ColorSubTable(enum target, sizei start, sizei count,
enum format, enum type, const void *data);

void CopyColorSubTable(enum farget, sizei start, int x,
inty, sizei count);

respecify only a portion of an existing color table. No change is made to the inter-
nalformat or width parameters of the specified color table, nor is any change made
to table entries outside the specified portion. target must be a regular color table
name.

ColorSubTable arguments format, type, and data match the corresponding ar-
guments to ColorTable, meaning that they are specified using the same values,
and have the same meanings. Likewise, CopyColorSubTable arguments x, y, and
count match the x, y, and width arguments of CopyColorTable. Both of the Color-
SubTable commands interpret and process pixel groups in exactly the manner of
their ColorTable counterparts, except that the assignment of R, G, B, and A pixel
group values to the color table components is controlled by the internalformat of
the table, not by an argument to the command.

Arguments start and count of ColorSubTable and CopyColorSubTable spec-
ify a subregion of the color table starting at index start and ending at index
start 4+ count — 1. Counting from zero, the nth pixel group is assigned to the
table entry with index count + n. The error INVALID_VALUE is generated if
start 4+ count > width.

Calling CopyColorTable or CopyColorSubTable will result in an
INVALID_FRAMEBUFFER_OPERATION error if the object bound to READ_-
FRAMEBUFFER_BINDING is not framebuffer complete (see section 4.4.4).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 183

Color Table State and Proxy State

The state necessary for color tables can be divided into two categories. For each
of the three tables, there is an array of values. Each array has associated with it
a width, an integer describing the internal format of the table, six integer values
describing the resolutions of each of the red, green, blue, alpha, luminance, and
intensity components of the table, and two groups of four floating-point numbers to
store the table scale and bias. Each initial array is null (zero width, internal format
RGBA, with zero-sized components). The initial value of the scale parameters is
(1,1,1,1) and the initial value of the bias parameters is (0,0,0,0).

In addition to the color lookup tables, partially instantiated proxy color lookup
tables are maintained. Each proxy table includes width and internal format state
values, as well as state for the red, green, blue, alpha, luminance, and intensity
component resolutions. Proxy tables do not include image data, nor do they include
scale and bias parameters. When ColorTable is executed with farget specified as
one of the proxy color table names listed in table 3.4, the proxy state values of the
table are recomputed and updated. If the table is too large, no error is generated, but
the proxy format, width and component resolutions are set to zero. If the color table
would be accommodated by ColorTable called with zarget set to the corresponding
regular table name (COLOR_TABLE is the regular name corresponding to PROXY_ -
COLOR_TABLE, for example), the proxy state values are set exactly as though the
regular table were being specified. Calling ColorTable with a proxy target has no
effect on the image or state of any actual color table.

There is no image associated with any of the proxy targets. They cannot be
used as color tables, and they must never be queried using GetColorTable. The
error INVALID_ENUM is generated if this is attempted.

Convolution Filter Specification

A two-dimensional convolution filter image is specified by calling

void ConvolutionFilter2D(enum farget, enum internalformat,
sizei width, sizei height, enum format, enum type,
const void *data);

target must be CONVOLUTION_2D. width, height, format, type, and data specify an
image in memory with the same meaning and allowed values as the correspond-
ing parameters to DrawPixels. The formats COLOR_INDEX, DEPTH_COMPONENT,
DEPTH_STENCIL, and STENCIL_INDEX and the type BITMAP are not allowed.
The specified image is extracted from memory and processed just as if
DrawPixels were called, stopping after the final expansion to RGBA. The

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 184

R, G, B, and A components of each pixel are then scaled by the four two-
dimensional CONVOLUTION_FILTER_SCALE parameters and biased by the four
two-dimensional CONVOLUTION_FILTER_BIAS parameters. These parameters
are set by calling ConvolutionParameterfv as described below. No clamping
takes place at any time during this process.

Components are then selected from the resulting R, G, B, and A values to
obtain a table with the base internal format specified by (or derived from) internal-
format, in the same manner as for textures (section 3.9.3). internalformat accepts
the same values as the corresponding argument of ColorTable.

The red, green, blue, alpha, luminance, and/or intensity components of the
pixels are stored in floating point, rather than integer format. They form a two-
dimensional image indexed with coordinates ¢, j such that ¢ increases from left to
right, starting at zero, and j increases from bottom to top, also starting at zero.
Image location ¢, j is specified by the Nth pixel, counting from zero, where

N =14 j xwidth

The error INVALID_VALUE is generated if width or height is greater than
the maximum supported value. These values are queried with GetConvo-
lutionParameteriv, setting target to CONVOLUTION_2D and pname to MAX_—
CONVOLUTION_WIDTH or MAX_CONVOLUTION_HEIGHT, respectively.

The scale and bias parameters for a two-dimensional filter are specified by
calling

void ConvolutionParameter{if}v(enum rarget, enum pname,
const T params);

with farget CONVOLUTION_2D. pname is one of CONVOLUTION_FILTER_SCALE
or CONVOLUTION_FILTER_BIAS. params points to an array of four values: red,
green, blue, and alpha, in that order.

A one-dimensional convolution filter is defined using

void ConvolutionFilter1D(enum farget, enum internalformat,
sizei width, enum format, enumtype, const
void *data);

target must be CONVOLUTION_1D. internalformat, width, format, and type have
identical semantics and accept the same values as do their two-dimensional coun-
terparts. data must point to a one-dimensional image, however.

The image is extracted from memory and processed as if ConvolutionFilter2D
were called with a height of 1, except that it is scaled and biased by the one-
dimensional CONVOLUTION_FILTER_SCALE and CONVOLUTION_FILTER_BIAS

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 185

parameters. These parameters are specified exactly as the two-dimensional param-
eters, except that ConvolutionParameterfv is called with target CONVOLUTION_ -
1D.

The image is formed with coordinates ¢ such that ¢ increases from left to right,
starting at zero. Image location ¢ is specified by the ith pixel, counting from zero.

The error INVALID_VALUE is generated if width is greater than the maximum
supported value. This value is queried using GetConvolutionParameteriv, setting
target to CONVOLUTION_1D and pname to MAX_CONVOLUTION_WIDTH.

Special facilities are provided for the definition of two-dimensional sepa-
rable filters — filters whose image can be represented as the product of two
one-dimensional images, rather than as full two-dimensional images. A two-
dimensional separable convolution filter is specified with

void SeparableFilter2D(enum target, enum internalformat,
sizei width, sizei height, enum format, enumn type,
const void *row, const void *column);

target must be SEPARABLE_2D. internalformat specifies the formats of the table
entries of the two one-dimensional images that will be retained. row points to a
width pixel wide image of the specified format and type. column points to a height
pixel high image, also of the specified format and type.

The two images are extracted from memory and processed as if Convolu-
tionFilter1D were called separately for each, except that each image is scaled
and biased by the two-dimensional separable CONVOLUTION_FILTER_SCALE and
CONVOLUTION_FILTER_BIAS parameters. These parameters are specified ex-
actly as the one-dimensional and two-dimensional parameters, except that Con-
volutionParameteriv is called with farget SEPARABLE_2D.

Alternate Convolution Filter Specification Commands

One and two-dimensional filters may also be specified using image data taken di-
rectly from the framebuffer.
The command

void CopyConvolutionFilter2D(enum target,
enum internalformat, int x, inty, sizei width,
sizei height);

defines a two-dimensional filter in exactly the manner of ConvolutionFilter2D,
except that image data are taken from the framebuffer, rather than from client
memory. target must be CONVOLUTION_2D. x, y, width, and height correspond

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 186

precisely to the corresponding arguments of CopyPixels (refer to section 4.3.3);
they specify the image’s widrh and height, and the lower left (z,y) coordinates
of the framebuffer region to be copied. The image is taken from the framebuffer
exactly as if these arguments were passed to CopyPixels with argument fype set to
COLOR, stopping after the final expansion to RGBA.

Subsequent processing is identical to that described for ConvolutionFilter2D,
beginning with scaling by CONVOLUTION_FILTER_SCALE. Parameters target, in-
ternalformat, width, and height are specified using the same values, with the same
meanings, as the equivalent arguments of ConvolutionFilter2D. format is taken to
be RGBA.

The command

void CopyConvolutionFilter1D(enum target,
enum internalformat, int x, inty, sizei width);

defines a one-dimensional filter in exactly the manner of ConvolutionFilter1D,
except that image data are taken from the framebuffer, rather than from client mem-
ory. target must be CONVOLUTION_1D. x, y, and width correspond precisely to the
corresponding arguments of CopyPixels (refer to section 4.3.3); they specify the
image’s width and the lower left (x,y) coordinates of the framebuffer region to
be copied. The image is taken from the framebuffer exactly as if these arguments
were passed to CopyPixels with argument rype set to COLOR and height set to 1,
stopping after the final expansion to RGBA.

Subsequent processing is identical to that described for ConvolutionFilter1D,
beginning with scaling by CONVOLUTION_FILTER_SCALE. Parameters target, in-
ternalformat, and width are specified using the same values, with the same mean-
ings, as the equivalent arguments of ConvolutionFilter2D. format is taken to be
RGBA.

Calling CopyConvolutionFilter1D or CopyConvolutionFilter2D will result
in an INVALID_FRAMEBUFFER_OPERATION error if the object bound to READ_—
FRAMEBUFFER_BINDING is not framebuffer complete (see section 4.4.4).

Convolution Filter State

The required state for convolution filters includes a one-dimensional image array,
two one-dimensional image arrays for the separable filter, and a two-dimensional
image array. Each filter has associated with it a width and height (two-dimensional
and separable only), an integer describing the internal format of the filter, and two
groups of four floating-point numbers to store the filter scale and bias.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 187

Each initial convolution filter is null (zero width and height, internal format
RGBA, with zero-sized components). The initial value of all scale parameters is
(1,1,1,1) and the initial value of all bias parameters is (0,0,0,0).

Color Matrix Specification

Setting the matrix mode to COLOR causes the matrix operations described in sec-
tion 2.12.1 to apply to the top matrix on the color matrix stack. All matrix opera-
tions have the same effect on the color matrix as they do on the other matrices.

Histogram Table Specification

The histogram table is specified with

void Histogram(enum target, sizei width,
enumn internalformat, boolean sink);

target must be HISTOGRAM if a histogram table is to be specified. farget value
PROXY_HISTOGRAM is a special case discussed later in this section. width speci-
fies the number of entries in the histogram table, and internalformat specifies the
format of each table entry. The maximum allowable width of the histogram table
is implementation-dependent, but must be at least 32. sink specifies whether pixel
groups will be consumed by the histogram operation (TRUE) or passed on to the
minmax operation (FALSE).

If no error results from the execution of Histogram, the specified histogram
table is redefined to have widrh entries, each with the specified internal format.
The entries are indexed O through width — 1. Each component in each entry is set
to zero. The values in the previous histogram table, if any, are lost.

The error INVALID_VALUE is generated if width is not zero or a non-negative
power of two. The error TABLE_TOO_LARGE is generated if the specified his-
togram table is too large for the implementation. internalformat accepts the same
values as the corresponding argument of ColorTable, with the exception of the
values 1, 2, 3, and 4.

A GL implementation may vary its allocation of internal component resolution
based on any Histogram parameter, but the allocation must not be a function of any
other factor, and cannot be changed once it is established. In particular, allocations
must be invariant; the same allocation must be made each time a histogram is
specified with the same parameter values. These allocation rules also apply to the
proxy histogram, which is described later in this section.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 188

Histogram State and Proxy State

The state necessary for histogram operation is an array of values, with which is
associated a width, an integer describing the internal format of the histogram, five
integer values describing the resolutions of each of the red, green, blue, alpha,
and luminance components of the table, and a flag indicating whether or not pixel
groups are consumed by the operation. The initial array is null (zero width, internal
format RGBA, with zero-sized components). The initial value of the flag is false.

In addition to the histogram table, a partially instantiated proxy histogram table
is maintained. It includes width, internal format, and red, green, blue, alpha, and
luminance component resolutions. The proxy table does not include image data or
the flag. When Histogram is executed with target set to PROXY_HISTOGRAM, the
proxy state values are recomputed and updated. If the histogram array is too large,
no error is generated, but the proxy format, width, and component resolutions are
set to zero. If the histogram table would be accomodated by Histogram called
with target set to HISTOGRAM, the proxy state values are set exactly as though
the actual histogram table were being specified. Calling Histogram with target
PROXY_HISTOGRAM has no effect on the actual histogram table.

There is no image associated with PROXY_HISTOGRAM. It cannot be used as
a histogram, and its image must never queried using GetHistogram. The error
INVALID_ENUM results if this is attempted.

Minmax Table Specification

The minmax table is specified with

void Minmax(enum target, enum internalformat,
boolean sink);

target must be MINMAX. internalformat specifies the format of the table entries.
sink specifies whether pixel groups will be consumed by the minmax operation
(TRUE) or passed on to final conversion (FALSE).

internalformat accepts the same values as the corresponding argument of Col-
orTable, with the exception of the values 1, 2, 3, and 4, as well as the INTENSITY
base and sized internal formats. The resulting table always has 2 entries, each with
values corresponding only to the components of the internal format.

The state necessary for minmax operation is a table containing two elements
(the first element stores the minimum values, the second stores the maximum val-
ues), an integer describing the internal format of the table, and a flag indicating
whether or not pixel groups are consumed by the operation. The initial state is
a minimum table entry set to the maximum representable value and a maximum

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 189

3.7.4 Transfer of Pixel Rectangles

The process of transferring pixels encoded in buffer object or client memory is
diagrammed in figure 3.7. We describe the stages of this process in the order in
which they occur.

Commands accepting or returning pixel rectangles take the following argu-
ments (as well as additional arguments specific to their function):

format is a symbolic constant indicating what the values in memory represent.

width and height are the width and height, respectively, of the pixel rectangle
to be transferred.

data refers to the data to be drawn. These data are represented with one of
several GL data types, specified by type. The correspondence between the type
token values and the GL data types they indicate is given in table 3.5.

Not all combinations of format and type are valid.

If format is DEPTH_STENCIL and type is not UNSIGNED_INT_24_8 or FLOAT_—
32_UNSIGNED_INT_24_8_REV, then the error INVALID_ENUM occurs. If format
is one of the integer component formats as defined in table 3.6 and fype is FLOAT,
the error INVALID_ ENUM occurs. Some additional constraints on the combina-
tions of format and type values that are accepted are discussed below. Additional
restrictions may be imposed by specific commands.

Unpacking

Data are taken from the currently bound pixel unpack buffer or client memory as a
sequence of signed or unsigned bytes (GL data types byt e and ubyte), signed or
unsigned short integers (GL data types short and ushort), signed or unsigned
integers (GL data types int and uint), or floating point values (GL data types
half and float). These elements are grouped into sets of one, two, three, or
four values, depending on the format, to form a group. Table 3.6 summarizes the
format of groups obtained from memory; it also indicates those formats that yield
indices and those that yield floating-point or integer components.

If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_-
UNPACK_BUFFER_BINDING), data is an offset into the pixel unpack buffer and
the pixels are unpacked from the buffer relative to this offset; otherwise, data is a
pointer to client memory and the pixels are unpacked from client memory relative
to the pointer. If a pixel unpack buffer object is bound and unpacking the pixel data

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES

190

byte, short, int, o r float pixel
data stream (index or component)

convert

to float

convert
L to RGB

scale
and bias

shift
and offset

index to RGBA
looku p

color table
lookup

convolution
scale and bias

post
convolution

color table
lookup

color matrix

color table
lookup

histogram

SRR BERERRRR RS

minmax

scale and bias

clamp final mask to
to [0,1] conversion @"-1)
RGBA pixel |—> color index pixel |—>
data out data out

Figure 3.7. Transfer of pixel rectangles to the GL. Output is RGBA pixels if the GL
is in RGBA mode, color index pixels otherwise. Operations in dashed boxes may

be enabled @penGIeB3.33(Compatibility Profile)y<Match 4T,2010: depth and

stencil pixel paths are not shown.

3.7. PIXEL RECTANGLES 191

type Parameter Corresponding Special
Token Name GL Data Type | Interpretation
UNSIGNED_BYTE ubyte No
BYTE byte No
UNSIGNED_SHORT ushort No
SHORT short No
UNSIGNED_INT uint No
INT int No
HALF_FLOAT half No
FLOAT float No
UNSIGNED_BYTE_3_3_2 ubyte Yes
UNSIGNED_BYTE_2_3_3_REV ubyte Yes
UNSIGNED_SHORT_5_6_5 ushort Yes
UNSIGNED_SHORT_5_6_5_REV ushort Yes
UNSIGNED_SHORT_4_4_4_4 ushort Yes
UNSIGNED_SHORT_4_4_4_4_ REV ushort Yes
UNSIGNED_SHORT_5_5_5_1 ushort Yes
UNSIGNED_SHORT_1_5_5_5_REV ushort Yes
UNSIGNED_INT_8_8_8_38 uint Yes
UNSIGNED_INT_8_8_8_8_REV uint Yes
UNSIGNED_INT_10_10_10_2 uint Yes
UNSIGNED_INT_2_10_10_10_REV uint Yes
UNSIGNED_INT_24_8 uint Yes
UNSIGNED_INT_10F_11F 11F_REV uint Yes
UNSIGNED_INT_5_9_9_9 REV uint Yes
FLOAT_32_UNSIGNED_INT_24_8_REV n/a Yes

Table 3.5: Pixel data type parameter values and the corresponding GL data types.
Refer to table 2.2 for definitions of GL data types. Special interpretations are
described near the end of section 3.8.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES

192

| Format Name

| Element Meaning and Order |

Target Buffer

STENCIL_INDEX Stencil Index Stencil
DEPTH_COMPONENT Depth Depth
DEPTH_STENCIL Depth and Stencil Index Depth and Stencil
RED R Color
GREEN G Color
BLUE B Color
japra [A [Color |
RG R,G Color
RGB R,G,B Color
RGBA R,G,B, A Color
BGR B,G,R Color
BGRA B,G, R, A Color

RED_INTEGER iR Color
GREEN_INTEGER iG Color
BLUE_INTEGER iB Color

RG_INTEGER iR, i1G Color
RGB_INTEGER iR, iG, iB Color
RGBA_INTEGER iR, iG, iB, iA Color
BGR_INTEGER iB, iG, iR Color
BGRA_INTEGER iB, iG, iR, 1A Color

Table 3.6: Pixel data formats. The second column gives a description of and the
number and order of elements in a group. Unless specified as an index, formats
yield components. Components are floating-point unless prefixed with the letter
’1’, which indicates they are integer.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 193

Element Size | Default Bit Ordering | Modified Bit Ordering

8 bit [7..0] [7..0]

16 bit [15..0] [7..0][15..8]

32 bit [31..0] [7..0][15..8][23..16][31..24]

Table 3.7: Bit ordering modification of elements when UNPACK_SWAP_BYTES is
enabled. These reorderings are defined only when GL data type ubyte has 8 bits,
and then only for GL data types with 8, 16, or 32 bits. Bit 0 is the least significant.

according to the process described below would access memory beyond the size of
the pixel unpack buffer’s memory size, an INVALID_OPERATION error results. If a
pixel unpack buffer object is bound and data is not evenly divisible by the number
of basic machine units needed to store in memory the corresponding GL data type
from table 3.5 for the fype parameter (or not evenly divisible by 4 for fype FLOAT -
32_UNSIGNED_INT_24_8_REV, which does not have a corresponding GL data
type), an INVALID_OPERATION error results.

By default the values of each GL data type are interpreted as they would be
specified in the language of the client’s GL binding. If UNPACK_SWAP_BYTES is
enabled, however, then the values are interpreted with the bit orderings modified
as per table 3.7. The modified bit orderings are defined only if the GL data type
ubyte has eight bits, and then for each specific GL data type only if that type is
represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This rect-
angle consists of a series of rows, with the first element of the first group of the
first row pointed to by data. If the value of UNPACK_ROW_LENGTH is not positive,
then the number of groups in a row is width; otherwise the number of groups is
UNPACK_ROW_LENGTH. If p indicates the location in memory of the first element
of the first row, then the first element of the Nth row is indicated by

p+ Nk (3.14)
where NV is the row number (counting from zero) and k is defined as

z >
k—{ Z[L,ﬂ Lo (3.15)

where n is the number of elements in a group, [is the number of groups in
the row, a is the value of UNPACK_ALIGNMENT, and s is the size, in units of GL
ubytes, of an element. If the number of bits per element is not 1, 2, 4, or 8 times
the number of bits in a GL ubyte, then k = nl for all values of a.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 194

ROW LENGTH

SKI P_PI XELS

SKI P_ROWS

Figure 3.8. Selecting a subimage from an image. The indicated parameter names
are prefixed by UNPACK_ and by PACK__ for ReadPixels.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer parameters:
UNPACK_ROW_LENGTH, UNPACK_SKIP_ROWS, and UNPACK_SKIP_PIXELS. Be-
fore obtaining the first group from memory, the data pointer is advanced by
(UNPACK_SKIP_PIXELS)n + (UNPACK_SKIP_ROWS)k elements. Then width
groups are obtained from contiguous elements in memory (without advancing the
pointer), after which the pointer is advanced by k elements. height sets of width
groups of values are obtained this way. See figure 3.8.

Special Interpretations

A type matching one of the types in table 3.8 is a special case in which all
the components of each group are packed into a single unsigned byte, unsigned
short, or unsigned int, depending on the type. If fype is FLOAT_32_UNSIGNED_-—
INT_24_8_REV, the components of each group are contained within two 32-bit
words; the first word contains the float component, and the second word contains
a packed 24-bit unused field, followed by an 8-bit component. The number of
components per packed pixel is fixed by the type, and must match the number of
components per group indicated by the format parameter, as listed in table 3.8.
The error INVALID_OPERATION is generated by any command processing pixel
rectangles if a mismatch occurs.

Bitfield locations of the first, second, third, and fourth components of each
packed pixel type are illustrated in tables 3.9- 3.12. Each bitfield is interpreted as

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES

195

type Parameter GL Data | Number of Matching

Token Name Type Components Pixel Formats
UNSIGNED_BYTE_3_3_2 ubyte 3 RGB, RGB_INTEGER
UNSIGNED_BYTE_2_3_3_REV ubyte 3 RGB, RGB_INTEGER
UNSIGNED_SHORT_5_6_5 ushort 3 RGB, RGB_INTEGER
UNSIGNED_SHORT_5_6_5_REV ushort 3 RGB, RGB_INTEGER
UNSIGNED_SHORT_4_4_4_4 ushort 4 RGBA, BGRA, RGBA_INTEGER, BGRA__
UNSIGNED_SHORT_4_4_4_ 4_REV ushort 4 RGBA, BGRA, RGBA_INTEGER, BGRA__
UNSIGNED_SHORT_5_5_5_1 ushort 4 RGBA, BGRA, RGBA_INTEGER, BGRA__
UNSIGNED_SHORT_1_5_5_5_REV ushort 4 RGBA, BGRA, RGBA_INTEGER, BGRA__
UNSIGNED_INT_8_8_8_38 uint 4 RGBA, BGRA, RGBA_INTEGER, BGRA_
UNSIGNED_INT_8_8_8_8_REV uint 4 RGBA, BGRA, RGBA_INTEGER, BGRA_
UNSIGNED_INT_10_10_10_2 uint 4 RGBA, BGRA, RGBA_INTEGER, BGRA_
UNSIGNED_INT_2_10_10_10_REV uint 4 RGBA, BGRA, RGBA_INTEGER, BGRA_
UNSIGNED_INT_24_8 uint 2 DEPTH_STENCIL
UNSIGNED_INT_10F_11F_11F_ REV uint 3 RGB
UNSIGNED_INT_5_9_ 9 9 REV uint 4 RGB
FLOAT_32_UNSIGNED_INT_24_8_REV n/a 2 DEPTH_STENCIL

Table 3.8: Packed pixel formats.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 196

an unsigned integer value. If the base GL type is supported with more than the
minimum precision (e.g. a 9-bit byte) the packed components are right-justified in
the pixel.

Components are normally packed with the first component in the most signif-
icant bits of the bitfield, and successive component occupying progressively less
significant locations. Types whose token names end with _REV reverse the compo-
nent packing order from least to most significant locations. In all cases, the most
significant bit of each component is packed in the most significant bit location of
its location in the bitfield.

UNSIGNED_BYTE_3_3_2:

7 6 5 4 3 2 1 0

1st Component 2nd ‘ 3rd ‘

UNSIGNED_BYTE_2_3_3_REV:

7 6 5 4 3 2 1 0

’ 3rd ‘ 2nd 1st Component

Table 3.9: UNSIGNED_BYTE formats. Bit numbers are indicated for each compo-
nent.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES

197

UNSIGNED_SHORT_5_6_5:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1st Component 2nd 3rd
UNSIGNED_SHORT_5_6_5_REV:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
3rd 2nd 1st Component
UNSIGNED_SHORT_4_4_4_4:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1st Component 2nd 3rd 4th
UNSIGNED_SHORT_4_4_4_4_REV:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
4th 3rd 2nd 1st Component
UNSIGNED_SHORT_5_5_5_1:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1st Component 2nd 3rd 4th ‘
UNSIGNED_SHORT_1_5_5_5_REV:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
’ 4th ‘ 3rd 2nd 1st Component

Table 3.10: UNSIGNED_SHORT formats

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES

UNSIGNED_INT_8_8_8_8:

198

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0
1st Component 3rd 4th
UNSIGNED_INT_8_8_8_8_REV:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0

4th 2nd 1st Component
UNSIGNED_INT_10_10_10_2:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0
1st Component 3rd ‘ 4th ‘
UNSIGNED_INT_2_10_10_10_REV:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0
’ 4th ‘ 3rd 2nd 1st Component
UNSIGNED_INT_24_8:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0
1st Component 2nd
UNSIGNED_INT_10F_11F_11F_REV:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11109 8 7 6 5 4 3 2 1 0

3rd

1st Component

UNSIGNED_INT_5_9_9_9_ REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 131211109 8 7 6 5 4 3 2 1 0

4th 3rd

2nd

1st Component

Table 3.11: UNSIGNED_INT formats

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 199

FLOAT_32_UNSIGNED_INT_24_8_REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1514 13 1211109 8 7 6 5 4 3 2 1 0

’ 1st Component ‘

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211109 8 7 6 5 4 3 2 1 0

’ Unused 2nd ‘

Table 3.12: FLOAT_UNSIGNED_INT formats

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 200
Format First Second Third Fourth
Component | Component | Component | Component
RGB red green blue
RGBA red green blue alpha
BGRA blue green red alpha
DEPTH_STENCIL depth stencil

Table 3.13: Packed pixel field assignments.

The assignment of component to fields in the packed pixel is as described in
table 3.13.

Byte swapping, if enabled, is performed before the components are extracted
from each pixel. The above discussions of row length and image extraction are
valid for packed pixels, if “group” is substituted for “component” and the number
of components per group is understood to be one.

A type of UNSIGNED_INT_10F_11F_11F_REV and format of RGB is a special
case in which the data are a series of GL uint values. Each uint value specifies 3
packed components as shown in table 3.11. The 1st, 2nd, and 3rd components are
called freq (11 bits), fgreen (11 bits), and fy,,e (10 bits) respectively.

freda and fg cen are treated as unsigned 11-bit floating-point values and con-
verted to floating-point red and green components respectively as described in sec-
tion 2.1.3. fpye 1s treated as an unsigned 10-bit floating-point value and converted
to a floating-point blue component as described in section 2.1.4.
in which the data are a series of GL uint values. Each uint value specifies 4
packed components as shown in table 3.11. The 1st, 2nd, 3rd, and 4th components
are called pred, Pgreens Polue, and pesp respectively and are treated as unsigned
integers. These are then used to compute floating-point RGB components (ignoring
the “Conversion to floating-point™ section below in this case) as follows:

red = pred2pmpiBiN
green = pgreen2pezPiBiN
blue = pblue2pﬁzpiBiN

where B = 15 (the exponent bias) and N = 9 (the number of mantissa bits).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES

Conversion to floating-point

This step applies only to groups of floating-point components. It is not performed
on indices or integer components. For groups containing both components and
indices, such as DEPTH_STENCIL, the indices are not converted.

Each element in a group is converted to a floating-point value. For unsigned
integer elements, equation 2.1 is used. For signed integer elements, equation 2.2
is used unless the final destination of the transferred element is a texture or frame-
buffer component in one of the SNORM formats described in table 3.17, in which
case equation 2.3 is used instead.

Conversion to RGB

This step is applied only if the format is LUMINANCE or LUMINANCE_ALPHA. If
the format is LUMINANCE, then each group of one element is converted to a group
of R, G, and B (three) elements by copying the original single element into each of
the three new elements. If the format is LUMINANCE_ALPHA, then each group of
two elements is converted to a group of R, G, B, and A (four) elements by copying
the first original element into each of the first three new elements and copying the
second original element to the A (fourth) new element.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group is con-
verted to a group of 4 elements as follows: if a group does not contain an A ele-
ment, then A is added and set to 1 for integer components or 1.0 for floating-point
components. If any of R, G, or B is missing from the group, each missing element
is added and assigned a value of O for integer components or 0.0 for floating-point
components.

Pixel Transfer Operations

This step is actually a sequence of steps. Because the pixel transfer operations
are performed equivalently during the drawing, copying, and reading of pixels,
and during the specification of texture images (either from memory or from the
framebuffer), they are described separately in section 3.7.6. After the processing
described in that section is completed, groups are processed as described in the
following sections.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

201

3.7. PIXEL RECTANGLES 202

3.7.5 Rasterization of Pixel Rectangles

Pixels are drawn using

void DrawPixels(sizei width, sizei height, enum format,
enum type, const void *data);

If the GL is in color index mode and format is not one of COLOR_-
INDEX, STENCIL_INDEX, DEPTH_COMPONENT, or DEPTH_STENCIL, then the er-
ror INVALID_OPERATION occurs. Results of rasterization are undefined if any
of the selected draw buffers of the draw framebuffer have an integer format and
no fragment shader is active. If format contains integer components, as shown in
table 3.6, an INVALID_OPERATION error is generated.

Calling DrawPixels will result in an INVALID_FRAMEBUFFER_OPERATION
error if the object bound to DRAW_FRAMEBUFFER_BINDING is not framebuffer
complete (see section 4.4.4).

Calling DrawPixels with a rype of BITMAP is a special case in which the data
are a series of GL ubyte values. Each ubyte value specifies 8 1-bit elements
with its 8 least-significant bits. The 8 single-bit elements are ordered from most
significant to least significant if the value of UNPACK_LSB_FIRST is FALSE; oth-
erwise, the ordering is from least significant to most significant. The values of bits
other than the 8 least significant in each ubyte are not significant.

The first element of the first row is the first bit (as defined above) of the ubyte
pointed to by the pointer passed to DrawPixels. The first element of the second
row is the first bit (again as defined above) of the ubyte at location p + k, where
k is computed as

k=a [l-‘ (3.16)
8a

There is a mechanism for selecting a sub-rectangle of elements from a BITMAP
image as well. Before obtaining the first element from memory, the pointer sup-
plied to DrawPixels is effectively advanced by UNPACK_SKIP_ROWS * k ubytes.
Then UNPACK_SKIP_PIXELS 1-bit elements are ignored, and the subsequent
width 1-bit elements are obtained, without advancing the ubyte pointer, after
which the pointer is advanced by k ubytes. height sets of width elements are
obtained this way.

Once pixels are transferred, DrawPixels performs final conversion on pixel
values, then converts them to fragments as described below. Fragments generated
by DrawPixels are then processed in the same fashion as fragments generated by
rasterization of a primitive.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 203

Final Conversion

For a color index, final conversion consists of masking the bits of the index to the
left of the binary point by 2" — 1, where n is the number of bits in an index buffer.

For integer RGBA components, no conversion is performed. For floating-
point RGBA components, if fragment color clamping is enabled, each element
is clamped to [0, 1], and may be converted to fixed-point according to equation 2.4.
If fragment color clamping is disabled, RGBA components are unmodified. Frag-
ment color clamping is controlled by calling

void ClampColor(enum farget, enum clamp);

with target set to CLAMP_FRAGMENT_COLOR. If clamp is TRUE, fragment color
clamping is enabled; if clamp is FALSE, fragment color clamping is disabled. If
clamp is FIXED_ONLY, fragment color clamping is enabled if all enabled color
buffers have fixed-point components.

For a depth component, an element is processed according to the depth buffer’s
representation. For fixed-point depth buffers, the element is first clamped to the
range [0, 1] and then converted to fixed-point as if it were a window z value (see
section 2.16.1). Conversion is not necessary when the depth buffer uses a floating-
point representation, but clamping is.

Stencil indices are masked by 2" — 1, where n is the number of bits in the
stencil buffer.

The state required for fragment color clamping is a three-valued integer. The
initial value of fragment color clamping is FIXED_ONLY.

Conversion to Fragments

The conversion of a group to fragments is controlled with
void PixelZoom(float z,, float zy);

Let (z,p,yrp) be the current raster position (section 2.24). (If the current raster
position is invalid, then DrawPixels is ignored; pixel transfer operations do not
update the histogram or minmax tables, and no fragments are generated. However,
the histogram and minmax tables are updated even if the corresponding fragments
are later rejected by the pixel ownership (section 4.1.1) or scissor (section 4.1.2)
tests.) If a particular group (index or components) is the nth in a row and belongs to
the mth row, consider the region in window coordinates bounded by the rectangle
with corners

(@rp + 22N, Yrp + 2ym) and (rp + 22(n 4+ 1), yrp + 2y(m + 1))

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 204

(either z, or z, may be negative). A fragment representing group (n,m) is pro-
duced for each framebuffer pixel inside, or on the bottom or left boundary, of this
rectangle.

A fragment arising from a group consisting of color data takes on the color
index or color components of the group and the current raster position’s associated
depth value, while a fragment arising from a depth component takes that compo-
nent’s depth value and the current raster position’s associated color index or color
components. In both cases, the fog coordinate is taken from the current raster posi-
tion’s associated raster distance, the secondary color is taken from the current raster
position’s associated secondary color, and texture coordinates are taken from the
current raster position’s associated texture coordinates. Groups arising from Draw-
Pixels with a format of DEPTH_STENCIL or STENCIIL_INDEX are treated specially
and are described in section 4.3.1.

3.7.6 Pixel Transfer Operations
The GL defines six kinds of pixel groups:

1. Floating-point RGBA component: Each group comprises four color compo-
nents in floating-point format: red, green, blue, and alpha.

2. Integer RGBA component: Each group comprises four color components in
integer format: red, green, blue, and alpha.

3. Depth component: Each group comprises a single depth component.
4. Color index: Each group comprises a single color index.
5. Stencil index: Each group comprises a single stencil index.

6. Depth/stencil: Each group comprises a single depth component and a single
stencil index.

Each operation described in this section is applied sequentially to each pixel
group in an image. Many operations are applied only to pixel groups of certain
kinds; if an operation is not applicable to a given group, it is skipped. None of the
operations defined in this section affect integer RGBA component pixel groups.

This step applies only to RGBA component and depth component groups, and
to the depth components in depth/stencil groups. Each component is multiplied
by an appropriate signed scale factor: RED_SCALE for an R component, GREEN_ —
SCALE for a G component, BLUE_SCALE for a B component, and ALPHA_SCALE
for an A component, or DEPTH_SCALE for a depth component. Then the result

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 205

is added to the appropriate signed bias: RED_BIAS, GREEN_BIAS, BLUE_BIAS,
ALPHA_BIAS, or DEPTH_BIAS.

Arithmetic on Indices

This step applies only to color index and stencil index groups, and to the stencil
indices in depth/stencil groups. If the index is a floating-point value, it is converted
to fixed-point, with an unspecified number of bits to the right of the binary point
and at least [logy(MAX_PIXEL_MAP_TABLE)] bits to the left of the binary point.
Indices that are already integers remain so; any fraction bits in the resulting fixed-
point value are zero.

The fixed-point index is then shifted by |INDEX_SHIFT| bits, left if
INDEX_SHIFT > 0 and right otherwise. In either case the shift is zero-filled.
Then, the signed integer offset INDEX_OFFSET is added to the index.

RGBA to RGBA Lookup

This step applies only to RGBA component groups, and is skipped if MAP_COLOR
is FALSE. First, each component is clamped to the range [0,1]. There is a ta-
ble associated with each of the R, G, B, and A component elements: PIXEL_—
MAP_R_TO_Rfor R, PIXEL_MAP_G_TO_Gfor G, PIXEL_MAP_B_TO_B for B, and
PIXEL_MAP_A_TO_A for A. Each element is multiplied by an integer one less than
the size of the corresponding table, and, for each element, an address is found by
rounding this value to the nearest integer. For each element, the addressed value in
the corresponding table replaces the element.

Color Index Lookup

This step applies only to color index groups. If the GL command that invokes the
pixel transfer operation requires that RGBA component pixel groups be generated,
then a conversion is performed at this step. RGBA component pixel groups are
required if

1. The groups will be rasterized, and the GL is in RGBA mode, or
2. The groups will be loaded as an image into texture memory, or

3. The groups will be returned to client memory with a format other than
COLOR_INDEX.

If RGBA component groups are required, then the integer part of the index is used
to reference 4 tables of color components: PIXEL_MAP_I_TO_R, PIXEL_MAP_-—
I_TO_G, PIXEL_MAP_I_TO_B, and PIXEL_MAP_TI_TO_A. Each of these tables

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 206

must have 2" entries for some integer value of n (n may be different for each
table). For each table, the index is first rounded to the nearest integer; the result
is ANDed with 2™ — 1, and the resulting value used as an address into the table.
The indexed value becomes an R, G, B, or A value, as appropriate. The group of
four elements so obtained replaces the index, changing the group’s type to RGBA
component.

If RGBA component groups are not required, and if MAP_COLOR is enabled,
then the index is looked up in the PIXEL,_MAP_I_TO_TI table (otherwise, the index
is not looked up). Again, the table must have 2" entries for some integer n. The
index is first rounded to the nearest integer; the result is ANDed with 2" — 1, and
the resulting value used as an address into the table. The value in the table replaces
the index. The floating-point table value is first rounded to a fixed-point value with
unspecified precision. The group’s type remains color index.

Stencil Index Lookup

This step applies only to stencil index groups, and to the stencil indices in
depth/stencil groups. If MAP_STENCIL is enabled, then the index is looked up
in the PIXEL_MAP_S_TO_S table (otherwise, the index is not looked up). The ta-
ble must have 2" entries for some integer n. The integer index is ANDed with
2" — 1, and the resulting value used as an address into the table. The integer value
in the table replaces the index.

Color Table Lookup

This step applies only to RGBA component groups. Color table lookup is only
done if COLOR_TABLE is enabled. If a zero-width table is enabled, no lookup is
performed.

The internal format of the table determines which components of the group
will be replaced (see table 3.14). The components to be replaced are converted
to indices by clamping to [0, 1], multiplying by an integer one less than the width
of the table, and rounding to the nearest integer. Components are replaced by the
table entry at the index.

The required state is one bit indicating whether color table lookup is enabled
or disabled. In the initial state, lookup is disabled.

Convolution

This step applies only to RGBA component groups. If CONVOLUTION_1D
is enabled, the one-dimensional convolution filter is applied only to the one-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 207

| Base Internal Format | R | G | B | A |

RGB R, | Gy | By

RGBA R, | Gy | B | A

Table 3.14: Color table lookup. Ry, Gy, By, Ay, Ly, and I, are color table values
that are assigned to pixel components R, GG, B, and A depending on the table
format. When there is no assignment, the component value is left unchanged by
lookup.

dimensional texture images passed to TexImagelD, TexSubImagelD, Copy-
TexImagelD, and CopyTexSubImagelD. If CONVOLUTION_2D is enabled, the
two-dimensional convolution filter is applied only to the two-dimensional im-
ages passed to DrawPixels, CopyPixels, ReadPixels, TexImage2D, TexSubIm-
age2D, CopyTexImage2D, CopyTexSubIlmage2D, and CopyTexSubIlmage3D.
If SEPARABLE_2D is enabled, and CONVOLUTION_2D is disabled, the separable
two-dimensional convolution filter is instead applied these images.

The convolution operation is a sum of products of source image pixels and
convolution filter pixels. Source image pixels always have four components: red,
green, blue, and alpha, denoted in the equations below as R,, G, B, and As.
Filter pixels may be stored in one of five formats, with 1, 2, 3, or 4 components.
These components are denoted as Ry, G, By, A f» Ly, and I in the equations
below. The result of the convolution operation is the 4-tuple R,G,B,A. Depending
on the internal format of the filter, individual color components of each source
image pixel are convolved with one filter component, or are passed unmodified.
The rules for this are defined in table 3.15.

The convolution operation is defined differently for each of the three convolu-
tion filters. The variables W, and H refer to the dimensions of the convolution
filter. The variables W and H refer to the dimensions of the source pixel image.

The convolution equations are defined as follows, where C' refers to the filtered
result, Cy refers to the one- or two-dimensional convolution filter, and C.,,, and
Creotumn refer to the two one-dimensional filters comprising the two-dimensional
separable filter. C, depends on the source image color C and the convolution bor-
der mode as described below. C., the filtered output image, depends on all of these
variables and is described separately for each border mode. The pixel indexing

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 208

| Base Filter Format | R | G | B A |

RGB Rsx Ry | Gox Gy | Bgx By | A
RGBA Ryx Ry | Gox Gy | Bo*x By | Agx Ay

Table 3.15: Computation of filtered color components depending on filter image
format. C' * F' indicates the convolution of image component C' with filter F'.

nomenclature is decribed in the Convolution Filter Specification subsection of
section 3.7.3.
One-dimensional filter:

VVf —1
Cli'] = Z Cili" + n] * Cy[n]
n=0
Two-dimensional filter:
Wi—1H;—1

Cli', 5] = Z Z Cili' +n,j" +m] « C¢ln,m]

n=0 m=0

Two-dimensional separable filter:

Wi—1Hp—1

Cli', il = Z Z CLi" 4+ n, j' + m] * Crow[n] * Ceotumn|m]

n=0 m=0

If W of a one-dimensional filter is zero, then C[7] is always set to zero. Like-
wise, if either Wy or Hy of a two-dimensional filter is zero, then C[4, j] is always
set to zero.

The convolution border mode for a specific convolution filter is specified by
calling

void ConvolutionParameter{if}(enum target, enum pname,
T param);

where target is the name of the filter, pname is CONVOLUTION_BORDER_MODE, and
param is one of REDUCE, CONSTANT_BORDER or REPLICATE_BORDER.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 209

Border Mode REDUCE

The width and height of source images convolved with border mode REDUCE are
reduced by Wy — 1 and Hy — 1, respectively. If this reduction would generate
a resulting image with zero or negative width and/or height, the output is simply
null, with no error generated. The coordinates of the image that results from a con-
volution with border mode REDUCE are zero through W, — W in width, and zero
through H; — H in height. In cases where errors can result from the specification
of invalid image dimensions, it is these resulting dimensions that are tested, not
the dimensions of the source image. (A specific example is TexImagelD and Tex-
Image2D, which specify constraints for image dimensions. Even if TexImagelD
or TexImage2D is called with a null pixel pointer, the dimensions of the result-
ing texture image are those that would result from the convolution of the specified
image).

When the border mode is REDUCE, C', equals the source image color Cs and
C, equals the filtered result C.

For the remaining border modes, define C,, = |W;/2] and C}, = |Hy/2].
The coordinates (C,, Cj,) define the center of the convolution filter.

Border Mode CONSTANT_BORDER

If the convolution border mode is CONSTANT_BORDER, the output image has the
same dimensions as the source image. The result of the convolution is the same as
if the source image were surrounded by pixels with the same color as the current
convolution border color. Whenever the convolution filter extends beyond one of
the edges of the source image, the constant-color border pixels are used as input
to the filter. The current convolution border color is set by calling Convolution-
Parameterfv or ConvolutionParameteriv with pname set to CONVOLUTION_—
BORDER_COLOR and params containing four values that comprise the RGBA color
to be used as the image border. Integer color components are interpreted linearly
such that the largest positive integer maps to 1.0, and the smallest negative inte-
ger maps to -1.0. Floating point color components are not clamped when they are
specified.
For a one-dimensional filter, the result color is defined by

Crli] = Cli — Cy)
where C[i'] is computed using the following equation for C".[i']:
) oy
i = { G 0ET <

Ce, otherwise

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 210

and C. is the convolution border color.
For a two-dimensional or two-dimensional separable filter, the result color is
defined by

CT[Z?]] - C[Z - szj - Ch]

where C[i', j'] is computed using the following equation for C’[4', 7']:

Coli', j'], 0<d" <W,,0<j" < H,
Ce, otherwise

et i1 =

Border Mode REPLICATE BORDER

The convolution border mode REPLICATE_BORDER also produces an output im-
age with the same dimensions as the source image. The behavior of this mode is
identical to that of the CONSTANT_BORDER mode except for the treatment of pixel
locations where the convolution filter extends beyond the edge of the source im-
age. For these locations, it is as if the outermost one-pixel border of the source
image was replicated. Conceptually, each pixel in the leftmost one-pixel column
of the source image is replicated C,, times to provide additional image data along
the left edge, each pixel in the rightmost one-pixel column is replicated C, times
to provide additional image data along the right edge, and each pixel value in the
top and bottom one-pixel rows is replicated to create C}, rows of image data along
the top and bottom edges. The pixel value at each corner is also replicated in order
to provide data for the convolution operation at each corner of the source image.
For a one-dimensional filter, the result color is defined by

Crli] = Cli — Cy)
where C[i'] is computed using the following equation for C”[i']:

Ci[i"] = Cs[clamp(i’, W;)]

and the clamping function clamp(val, max) is defined as

0, val < 0
clamp(val, max) = < wal, 0 <wal < max
max — 1, wval > mazx

For a two-dimensional or two-dimensional separable filter, the result color is
defined by

Cyliyj] = Cli — Cy, j — Ch]

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 211

where C[i, j'] is computed using the following equation for C’[', 7']:

CLli',§'] = Cs[clamp(i’, W), clamp(j’, Hy)]

If a convolution operation is performed, each component of the resulting image
is scaled by the corresponding Pixel Transfer parameters: POST_CONVOLUTION_—
RED_SCALE for an R component, POST_CONVOLUTION_GREEN_SCALE for a G
component, POST_CONVOLUTION_BLUE_SCALE for a B component, and POST_-
CONVOLUTION_ALPHA_SCALE for an A component. The result is added to the
corresponding bias: POST_CONVOLUTION_RED_BIAS, POST_CONVOLUTION_—
GREEN_BIAS, POST_CONVOLUTION_BLUE_BIAS, or POST_CONVOLUTION_-
ALPHA_BIAS.

The required state is three bits indicating whether each of one-dimensional,
two-dimensional, or separable two-dimensional convolution is enabled or disabled,
an integer describing the current convolution border mode, and four floating-point
values specifying the convolution border color. In the initial state, all convolu-
tion operations are disabled, the border mode is REDUCE, and the border color is
(0,0,0,0).

Post Convolution Color Table Lookup

This step applies only to RGBA component groups. Post convolution color table
lookup is enabled or disabled by calling Enable or Disable with the symbolic con-
stant POST_CONVOLUTION_COLOR_TABLE. The post convolution table is defined
by calling ColorTable with a target argument of POST_CONVOLUTION_COLOR_—
TABLE. In all other respects, operation is identical to color table lookup, as defined
earlier in section 3.7.6.

The required state is one bit indicating whether post convolution table lookup
is enabled or disabled. In the initial state, lookup is disabled.

Color Matrix Transformation

This step applies only to RGBA component groups. The components are
transformed by the color matrix. Each transformed component is multi-
plied by an appropriate signed scale factor: POST_COLOR_MATRIX_RED_SCALE
for an R component, POST_COLOR_MATRIX_GREEN_SCALE for a G compo-
nent, POST_COLOR_MATRIX_BLUE_SCALE for a B component, and POST_-
COLOR_MATRIX_ALPHA_SCALE for an A component. The result is added
to a signed bias: POST_COLOR_MATRIX_RED_BIAS, POST_COLOR_MATRIX_ -
GREEN_BIAS, POST_COLOR_MATRIX_BLUE_BIAS, or POST_COLOR_MATRIX_-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 212

ALPHA_BIAS. The resulting components replace each component of the original
group.

That is, if M. is the color matrix, a subscript of s represents the scale term for
a component, and a subscript of b represents the bias term, then the components

R

G

B

A

are transformed to

R R, 0 0 O R Ry
G| [0 Gs 0 © G Gy
gl=1o o B ol|M|B|T]|B
Al 0 0 0 A A Ay

Post Color Matrix Color Table Lookup

This step applies only to RGBA component groups. Post color matrix color ta-
ble lookup is enabled or disabled by calling Enable or Disable with the symbolic
constant POST_COLOR_MATRIX_COLOR_TABLE. The post color matrix table is de-
fined by calling ColorTable with a farget argument of POST_COLOR_MATRIX_—
COLOR_TABLE. In all other respects, operation is identical to color table lookup, as
defined in section 3.7.6.

The required state is one bit indicating whether post color matrix lookup is
enabled or disabled. In the initial state, lookup is disabled.

Histogram

This step applies only to RGBA component groups. Histogram operation is
enabled or disabled by calling Enable or Disable with the symbolic constant
HISTOGRAM.

If the width of the table is non-zero, then indices R;, G;, B;, and A; are de-
rived from the red, green, blue, and alpha components of each pixel group (without
modifying these components) by clamping each component to [0, 1], multiplying
by one less than the width of the histogram table, and rounding to the nearest in-
teger. If the format of the HISTOGRAM table includes red or luminance, the red or
luminance component of histogram entry R; is incremented by one. If the format
of the HISTOGRAM table includes green, the green component of histogram entry
G is incremented by one. The blue and alpha components of histogram entries

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.7. PIXEL RECTANGLES 213

B; and A; are incremented in the same way. If a histogram entry component is
incremented beyond its maximum value, its value becomes undefined; this is not
an error.

If the Histogram sink parameter is FALSE, histogram operation has no effect
on the stream of pixel groups being processed. Otherwise, all RGBA pixel groups
are discarded immediately after the histogram operation is completed. Because
histogram precedes minmax, no minmax operation is performed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

Minmax

This step applies only to RGBA component groups. Minmax operation is enabled
or disabled by calling Enable or Disable with the symbolic constant MINMAX.

If the format of the minmax table includes red or luminance, the red compo-
nent value replaces the red or luminance value in the minimum table element if
and only if it is less than that component. Likewise, if the format includes red or
luminance and the red component of the group is greater than the red or luminance
value in the maximum element, the red group component replaces the red or lumi-
nance maximum component. If the format of the table includes green, the green
group component conditionally replaces the green minimum and/or maximum if
it is smaller or larger, respectively. The blue and alpha group components are
similarly tested and replaced, if the table format includes blue and/or alpha. The
internal type of the minimum and maximum component values is floating point,
with at least the same representable range as a floating point number used to rep-
resent colors (section 2.1.1). There are no semantics defined for the treatment of
group component values that are outside the representable range.

If the Minmax sink parameter is FALSE, minmax operation has no effect on
the stream of pixel groups being processed. Otherwise, all RGBA pixel groups are
discarded immediately after the minmax operation is completed. No pixel frag-
ments are generated, no change is made to texture memory contents, and no pixel
values are returned. However, texture object state is modified whether or not pixel
groups are discarded.

3.7.7 Pixel Rectangle Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then pixel
rectangles are rasterized using the following algorithm. Let (X, Y;,) be the cur-
rent raster position. (If the current raster position is invalid, then DrawPixels is

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.8. BITMAPS 214

ignored.) If a particular group (index or components) is the nth in a row and be-
longs to the mth row, consider the region in window coordinates bounded by the
rectangle with corners

(Xop + Zz %1, Yy, + Zy s m)

and
(Xpp+Zpx(n+1),Y+ Zyx (m+1))

where Z,; and Z,, are the pixel zoom factors specified by PixelZoom, and may each
be either positive or negative. A fragment representing group (n,m) is produced
for each framebuffer pixel with one or more sample points that lie inside, or on
the bottom or left boundary, of this rectangle. Each fragment so produced takes its
associated data from the group and from the current raster position, in a manner
consistent with the discussion in the Conversion to Fragments subsection of sec-
tion 3.7.5. All depth and color sample values are assigned the same value, taken
either from their group (for depth and color component groups) or from the cur-
rent raster position (if they are not). All sample values are assigned the same fog
coordinate and the same set of texture coordinates, taken from the current raster
position.

A single pixel rectangle will generate multiple, perhaps very many fragments
for the same framebuffer pixel, depending on the pixel zoom factors.

3.8 Bitmaps

Bitmaps are rectangles of zeros and ones specifying a particular pattern of frag-
ments to be produced. Each of these fragments has the same associated data. These
data are those associated with the current raster position.

Bitmaps are sent using

void Bitmap(sizeiw, sizeih, float xp,, float Ypo,
float mxy;, float yp;, const ubyte *data);

w and h comprise the integer width and height of the rectangular bitmap, respec-
tively. (Zpo, Yno) gives the floating-point x and y values of the bitmap’s origin.
(xpi, yp;) gives the floating-point = and y increments that are added to the raster
position after the bitmap is rasterized. data is a pointer to a bitmap.

Like a polygon pattern, a bitmap is unpacked from memory according to the
procedure given in section 3.7.5 for DrawPixels; it is as if the width and height
passed to that command were equal to w and h, respectively, the rype were BITMAP,
and the format were COLOR_INDEX. The unpacked values (before any conversion

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.8. BITMAPS 215

IZ%%, %Y
4848 DULUD DY
UUGUNY:

YN

\&\\\&@&\&\\\
NNN NN NN N

7)

Z

7

Z

A

Z
v

DONIN
AANAITIIN

7

f/yv

A

N
N

NSIN

N

NA
N
NNNN

4%’%

Z

Y

Figure 3.9. A bitmap and its associated parameters. x; and y;,; are not shown.

or arithmetic would have been performed) form a stipple pattern of zeros and ones.
See figure 3.9.

A bitmap sent using Bitmap is rasterized as follows. First, if the current raster
position is invalid (the valid bit is reset), the bitmap is ignored. Otherwise, a rect-
angular array of fragments is constructed, with lower left corner at

(‘Tlla yll) — (L'/L‘r'p - TboJa Lyl'p - ?/boJ)

and upper right corner at (4w, y;;+h) where w and h are the width and height of
the bitmap, respectively. Fragments in the array are produced if the corresponding
bit in the bitmap is 1 and not produced otherwise. The associated data for each
fragment are those associated with the current raster position. Once the fragments
have been produced, the current raster position is updated:

(-777’pv yrp) h (-777’]) + Ty Yrp + yl)i)-

The z and w values of the current raster position remain unchanged.

Calling Bitmap will result in an INVALID_FRAMEBUFFER_OPERATION error
if the object bound to DRAW_FRAMEBUFFER_BINDING is not framebuffer complete
(see section 4.4.4).

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 216

Bitmap Multisample Rasterization

If MULTISAMPLE is enabled, and the value of SAMPLE_BUFFERS is one, then
bitmaps are rasterized using the following algorithm. If the current raster position
is invalid, the bitmap is ignored. Otherwise, a screen-aligned array of pixel-size
rectangles is constructed, with its lower left corner at (X,,,Y,,), and its upper
right corner at (X,, + w, Y, + h), where w and h are the width and height of
the bitmap. Rectangles in this array are eliminated if the corresponding bit in the
bitmap is 0, and are retained otherwise. Bitmap rasterization produces a fragment
for each framebuffer pixel with one or more sample points either inside or on the
bottom or left edge of a retained rectangle.

Coverage bits that correspond to sample points either inside or on the bottom
or left edge of a retained rectangle are 1, other coverage bits are 0. The associated
data for each sample are those associated with the current raster position. Once the
fragments have been produced, the current raster position is updated exactly as it
is in the single-sample rasterization case.

3.9 Texturing

Texturing maps a portion of one or more specified images onto each primitive
for which texturing is enabled. This mapping is accomplished in shaders by
sampling the color of an image at the location indicated by specified (s, t, 1) texture
coordinates. It is accomplished in fixed-function processing by using the color of
an image at the location indicated by a texture coordinate set’s (s, t, 7, q) values.
Texture lookups are typically used to modify a fragment’s RGBA color but may be
used for any purpose in a shader.

The internal data type of a texture may be signed or unsigned normalized fixed-
point, signed or unsigned integer, or floating-point, depending on the internal for-
mat of the texture. The correspondence between the internal format and the internal
data type is given in tables 3.17-3.19. Fixed-point and floating-point textures return
a floating-point value and integer textures return signed or unsigned integer values.
When a fragment shader is active, the shader is responsible for interpreting the re-
sult of a texture lookup as the correct data type, otherwise the result is undefined.
When not using a fragment shader, floating-point texture values are assumed, and
the results of using either signed normalized fixed-point or integer textures in this
case are undefined.

Each of the supported types of texture is a collection of images built from
one-, two-, or three-dimensional arrays of image elements referred to as texels.
One-, two-, and three-dimensional textures consist respectively of one-, two-, or
three-dimensional texel arrays. One- and two-dimensional array textures are ar-

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 217

rays of one- or two-dimensional images, consisting of one or more layers. Two-
dimensional multisample and two-dimensional multisample array textures are spe-
cial two-dimensional and two-dimensional array textures, respectively, containing
multiple samples in each texel. Cube maps are special two-dimensional array tex-
tures with six layers that represent the faces of a cube. When accessing a cube map,
the texture coordinates are projected onto one of the six faces of the cube. Rect-
angular textures are special two-dimensional textures consisting of only a single
image and accessed using unnormalized coordinates. Buffer textures are special
one-dimensional textures whose texel arrays are stored in separate buffer objects.

Implementations must support texturing using multiple images. Each fragment
or vertex carries multiple sets of texture coordinates (s, t, 7, q) which are used to
index separate images to produce color values which are collectively used to mod-
ify the resulting transformed vertex or fragment color. Texturing is specified only
for RGBA mode; its use in color index mode is undefined. The following subsec-
tions (up to and including section 3.9.11) specify the GL operation with a single
texture. Section 3.9.20 specifies the details of how multiple texture units interact.

The GL provides two ways to specify the details of how texturing of a primi-
tive is effected. The first is referred to as fixed-function fragment shading, or simply
fixed-function, and is described in this section. The second is referred to as a frag-
ment shader, and is described in section 3.12. The specification of the image to be
texture mapped and the means by which the image is filtered when applied to the
primitive are common to both methods and are discussed in this section. The fixed-
function method for determining what RGBA value is produced is also described in
this section. If a fragment shader is active, the method for determining the RGBA
value is specified by an application-supplied fragment shader as described in the
OpenGL Shading Language Specification.

When no fragment shader is active, the coordinates used for texturing are
(s/q,t/q,7/q), derived from the original texture coordinates (s,t,r,q). If the ¢
texture coordinate is less than or equal to zero, the coordinates used for texturing
are undefined. When a fragment shader is active, the (s,t,7,q) coordinates are
available to the fragment shader. The coordinates used for texturing in a fragment
shader are defined by the OpenGL Shading Language Specification.

The command

void ActiveTexture(enum fexture);
specifies the active texture unit selector, ACTIVE_TEXTURE. Each texture unit con-
tains up to two distinct sub-units: a texture coordinate processing unit consisting of

a texture matrix stack and texture coordinate generation state and a texture image
unit consisting of all the texture state defined in section 3.9. In implementations

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 218

with a different number of supported texture coordinate sets and texture image
units, some texture units may consist of only one of the two sub-units.

The active texture unit selector selects the texture image unit accessed by com-
mands involving texture image processing (section 3.9). Such commands include
all variants of TexEnv (except for those controlling point sprite coordinate replace-
ment), TexParameter, TexImage, BindTexture, Enable/Disable for any texture
target (e.g., TEXTURE_2D), and queries of all such state. If the texture image unit
number corresponding to the current value of ACTIVE_TEXTURE is greater than
or equal to the implementation-dependent constant MAX_COMBINED_TEXTURE_ -
IMAGE_UNITS, the error INVALID_OPERATION is generated by any such com-
mand.

The active texture unit selector also specifies the texture coordinate set accessed
by commands involving texture coordinate processing (see section 2.12.1).

ActiveTexture generates the error INVALID_ENUM if an invalid texture is spec-
ified. texture is a symbolic constant of the form TEXTURE?, indicating that texture
unit ¢ is to be modified. The constants obey TEXTURE; = TEXTUREO + ¢ (2 is in
the range O to k — 1, where k is the larger of the values of MAX_TEXTURE_COORDS
and MAX_COMBINED_TEXTURE_IMAGE_UNITS).

For backwards compatibility, the implementation-dependent constant MAX_ -
TEXTURE_UNITS specifies the number of conventional texture units supported by
the implementation. Its value must be no larger than the minimum of MAX_ -
TEXTURE_COORDS and MAX_COMBINED_TEXTURE_IMAGE_UNITS.

The state required for the active texture image unit selector is a single integer.
The initial value is TEXTUREQ.

3.9.1 Texture Objects

Textures in GL are represented by named objects. The name space for texture ob-
jects is the unsigned integers, with zero reserved by the GL to represent the default
texture object. The default texture object is bound to each of the TEXTURE_—
1D, TEXTURE_2D, TEXTURE_3D, TEXTURE_1D_ARRAY, TEXTURE_2D_ARRAY,
TEXTURE_RECTANGLE, TEXTURE_BUFFER, TEXTURE_CUBE_MAP, TEXTURE_-
2D_MULTISAMPLE, and TEXTURE_2D_MULTISAMPLE_ARRAY targets during con-
text initialization.

A new texture object is created by binding an unused name to one of these
texture targets. The command

void GenTextures(sizei n, uint *fextures);;

returns n previously unused texture names in fextures. These names are marked
as used, for the purposes of GenTextures only, but they acquire texture state and

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 219

a dimensionality only when they are first bound, just as if they were unused. The
binding is effected by calling

void BindTexture(enum farget, uint texture);

with farget set to the desired texture target and fexture set to the unused name. The
resulting texture object is a new state vector, comprising all the state and with the
same initial values listed in section 3.9.15 The new texture object bound to farget
is, and remains a texture of the dimensionality and type specified by rarget until it
is deleted.

BindTexture may also be used to bind an existing texture object to any of
these targets. The error INVALID_OPERATION is generated if an attempt is made
to bind a texture object of different dimensionality than the specified target. If the
bind is successful no change is made to the state of the bound texture object, and
any previous binding to target is broken.

While a texture object is bound, GL operations on the target to which it is
bound affect the bound object, and queries of the target to which it is bound return
state from the bound object. If texture mapping of the dimensionality of the target
to which a texture object is bound is enabled, the state of the bound texture object
directs the texturing operation.

Texture objects are deleted by calling

void DeleteTextures(sizei n, const uint *fextures);

textures contains n names of texture objects to be deleted. After a texture object
is deleted, it has no contents or dimensionality, and its name is again unused. If
a texture that is currently bound to any of the target bindings of BindTexture is
deleted, it is as though BindTexture had been executed with the same target and
texture zero. Additionally, special care must be taken when deleting a texture if any
of the images of the texture are attached to a framebuffer object. See section 4.4.2
for details.

Unused names in textures are silently ignored, as is the name zero.

An implementation may choose to establish a working set of texture objects on
which binding operations are performed with higher performance. A texture object
that is currently part of the working set is said to be resident. The command

boolean AreTexturesResident(sizei n, const
uilnt *textures, boolean *residences);

returns TRUE if all of the n texture objects named in fextures are resident, or if the
implementation does not distinguish a working set. If at least one of the texture

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 220

objects named in fextures is not resident, then FALSE is returned, and the residence
of each texture object is returned in residences. Otherwise the contents of resi-
dences are not changed. If any of the names in textures are unused or are zero,
FALSE is returned, the error INVALID_VALUE is generated, and the contents of
residences are indeterminate. The residence status of a single bound texture object
can also be queried by calling GetTexParameteriv or GetTexParameterfv with
target set to the target to which the texture object is bound, and pname set to
TEXTURE_RESIDENT.

AreTexturesResident indicates only whether a texture object is currently resi-
dent, not whether it could not be made resident. An implementation may choose to
make a texture object resident only on first use, for example. The client may guide
the GL implementation in determining which texture objects should be resident by
specifying a priority for each texture object. The command

void PrioritizeTextures(sizei n, uint *extures, const
clampf *priorities);

sets the priorities of the n texture objects named in fextures to the values in priori-
ties. Each priority value is clamped to the range [0,1] before it is assigned. Zero in-
dicates the lowest priority, with the least likelihood of being resident. One indicates
the highest priority, with the greatest likelihood of being resident. The priority of a
single bound texture object may also be changed by calling TexParameteri, Tex-
Parameterf, TexParameteriv, or TexParameterfv with target set to the target to
which the texture object is bound, pname set to TEXTURE_PRIORITY, and param
or params specifying the new priority value (which is clamped to the range [0,1]
before being assigned). PrioritizeTextures silently ignores attempts to prioritize
unused texture object names or zero (default textures).

The texture object name space, including the initial one-, two-, and three- di-
mensional, one- and two-dimensional array, rectangular, buffer, cube map, two-
dimensional multisample, and two-dimensional multisample array texture objects,
is shared among all texture units. A texture object may be bound to more than one
texture unit simultaneously. After a texture object is bound, any GL operations on
that target object affect any other texture units to which the same texture object is
bound.

Texture binding is affected by the setting of the state ACTIVE_TEXTURE. If a
texture object is deleted, it as if all texture units which are bound to that texture
object are rebound to texture object zero.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 221

3.9.2 Sampler Objects

The state necessary for texturing can be divided into two categories as described in
section 3.9.15. A GL texture object includes both categories. The first category
represents dimensionality and other image parameters, and the second category
represents sampling state. Additionally, a sampler object may be created to encap-
sulate only the second category - the sampling state - of a texture object.

A new sampler object is created by binding an unused name to a texture unit.
The command

void GenSamplers(sizei count, uint *samplers);

returns count previously unused sampler object names in samplers. The name zero
is reserved by the GL to represent no sampler being bound to a sampler unit. The
names are marked as used, for the purposes of GenSamplers only, but they acquire
state only when they are first used as a parameter to BindSampler, SamplerPa-
rameter®, GetSamplerParameter*, or IsSampler. When a sampler object is first
used in one of these functions, the resulting sampler object is initialized with a
new state vector, comprising all the state and with the same initial values listed in
table 6.26.

When a sampler object is bound to a texture unit, its state supersedes that of
the texture object bound to that texture unit. If the sampler name zero is bound to
a texture unit, the currently bound texture’s sampler state becomes active. A single
sampler object may be bound to multiple texture units simultaneously.

A sampler binding is effected by calling

void BindSampler(uint unit, uint sampler);

with unit set to the texture unit to which to bind the sampler and sampler set to the
name of a sampler object returned from a previous call to GenSampler.

If the bind is successful no change is made to the state of the bound sampler
object, and any previous binding to unit is broken.

BindSampler fails and an INVALID_OPERATION error is generated if sampler
is not zero or a name returned from a previous call to GenSamplers, or if such a
name has since been deleted with DeleteSamplers. An INVALID_VALUE error is
generated if unit is greater than or equal to the value of MAX_TEXTURE_IMAGE_-—
UNITS.

If state is present in a sampler object bound to a texture unit that would have
been rejected by a call to TexParameter for the texture bound to that unit, the be-
havior of the implementation is as if the texture were incomplete. For example, if
TEXTURE_WRAP_S, TEXTURE_WRAP_T, or TEXTURE_WRAP_R iS set to REPEAT Or

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 222

MIRRORED_REPEAT on the sampler object bound to a texture unit and the texture
bound to that unit is a rectangular texture, the texture will be considered incom-
plete.

The currently bound sampler may be queried by calling GetIntegerv with
pname set to SAMPLER_BINDING. When a sampler object is unbound from the
texture unit (by binding another sampler object, or the sampler object named zero,
to that texture unit) the modified state is again replaced with the sampler state as-
sociated with the texture object bound to that texture unit.

The parameters represented by a sampler object are a subset of those described
in section 3.9.8. Each parameter of a sampler object is set by calling

void SamplerParameter{if}v(uint sampler, enum pname,
T param);

void SamplerParameterI{u ui}v(uint sampler, enum pname,
T *params);

sampler is the name of a sampler object previously reserved by a call to
GenSamplers. pname is the name of a parameter to modify and param
is the new value of that parameter. An INVALID_VALUE error is gener-
ated if sampler is not the name of a sampler object previously returned
from a call to GenSamplers. The values accepted in the pname parameter
are TEXTURE_WRAP_S, TEXTURE_WRAP_T, TEXTURE_WRAP_R, TEXTURE_MIN_-
FILTER, TEXTURE_MAG_FILTER, TEXTURE_BORDER_COLOR, TEXTURE_MIN_-
LOD, TEXTURE_MAX_LOD, TEXTURE_LOD_BIAS, TEXTURE_COMPARE_MODE, and
TEXTURE_COMPARE_FUNC. Texture state listed in table 6.25 but not listed here and
in the sampler state in table 6.26 is not part of the sampler state, and remains in the
texture object.

If the values for TEXTURE_BORDER_COLOR are specified with a call to Sam-
plerParameterliv or SamplerParameterluiv, the values are unmodified and
stored with an internal data type of integer. If specified with SamplerParameteriv,
they are converted to floating-point using equation 2.1. Otherwise, the values are
unmodified and stored as floating-point.

An INVALID_ENUM error is generated if pname is not the name of a parame-
ter accepted by SamplerParameter®. If the value of param is not an acceptable
value for the parameter specified in pname, an error is generated as specified in the
description of TexParameter*.

Modifying a parameter of a sampler object affects all texture units to which
that sampler object is bound. Calling TexParameter has no effect on the sampler
object bound to the active texture unit. It will modify the parameters of the texture
object bound to that unit.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 223

Sampler objects are deleted by calling
void DeleteSamplers(sizei count, const uint *samplers);

samplers contains count names of sampler objects to be deleted. After a sampler
object is deleted, its name is again unused. If a sampler object that is currently
bound to a sampler unit is deleted, it is as though BindSampler is called with unit
set to the unit the sampler is bound to and sampler zero. Unused names in samplers
are silently ignored, as is the reserved name zero.

3.9.3 Texture Image Specification

The command

void TexImage3D(enum target, int level, int internalformat,
sizei width, sizei height, sizei depth, int border,
enum format, enum type, const void *data);

is used to specify a three-dimensional texture image. farget must be one of
TEXTURE_ 3D for a three-dimensional texture or TEXTURE_ 2D_ARRAY for an two-
dimensional array texture. Additionally, farget may be either PROXY_TEXTURE_—
3D for a three-dimensional proxy texture, or PROXY_TEXTURE_2D_ARRAY for a
two-dimensional proxy array texture, as discussed in section 3.9.15. format, type,
and data specify the format of the image data, the type of those data, and a refer-
ence to the image data in the currently bound pixel unpack buffer or client memory,
as described in section 3.7.4. The format STENCIL_INDEX is not allowed.

The groups in memory are treated as being arranged in a sequence of adjacent
rectangles. Each rectangle is a two-dimensional image, whose size and organiza-
tion are specified by the width and height parameters to TexImage3D. The val-
ues of UNPACK_ROW_LENGTH and UNPACK_ALIGNMENT control the row-to-row
spacing in these images as described in section 3.7.4. If the value of the integer
parameter UNPACK_IMAGE_HEIGHT is not positive, then the number of rows in
each two-dimensional image is height; otherwise the number of rows is UNPACK_ —
IMAGE_HEIGHT. Each two-dimensional image comprises an integral number of
rows, and is exactly adjacent to its neighbor images.

The mechanism for selecting a sub-volume of a three-dimensional image relies
on the integer parameter UNPACK_SKIP_IMAGES. If UNPACK_SKIP_IMAGES is
positive, the pointer is advanced by UNPACK_SKIP_IMAGES times the number of
elements in one two-dimensional image before obtaining the first group from mem-
ory. Then depth two-dimensional images are processed, each having a subimage
extracted as described in section 3.7.4.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 224

The selected groups are transferred to the GL as described in section 3.7.4
and then clamped to the representable range of the internal format. If the inter-
nalformat of the texture is signed or unsigned integer, components are clamped
to [-27~1, 2771 — 1] or [0,2" — 1], respectively, where n is the number of bits
per component. For color component groups, if the internalformat of the texture
is signed or unsigned normalized fixed-point, components are clamped to [—1, 1]
or [0, 1], respectively. For depth component groups, the depth value is clamped
to [0, 1]. Otherwise, values are not modified. Stencil index values are masked by
2™ — 1, where n is the number of stencil bits in the internal format resolution (see
below). If the base internal format is DEPTH_STENCIL and format is not DEPTH_—
STENCIL, then the values of the stencil index texture components are undefined.

Components are then selected from the resulting R, G, B, A, depth, or stencil
values to obtain a texture with the base internal format specified by (or derived
from) internalformat. Table 3.16 summarizes the mapping of R, G, B, A, depth,
or stencil values to texture components, as a function of the base internal format
of the texture image. internalformat may be specified as one of the internal format
symbolic constants listed in table 3.16, as one of the sized internal format symbolic
constants listed in tables 3.17- 3.19, as one of the generic compressed internal for-
mat symbolic constants listed in table 3.20, or as one of the specific compressed
internal format symbolic constants (if listed in table 3.20).

Specifying a value for inter-
nalformat that is not one of the above values generates the error INVALID_VALUE.
Textures with a base internal format of DEPTH_COMPONENT or DEPTH_-
STENCIL are supported by texture image specification commands only
if target is TEXTURE_1D, TEXTURE_2D, TEXTURE_1D_ARRAY, TEXTURE_-—
2D_ARRAY, TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP, PROXY_TEXTURE_-
1D, PROXY_TEXTURE_2D, PROXY_TEXTURE_1D_ARRAY, PROXY_TEXTURE_-
2D_ARRAY, PROXY_TEXTURE_RECTANGLE, Or PROXY_TEXTURE_CUBE_MAP. Us-
ing these formats in conjunction with any other farget will result in an INVALID_-
OPERATION error.

Textures with a base internal format of DEPTH_COMPONENT or DEPTH_ -
STENCIL require either depth component data or depth/stencil component data.
Textures with other base internal formats require RGBA component data. The error
INVALID_OPERATION is generated if one of the base internal format and format is
DEPTH_COMPONENT or DEPTH_STENCIL, and the other is neither of these values.

Textures with integer internal formats 3.17- 3.18) require integer
data. The error INVALID_OPERATION is generated if the internal format is inte-
ger and format is not one of the integer formats listed in table 3.6; if the internal

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 225

| Base Internal Format | RGBA, Depth, and Stencil Values | Internal Components |

DEPTH_COMPONENT
DEPTH_STENCIL

Depth
Depth,Stencil

RED R R

RG R,G R.G

RGB R,G,B R,G,B
RGBA R,G,BA R,G,B,A

Table 3.16: Conversion from RGBA, depth, and stencil pixel components to inter-
nal texture, table, or filter components. See section 3.9.16 for a description of the
texture components R, G, B, A, L, I, D, and S.

format is not integer and format is an integer format; or if format is an integer for-
mat and type is FLOAT, HALF_FLOAT, UNSIGNED_INT_10F_11F_11F_REV, Or
UNSIGNED_INT_5_9_9_9 REV.

In addition to the specific compressed internal formats listed in table 3.20, the
GL provides a mechanism to obtain token values for all such formats provided
by extensions. The number of specific compressed internal formats supported
by the renderer can be obtained by querying the value of NUM_COMPRESSED_—
TEXTURE_FORMATS. The set of specific compressed internal formats supported by
the renderer can be obtained by querying the value of COMPRESSED_TEXTURE_ —
FORMATS. The only values returned by this query are those corresponding to for-
mats suitable for general-purpose usage. The renderer will not enumerate formats
with restrictions that need to be specifically understood prior to use.

Generic compressed internal formats are never used directly as the internal for-
mats of texture images. If internalformat is one of the six generic compressed
internal formats, its value is replaced by the symbolic constant for a specific com-
pressed internal format of the GL’s choosing with the same base internal format.
If no specific compressed format is available, internalformat is instead replaced by
the corresponding base internal format. If internalformat is given as or mapped
to a specific compressed internal format, but the GL can not support images com-
pressed in the chosen internal format for any reason (e.g., the compression format
might not support 3D textures or borders), internalformat is replaced by the cor-
responding base internal format and the texture image will not be compressed by

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 226

the GL.

The internal component resolution is the number of bits allocated to each value
in a texture image. If internalformat is specified as a base internal format, the GL
stores the resulting texture with internal component resolutions of its own choos-
ing. If a sized internal format is specified, the mapping of the R, G, B, A, depth,
and stencil values to texture components is equivalent to the mapping of the cor-
responding base internal format’s components, as specified in table 3.16; the type
(unsigned int, float, etc.) is assigned the same type specified by internalformat;
and the memory allocation per texture component is assigned by the GL to match
the allocations listed in tables 3.17- 3.19 as closely as possible. (The definition of
closely is left up to the implementation. However, a non-zero number of bits must
be allocated for each component whose desired allocation in tables 3.17- 3.19 is
non-zero, and zero bits must be allocated for all other components).

Required Texture Formats

Implementations are required to support at least one allocation of internal com-
ponent resolution for each type (unsigned int, float, etc.) for each base internal
format.

In addition, implementations are required to support the following sized and
compressed internal formats. Requesting one of these sized internal formats for
any texture type will allocate at least the internal component sizes, and exactly the
component types shown for that format in tables 3.17- 3.19:

e Texture and renderbuffer color formats (see section 4.4.2).

— RGBA32F, RGBA32I, RGBA32UI, RGBAl6, RGBA16F, RGBA1l6I,
RGBA16UI, RGBAS, RGBASI, RGBASUI, SRGBS_ALPHAS8, RGB10_A2,
and RGB10_A2UI.

— R11F_G11F_BI1O0F.

— RG32F, RG32I, RG32UI, RG16, RG16F, RG16I, RG16UI, RGS, RGSI,
and RG8UI.

— R32F, R32I, R32UI, R16F, R16I, R16UI, R16, R8, R8I, and REUI.

e Texture-only color formats:

— RGBA16_SNORM and RGBAS8__SNORM.
— RGB32F, RGB321I, and RGB32UI.
— RGB16_SNORM, RGB16F, RGB16I, RGB16UI, and RGB16.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 227

— RGB8_SNORM, RGBS, RGB8I, RGB8UI, and SRGBS.
— RGBY_ES.

— RG16_SNORM, RG8_SNORM, COMPRESSED_RG_RGTC2 and
COMPRESSED_SIGNED_RG_RGTC2.

— R16_SNORM, R8__SNORM, COMPRESSED_RED_RGTC1 and
COMPRESSED_SIGNED_RED_RGTCI.

e Depth formats: DEPTH_COMPONENT32F, DEPTH_COMPONENT24, and
DEPTH_COMPONENT16.

e Combined depth+stencil formats: DEPTH32F_STENCILS and DEPTH24_-
STENCILS.

Encoding of Special Internal Formats

If internalformat is R11F_G11F_B10F, the red, green, and blue bits are converted
to unsigned 11-bit, unsigned 11-bit, and unsigned 10-bit floating-point values as
described in sections 2.1.3 and 2.1.4.

If internalformat is RGB9_ES5, the red, green, and blue bits are converted to a
shared exponent format according to the following procedure:

Components red, green, and blue are first clamped (in the process, mapping
NaN to zero) as follows:

red. = max (0, min(sharedexpmaz, red))
green. = max(0, min(sharedexpmaz, green))
blue. = max (0, min(sharedexpmay, blue))
where

2V —1)

2Emaac -B .
aN

sharedexpmaz =

N is the number of mantissa bits per component (9), B is the exponent bias (15),
and E,,; is the maximum allowed biased exponent value (31).
The largest clamped component, max., is determined:

max. = max(red., green., blue.)

A preliminary shared exponent exp,, is computed:

expp, = max(—B — 1, [loga(maz.)]) + 1+ B

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 228

A refined shared exponent exp; is computed:

mazx,
maxrs =

gexpp—B—N +0.5

S expp, 0 < mazxs < 2V
pS - __ oN
expp, +1, maxs =2

Finally, three integer values in the range 0 to 2" — 1 are computed:

red,

Teds = W ‘|‘ 05
green

greeng = _WT:N + 05_
blue.

blues = W + 0.5

The resulting reds, greens, blueg, and exp, are stored in the red, green, blue,
and shared bits respectively of the texture image.
REV with format RGB is allowed to store the components “as is” if the implementa-
tion can determine the current pixel transfer state acts as an identity transform on
the components.

Sized Base R G B A | Shared

Internal Format Internal Format | bits | bits | bits | bits bits

R8 RED 8
R8_SNORM RED s8
R16 RED 16
R16_SNORM RED sl6
RG8 RG 8 8
RG8_SNORM RG s8 s8
RG16 RG 16 16
RG16_SNORM RG s16 | sl6
Sized internal color formats continued on next page

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 229
Sized internal color formats continued from previous page
Sized Base R G B A | Shared
Internal Format Internal Format | bits | bits | bits | bits bits
R3_G3_B2 RGB 3 3 2
RGB4 RGB 4 4 4
RGB5 RGB 5 5 5
RGBS RGB 8 8 8
RGBS_SNORM RGB s8 s8 s8
RGB10 RGB 10 10 10
RGB12 RGB 12 12 12
RGB16 RGB 16 16 16
RGB16_SNORM RGB s16 | s16 | sl6
RGBA2 RGBA 2 2 2 2
RGBA4 RGBA 4 4 4 4
RGB5_A1 RGBA 5 5 5 1
RGBAS RGBA 8 8 8 8
RGBAS_SNORM RGBA s8 s8 s8 s8
RGB10_A2 RGBA 10 10 10 2
RGB10_A2UI RGBA uilO | vil0 | wilQ | wi2
RGBA12 RGBA 12 12 12 12
RGBA16 RGBA 16 16 16 16
RGBA16_SNORM RGBA sl6 | s16 | s16 | sl6
SRGBS RGB 8 8 8
SRGB8_ALPHAS RGBA 8 8 8 8
R16F RED f16
RG16F RG f16 | f16
RGB16F RGB fl6 | fl6 | fl6
RGBA16F RGBA fi6 | fl6 | fl16 | f16
R32F RED 32
RG32F RG 32 | 132
RGB32F RGB 32 | 32 | 132
RGBA32F RGBA 32 | 32 | 32 | 32
R11F_G11F_B10F | RGB fl1 | fl1 f10
RGB9_E5 RGB 9 9 9 5
R8I RED 8
R8UI RED ui8
R161I RED 16
Sized internal color formats continued on next page

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 230
Sized internal color formats continued from previous page

Sized Base R G B A | Shared
Internal Format Internal Format | bits | bits | bits | bits bits
R16UI RED uil6
R32I RED 132
R32UI RED ui32
RG8I RG 8 8
RG8UI RG ui8 | ui8
RG161T RG il6 | il6
RG16UI RG uil6 | uil6
RG321I RG 132 132
RG32U1I RG ui32 | ui32
RGBSI RGB i8 8 i8
RGB8UI RGB ui8 | ui8 | ui8
RGB161 RGB il6 | il16 | il6
RGB16UI RGB uil6 | uil6 | uil6
RGB32I RGB 132 | 132 | i32
RGB32UI RGB ui32 | uwi32 | ui32
RGBASI RGBA 8 8 8 18
RGBASUI RGBA ui | ui8 | ui8 | uid
RGBA161 RGBA 116 116 | 116 | il6
RGBA16UI RGBA uil6 | vil6 | uil6 | uil6
RGBA321I RGBA i32 | 132 | i32 | i32
RGBA32UI RGBA ui32 | uwi32 | ui32 | ui32

Table 3.17: Correspondence of sized internal color formats to base
internal formats, internal data type, and desired component reso-
lutions for each sized internal format. The component resolution
prefix indicates the internal data type: fis floating point, i is signed
integer, ui is unsigned integer, s is signed normalized fixed-point,

and no prefix is unsigned normalized fixed-point.

Sized
Internal Format

Base

Internal Format

Sized internal luminance formats continued on next page

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 231

Sized internal luminance formats continued from previous page
Sized Base A L 1

Internal Format Internal Format bits | bits | bits

Table 3.18: Correspondence of sized internal luminance and inten-
sity formats to base internal formats, internal data type, and desired
component resolutions for each sized internal format. The compo-
nent resolution prefix indicates the internal data type: fis floating
point, i is signed integer, ui is unsigned integer, and no prefix is
fixed-point.

If a compressed internal format is specified, the mapping of the R, G, B, and
A values to texture components is equivalent to the mapping of the corresponding
base internal format’s components, as specified in table 3.16. The specified image
is compressed using a (possibly lossy) compression algorithm chosen by the GL.

A GL implementation may vary its allocation of internal component resolution
or compressed internal format based on any TexImage3D, TexImage2D (see be-
low), or TexImagelD (see below) parameter (except targer), but the allocation and
chosen compressed image format must not be a function of any other state and can-
not be changed once they are established. In addition, the choice of a compressed
image format may not be affected by the dara parameter. Allocations must be in-
variant; the same allocation and compressed image format must be chosen each

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 232

Sized Base D S
Internal Format Internal Format bits | bits

DEPTH_COMPONENT16 DEPTH_COMPONENT | 16
DEPTH_COMPONENT24 DEPTH_COMPONENT | 24
DEPTH_COMPONENT32 DEPTH_COMPONENT | 32
DEPTH_COMPONENT32F | DEPTH_COMPONENT | {32
DEPTH24_STENCILS DEPTH_STENCIL 24 8
DEPTH32F_STENCILS DEPTH_STENCIL 32 8

Table 3.19: Correspondence of sized internal depth and stencil formats to base
internal formats, internal data type, and desired component resolutions for each
sized internal format. The component resolution prefix indicates the internal data
type: fis floating point, i is signed integer, ui is unsigned integer, and no prefix is
fixed-point.

| Compressed Internal Format Base Internal Format | Type

COMPRESSED_RED RED Generic
COMPRESSED_RG RG Generic
COMPRESSED_RGB RGB Generic
COMPRESSED_RGBA RGBA Generic
COMPRESSED_ SRGB RGB Generic
COMPRESSED_SRGB_ALPHA RGBA Generic
COMPRESSED_RED_RGTC1 RED Specific
COMPRESSED_SIGNED_RED_RGTC1 | RED Specific
COMPRESSED_RG_RGTC2 RG Specific
COMPRESSED_SIGNED_RG_RGTC2 | RG Specific

Table 3.20: Generic and specific compressed internal formats. The specific
*RGTC+ formats are described in appendix C.1.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 233

time a texture image is specified with the same parameter values. These allocation
rules also apply to proxy textures, which are described in section 3.9.15.

The image itself (referred to by data) is a sequence of groups of values. The
first group is the lower left back corner of the texture image. Subsequent groups
fill out rows of width width from left to right; height rows are stacked from bottom
to top forming a single two-dimensional image slice; and depth slices are stacked
from back to front. When the final R, G, B, and A components have been computed
for a group, they are assigned to components of a fexel as described by table 3.16.
Counting from zero, each resulting Nth texel is assigned internal integer coordi-
nates (4, j, k), where

i = (N mod width) — wy

. N .
j= (LuidthJ mod height) — hy

N
b= (Luidth > heightJ mod depth) = d
and wyp, hy, and dj, are the specified border width, height, and depth. wy and h;, are
the specified border value; dj, is the specified border value if target is TEXTURE_ —
3D, or zero if target is TEXTURE_2D_ARRAY. Thus the last two-dimensional image
slice of the three-dimensional image is indexed with the highest value of k.

If the internal data type of the image array is signed or unsigned normalized
fixed-point, each color component is converted using equation 2.6 or 2.4, respec-
tively. If the internal type is floating-point or integer, components are clamped
to the representable range of the corresponding internal component, but are not
converted.

The level argument to TexImage3D is an integer level-of-detail number. Levels
of detail are discussed below, under Mipmapping. The main texture image has a
level of detail number of 0. If a level-of-detail less than zero is specified, the error
INVALID_VALUE is generated.

The border argument to TexImage3D is a border width. The significance of
borders is described below. The border width affects the dimensions of the texture
image: let

Wg = Wy + 2wy

hs = hy + 2Ry, (3.17)
ds = dy + 2d;

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 234

where wy, hg, and dg are the specified image width, height, and depth, and w;,
h¢, and d; are the dimensions of the texture image internal to the border. If wy, hy,
or d; are less than zero, then the error INVALID_VALUE is generated.

3.9.8

The maximum border width b; is 1. If border is less than zero, or greater than
b, then the error INVALID_VALUE is generated.

The maximum allowable width, height, or depth of a texel array for a three-
dimensional texture is an implementation-dependent function of the level-of-detail
and internal format of the resulting image array. It must be at least 25-/0¢ 1 2p,
for image arrays of level-of-detail 0 through k, where k is the log base 2 of MAX_ —
3D_TEXTURE_SIZE, lod is the level-of-detail of the image array, and b; is the
maximum border width. It may be zero for image arrays of any level-of-detail
greater than k. The error INVALID_VALUE is generated if the specified image is
too large to be stored under any conditions.

If a pixel unpack buffer object is bound and storing texture data would access
memory beyond the end of the pixel unpack buffer, an INVALID_OPERATION error
results.

In a similar fashion, the maximum allowable width of a texel array for a one- or
two-dimensional, one- or two-dimensional array, two-dimensional multisample, or
two-dimensional multisample array texture, and the maximum allowable height of
a two-dimensional, two-dimensional array, two-dimensional multisample, or two-
dimensional multisample array texture, must be at least 2¥~/°¢ 1 2p, for image
arrays of level 0 through k, where k is the log base 2 of MAX_TEXTURE_SIZE. The
maximum allowable width and height of a cube map texture must be the same, and
must be at least 28714 4- 2b,; for image arrays level O through k, where £ is the log
base 2 of MAX_CUBE_MAP_TEXTURE_SIZE. The maximum number of layers for
one- and two-dimensional array textures (height or depth, respectively) must be at
least MAX_ARRAY_TEXTURE_LAYERS for all levels.

The maximum allowable width and height of a rectangular texture image
must each be at least the value of the implementation-dependent constant MAX_ —
RECTANGLE_TEXTURE_SIZE.

An implementation may allow an image array of level O to be created only if
that single image array can be supported. Additional constraints on the creation of
image arrays of level 1 or greater are described in more detail in section 3.9.14.

The command

void TexImage2D(enum farget, int level, int internalformat,
sizei width, sizei height, int border, enum format,

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 235

enum fype, const void *data);

is used to specify a two-dimensional texture image. target must be one of
TEXTURE_2D for a two-dimensional texture, TEXTURE_1D_ARRAY for a one-
dimensional array texture, TEXTURE_RECTANGLE for a rectangle texture, or one
of TEXTURE_CUBE_MAP_POSITIVE X, TEXTURE_CUBE_MAP NEGATIVE_ -
X, TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_MAP_NEGATIVE_Y,
TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_MAP_NEGATIVE_z for
a cube map texture. Additionally, target may be either PROXY_TEXTURE_2D
for a two-dimensional proxy texture, PROXY_TEXTURE_1D_ARRAY for a one-
dimensional proxy array texture, PROXY_TEXTURE_RECTANGLE for a rectangle
proxy texture, or PROXY_ TEXTURE_CUBE_MAP for a cube map proxy texture
in the special case discussed in section 3.9.15. The other parameters match the
corresponding parameters of TexImage3D.

For the purposes of decoding the texture image, TexImage2D is equivalent to
calling TexImage3D with corresponding arguments and depth of 1, except that

e The border depth, d, is zero, and the depth of the image is always 1 regard-
less of the value of border.

e The border height, hy, is zero if farget is TEXTURE_1D_ARRAY, and border
otherwise.

e Convolution will be performed on the image (possibly changing its width
and height) if SEPARABLE_2D or CONVOLUTION_2D is enabled.

e UNPACK_SKIP_TMAGES is ignored.

A two-dimensional or rectangle texture consists of a single two-dimensional
texture image. A cube map texture is a set of six two-dimensional texture images.
The six cube map texture targets form a single cube map texture though each tar-
get names a distinct face of the cube map. The TEXTURE_CUBE_MAP_ « targets
listed above update their appropriate cube map face 2D texture image. Note that
the six cube map two-dimensional image tokens such as TEXTURE_CUBE_MAP_ —
POSITIVE_X are used when specifying, updating, or querying one of a cube map’s
six two-dimensional images, but when enabling cube map texturing or binding to
a cube map texture object (that is when the cube map is accessed as a whole as
opposed to a particular two-dimensional image), the TEXTURE_CUBE_MAP target
is specified.

When the target parameter to TexImage2D is one of the six cube map two-
dimensional image targets, the error INVALID_VALUE is generated if the width
and height parameters are not equal.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 236

When target is TEXTURE_RECTANGLE, an INVALID_VALUE error is generated
if level is non-zero.

When farget is TEXTURE_RECTANGLE, an INVALID_VALUE error is generated
if border is non-zero.

Finally, the command

void TexImagelD(enum target, int level,
int internalformat, sizei width, int border,
enum format, enum type, const void *data);

is used to specify a one-dimensional texture image. target must be either
TEXTURE_1D, or PROXY_TEXTURE_1D in the special case discussed in sec-
tion 3.9.15.

For the purposes of decoding the texture image, TexImagelD is equivalent to
calling TexImage2D with corresponding arguments and height of 1, except that

e The border height and depth (h; and d;) are always zero, regardless of the
value of border.

e Convolution will be performed on the image (possibly changing its width)
only if CONVOLUTION_1D is enabled.

The image indicated to the GL by the image pointer is decoded and copied into
the GL’s internal memory. This copying effectively places the decoded image in-
side a border of the maximum allowable width b; whether or not a border has been
specified (see figure 3.10) . If no border or a border smaller than the maximum
allowable width has been specified, then the image is still stored as if it were sur-
rounded by a border of the maximum possible width. Any excess border (which
surrounds the specified image, including any border) is assigned unspecified val-
ues. A two-dimensional texture has a border only at its left, right, top, and bottom
ends, and a one-dimensional texture has a border only at its left and right ends.

We shall refer to the (possibly border augmented) decoded image as the texel
array. A three-dimensional texel array has width, height, and depth ws, hs, and
ds as defined in equation 3.17. A two-dimensional texel array has depth d; = 1,
with height hg and width w; as above. A rectangular texel array must have zero
border width, so ws and h equal the specified width and height, respectively, while
ds = 1. A one-dimensional texel array has depth ds; = 1, height h; = 1, and width
ws as above.

An element (i, j, k) of the texel array is called a fexel (for a two-dimensional
texture or one-dimensional array texture, k is irrelevant; for a one-dimensional

! Figure 3.10 needs to show a three-dimensional texture image.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 237

0 | b

-1.0 u 9.0

0.0 S 1.0

Figure 3.10. A texture image and the coordinates used to access it. This is a two-
dimensional texture with n = 3 and m = 2. A one-dimensional texture would
consist of a single horizontal strip. « and /3, values used in blending adjacent texels
to obtain a texture value, are also shown.

texture, j and k are both irrelevant). The texture value used in texturing a fragment
is determined by

sampling the texture in a shader, but may not correspond
to any actual texel. See figure 3.10.

If the data argument of TexImagelD, TexImage2D, or TexImage3D is a null
pointer (a zero-valued pointer in the C implementation), and the pixel unpack
buffer object is zero, a one-, two-, or three-dimensional texel array is created with
the specified rarget, level, internalformat, border, width, height, and depth, but
with unspecified image contents. In this case no pixel values are accessed in client
memory, and no pixel processing is performed. Errors are generated, however, ex-
actly as though the data pointer were valid. Otherwise if the pixel unpack buffer
object is non-zero, the data argument is treatedly normally to refer to the beginning
of the pixel unpack buffer object’s data.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 238

3.9.4 Alternate Texture Image Specification Commands

Two-dimensional and one-dimensional texture images may also be specified us-
ing image data taken directly from the framebuffer, and rectangular subregions of
existing texture images may be respecified.

The command

void CopyTexImage2D(enum target, int level,
enum internalformat, int x, inty, sizei width,
sizei height, int border);

defines a two-dimensional texel array in exactly the manner of TexImage2D, ex-
cept that the image data are taken from the framebuffer rather than from client
memory. Currently, target must be one of TEXTURE_2D, TEXTURE_1D_ARRAY,
TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_-
MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE -
Y, TEXTURE_CUBE_MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, Or
TEXTURE_CUBE_MAP_NEGATIVE_Z. X, y, width, and height correspond precisely
to the corresponding arguments to ReadPixels (refer to section 4.3.2); they specify
the image’s width and height, and the lower left (x,y) coordinates of the frame-
buffer region to be copied. The image is taken from the framebuffer exactly as
if these arguments were passed to ReadPixels with argument zype set to COLOR,
DEPTH, or DEPTH_STENCIL, depending on internalformat, stopping after

RGBA data is taken from the current color buffer,
while depth component and stencil index data are taken from the depth and sten-
cil buffers, respectively. The error INVALID_OPERATION is generated if depth
component data is required and no depth buffer is present; if stencil index data is
required and no stencil buffer is present; if integer RGBA data is required and the
format of the current color buffer is not integer; or if floating- or fixed-point RGBA
data is required and the format of the current color buffer is integer.

Subsequent processing is identical to that described for TexImage2D, begin-
ning with clamping of the R, G, B, A, or depth values, and masking of the stencil
index values from the resulting pixel groups. Parameters level, internalformat, and
border are specified using the same values, with the same meanings, as the equiv-
alent arguments of

An invalid value specified for internalformat generates the error
INVALID_ENUM. The constraints on width, height, and border are exactly those for
the equivalent arguments of TexImage2D.

When the farget parameter to CopyTexImage2D is one of the six cube map
two-dimensional image targets, the error INVALID_VALUE is generated if the width
and height parameters are not equal.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 239

The command

void CopyTexImagelD(enum target, int level,
enum internalformat, int x, inty, sizei width,
int border);

defines a one-dimensional texel array in exactly the manner of TexImagelD, ex-
cept that the image data are taken from the framebuffer, rather than from client
memory. Currently, farget must be TEXTURE_1D. For the purposes of decoding
the texture image, CopyTexImagelD is equivalent to calling CopyTexImage2D
with corresponding arguments and height of 1, except that the height of the image
is always 1, regardless of the value of border. level, internalformat, and border
are specified using the same values, with the same meanings, as the equivalent ar-
guments of

The constraints on width and border are exactly those of the equivalent
arguments of TexImagelD.

Six additional commands,

void TexSubIlmage3D(enum target, int level, int xoffset,
int yoffset, int zoffset, sizei width, sizei height,
sizei depth, enumn format, enum type, const
void *data);

void TexSubIlmage2D(enum target, int level, int xoffset,
int yoffset, sizei width, sizei height, enum format,
enum type, const void *data);

void TexSublmagelD(enum target, int level, int xoffset,
sizei width, enum format, enumtype, const
void *data);

void CopyTexSublmage3D(enum farget, int level,
int xoffset, int yoffset, int zoffset, int x, inty,
sizei width, sizei height);

void CopyTexSublmage2D(enum farget, int level,
int xoffset, int yoffset, int x, int y, sizei width,
sizei height);

void CopyTexSublmagelD(enum farget, int level,
int xoffset, int x, inty, sizei width);

respecify only a rectangular subregion of an existing texel array. No change is
made to the internalformat, width, height, depth, or border parameters of the
specified texel array, nor is any change made to texel values outside the speci-
fied subregion. Currently the farget arguments of TexSubImagelD and CopyTex-
SubImagelD must be TEXTURE_1D, the farget arguments of TexSubImage2D

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 240

and CopyTexSubIlmage2D must be one of TEXTURE_2D, TEXTURE_1D_ARRAY,
TEXTURE_RECTANGLE, TEXTURE_CUBE_MAP_POSITIVE_X, TEXTURE_CUBE_-
MAP_NEGATIVE_X, TEXTURE_CUBE_MAP_POSITIVE_Y, TEXTURE_CUBE_-
MAP_NEGATIVE_Y, TEXTURE_CUBE_MAP_POSITIVE_Z, or TEXTURE_CUBE_-
MAP_NEGATIVE_Z, and the farget arguments of TexSubImage3D and CopyTex-
SubImage3D must be TEXTURE_3D or TEXTURE_2D_ARRAY. The level parameter
of each command specifies the level of the texel array that is modified. If level is
less than zero or greater than the base 2 logarithm of the maximum texture width,
height, or depth, the error INVALID_VALUE is generated. If target is TEXTURE_ -
RECTANGLE and level is not zero, the error INVALID_VALUE is generated. Tex-
SubImage3D arguments width, height, depth, format, type, and data match the
corresponding arguments to TexImage3D, meaning that they are specified using
the same values, and have the same meanings. Likewise, TexSubImage2D argu-
ments width, height, format, type, and data match the corresponding arguments
to TexImage2D, and TexSubIlmagelD arguments width, format, type, and data
match the corresponding arguments to TexImagelD.

CopyTexSubIlmage3D and CopyTexSubImage2D arguments x, y, width,
and height match the corresponding arguments to CopyTexImage2D”. CopyTex-
SubImagelD arguments x, y, and width match the corresponding arguments to
CopyTexImagelD. Each of the TexSubImage commands interprets and processes
pixel groups in exactly the manner of its TexImage counterpart, except that the as-
signment of R, G, B, A, depth, and stencil index pixel group values to the texture
components is controlled by the internalformat of the texel array, not by an argu-
ment to the command. The same constraints and errors apply to the TexSubImage
commands’ argument format and the internalformat of the texel array being re-
specified as apply to the format and internalformat arguments of its TexImage
counterparts.

Arguments xoffset, yoffset, and zoffset of TexSublmage3D and CopyTex-
SubImage3D specify the lower left texel coordinates of a width-wide by height-
high by depth-deep rectangular subregion of the texel array. The depth argument
associated with CopyTexSubImage3D is always 1, because framebuffer memory
is two-dimensional - only a portion of a single s, ¢ slice of a three-dimensional
texture is replaced by CopyTexSubImage3D.

Negative values of xoffset, yoffset, and zoffset correspond to the coordinates of
border texels, addressed as in figure 3.10. Taking ws, hs, ds, wp, hp, and dj to
be the specified width, height, depth, and border width, border height, and border
depth of the texel array, and taking x, y, z, w, h, and d to be the xoffset, yoffset,

% Because the framebuffer is inherently two-dimensional, there is no CopyTexImage3D com-
mand.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 241

zoffset, width, height, and depth argument values, any of the following relationships
generates the error INVALID_VALUE:

T < —wp
T+ w > ws — Wy
y < —hy
y+h>hs—hy
z < —dy
z4+d>ds—dy

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, 7, k], where

i =2+ (n mod w)

n
= — dh
j=y+ (L] modh)
.
width * height

Arguments xoffset and yoffset of TexSubImage2D and CopyTexSubImage2D
specify the lower left texel coordinates of a width-wide by height-high rectangular
subregion of the texel array. Negative values of xoffset and yoffset correspond to
the coordinates of border texels, addressed as in figure 3.10. Taking ws, hs, and by
to be the specified width, height, and border width of the texel array, and taking x,
y, w, and h to be the xoffset, yoffset, width, and height argument values, any of the
following relationships generates the error INVALID_VALUE:

k=z+(] | mod d

T < —by
T+ w > ws — by
y < —bs
y+h>hs—bs
Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i, j], where

i =1z + (n mod w)

j=y+ (= modh)

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 242

The xoffset argument of TexSubImagelD and CopyTexSubImagelD speci-
fies the left texel coordinate of a width-wide subregion of the texel array. Negative
values of xoffset correspond to the coordinates of border texels. Taking ws and by
to be the specified width and border width of the texel array, and x and w to be the
xoffset and width argument values, either of the following relationships generates
the error INVALID_VALUE:

T < —byg
T+ w > ws — by

Counting from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i], where

i =x + (n mod w)

Texture images with compressed internal formats may be stored in such a way
that it is not possible to modify an image with subimage commands without having
to decompress and recompress the texture image. Even if the image were modi-
fied in this manner, it may not be possible to preserve the contents of some of
the texels outside the region being modified. To avoid these complications, the
GL does not support arbitrary modifications to texture images with compressed
internal formats. Calling TexSubImage3D, CopyTexSubImage3D, TexSubIm-
age2D, CopyTexSubIlmage2D, TexSubImagelD, or CopyTexSubImagelD will
result in an INVALID_OPERATION error if xoffset, yoffset, or zoffset is not equal to
—bs (border width). In addition, the contents of any texel outside the region mod-
ified by such a call are undefined. These restrictions may be relaxed for specific
compressed internal formats whose images are easily modified.

If the internal format of the texture image being modified is one of the spe-
cific RGTC formats described in table 3.20, the texture is stored using one of the
RGTC texture image encodings (see appendix C.1). Since RGTC images are easily
edited along 4 x 4 texel boundaries, the limitations on subimage location and size
are relaxed for TexSubImage2D, TexSubImage3D, CopyTexSubIlmage2D, and
CopyTexSubImage3D. These commands will generate an INVALID_OPERATION
error if one of the following conditions occurs:

e width is not a multiple of four, width + zoffset is not equal to the value of
TEXTURE_WIDTH, and either xoffset or yoffset is non-zero.

e height is not a multiple of four, height 4+ yoffset is not equal to the value of
TEXTURE_HEIGHT, and either xoffset or yoffset is non-zero.

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 243

e xoffset or yoffset is not a multiple of four.

The contents of any 4 x 4 block of texels of an RGTC compressed texture
image that does not intersect the area being modified are preserved during valid
TexSubImage* and CopyTexSubImage* calls.

Calling CopyTexSubImage3D, CopyTexImage2D, CopyTexSubImage2D,
CopyTexImagelD, or CopyTexSubImagelD will result in an INVALID_-
FRAMEBUFFER_OPERATION error if the object bound to READ_FRAMEBUFFER_-
BINDING is not framebuffer complete (see section 4.4.4).

Texture Copying Feedback Loops

Calling CopyTexSubImage3D, CopyTexImage2D, CopyTexSubImage2D,
CopyTexImagelD, or CopyTexSubImagelD will result in undefined behavior if
the destination texture image level is also bound to to the selected read buffer (see
section 4.3.2) of the read framebuffer. This situation is discussed in more detail in
the description of feedback loops in section 4.4.3.

3.9.5 Compressed Texture Images

Texture images may also be specified or modified using image data already stored
in a known compressed image format, such as the RGTC formats defined in ap-
pendix C, or additional formats defined by GL extensions.

The commands

void CompressedTexImagelD(enum target, int level,
enumn internalformat, sizei width, int border,
sizei imageSize, const void *data);

void CompressedTexImage2D(enum target, int level,
enum internalformat, sizei width, sizei height,
int border, sizei imageSize, const void *data);

void CompressedTexImage3D(enum target, int level,
enumn internalformat, sizei width, sizei height,
sizei depth, int border, sizei imageSize, const
void *data);

define one-, two-, and three-dimensional texture images, respectively, with incom-
ing data stored in a specific compressed image format. The target, level, inter-
nalformat, width, height, depth, and border parameters have the same meaning
as in TexImagelD, TexImage2D, and TexImage3D, except that compressed rect-
angular texture formats are not supported. data refers to compressed image data

OpenGL 3.3 (Compatibility Profile) - March 11, 2010

3.9. TEXTURING 244

stored in the specific compressed image format corresponding to internalformat.
If a pixel unpack buffer is bound (as indicated by a non-zero value of PIXEL_-
UNPACK_BUFFER_BINDING), data is an offset into the pixel unpack buffer and the
compressed data is read from the buffer relative to this offset; otherwise, data is
a pointer to client memory and the compressed data is read from client memory
relative to the pointer.

If the target parameter to any of the CompressedTexImagenD commands is
TEXTURE_RECTANGLE or PROXY_TEXTURE_RECTANGLE, the error INVALID_—
ENUM is generated.

internalformat must be a supported specific compressed internal format. An
INVALID_ENUM error will be generated if any other values, including any of the
generic compressed internal formats, is specified.

For all other compressed internal formats, the compressed image will be de-
coded according to the specification defining the internalformat token. Com-
pressed texture images are treated as an array of imageSize ubytes relative to
data. If a pixel unpack buffer object is bound and data + imageSize is greater
than the size of the pixel buffer, an INVALID_ OPERATION error results. All pixel
storage modes are ignored when decoding a compressed texture
image. If the imageSize parameter is not consistent with the format, dimensions,
and contents of the compressed image, an INVALID_VALUE error results. If the
compressed image is not encoded according to the defined image format, the re-
sults of the call are undefined.

Specific compressed internal formats may impose format-specific restrictions
on the use of the compressed image specification calls or parameters. For example,
the compressed image format might be supported only for 2D textures, or might
not allow non-zero border val